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SUMMARY 
The paper discusses in detail a new method for indirect model reference adaptive control (MRAC) of 
linear time-invariant continuous-time plants with unknown parameters. The method involves not only 
dynamic adjustment of plant parameter estimates but also those of the controller parameters. Hence the 
overall system can be described by a set of non-linear differential equations as in the case of direct 
control. Many of the difficulties encountered in the conventional indirect approach, where an algebraic 
equation is solved to determine the control parameters, are consequently bypassed in this method. 

The proof of stability of the equilibrium state of the overall system is found to be different from that 
used in direct control. Using Lyapunov’s theory, it is first shown that the parameter errors between the 
parameter estimates of the identifier and the true parameters of the plant, as well as those between the 
actual parameters of the controller and their desired values, are bounded. Following this, using growth 
rates of signals in the adaptive loop as well as order arguments, it is shown that the error equations are 
globally uniformly stable and that the tracking (control) error tends to zero asymptotically. This in turn 
establishes the fact that both direct and indirect model reference adaptive schemes require the same 
amount of prior information to achieve stable adaptive control. 

KEY WORDS model reference adaptive control; indirect adaptive control; dynamic adaptive control; robust 
adaptive control 

1. INTRODUCTION 

Indirect adaptive control, which is one of two distinct approaches for the control of dynarnical 
plants with unknown parameters, as it is commonly used, consists of two stages. In the first stage, 
the parameters of the plant are estimated dynamically on-line using input-output information. At 
every instant of time, assuming that the estimates represent the true values of the plant 
parameters, the control parameters are computed to achieve desired overall system 
 characteristic^.'-^ In contrast with this, in direct adaptive control the control parameters are 
adjusted continuously based on the error between the output of the plant and the output of the 
reference model. The latter results in the overall system being described by a set of non-linear 
differential equations. This in turn makes the formulation of the stability problems of such systems 
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relatively straightforward. While the two methods have continued to flourish for over two decades, 
very little is known about the precise relation between them. In particular, it is not clear which 
approach would be preferable in a specific situation and whether identical results can be obtained 
by the two methods using the same prior information. In this paper a new dynamical method of 
adjusting the control parameters is suggested for the indirect adaptive control of a linear system 
with unknown parameters. As in direct control, this results in the overall system being described by 
a set of non-linear differential equations. The stability of the new indirect MRAC is established 
using the same prior information that is generally assumed for direct 

The adjustment of the control parameters in the conventional indirect method involves the 
solution of a matrix algebraic equation. This poses both implementational and analytic 
problems. Since the algebraic equation can be solved only at discrete instants of time 
(assuming that a solution exists), the method is more suited to discrete rather than continuous- 
time systems. Even for discrete-time systems it is known that a solution to the algebraic 
equation may not exist,5 since parameter estimates rather than the true values are used. In 
References 6 and 7, where the adaptive control of an unknown continuous-time plant is 
discussed, the synthesis of a feedback matrix is realized asymptotically. The proof of 
convergence of such a system depends upon the persistent excitation of an external command 
signal. In Reference 8 there is an interesting method of adaptive regulation for nth-order plants 
based on the idea of the so-called 'identification mismatch error'. In contrast with the above 
approaches, in the method suggested in this paper the identification (output) error between the 
plant output and the output of the identification model and the control error are shown to be 
bounded and to tend to zero asymptotically. While the former is shown by the existence of a 
Lyapunov function, the latter is established using arguments based on growth rates of signals 
in the system. It is also shown that all the signals of the system remain bounded. Hence the 
method, while circumventing the theoretical difficulties encountered in the conventional 
indirect approach, also results in global uniform stability even when the reference input is not 
persistently exciting. 

Recently a method of combining the direct and indirect approaches for adaptively controlling 
a linear time-invariant plant was suggested by the  author^.^*'^ The method introduced here, of 
dynamically adjusting control parameters using an indirect approach, can be considered as the 
precursor of the former. The combined MRAC presented in References 9 and 10 includes the 
direct approach and therefore the tracking error (or the augmented error in the case of n* > 1) is 
used in the adaptive laws, whereas in the scheme proposed here, since it is indirect in nature, 
these errors are not needed. This fact make an important difference between the two approaches. 
On the other hand, by making suitable simplifications, the dynamical indirect MRAC can be 
obtained as a particular case of the combined MRAC. Nevertheless, stability analyses are quite 
different, since in the combined MRAC the convergence to zero of the tracking error is 
determined as part of a set of differential equations, while in the dynamical indirect MRAC this 
convergence is a consequence of the convergence of other error signals (identification error and 
closed-loop estimation errors). 

