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Indirect Reciprocity Game Modelling for
Cooperation Stimulation in Cognitive Networks

Yan Chen and K. J. Ray Liu

Abstract—In cognitive networks, since nodes generally belong
to different authorities and pursue different goals, they will not
cooperate with others unless cooperation can improve their own
performance. Thus, how to stimulate cooperation among nodes in
cognitive networks is very important. However, most of existing
game-theoretic cooperation stimulation approaches rely on the
assumption that the interactions between any pair of players
are long-lasting. When this assumption is not true, according to
the well-known Prisoner’s Dilemma and the backward induction
principle, the unique Nash equilibrium (NE) is to always play
non-cooperatively. In this paper, we propose a cooperation stim-
ulation scheme for the scenario where the number of interactions
between any pair of players are finite. The proposed algorithm
is based on indirect reciprocity game modelling where the key
concept is “I help you not because you have helped me but because
you have helped others”. We formulate the problem of finding
the optimal action rule as a Markov Decision Process (MDP)
and propose a modified value iteration algorithm to find the
optimal action rule. Using the packet forwarding game as an
example, we show that with an appropriate cost-to-gain ratio, the
strategy of forwarding the number of packets that is equal to the
reputation level of the receiver is an evolutionarily stable strategy
(ESS). Finally, simulations are shown to verify the efficiency and
effectiveness of the proposed algorithm.

Index Terms—Indirect reciprocity, cognitive network, game
theory, evolutionarily stable strategy, cooperation, markov de-
cision process.

I. INTRODUCTION

A COGNITIVE network is a network composed of ele-
ments that can dynamically adapt to varying network

conditions to optimize end-to-end performance through learn-
ing and reasoning [1]. In such a network, nodes are intelligent
and have the ability to observe, learn, and act to optimize
their performance. Since nodes generally belong to different
authorities and pursue different goals, fully cooperative be-
haviors, such as unconditionally forwarding packets for each
other, cannot be taken for granted. Instead, nodes will only
cooperate with others when cooperation can improve their
own performance. We regard the nodes with such behaviors as
selfish nodes. Therefore, a key problem in cognitive networks
is how to stimulate cooperation among selfish nodes.

In the literature, many schemes have been proposed to
stimulate node cooperation for different cognitive networks,
such as [2][3] for ad hoc networks and [4][5] for peer-to-peer
networks. One way to stimulate cooperation among selfish
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nodes is to use payment based methods [6][7]. Although
these schemes can achieve promising cooperation stimulation
results, the requirement of tamper-proof hardware or central
billing services greatly limits their potential applications.

Another way to stimulate cooperation among selfish nodes
is to use reputation-based methods with necessary monitoring
[8][9][10]. Marti et. al [11] propose a mechanism, called
“watchdog", to identify the misbehaving nodes and another
mechanism, called “pathrater", to deflect the traffics around
them. The major drawback of their method is that misbehaving
nodes are not punished. Therefore, there is no incentive for
the nodes to cooperate. To overcome this problem, Buchegger
and Boudec [12] as well as Michiardi and Molva [13] propose
reputation-based mechanisms to enforce node cooperation. In
both approaches, nodes observe the behavior of each other,
store this information locally, and distribute this information
in reputation reports. According to their observations, nodes
isolate the misbehaving nodes by denying forwarding packets
to them. However, there is no theoretical justification about
the optimality of such approaches.

Recently, efforts have been made to mathematically ana-
lyzing cooperation in cognitive networks using game theory
[14][15][16][17]. Srinivasan et al. [18] propose to use gen-
erous TIT-FOR-TAT strategy while Urpi et al. [19] propose
to use Bayesian games. In [20], Felegyhazi et al. investigate
equilibrium conditions of packet forwarding strategies based
on game theory and graph theory by taking into account
the network topology. In [21], Yu and Liu propose a game
theoretic framework to jointly analyze cooperation stimulation
and security in autonomous mobile ad hoc networks. Their
results show that, for a two-player packet forwarding game,
the unique cheat-proof Nash equilibrium for every node is
not to help the opponent more than the opponent has helped
him/her.

However, most of the existing game theoretical frameworks
rely on the assumption that the game between a pair of players
is directly played for infinite times. In reality, due to mobility
or changes of environment, nodes will periodically update
their partners to achieve better performance, which means that
any pair of players are supposed to play for only finite times
with the termination time are either known or can be estimated
by both players. Note that every player can experience infinite
times with many players but never always with the same
partner. In such a case, according to the well known Prisoner’s
Dilemma and backward induction principle [22], the only
optimal strategy is to always play non-cooperatively. The
major reason causing such a non-cooperative optimal strategy
is the implicit assumption of direct reciprocity in most games,
where the action of a player taking towards his/her opponent
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is purely determined by the history of how the opponent treats
him/her. Obviously, under such a scenario, all players have no
incentive to play cooperatively since their behaviors will not
be evaluated by other players except their opponents.

