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Dissolved organic matter (DOM) plays a non-negligible role in the indirect

photodegradation of organic contaminants. This research investigated the

roles of DOM and the environmental factors (salinity, pH, NO3
−, and HCO3

−) in

the indirect photodegradation of ofloxacin (OFX) in simulated seawater. Results

showed that DOM can significantly accelerate the indirect photodegradation of

OFX, and 1O2 and
3DOM* were the main reactive intermediates (RIs) that could

promote the indirect photodegradation of OFX. Fluorescence excitation–

emission matrix spectroscopy–parallel factor analysis (EEMs-PARAFAC) was

used to divide DOM into four fluorescence components. The indirect

photodegradation rate of OFX was affected by DOM structure, and terrigenous

DOM usually produced more RIs to promote the indirect photodegradation of

OFX. Increased salinity significantly promotes the indirect photodegradation of

OFX, while increased NO3
− concentration had no effect on the OFX indirect

photodegradation. pH affected the formation of RIs and the structure of OFX,

thereby affecting the indirect photodegradation of OFX. The indirect

photodegradation rate of OFX increased in the HCO3
− solution, which is due to

the formation of carbonate radical (CO3
−). This study is essential in understanding

the role of DOM in OFX indirect photodegradation and providing a novel insight

into the fate, removal, and transformation of OFX.

KEYWORDS

dissolved organic matter, ofloxacin, indirect photodegradation, DOM components,
environmental factors
1 Introduction

Pharmaceuticals and personal care products (PPCPs) are considered new organic

pollutants, including various antibiotics, biopharmaceuticals, and fungicides, which have

raised scientific and public concern over the past decades. PPCPs are usually detected in

drinking water, sewage, and wastewater treatment plants (WWTPs) due to their universal
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consumption, diversity, and unique chemical properties (Yang

et al., 2017). Generally, most antibiotics and their metabolites

ingested by humans and animals are excreted with urine and

feces and subsequently spread to the environment. The

concentrations of sulfonamides, fluoroquinolones (FQs), and

macrolide compounds in wastewater from animal production and

pharmaceutical companies are as high as 200, 98, and 5.6 mg L−1,

respectively (Zhang et al., 2021). It has been demonstrated that

antibiotic residues in the environment can lead to the evolution of

new drug-resistant bacteria and increase bacterial resistance, which

ultimately pose threats to aquatic ecosystems and human health.

FQs are a family of synthetic antimicrobial agents for both humans

and animals, which have been detected at high concentrations in

aquatic environments in Europe, America, Australia, and Asia (Al

Aukidy et al., 2012). Ofloxacin (OFX), one of the FQs, can be

detected in a variety of natural water and even in drinking water and

groundwater. It has been detected at a maximum of tens of mg L−1 in
WWTPs and at hundreds of ng L−1 in surface water (Danner et al.,

2019; Ding et al., 2020). Due to animal husbandry and aquaculture

having produced a large amount of industrial and aquacultural

waste, notable antibiotic residues were transported to coastal areas

through riverine inputs and precipitation (Fu et al., 2003; Zhang

et al., 2013). The ocean has become an important sink of many

antibiotics. Hence, it is important to understand the behavior of

OFX in seawater for its environmental risk assessment.

The removal of OFX from aquatic environments has been

extensively researched, such as physical, chemical, and biological

methods (Tian et al., 2021). Generally, photodegradation is

considered the main degradation pathway of OFX in natural

water. It is well known that direct photodegradation involves

energy and electron transfer after dissolved organic matter

(DOM) absorbs photons (Du et a l . , 2014) . Indirect

photodegradation refers to the process in which some

photosensitizers generate reactive intermediates (RIs) to degrade

organic contaminants (Yang et al., 2013). DOM is a diverse and

complex mixture that acts as a photosensitizer in the natural

environment. Generally, the photodegradation of DOM results in

the formation of RIs, such as hydroxyl radical (·OH), singlet oxygen

(1O2), and the reactive triplet state(s) of DOM (3DOM*), which can

facilitate the indirect photodegradation of OFX (Burns et al., 2012).