The basic difference between the conventional indirect method and the new dynamical 
method is brought out in Section 2 ,  where the adaptive control of a first-order plant is described 
in detail. The same approach can be shown to carry over directly to a general nth-order plant 
when its relative degree n" is unity. For a plant with n* 2 2, it is shown in Section 3 that the 
same method also applies if a suitable parametrization of the plant is used. The principal 
requirement in all cases is that the plant parameters and desired control parameters are linearly 
related. Section 4 deals with the robustness of the indirect model reference adaptive control 
(IMRAC). 
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2. INDIRECT MRAC OF FIRST-ORDER PLANTS 

To make the principal ideas clear, we first consider in detail the indirect MRAC of a first-order 
linear time-invariant plant described by the differential equation 

i p ( t ) =  - u , x , ( ~ )  + k,u(t)  (1) 
where u(t ) ,  x , ( t )  E R are the input and output of the plant respectively. The plant parameters up 
and k,  are constant, real and unknown, with k, # 0, i.e. the plant is completely controllable. It is 
also assumed that the sign of k,  is known. Let the reference model be described by the 
differential equation 

X,(t) = -u,x, (~)  + k,r ( t )  (2) 
where r ( t ) ,  n,(t)E R are the input and output of the reference model respectively. The 
parameters a, and k,  are known scalar constants, with u,>O, i.e. the model reference is 
asymptotically stable. The reference input r ( -  ) is assumed to be a piecewise continuous bounded 
function of time. Our objective is to make the control error (tracking error) e,(t)  P x,( t )  - x,(t) 
tend to zero with time, using an indirect control scheme in which e,( t )  is not directly used and 
the control parameters are computed based on the plant parameter estimates. The control input 
u( t )  is generated as in the direct control scheme and has the form 

(3) 
where 6 ( . ) ,  k ( . ) :  R + + R are the control parameters adjusted according to some adaptive laws 
to be specified later. Replacing (3) in (l), it is easy to verify that there exist real constants 6* 
and k*, referred to as the desired control parameters, such that 

u ( t )  = e( t )x , ( t )  + k ( t ) r ( t ) ,  

* 
* 

-up+ k,6 = -a ,  
k,k = k,  (4) 

This implies that the transfer function of the plant together with the controller, when 6( t )  I 6* 
and k( t) I k*, matches exactly that of the reference model. 

To generate the controller parameters based on the plant parameter estimates, we can use 
either algebraic or dynamical methods. The algebraic method, used in conventional indirect 
adaptive control methods, is relatively well known in the literature" and uses the relationship 
(4). Let &,(a), l,(.): R +  +R be the plant parameter estimates of up and kp respectively, 
obtained from an identification procedure to be specified later. Replacing the true values of the 
plant parameters as well as the desired control values in equations (4) by their respective 
estimates, we can compute the controller parameters as 

This method involves division by the estimate of k,. This in turn can introduce numerical 
difficulties, which have been well treated in the literature. One well-known method to 
circumvent this difficulty is to assume that a lower bound for I k, 1 is known." 

The analysis of the adaptive system using the methods described previously reveals that even 
in a simple adaptive system an asymmetry exists between the direct and indirect approaches. 
While only the sign of k, is needed to implement the adaptive law for direct control, knowledge 
of a lower bound on I k, 1 is also needed for indirect control. In what follows, a stable indirect 
h4RAC is derived without assuming a lower bound on I k, 1 . The approach is based on adjusting 
the control parameters dynamically. 
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Let an identification model be described by the equation 

k,(t) = -a , e , ( t )  - B, ( t )x , ( t )  + I;,(t)u(t) (6) 

where ,$(.): R + + R is a function of time that estimates the output of the plant x , ( t )  at every 
instant of time and e , ( t )  + x",(t) - x,(t) E R is the identification error (output error). Subtracting 
( I )  from (6), we obtain 

which can be written as 

@,(t> = -a&,(t)  - v&)xp(t) + V k ( t ) U ( t )  (8) 

where r l , ( t )  + d, ( t )  - u p  E R and v k ( t )  + k , ( t )  - k,  E R are the plant parameter errors. 
At any instant t our objective is to adjust O ( t )  and k ( t )  based on the estimates ci,(t) and Lp(t) 

of the plant parameters. Since the desired control parameters satisfy the constraint given by 
equations (4), we define closed-loop estimation errors E e ( t )  and ~ ~ ( t )  by replacing the true plant 
parameters and the desired control parameters in equations (4) by their respective estimates 
ci,(t), l , , ( t ) ,  O ( t )  and k ( t )  to obtain 

Subtracting (4) from (9) respectively, we can express the closed-loop estimation errors in terms 
of the control and plant parameter errors as 

The adaptive estimation laws (12) and the adaptive control laws (ll),  together with the 
identification error (8) and the closed-loop estimation errors (lo), determine the modified 
indirect adaptive scheme. This scheme assures the boundedness of all the signals in the system 
and that limt+ I x,(t) - x , ( t )  I = 0. 