However, DOM can also restrain the photodegradation process

through light attenuation, quenching RIs, and back-reduction

mechanisms (Wu et al., 2021). Numerous studies have

demonstrated that the ability of DOM to generate RIs was

dependent on the source of DOM and the content of functional

groups, resulting in different effects on the photodegradation of

organic pollutants (Guerard et al., 2009; Liu et al., 2021). For

example, DOM from soil usually has high aromaticity and degree

of humification (Xu et al., 2018), which can produce high

concentrations of RIs to promote the photodegradation of organic

pollutants. In contrast, DOM extracted from seawater contains

lower aromatic C═C and C═O functional groups and exhibits

lower steady-state concentrations of RIs compared with

freshwater DOM, thus having less effect on the photodegradation

of organic pollutants (Wang et al., 2019). Therefore, it is necessary

to explore the effect of DOM components on the indirect
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photodegradation of OFX. Excitation–emission matrix

spectroscopy (EEMs) can distinguish different classes of materials

of terrestrial, autogenous, and anthropogenic origin by

concatenating continuous emission spectra of a range of

excitation wavelengths (Coble et al., 1998). The technique of

EEMs combined with parallel factor analysis (PARAFAC) has

been used for evaluating the composition, origin, and fate of

DOM (Guéguen et al., 2011). Moreover, ultraviolet–visible

spectroscopy (UV–Vis) technology can be used to reflect the

degree of humification and aromaticity of DOM. Therefore, we

used EEMs-PARAFAC and UV–Vis to study the relationship

between DOM components and OFX indirect photodegradation.

Other environmental factors in seawater also can affect the

generation of RIs, thus having an impact on the photodegradation

of organic pollutants. It has been demonstrated that NO3
−, HCO3

−,

salinity, and pH are crucial factors in seawater to influence the

indirect photodegradation of organic pollutants (Bai et al., 2018;

Wang et al., 2021). NO3
− can produce ·OH through direct photolysis

under solar radiation to affect the photodegradation of organic

pollutants, and the quantum yield of ·OH was affected by pH

(Bodrato and Vione, 2014). In natural water, HCO3
− can react

with ·OH to influence the formation of CO3
−, which is a selective

oxidant and plays an important role in aquatic oxidation reactions.

The reaction between CO3
− and organic pollutants mainly occurs

through electron transfer or hydrogen extraction mechanism (Liu

et al., 2018). Additionally, pH and salinity can affect the indirect

photodegradation of organic pollutants by affecting the generation

of RIs or the structure of organic pollutants.

Previous studies have reported that the indirect photodegradation

of OFX in freshwater accounted for more than 50% of the observed

photodegradation rate (Cheng et al., 2021). Lam and Mabury (2005)

reported that the photosensitive reaction or photooxidant produced

by DOM photolysis played a great role in the photodegradation of

OFX in synthetic field water. However, the effect of DOM components

on the indirect photodegradation of OFX is still unknown, and there

are no data available on the indirect photodegradation of OFX in

seawater. It limited the research about the mechanism of

photodegradation of organic pollutants. In this study, we

investigated the indirect photodegradation of OFX and

environmental factors in simulated seawater, especially the roles of

DOM in simulated seawater on the indirect photodegradation of OFX.

This study aims to 1) explore the roles of DOM and RIs (1O2, ·OH,

and 3DOM*) in the indirect photodegradation of OFX, 2) investigate

the effects of DOM components on the indirect photodegradation of

OFX, and 3) study the effect of other environmental factors (pH,

salinity, NO3
−, and HCO3

−) in DOM solutions on the indirect

photodegradation of OFX. It provides an important theoretical basis

for the scientific assessment of the fate and environmental risk of OFX.
2 Materials and methods

2.1 Materials

OFX (≥99%), isopropanol (IPA; ≥99.9%), furfuryl alcohol (FFA,

≥98%), and sorbic acid (SA; ≥99.0%) were obtained from Sigma-
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Aldrich (, St. Louis, MO, USA). 2-Hydroxyterephthalic acid

(2OHTA) was synthesized. Tetrahydrofuran (THF) was acquired

from Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China).

Suwannee River humic acid (SRHA, 3S101H) and Suwannee

River fulvic acid (SRFA, 3S101F) were obtained from the

International Humic Substances Society (Denver, CO, USA).

Another humic acid (JKHA) was acquired from J&K Scientific

Ltd. (Beijing, China). Other inorganic solvents (NaNO3, NaHCO3,

NaOH, and HCl) and indole were purchased from Sinopharm

Chemical Reagent Beijing Co., Ltd. (Beijing, China). Acetonitrile

and methanol (high-performance liquid chromatography (HPLC)

grade) were obtained from Merck (Darmstadt, Germany).

International Association for the Physical Sciences of the Ocean

(IAPSO) standard seawater was purchased from Ocean Scientific

International Ltd. (Havant, UK). The concentrations of DOM stock

solutions were set to 2, 5, and 10 mg C L−1 at pH 8.0 ± 0.1. The

concentration of dissolved organic carbon (DOC) is calculated by

the formula [DOC] = MDOM × C%, where MDOM is the quality of

DOM and C% is the carbon content percentage. The carbon content

percentages of SRFA, SRHA, and JKHA are 52.34%, 52.63%, and

40.0%, respectively. All solutions were prepared using ultrapure

water (18.2 MW cm−1, Milli-Q, Millipore, Billerica, MA, USA).
2.2 Photochemical experiments

The XPA-7 merry-go-round photoreactor (Xujiang

Electromechanical Plant, Nanjing, China) is equipped with a

1,000-W xenon arc lamp to perform photochemical experiments.