Comment 1 

In the indirect method proposed above, neither the reference model nor the control error e , ( t )  
is explicitly used. The control parameters 8 ( t )  and k ( t )  are obtained from the plant parameter 
estimates by using equations (1 1). 
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Stability analysis 

Let a function V(e , ,  $8, $ k ,  qo,  q k )  be defined as 

v = f [ e f +  IkpI(~2,+$2k)+1;1t+1;12kI 

The time derivative of V along the trajectories of the system described by equations (8) and 
(10)- (12) can be expressed as V = - a,ef - E: - 0. Therefore V is a Lyapunov function and 
it follows that e ( t ) ,  rip(?), $,(f), O ( t )  and k ( t )  are uniformly bounded and also that 
e, ,  E g  &kE z2e ( f ( t ) :  [w' + [w/j:" I f ( Z )  I 

However, boundedness of the signals x , ( t ) ,  2,(r) and u( t )  does not directly folIow and hence 
the following analysis is used. Replacing the control input u( t )  given by (3) in the estimator (6) 
and using the definition of the closed-loop estimation errors (9), we can write 

i p ( t )  = -amZp(t)  + &e(t)x,(t) + [ & k ( t )  + k,,,lr(t) 

d t < a ,  V € [w'). 

Noting that x , ( t )  = i p ( t )  - e i ( t ) ,  the above equation can be rewritten as 

fp , ( t )  = [ - a m  + ~ e ( t > I Z , ( t )  - Ee(t)e,(t) + I ~ e ( t )  + kmIr(t) (13) 
Equation (13) describing .2,(t) differs from equation (2) describing x,,,(t) owing to the presence of 
terms depending on cee(t) and E k ( t ) .  Since E ,  E %" and Ee, e,, &k, r E  2-, it follows that 2, E Y'. 
Hence xp = 2, - e, E 2- and therefore u ( t )  = O(t)x, ( t )  + k ( t ) r ( t )  is uniformly bounded. From (8) 
and (9) it can be seen that C,, and & k  are uniformly bounded. Therefore we conclude that" 

lim ei(r) = 0, lim E e ( t )  = 0, lim ~ ~ ( t )  = 0 
r-3- r-+- f - + W  

Further, from equations (13) and (2) it also follows that limf- 1 Zp(t) - x, ( t )  1 = 0 and hence 
x,(t) approaches x , ( t )  asymptotically, which in turn implies that lirnf+, e , ( t )  = 0. 

The results presented in this section indicate that for the case of first-order plants the prior 
information needed for stable adaptive control is the same whether a direct or indirect approach 
is used. The same is shown to be true in the following section for higher-order plants. 

Comment 2 

In contrast with the algebraic method, the control parameters are adjusted continuously in the 
dynamical method to reduce the closed-loop parameter estimates. Hence difficulties commonly 
encountered in indirect control, even when the zeros of the plant lie in the open left half of the 
complex plane, do not arise when the latter method is used. For non-minimum phase plants it is 
well known that steps have to be taken to avoid unstable pole-zero cancellations. This may be 
easier to accomplish using a dynamic approach. 

Comment 3 

The parameter errors $8, $ e ,  qo and qk lie in R4. However, it can be shown that if the 
reference input r ( t )  is persistently exciting in only R2, then all the parameter errors will tend to 
zero asymptotically. 

3. INDIRECT MRAC OF PLANTS OF ARBITRARY ORDER AND RELATIVE DEGREE 

The new approach introduced in Section 2 for first-order plants was shown to be globally 
uniformly stable. This result is generalized in this section to the adaptive control of a general 
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nth-order plant of arbitrary relative degree, using the Indirect approach with dynamical 
adjustment of the control parameters. 

3.1. Statement of the problem 

by the transfer function 
Let an nth-order linear time-invariant plant with input-output pair { u ( - ) ,  yp(.))  be described 

where u ( . ) ,  y , ( . ) :  [w++[w, Z,(s) is an mth-degree monic polynomial and R,(s)  is 
an nth-degree monic polynomial, defined as Z,(s) 4 S" + bm-lsm-l + -.- + b, and 
R, ( s )  4 s"+  U , - ~ S " - ~  + .-. + a,, where ai, for i = 0,1, ..., n - 1, bj, for j = 0, 1, ..., rn - 1, and k, 
are real unknown constants. We define vectors a = [a,, a,, ..., R"- '  and b =  
[b,, b, ..., b,-l]TE 08". We will further assume that the plant is completely controllable and 
observable, or equivalently that the polynomials Z,(s) and R,(s )  are coprime. We shall assume 
that the plant transfer function satisfies the four standard assumptions given by: (i) an upper 
bound on the order n of the plant is known; (ii) the exact relative degree n" = n - m of the plant 
is available; (iii) the sign of the high-frequency gain k, of the plant is known; (iv) the zeros of 
the transfer function W,(s) lie in the open left half of the complex plane. For simplicity we will 
assume that n rather than an upper bound on the order of the plant is known to the designer. 

The transfer function of the reference model has the form 

which relates the reference input r ( . ) :  R++R and the output of the reference model, ym(.): 
R + + R .  The reference input r ( t )  is assumed to be bounded and piecewise continuous. Further, 
the polynomials Z,(s) and R, ( s )  are monic and Hurwitz of degree m and n respectively, 
with Z,(s) S" + b ~ - l ~ m - '  + ... + b; and R, ( s )  4 sn+ U , ~ - ~ S " - ~  + + a:, where a;, for 
i = O , l ,  ..., n -  1, b;,forj=O,l, ..., m- l,andk,arerealconstants. 

3.2. Structure of the Controller 

as that used in the direct MRAC scheme." The input to the plant has the form 

with O ( t ) ,  w ( t )  E R'". The control parameter vector O ( t )  and the auxiliary vector signals w( t )  
are defined as O ( t ) +  [ k ( t ) ,  Of(t), O,( t ) ,  O;(t)lT and w ( t ) &  [ r ( t ) ,  wT(t), y , ( t ) ,  w;(r)lT. Both k ( r )  
and O,(t) as well as r ( t )  and y , ( t )  are scalar functions of time, while O , ( r ) ,  e,(t), wl(t), 
w2(t )E [w"-' and their components are denoted as O , ( t )  [ O i ( t ) ,  O:( t ) ,  ..., O:-2(r)]T, 
w:(t) ,  ..., w ~ - , ( t ) I T ,  with O,'(t) ,  Of( t ) ,  w: ( t ) ,  w?( f )  E [w for i =  0, 1, ..., n - 2. 

using the differential equations 

The controller structure to be used in the proposed indirect MRAC scheme has the same form 

u ( t )  = eT(t)w(t)  (15) 

1 
e,(t)& [ e m ,  e m ,  ..., e:- , ( t ) iT1 w , w  [wi(t), W:(t),  ..., W , , - 2 ( t ) i ~  and w2( t )& [w;(t), 

Here w l ( f )  and w2(t )  will be referred to as the control sensitivity vectors and are generated 
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where A is a stable ( n  - 1) x ( n  - 1) matrix, 1 is an ( n  - 1)-vector and the pair ( A ,  I )  is 
controllable. It is well known'' that there exists a constant parameter vector 8" E R2" such 
that the transfer function of the plant together with the controll$r, *when 8 ( t )  3 8*, is identical 
with t4at of * the reference model, *where , 8* [k", 8: ,8,, &IT. %ere k", 8; E R, 
O:A[@, ,..., 8 A - 2 ] T ~ R n - 1  and 8:a[8: ,..., 8 : -2 ]T~Rn- ' ,  with 8,'*,8,? E R  for i=O,  
1, . . . , n - 2. The aim o f  adaptive control is to determine suitable rules for adjusting 8( t )  using 
observed signals so that all the signals of the overall system remain bounded and the control 
errore,(t)=y,(t)-y,(t)ERissuch thatlim,,, e , ( t )=O.  

So far nothing has been said about the structure of the matrix A and the vector 1. Since our 
ultimate objective is to define closed-loop estimation errors, as in the first-order case, we need to 
relate the desired control parameters 8* to the plant and reference model parameters. To make 
this relationship simple, we choose (A, l )  to be in controllable canonical form such that 

where I a [ I , , I ,  ,..., I n - 2 ] T E R n - ' ,  I , € R  for i = O , l ,  ..., n - 2 ,  and I(n-2) is the 
( n  - 2 )  x ( n  - 2) identity matrix. 

3.3. Identification model 

From the identification point of view the plant defined in (14) can be parametrized in any 
fashion. However, in practice the parametrization is chosen to make the relationship between the 
estimates given by the identification procedure and the plant parameter estimates, as well as the 
relationship between the plant parameters, the desired control parameters and reference model 
parameters, as simple as possible. In this study we parametrize the plant so that the reference 
model, which is not explicitly used, becomes part of the parametri~ation.'~ The reason for the 
choice of this parametrization lies in the fact that it results in a linear relationship between plant 
parameter estimates and desired controller parameters. 

The output of the plant is expressed as 

(17) 1 ~ p ( t )  = W m ( s >  - [u(t> + B ~ w ~ ( ~ ) I  + a n -  1 ~ p ( f )  + aTw2(t) (:: 
The plant parameters a and B are defined as a &  [a,,a,, ..., " - I ,  

B" [B,,B,, ..., /3n-2]TE R"-' and an-l, k , E  R are real constants. The auxiliary signals 
w, ( t ) ,  w2( t )  E R"-' are defined as in the case of the controller (see equations (16)). 

Since BT(sl-A)- 'I= B(s)/A(s) and a T ( s l - A ) - ' l =  a(s) /A(s ) ,  where a ( s ) n ~ ~ - ~ s ~ - ~ +  

+ + I , ,  it can be shown that the transfer function between y , ( f )  and u ( t )  in (17) is exactly 
that of the plant given by (14) provided that the following Bezout identity is satisfied between 
the parameters a ,  B, a,,-' and a,  b, a,,-': 

(18) 

f - 2 +  f - 3  
a n & n - 3  + ... + a,, B ( s )  4 b n - 2 ~ n - 2  + /3n-3nn-3 + + Po and A($) a In-' + n - 3  

R,(s"(s) + a(s) l+ k,Z,(s"(s) + an- ,A(s) l= ~ p ( ~ ) ~ l ( ~ ) ~ I i l ( ~ )  
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A1 (s) in equation (18) is any monic, stable polynomial of degree n - m - 1 with the property 
that A($) = Zm(s)Al(s). 