The filter film was wrapped around the lamp to decrease the

irradiation below 320 nm to reduce the direct photodegradation

of OFX. To eliminate the influence of thermal and hydrolysis

processes, the degradation rate of OFX was determined under

dark conditions. The OFX initial concentration was 10 mM, and

the pH of the OFX stock solution was controlled to 8.0 ± 0.1. The

light intensity was maintained at 200 W m−2 from 320 nm to 800

nm, and the temperature was maintained at 25°C ± 1°C. The

configured DOM solutions were irradiated in a photochemical

reactor for 24 h, and then the concentration of OFX

was determined.

FFA (20 mM) and IPA (10 mM) were added to OFX solutions

containing JKHA to scavenge 1O2 and ·OH in ultrapure water to

explore the self-sensitization of OFX. IPA (10 mM), indole (5 mM),

THF (10 mM), and SA (20 mM) were used to scavenge ·OH, 1O2,

CO·−
3 , and

3DOM*, respectively. The JKHA solutions with different

salinity were obtained by diluting IAPSO standard seawater to

explore the effect of salinity on the indirect photodegradation of

OFX. The dilute solutions of NaOH and HCl were used to adjust the

pH to experimental values (5.0, 7.0, 9.0, 11.0), and different

concentrations of nitrate (0–40 mM) and bicarbonate (2 mM)

were prepared in JKHA solutions to explore the impacts of some

common irons on the indirect photodegradation of OFX. During

irradiation, a 2-ml sample solution was taken regularly and

transferred to an amber liquid phase vial.

The light screening factor (Sl) and total light screening

coefficient (f) were used to correct the light screening effects (Eqs
Frontiers in Marine Science 03
1, 2).

Sl =
1 − (10−(al+el ½OFX�l))
2:303(al + el ½OFX�)l

, (1)

f = oIlSlel
oIlel

, (2)

where al is the light attenuation coefficient (cm−1), al =

2.303A/l, A is the absorbance, el is the molar absorptivity (L

mol−1 cm−1), l is the light path length (cm), and [OFX] is the

concentration of OFX (mol L−1). The indirect photodegradation

rate of OFX is calculated as follows:

kind = kobs(DOM) − kobs(non−DOM)*f , (3)

where kobs(DOM) represents the observed photodegradation rate

of OFX with the addition of DOM, kobs(non-DOM) is the observed

photodegradation rate in ultrapure water, and kindis the corrected

indirect photodegradation rate of OFX.
2.3 Determination of RI content

RIs are commonly analyzed with probe components (PCs) in

aquatic environments. FFA was used as a PC to detect the

concertation of 1O2. SA was used as a quantitative probe to

determine the steady-state concentration of 3DOM*. Terephthalic

acid (TA) was used to determine the concentration of ·OH.

The concentration of 3DOM* was measured by determining the

concentration of SA. The removal rate of 3DOM* by SA was

obtained by dividing the rate of SA cis–trans isomer formation by

0.18, which is the yield of SA. The concentration of PC is divided by

the rate constant of sorbic acid, and the probe concentration was

plotted according to Eq. (4).

½SA�
½RSA�

=
½SA�

R3
DOM*

+
k
0
s

R3
DOM*

kSA,3
DOM*

, (4)

where R3DOM* represents the formation rate of 3DOM*, k′s is the
reaction rate constants of quenchers with the triplets, and kSA,3DOM*
is the reaction rate between SA and 3DOM*, which Timko et al.

(2014) have already calculated as (3.35 ± 1.0) × 109 M−1 S−1.

Formation rates of triplets were calculated as the inverse of the

slope, while k′s and steady-state concentrations of 3DOM*

([3DOM*]ss) (in the absence of probe) were determined as follows:

k0 s = kSA,3DOM*
·
intercept
slope

, (5)

½3DOM*�ss =
R3

DOM*
k
0
s

(6)

The steady-state concentration of ·OH in DOM solutions was

determined through the addition of TA (600 mM). The

concentration of ·OH can be obtained by measuring the

concentration of HOTA (Eqs 7, 8). Samples were taken at

different time periods, and the concentration of HOTA was
frontiersin.org
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determined by HPLC.

TA + ·OH ! HOTA, (7)

kobs = g � k·OH,TA½·OH�ss, (8)

where k·OH,TA = 3.3 × 109 M−1 S−1 and g is the yield of HOTA,

which is 0.35.

FFA was routinely used as the PC of 1O2 in determining the

concentration of 1O2. The DOM solution containing FFA (20 mM)

was irradiated, and the steady-state concentration of 1O2 was

determined by measuring the concentration of FFA (Eqs 9, 10).

FFA + 1O2 ! Substance, (9)

d½FFA�
dt

= −k1O2,FFA½FFA�½1O2�ss, (10)

where k1O2,FFA = 1.2 × 108 M−1 s−1, and [1O2]ss is the steady-

state concentration of 1O2. Samples were taken regularly, and all

solutions were measured by HPLC.
2.4 Analytical method

The concentration of OFX was determined by an HPLC

instrument (1100 series, Agilent Technologies, Santa Clara, CA,

USA) equipped with UV–visible and fluorescence detectors and

Agilent PLRP-S C18 column (4.6 × 150 mm, 4 mM). The flow rate,

detection wavelength, mobile phase, and injection volume are

shown in Table S1.

The EEMs of DOM were measured using a fluorescence

spectrophotometer (Fluorolog3-11) equipped with a 450-W

xenon arc lamp. The excitation wavelength of EEMs was from

240 to 480 nm, the emission wavelength was 250–580 nm, the

interval of excitation and emission wavelengths was 5 nm, the

integration time was 0.05 s, and the scanning speed was 1,200 nm

min−1. The slit width of excitation and emission was 5 nm. Before

detection, the samples were all filtered through a 0.22-mM polyether

sulfone membrane. The 3D Delaunay interpolation method was

used to eliminate the scattering peaks of the fluorescence spectrum.

The fluorescence spectrum was calibrated against the quinine

sulfate standard, and the data were normalized to the unit of

quinine sulfate (QSU).

The humification index (HIX) was obtained by dividing the

emission intensity at 435–480 nm by the integral intensity at 300–

345 nm at an excitation wavelength of 255 nm, and it was used to

characterize the humification degree and source of DOM (Ohno

and Technology, 2002). Specific UV absorbance (SUVA254) was

defined as the UV absorbance at 254 nm divided by the DOC

concentration, which strongly correlated with DOM aromaticity

(Weishaar et al., 2003). All data were measured by fluorescence

spectrophotometer and analyzed by PARAFAC in MATLAB

R2012a software.

SPSS 26.0 and Canoco 5.0 were used to analyze the correlation

of the k ind, DOM components, HIX, SUVA254, and the

concentrations of RIs. The indirect photodegradation experiments
Frontiers in Marine Science 04
of OFX were performed in parallel three times, and the error was

controlled within 5%.
3 Results and discussion

3.1 Direct photodegradation of OFX

We found no loss of OFX concentration under dark conditions

for 24 h, indicating that hydrolysis and biodegradation played

negligible roles in the degradation of OFX. The photodegradation

rate of OFX in ultrapure water followed pseudo-first-order kinetics,

and OFX was degraded by approximately 27.7% after 24 h under

simulated sunlight irradiation at pH 8.0 (Figure S1A). We found

that there was an absorption of OFX between 320 and 400 nm

(Figure S1B), indicating that the direct photodegradation of OFX

was not completely deducted. Therefore, we used f to correct the

indirect photodegradation of OFX.

Niu et al. (2016) presented that the photodegradation process

mediated by triplet states of pollutants and their induced reactive

oxygen species was considered self-sensitizing photodegradation.

Previous studies demonstrated that ·OH and 1O2 might play

important roles in the self-sensitized photolysis of acebutolol (Ge

et al., 2010; Ye et al., 2022). Zhu et al. (2014) reported that

phenylarsonic compounds were mainly photodegraded by self-

sensitization, starting with the formation of the excited triplet-

state molecules. In our study, quenching experiments were

performed to explore whether ·OH and 1O2 affect the self-

sensitized photodegradation of OFX, for which the results are

shown in Figure 1. The addition of IPA/FFA significantly

inhibited the photodegradation of OFX. These results meant that

the self-sensitized photodegradation of OFX might be conducted

through ·OH and 1O2.
3.2 Roles of DOM in the OFX
indirect photodegradation

3.2.1 Roles of DOM
DOM was the main form of organic matter in the aquatic

environment, and it can combine with metals and organic

pollutants, affecting the distribution and fate of organic

pollutants. Meanwhile, photolysis of DOM can produce RIs to

promote the indirect photodegradation of organic pollutants (Eqs

11–17) (Burns et al., 2012).