Since the identifier is at the discretion of the designer, there is an alternative way of 
parametrizing the plant so that simple stable adaptive identification laws can be generated. The 
procedure is based on the fact that equation (17) can be rewritten as 

where j ; , ( t )A  Wm(s)yp(t), ii(t)s W , ( s ) u ( t ) ,  El( t )k  W , ( s )  
wZ(f), with I ( " - , )  denoting the ( n  - 1) x ( n  - 1) identity matrix. 

the plant, which delivers the estimate j p ( r )  of the plant output yp(r), has the form 

wl ( t )  and Ez(f)h Wm(s) 

The corresponding series -parallel identification model associated with the parametrization of 

(28) 
L P  j p ( r )  = - [W + BT( t )~ , ( t ) l  + 6,- I(t)jjp(r) + irT(t)iiz(r) 
km 

except for exponentially decaying terms due to initial conditions. Since the latter do not 
affect the analysis, they are not included in the following. The plant parameters estimates 
b i t )  F d  b ( t )  .I are denoted as &(t )  = [ & , ( t ) , & , ( ~ ) ,  ...,&,-,( r ) l T €  R"- l  and B ( t )  = 

&,(t),j3,(t), ..., j3n_2(t)]T€Rn-', where &,(t)ER and B,(t)ER, for i = O , l ,  ..., n -  1 and 
j = 0, 1 , . . . , n - 2, are the estimate values of the plant parameters a, and p, respectively. 

Therefore from equations (19) and (20) the identification error e,(t)  p j,(t) - y , ( t )  E R can be 
written as 

(21) 

where qa( t )Ab ( t ) -  a E R " - ' ,  q 8 ( t ) " B ( t ) - p E R " - ' ,  q a , , - , ( t ) P & n - l  - a,-,E[W and 
aL,,(t) 4 l & t )  - k p €  R are the plant parameter errors. From now on, the plant parameter vector 
and its estimate will be denoted as p" Ek,, pT, a,-,, allT€ R2" and o(t) [kP(t),BT(t), 
B ,,- ( t ) ,  BT(t)lT E [w*" respectively. 

1 -  k 
e , ( t >  = - [ d t )  + rffT(t)W,(t)17kP(t) + s;(t)wl(t) + qu,,Jt)jjp(t) + l;l;f(t)%(f) 

km km 

3.4. Closed-loop estimation errors 
From equations (15) and (17) it can be seen that there exists a constant parameter vector 

8" E R2" such that the transfer function of the plant together with the controller is identical wit.h 
that of the reference model when 8 ( t )  = 8*. Moreover, the desired controller parameter 8* is 
related to the plant parameters a ,  /I, a n  - I and k, as 

eT+B=o * k,8 ,  + kman..l = 0 
k,@ + k,a  = 0 (22) * k k , -  k , = O  

From the above relationships it is possible to define the closed-loop estimation errors as 

Eel ( t )  
eeo(t) P ip(t)8,,(t) + k,&,- , ( t )  
E s Z ( t )  &p(t)8,(r) + k,&(t) 

4 ( t )  + B ( t )  

(23) 

E k ( t ) l  k(t)L,(t) - km 
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or equivalently, subtracting (22) from (23) respectively, we rewrite the closed-loop estimation 
errors in a form that is better for stability analysis purposes: 

E81 ( t )  = $81 ( t )  + sp-(t) 

& m ( t )  = kp$Jm(t> + eo(t)rk,(t)  + krnqa,8-l(t) 
&a(t) = kp$m(f) + @ ~ ( t ) v k , ( t >  + k m V a ( t )  

(24) 

& k ( f )  = k ,$k( t )  + k ( t ) V k , ( t )  

where @ s l ( t ) A ~ , ( t ) -  B : E R " - ' ,  @ k ( f ) s k ( t ) -  k * € R ,  $ e o ( t ) ~ O o ( t ) -  6,*ER and 
$Ju,( t )  6,(t) - 6, E R"-'  are the control parameter errors. 

3.6. Proof of stability 
The proof of stability of the overall indirect adaptive MRAC scheme is carried out in two 

stages. In the first stage, as stated in Lemma 1, the boundedness of the parameter errors is 
established. In the second stage, as stated in Theorem 1 ,  the boundedness of all the signals in 
the adaptive loop is proved as well as the fact that the control error, the identification error and 
the closed-loop estimation errors tend asymptotically to zero. The latter is done using growth 
rates of signals and order  argument^.'^ 

Lemma I 
Let the system defined by the identification error ei(.): R + + R given by (21), the closed-loop 

estimation errors E ~ ~ ( . ) ,  ~ ~ ~ ( 0 ) :  Iw++[W"-'  and E ~ ( . ) , E ~ ~ ( . ) :  R + + R  given by (23), the control 
parameter errors $ ( r )  = 6 ( t )  - 8* = [ $ k ( t ) ,  $:,(t), (Pe,(t), $;?(t)ITE R2" with the control 
adaptive laws given by (25) and the estimation parameter errors q ( f ) P p ( t )  - p  = 
[ v k p ( t ) ,  r$(t), va,,-,(f), qT(t)]T€ R2" with the identification adaptive laws given by (26), be 
denoted by S. Then it can be shown that 