DOM + hv !  1DOM*, (11)

 1DOM* !  3DOM*, (12)

 3DOM* + O2 !  1O2 + DOM, (13)

 1DOM* ! R  +  DOM, (14)

 1DOM* !  3DOM* ! R · +DOM·, (15)
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R· ! ·OH, (16)

DOM· ! ·OH : (17)

In this study, the indirect photodegradation of OFX was

investigated in different DOM solutions. The proportion of

indirect photodegradation in OFX photodegradation is

c a l c u l a t ed i n Tab l e S 2 . I n con t r a s t , t h e i nd i r e c t

photodegradation rate of OFX increased irregularly with the

increasing concentration (Figure 2A). It may be due to DOM

having a dual effect on the indirect photodegradation of OFX.

DOM can promote the indirect photodegradation of OFX by

producing more RIs with increasing DOM concentration (Bai

et al., 2018). Additionally, DOM can also inhibit indirect

photodegradation by scavenging or reducing RIs. The

combination of the stimulatory and inhibitory effects led to an

irregular change in the rate of indirect photodegradation of OFX.
Frontiers in Marine Science 05
3.2.2 Roles of reactive intermediates
Many studies proved that indirect photodegradation was

mediated by RIs derived from DOM. Wang et al. (2018) reported

that three sulfonamide antibiotics were degraded by 3DOM*-
induced indirect photodegradation. ·OH-mediated oxidation

made more contributions to the indirect photodegradation of

atrazine and S-metolachlor (Drouin et al., 2021). To further probe

the effect of RIs on the indirect photodegradation of OFX, different

scavengers were added to the OFX solutions containing JKHA. IPA

was used as a scavenger to eliminate ·OH (Ye et al., 2022), and the

roles of 3DOM* and 1O2 were explored by the addition of SA and

THF, respectively (Mateus et al., 2000; Han et al., 2017). As can be

seen from Figure 2B, IPA did not significantly inhibit the indirect

photodegradation of OFX compared to other scavengers, suggesting

that the effect of ·OH was minor on the indirect photodegradation

of OFX. In contrast, the indirect photodegradation rate was

significantly reduced with the addition of SA and THF, indicating

that 3DOM* and 1O2 might dominate OFX indirect

photodegradation. According to the indirect photodegradation

rates of OFX with the addition of different quenchers, the

contribution of RIs is shown in Table S3.

3.2.3 Roles of DOM fluorescent components
There were prominent different structural and compositional

variability among DOM from different sources. Compared with

DOM extracted from seawater, DOM from mariculture areas

contained higher humic-like substances and aromatic and

carbonyl structures, which exhibited a higher concentration of
3DOM* to promote the photodegradation of sulfonamide (Wang

et al., 2018). Therefore, EEMs-PARAFAC analysis was used to

divide DOM into four different fluorescent components to

investigate the roles of DOM components in OFX indirect

photodegradation (Figure 3; Table S4). The maximum Ex/Em

peak of component 1 (C1) was 420/500 nm. The spectra of C1

were the same as those reported in earlier studies (Yamashita et al.,

2015). This component can be characterized as aromatic and high-
A B

FIGURE 2

Indirect photodegradation rate of OFX. (A) In the presence of different DOMs. (B) With the addition of IPA (5 mM), THF (2 mM), and SA (20 mM) in
JKHA solution (10 mg C L−1). The data were presented as mean; error bars denote standard deviations (p< 0.05, n = 3). OFX, ofloxacin; DOM,
dissolved organic matter; IPA, isopropanol; THF, tetrahydrofuran; SA, sorbic acid.
FIGURE 1

Observed photodegradation rate of OFX. The data were presented
as mean; error bars denote standard deviations (p< 0.05, n = 3).
OFX, ofloxacin.
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molecular-weight terrestrial humic-like materials (Kowalczuk et al.,

2010). Component 2 (C2) exhibited broad excitation and emission

maxima at 370 and 460 nm, which were typically observed as

humic-like in the terrestrial environment (Quang et al., 2016).

Component 3 (C3) had a maximum fluorescence peak at Ex/Em

= 460/520 nm. The fluorescence peak position of C3 was similar to

the reported soil fulvic acid known as the previous commercially

available “Contech” FA (emission maxima occur at 492–521 nm,

corresponding to excitation at 350–455 nm) (Lochmueller and

Saavedra, 1986). Component 4 (C4) showed the Ex/Em

wavelength of the fluorescence peak at 320/440 nm. Coble et al.

(1998) found a fluorescent component that had an excitation

maximum of 320 nm and an emission maximum of 420 nm in

the Arabian Sea. The peak was considered to be present in visible

humic-like. DOMwith higher molecular weight may contain higher

aromaticity, and the EEM peak occurred as a red-shift as molecular

weight increased (Wei et al., 2016). Therefore, the molecular

weights of the four components might be C3>C1>C2>C4. The

maximum Ex/Em wavelengths of C3 might be due to increasing

molecular weight and aromaticity (Baker and Inverarity, 2004).

Additionally, we determined the fluorescence intensities of the four

DOM components at 0 and 24 h, respectively (Table S5). It showed

that the JKHA solution had the max total fluorescence intensity at

the same DOC concentration, followed by SRFA and SRHA. After

irradiation, the fluorescence intensity of C1, C2, and C3 decreased,

else than C4. It may be because C4 cannot be excited effectively on

account of the irradiation below 320 nm being the cutoff.
Frontiers in Marine Science 06
The proportion of indirect photodegradation in OFX

photodegradation is calculated in Table S2. The indirect

photodegradation of OFX accounted for 52.5%–95.4% of the

JKHA solution. However, in SRFA and SRHA solutions, the

indirect photodegradation of OFX only accounted for 35.6%–

62.7% and 30.5%–80.1%, respectively. The results indicated that

the indirect photodegradation was affected by the source and

characteristics of DOM. To further research the mechanism of

OFX indirect photodegradation in the presence of DOM solutions,

we used PC to determine the steady-state concentrations of RIs in

DOM solutions. The concentration of RIs increased with the DOM

concentration (Table S6). Furthermore, the concentration of RIs in

the JKHA solution was significantly higher than in other DOM

solutions. It indicated that the JKHA solution can generate more

RIs than other DOM solutions to promote the indirect

photodegradation of OFX.

Additionally, Pearson’s correlation analysis was carried out to

explore the relationship between the DOM fluorescence intensity

and the concentration of RIs (Table 1). The four fluorescence

components had significant correlations with the concentration of

RIs, suggesting that the photolysis of the four DOM components

can generate RIs. It might contribute to the indirect

photodegradation of OFX. The ability of the four fluorescent

components to produce RIs can be evaluated as C1>C3>C4>C2.

Meanwhile, C3 and C1 were the two main components in the JKHA

solution (Table S5). Figure 2B pointed out that 1O2 and 3DOM*
were the main RIs to promote the indirect photodegradation of
FIGURE 3

Fluorescence signatures of the four identified EEMs-PARAFAC components. EEMs-PARAFAC, fluorescence excitation–emission matrix
spectroscopy–parallel factor analysis.
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OFX. Therefore, the indirect photodegradation of OFX may be the

fastest in the JKHA solution because there were high contents of C1

and C3, which can produce more 1O2 and
3DOM*. The correlations

among the OFX indirect photodegradation rate and four DOM

components are shown in Table 1. The correlation order of the four

DOM components was C1>C3>C2>C4, which indicated that C1

and C3 made more contributions than C2 and C4 to the indirect

photodegradation of OFX. It confirmed that the large-molecular-

weight DOM contributes the most to the indirect photodegradation

of OFX.

HIX and SUVA254 were used to further explore the influence of

DOM structure on OFX indirect photodegradation. SUVA254 was

significantly correlated with the concentrations of 1O2 and
3DOM*

(Table 1), indicating that highly aromatic DOM can produce more

RIs. The aromatic structure was the main chromophore of DOM,

which can absorb solar radiation, produce 1DOM* in natural

environmental water, and act on the formation of 3DOM* (Boyle

et al., 2009). The correlation between the indirect photodegradation

rate of OFX and HIX is shown in Table 1, which indicated that

terrestrial DOM with high humification contributed more to the

indirect photodegradation of OFX. In Figure 2A, the OFX indirect

photodegradation rate in the JKHA solution was prominently

higher than that in other DOM solutions. This may be due to the

higher SUVA254 and HIX values of JKHA, which had a higher

aromatic structure when compared to SRHA and SRFA. Therefore,

higher concentrations of RIs can be generated in the JKHA solution

to promote the indirect photodegradation of OFX.

Moreover, redundancy analysis (RDA) was conducted between

DOM fluorescence components, HIX, and SUVA254 with RIs, kind.

The RDA results revealed that the composition and properties of

DOM can explain the variation in the database (96.53%) (Figure

S2). HIX, SUVA254,
3DOM*, and 1O2 were positively correlated

with the indirect photodegradation rate of OFX. The finding was in

accordance with the results of Pearson’s correlation analysis.
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3.3 Effects of environmental factors on the
OFX indirect photodegradation

3.3.1 Effect of salinity
Environmental factors in seawater were important factors

affecting the indirect photodegradation of organic contaminants.

Trovo et al. (2009) studied the photodegradation phenomenon in

freshwater and seawater, discovering that the photodegradation rate

of sulfamethoxazole decreased after 7 h in simulated seawater.