Cp(*), v ( - ) ,  &81(*)* &8?(') ,  &8"('), &k(-).#(-)> 7i(-) €3-  
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Figure 1. Indirect scheme for a general plant 
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- 
I / k m  

[sgn(kp)lkmIl(n- I )  

1 
.. 1," - 1) 

Similarly, equations (26) can be written as 

Since f(t)/d[l + r(t)f(t)] is bounded and q(t(  and t ( t )  were shown to be bounded, @(.) E 2- 
follows from equation (29). This completes the proof. 

In order to prove the boundedness of the other signals in the adaptive system, more 
involved arguments based on growth rates of unbounded signals are needed. This is stated in 
Theorem 1. 

Proof. The proof of stability follows along similar lines as the proof of stability of the 
direct MRAC for the ideal case, although some fundamental differences can be found along the 
way. The proof will be sketched indicating the principal steps. For further details the reader is 
referred to the source  reference^.^.'^^"^^^ 

From Lemma 1 it is possible to write 

e i ( t )  = y ( t )  d[l + r(y)f(t), where ? ( a )  E 2* (30) 

The closed-loop system consisting of plant and controller can be written as1' 

i ( t )  = [ A m "  + b m n # ' T ( t ) ~ ~ ~ ( t )  + b m n [ # k ( f )  + k*lr(t> (31) 
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where the (2n - 1) x (3n - 2)  matrix C and the (2n - 1)-vector G f  ( t )  have the form 

0 I ( n - I )  

c = [ 2 ; G ' ( 0  = [G;,(t>, Gs,(t ) ,  G;$)l 

with hL,(sZ -Am,)-lbm, = (k , /k , )W,(s) .  Here A,, is a (3n - 2) x (3n - 2) matrix and b,, and 
h,, are (3n - 2)-vectors defined as 

A,,& [ A, - e,*ih: t9,*hpbt A+ie:T  bp$TT ::*:TT], b,, [a] 1 , h,, [h:,O,OIT (32) 

1 h;f 0 A 

The expanded state vector is defined as x ( t )  = [ x i ( t ) ,  wT(t), w;(t)ITE I?"-' and A, is the n x n 
evolution matrix of the plant whose state space representation is xp(t) = A,x , ( t )  + b,u(t), 

Since $( . )EY' ,  equation (31) can be considered as a linear time-varying differential 
equation with bounded coefficients. It follows that 1 )  x ( t )  11 can grow at most exponentially. 
Also, since r ( . )  is a piecewise continuous, uniformly bounded function and O ( t )  and b( t )  are 
uniformly bounded, all components of x ( t ) ,  c ( t )  and c ( t )  belong to PC,,.,,, the set of all real 
piecewise continuous functions defined on the interval [0, -) which have bounded 
discontinuities. 

Let the signals of the system grow in an unbounded fashion, i.e. 1imt+- suprsf 11 x(z) 1 1  = m. 

Following a similar reasoning as that used in Reference 1 1 ,  we can prove that 

Y , ( t >  = h,Tx,(t). 

Iu(t)I*Ilw,(t)lI =O[sup T C T  ll..(~)Il] (33) 

SUP lY,(t)l - SUP I I W 2 ( d l l  - supIlw(dl1 - SUP I lWdlI (34) 

where iC(r)g [ F ( t ) ,  iijT(t),J,(t), i i jz(r)]T€ R2". The notation g ( t ) - f ( t )  means that g ( t )  and 
f ( t )  grow at the same rate and reads as ' g ( t )  is equivalent to f ( t ) ' .  Also, g ( t )  = O l f ( t ) ]  
means that g ( t )  does not grow more rapidly than f(t) and reads as ' g ( t )  is large order 

r < 1  r s i  T G t  T 6 f  

f(t>'. 
The output of the identification model (20) can be written as 

y^,(t) = PT(r)B1(r>Wt> 
where P l ( t )  is the 2n x 2n diagonal matrix defined as 
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The term PT(t )B , ( t )w( t )  can be expanded as 

Using the definition of the closed-loop estimation errors (23) .  we have 

~ T ( t ) P l ( t ) W ( t )  = E T ( t ) B ; ( t ) W ( t )  + r ( t )  

where E ( f ) 4  [ E t ( t ) ,  ETe,(f), E,,(r) ,  ~ ~ , ~ ( t ) ] ~ €  R2" and 

Replacing (36) in (35) ,  we can write 

j p ( t )  = ~ ~ ( t ) B , ( t ) ~ r n ( s > l , , n ) ~ w ( t ) l -  wm(s)[PT(t)B, ( t ) l ( t ) ~ ( t ) ~  

+ Wm(s)([ET(t)l";(t)W(r) + r(t11 
Since r ,  PI, B', E 2- and E E 2'. we can conclude that 

y^,(t) = o [ y  II W ( Z )  I l l  + 4 t )  (37) 

where & a )  = W,(s)[r(.)]E Y'. On the other hand, the output of the plant can be expressed as 

~ p ( t )  = jp(t) - ei(t) 

Using equations (30) and (37) ,  we can conclude that 

P p ( t )  = o [  SUP II W ( t )  I l l  + &t) + r ( t ) 4 1  + f T ( t ) f ( t ) l  
T L l  

Since wZ(f) = ( s l -  A)-'fyP(f), we have 

IIW2(f)II l l ( ~~ -~ ) - lw~) l l  + p P  T C I  I lw(t)I I ]  + p P  r s i  I l f ( q  
Hence we can conclude that 

IIWZ(t)II = O p P  K G 1  I l W ( d l l ]  

which contradicts equation (34),  according to which w,(t) and w( t )  grow at the same rate if 
they grow in an unbounded fashion. Hence all the signals in the feedback loop are uniformly 
bounded and properties (i) immediately follow. 

It was proved that E , , ,  E,?, E , ~ ,  E,EY',  and since it can be seen-that C,,, do?, Coo, &,€.Ye-, 
limf+.,{ E i ( t ) ,  E:?, E , , , ( t ) ,  E k ( f ) ,  1 = 0. Also, since it was shown that and rj are bounded, Pi  is 
bounded. Finally, from equation (30) ,  f E 3- implies that e, E 2'. 

Hence limf- ei(t) = 0. From equation (37) it can be seen that liml+, $ p ( f )  = yrn(t), hence 
lim,+, e , ( t )  = 0, proving property (iii). This completes the proof of Theorem 1 .  
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Comment 4 

In this section the indirect method described in Section 2 for a first-order plant was extended 
to the general case of a plant of order n and arbitrary relative de ree 1 s n d n. As in direct 
control, a substantial simplification can be achieved when n = 1. In such a case the 
parametrization of the plant directly in terms of ui ( i  = 0, 1, . . ., n - 1) and b, (j = 0, 1 , .. ., n - 2) 
can be used, since a linear relationship exists between the plant parameters and the desired 
control parameters;" In this parametrization, filtered signals jjp(t), zi(t), W , ( t )  and W t ( t )  are not 
needed and signals y , ( t ) ,  u ( t ) ,  w , ( t )  and wq(f )  are used instead. The way in which identification 
and controller parameters are adjusted is basically that shown in (25) and (26), except for the 
normalization factor N ( t ) .  The parametrizations used in Section 3 for the plant as well as the 
controller are needed to obtain a similar linear relationship even in the more general case of 
n 3 2 .  

* 
0 

* 

Comment 5 

It can be shown that if the spectral measure of the reference input r ( t )  is concentrated in at 
least 2n points, then the parameter errors $ ( t )  E R2" and q ( t )  E R2" will also tend to zero 
asymptotically. Equivalently, if the reference input r ( t )  is persistently exciting in R2", the 4n 
elements of the parameter error vectors $ ( t )  and q( t )  will tend to zero as t +-. 

Comment 6 

For the sake of simplicity the above stability analyses for first- and nth-order plants were 
carried out using unity adaptive gains. These results can be directly extended to cases where the 
adaptive gains are arbitrary positive constants, constant positive definite matrices or even time- 
varying positive definite matrices. 

3.7. ~ i m u ~ ~ t i o n  example 

behaviour of the direct MRAC and the dynamical indirect MRAC proposed here. 

conditions. The differential equation describing the plant is 

In this subsection a set of simulations of a second-order plant is presented to compare the 

An unstable second-order plant was simulated to test the MRAC schemes under ideal 
r 

Y,(t> + Y,(t) - 2Y,(t) = 2 4 0  

j i m ( t >  + 4 Y m ( t )  + 3ym(t) = r ( t )  

where y,(O) = 0.5. The model reference was chosen as 

where ym(0) = 0. Simulation results are shown in Figures 2 and 3 for different types of reference 
inputs. All initial conditions were set to zero and all adaptive gains were chosen as 10. The value 
of A was chosen as - 1. 

From the simulations it can be seen that the theoretical results are verified. In particular, in all 
simulations e,( t)  + 0 as t + without persistent excitation. The better transient behaviour of 
the proposed scheme is evident. 

An interesting point is that parametric convergence (controller and identifier) is achieved if 
only parameter controller convergence is obtained. In fact,let us assume that persistent 
excitation is such that controller parameter errors are driven to zero; then, since closed-loop 
estimation errors given by (24) tend to zero, it can be concluded that plant parameter errors are 
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also driven to zero. This means that from the persistent excitation viewpoint the dynamical 
indirect MRAC and direct MRAC schemes are equivalent. 