Sirtori et al. (2010) found that trimethoprim had a faster

photodegradation rate in freshwater while showing a longer

photodegradation time in seawater. de Bruyn et al. (2012)

reported that it made no difference in the photodegradation rate

of phenanthrene in seawater and freshwater. In contrast, the

photodegradation rate of acetaminophen increased with the

increase in salinity (Bai et al., 2018). In this study, the indirect

photodegradation of OFX at different salinities in the JKHA

solution was explored. Figure 4A shows that when the salinity

increased to 35‰, the OFX indirect photodegradation rate was

significantly enhanced, and the indirect photodegradation rate at S

= 35‰ was approximately two times that at S = 5‰. Previous

studies pointed out that the photodegradation of organic pollutants

was affected by ionic strength, metal ions, and halogen ions in

seawater (Zhao et al., 2019). Firstly, Fe2+ was contained in seawater,

and Fe2+ can react with H2O2 to convert many organic compounds

into inorganic compounds, which can effectively remove some

refractory contaminants. Secondly, higher ionic strength can also

reduce the attenuation rate of 3DOM*, resulting in the promotion of

the indirect photodegradation of OFX initiated by 3DOM*, ·OH,

and 1O2 (Zhang et al., 2019). Thirdly, some halogen ions can

produce halogen active radicals to react with electron-rich

chromophores to accelerate the removal of antibiotics (Eqs 18,

19) (Lin et al., 2013). Finally, high salinity can increase the number

of photolysis electrons in the hydrated DOM, thus increasing the
TABLE 1 Correlations among the OFX indirect photodegradation rate, DOM components, HIX, SUVA254, and the steady-state concentrations of RIs.

C1 C2 C3 C4 HIX 1O2 ·OH 3DOM* kind SUVA254

C1 1 .902** .992** .943** .990** .983** .816** .996** .938** .896**

C2 1 .843** .976** .919** .830** .858** .887** .824* .749*

C3 1 .900** .977** .990** .776* .990** .937** .902**

C4 1 .935** .900** .773* .935** .815* .798**

HIX 1 .952** .862** .977** .964** .847**

1O2 1 .737* .993** .917** .916**

·OH 1 .798* .905** .752*

3DOM* 1 .936** .909**

kind 1 .777*

SUVA254 1
fro
OFX, ofloxacin; DOM, dissolved organic matter; HIX, humification index; RIs, reactive intermediates.
** Correlation is significant at the 0.01 level (two-tailed).
* Correlation is significant at the 0.05 level (two-tailed).
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rate of ·OH formation by increasing the content of H2O2 to improve

the indirect photodegradation of OFX (Anastasio and Newberg,

2007).

·OH + Cl− ! Cl · + OH−, (18)

Cl · + Cl− ! Cl−·2 : (19)
3.3.2 Effect of pH
pH can affect the formation of RIs and the structure of pollutants

to influence the photodegradation of organic pollutants. Previous

studies found that the degradation of OFX by bimetallic doped

catalysts exhibited high pH dependence (Tian et al., 2021), while

the indirect photodegradation of OFX at different pH in simulated

seawater was rarely studied. To explore the influence of pH on the

indirect photodegradation of OFX in simulated seawater, we

determined the indirect photodegradation rate of OFX from pH 5.0

to 11.0 in the JKHA solution. The indirect photodegradation rate of

OFX was complex at different pH values (Figure 4B). When the pH

increased to 7.0, the indirect photodegradation rate was nearly three

times that at pH 5.0. The pKa1 and pKa2 values of OFX have been

reported to be 6.1 and 8.3, respectively (Luo et al., 2019). The existing

forms of OFX changed from cation to zwitterion when pH was from

5.0 to 7.0. Fluoroquinolone makes it difficult for the defluorination

process to occur under acidic conditions (Albini and Monti, 2003).

Moreover, the main ionizable groups of OFX were the piperazine ring

and the carboxyl. The electron cloud density was relatively high in the
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presence of zwitterion, and the piperazine ring of OFX was

susceptible to electrophilic attack, resulting in a higher indirect

photodegradation rate. However, when pH was in the range of 7.0

to 9.0, the decrease in electron cloud density led to a decrease in

electrophilic attack, resulting in a decrease in the indirect

photodegradation rate (Zhu et al., 2020). The indirect

photodegradation rate increased continually at pH 11.0, and it was

likely due to the high pH enhancing the role of 1O2 and ·OH and

facilitating the indirect photodegradation of OFX (Bai et al., 2018).
3.3.3 Effects of nitrate and bicarbonate
Many studies have demonstrated that nitrate can produce ·OH

to facilitate the photodegradation of organic pollutants in natural

water (Zepp et al., 1987; Warneck and Wurzinger, 1988). The

concentration of nitrate was approximately from 10−5 to 10−3 M

in natural water, which was affected by the geographical

environment and human activities. In this study, nitrate-induced

indirect photodegradation of OFX was explored in a solution

containing JKHA under simulated irradiation. The indirect

photodegradation rate fluctuated by approximately 0.033 h−1 with

the increase in the concentration of nitrate (Figure 4C). It

demonstrated that increased nitrate concentration had little effect

on the indirect photodegradation of OFX. Other studies also

discovered the same phenomenon of sulfadiazine and

sulfamerazine (Bai et al., 2021; Tang et al., 2021). John Mack

(1999) reported that the direct photolysis of nitrate was related to

the formation of ·OH and nitrite, but nitrite was always considered
D

A B

C

FIGURE 4

The indirect photodegradation rate of OFX at different (A) salinity and (B) pH values, (C) NO3
− concentrations, and (D) radical quenchers (indole =