3.8. Robustness of dynamical IMRAC 

The dynamical indirect model reference adaptive controller presented in the previous 
subsection can be modified to account for bounded external perturbations. One way of doing 
this is to modify the adaptive laws in the same way as in the direct MRAC. We will consider the 
plant defined by 

i,(t)=Apxp(t) + b,u(t) + d,pi(t)  
Y,(t) = C;xp(f) + P 2 ( t )  

where A ,  E R""" is the evolution matrix, x,, b,, d,, cp E R" are the state vector, command 
vectors and observation vector respectively, u, y,, p , ,  p 2  E R are the plant input, plant output, 
input perturbation and output perturbation respectively and pI (.), p 2 ( . ) :  [0, m) + R are two 
bounded piecewise continuous functions of time. In addition, it is assumed that p l ( t )  is 
differentiable. 

The structure of the adaptive laws now has the general form 

~ k p ( f )  = h p ( r >  = ~ { e , ( t ) [ B ~ ( t ) m l ( t )  + ~(t)l/"(t)kml 
- k ( t ) & k ( t )  - 8o( t )&eo( t )  - 0 T ( f ) & e 2 ( t ) ~  - ip(t>f,(lp) 

l i p ( f >  = B ( t )  = Y{ - sgn(~ , )e , ( t )~ l (r ) /"( t )k ,~  - E 8 ,  (t> I - B(t)f,CB) (38) 
q u , , - , ( t )  = b,- l ( f> = y [  - e , ( t > j , ( t ) / N ( t )  - km&eo(t)I - Gn-l(f)fi(&n-l) 

li,(t> = d ( t >  = y [ - e , ( t ) w 2 ( t ) / N ( t )  - k m & g 2 ( f ) l  - a(t>f,(e) 
4 k ( t )  = m = y[-sgn(k,)e,(t)l- k(t)f,(k) 

4 e , ( f )  = el(?> = Y [ - E ~ , ( ~ ) I  - e,(t)f,(e,) 
4eo(t> = eo(t> = ~[-sgn(k,)~e,( t>~ - ~ o ( t V , ( ~ o )  

4 e z ( t )  = e 2 ( t )  = ~[-sgn(k,)&e,(t)l- e,(t)fc(ez) 
(39) 

where N ( t )  E R is the normalization factor defined in (26). The functions f,(-) and f,(.) and the 
parameter y have different meanings depending on the modifications introduced in the adaptive 
laws. It will be assumed that external perturbations are uniformly bounded, i.e. I pl ( t )  I a p o  and 

To provide global stability of the overall adaptive system, Kreisselmeier and NarendraI6 
propose modified adaptive laws for the direct MRAC. In this case the adaptive laws (25) and 
(26) for adjusting controller and identifier parameters take the form indicated in (38) and (39) 
with y = 1 and the functions f,(.) and fc(.) are defined as 

I P 2 ( f )  I >Po. 

where 1 1  x ( t )  11 ax*, for all ts to (x*, is a known bound on the norm of x ( t ) ) .  This scheme uses 
the knowledge of a bound on 11 8* 11 as well as on ( 1  p 11 . 

In order to provide global stability of the adaptive system for the direct MRAC under 
bounded external perturbations, Peterson and Narendra" suggested modified adaptive laws 
including a dead zone. The corresponding adaptive laws for the IMRAC based on these results 
are those shown in (38) and (39) with y =  1 and f i ( . )  = fc ( . )  = 0 if I ei(r) I > p o .  Otherwise the 
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updating procedure is stopped by making zero the time derivatives of the parameter estimates, 
i.e. y = 0 and f i ( - )  =fc(.) = 0 if I ei(t) 1 spa. 

Following the ideas of Ioannou and Kokotovic,” the adaptive laws suggested here for 
adjusting controller and identifier parameters to provide global stability of the adaptive system 
under bounded external perturbations are those mentioned in (38) and (39) with fi(.) = u,/N(t)  
andf,(.)= a,/N(t), where a,>Oand a,>0. 

If we now use the modification suggested by Narendra and Annaswamy” for the direct 
MRAC, in this case the adaptive laws are given by equations (38) and (39) with 
f i ( * >  = I ei(tl lN ( t )  andfc(.) = rc I ~c I lN( t ) -  

4. CONCLUSIONS 

Conventional methods of adaptive control based on the indirect approach involve the solution of 
algebraic equations for determining control parameters. In contrast, the method discussed in this 
paper is based on the dynamic adjustment of control parameters, which bypasses many of the 
difficulties of the conventional indirect MRAC. It is also shown that such an approach is equivalent to 
the direct method, in that the two achieve stable adaptation using identical prior information. 

Since the overall adaptive system is described by a set of stable non-linear differential 
equations, many of the difficulties encountered when the algebraic method is used are avoided 
in this case. It has also been shown by the authorsg.” that the approach suggested here can be 
readily combined with the direct MRAC method to improve overall performance. 

Robustness of the dynamical MRAC can be achieved by modifying control as well as 
identification adaptive laws. This was presented in four schemes included in Section 3. With 
these modifications the resulting adaptive scheme is globally stable in the presence of bounded 
external perturbations. 
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