200 mM, HCO3
− = 2 mM, IPA = 100 mM, and SA = 2 mM). All solutions were prepared with JKHA (10 mg C L−1). The data were presented as mean;

error bars denote standard deviations (p< 0.05, n = 3). OFX, ofloxacin; IPA, isopropanol; SA, sorbic acid.
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an excellent scavenger for ·OH. The sunlight absorption rate

constant of nitrate increased sharply at 300–320 nm (Zepp et al.,

1987), and the formation rate of ·OH was 9.1% during irradiation at

approximately 320 nm at pH 8.0 (Warneck and Wurzinger, 1988).

However, we used a filter to remove irradiation below 320 nm,

which limited the production of ·OH. Meanwhile, ·OH contributed

less to the indirect photodegradation of OFX according to the

quenching experiments described in Section 3.3. Thus, the indirect

photodegradation rate of OFX was not affected by the increasing

nitrate concentration.

NO3
− + hv ! ½NO3

−�* ! NO2
− + O(3P), (20)

½NO3
−� ! NO2·þO·− ! +HO· + HO−þNO2·, (21)

NO2
− + hv ! ½NO2

−�*, (22)

½NO2
−�* ! NO· + O−, (23)

O·− + H2O ! ·OH + HO− : (24)

Bicarbonate was the ubiquitous inorganic salt present in natural

water, which can produce CO3
− to promote the photodegradation of

organic contaminants (Eqs 25–28) (Yan et al., 2019). It is well

known that ·OH can react very rapidly with almost any organic

compound, but CO3
− has high selectivity, and its concentration in

the surface water exposed to sunlight was approximately hundreds

of times higher than that of ·OH (Canonica et al., 2005). The role of

CO3
− may thus be important in controlling the persistence of

various organic contaminants. It found that the indirect

photodegradation rate of OFX increased significantly at pH 8.0

after the addition of HCO3
− (Figure 4D). In this study, indole, IPA,

and SA were added to the HCO3
− solution containing JKHA to

explore the formation of RIs (S = 30‰, pH = 8.0). After the addition

of indole, the OFX indirect photodegradation rate was close to that

without HCO3
− addition. It suggested that CO3

− was the main factor

promoting the OFX indirect photodegradation. Then, experiments

were performed in the presence of SA and IPA in the HCO3
−

solution to explore the generation mechanism of CO3
−. The indirect

photodegradation rate decreased significantly after adding SA but

was lower than that of kind,OFX+SA (Figure 4D), indicating that the
3DOM* was responsible for the formation of CO3

−. After the

addition of IPA, the indirect photodegradation rate of OFX was

decreased, suggesting that ·OH was responsible for the formation of

HCO3
−.

CO3
2− + ·OH ! OH− + CO3

·− (25)

HCO3
− + ·OH ! CO3

·− + H2O (26)

CO3
2− + 3DOM∗ ! CO3

·− + DOM−·, (27)

HCO3
− + 3DOM∗ ! H+ + DOM−· + CO3

·− : (28)
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4 Conclusion

In this study, we investigated the effects of DOM and

environmental factors on OFX indirect photodegradation. DOM

was believed to enhance the indirect photodegradation of OFX due

to the generation of RIs. Quenching experiments confirmed the

roles of 1O2 and
3DOM* in the indirect photodegradation of OFX in

the JKHA solution. DOM was divided into four components by

using EEMs-PARAFAC, and terrestrial humic-like components

made more contributions to the indirect photodegradation of

OFX by producing more RIs. The difference between indirect

photodegradation of OFX in different DOM solutions was due to

the structure of DOM. The indirect photodegradation of OFX was

enhanced with salinity, which may be related to the halogen active

radicals and the production of RIs. The indirect photodegradation

of OFX by pH was complex because pH can affect both the structure

of OFX and the production of RIs. NO3
− had no significant effect on

the indirect photodegradation of OFX, while HCO3
− promoted the

indirect photodegradation of OFX, and CO3
− may be the main RIs

responsible for OFX indirect photodegradation in HCO3
− solution.

This study was important for assessing the ecological risk and

environmental fate of OFX.
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