To stimulate the players’ incentive to play cooperatively,
not only the evaluations from the opponents but also the
evaluations from other observers should be taken into account,
which leads to the notion of “indirect reciprocity". Indirect
reciprocity is a key mechanism for the evolution of human
cooperation and has recently drawn a lot of attentions in the
area of social science and evolutionary biology [23][24]. The
key concept of indirect reciprocity is “I help you not because
you have helped me but because you have helped others”. In
this paper, we propose to use the indirect reciprocity game
modelling to stimulate cooperation among selfish nodes for
the scenario where the number of interactions between any
pair of players are finite. The main contributions of this paper
are summarized as follows.

∙ We propose a cooperation stimulation scheme to stim-
ulate cooperation among selfish users in cognitive net-
works using indirect reciprocity game modelling. Dif-
ferent from the existing game-theoretic approaches, our
proposed scheme does not rely on the assumption that
the number of interactions between a pair of players are
infinite.

∙ In the proposed scheme, we first develop the concept
of reputation distribution to capture not only the mean
behavior of the transmitter’s reputation but also all like-
lihoods of the transmitter’s reputation that may be. Then,
we develop a reputation updating policy for the receiver
and observers to update the transmitter’s reputation dis-
tribution based on the transmitter’s previous reputation
distribution and his/her action toward the receiver. We
also propose a gradient descent algorithm to find the
stationary reputation distribution of the whole population
for any given optimal action rule.

∙ In the proposed scheme, we formulate the problem of
finding the optimal action rule as a Markov Decision
Process (MDP) and proposed a modified value iteration
algorithm to find the optimal action rule.

∙ We show that with an appropriate cost-to-gain ratio, the
strategy of forwarding the number of packets that is equal
to the reputation level of the receiver is an evolutionarily
stable strategy (ESS). We also show that even with only
60 percentage of population adopting the optimal action
rule at the beginning, by natural selection, the optimal
action rule will quickly spread over the whole population.
And once the whole population use the optimal action
rule, no one will deviate. Moreover, we find that such
an ESS will lead to a “good" society with more than 90
percentage of the population have good reputation.

The rest of this paper is organized as follows. In Section
II, we describe the problem formulation and introduce basic
components in our system model. Then, we show in details
how to find the optimal action rule in Section III. In Section
IV, we describe two action spreading algorithms due to natural
selection. Finally, we show the simulation results in Section
V and draw conclusions in Section VI.

Population

Observers

Transmitter Receiver

Fig. 1. System model. Within every interaction, a pair of transmitter and
receiver is randomly sampled from the population. Then, the transmitter
will forward a certain amount of packets to the receiver according to the
receiver’s and his/her own reputations. After the transmission, the transmitter’s
reputation will be updated by the receiver and the observers. Finally, the
transmitter’s reputation is propagated to the whole population from the
receiver and the observers through a noisy gossip channel.

II. THE SYSTEM MODEL

As shown in Figure 1, let us consider a cognitive network
with sufficiently large population of nodes. Due to mobility
and/or changes of environment, short interactions rather than
long-lasting associations between anonymous partners are
dominant. At each time slot, a fraction of players is chosen
from the population to form pairs to forward packects. Within
each pair, one player acts as a transmitter and the other player
as a receiver. Let A = {0, 1, ..., 𝐿} stand for the action set that
the transmitter may choose, where the action 𝑖 ∈ A stands for
the transmitter forwards 𝑖 packets to the receiver.

In the simplest model with 𝐿 = 1, the receiver can obtain
a gain 𝑔 at a cost 𝑐 to the transmitter. We should always
assume that the gain 𝑔 is greater than the cost 𝑐. Otherwise,
no transmission will occur. In such a case, if both players
cooperate with each other and forward one packet to the
other player, both players receive 𝑔 − 𝑐, which is better
than what they would obtain by both defecting, namely 0.
However, a unilateral defector would earn 𝑔, which is the
highest payoff, and the exploited cooperator would pay the
cost 𝑐 without receiving any benefit. The payoff structure
yields an instance of the well-known Prisoner’s Dilemma
game and the unique Nash equilibrium (NE) is defecting, i.e.
both players will not forward the packet to the other player.
Moreover, with backward deduction, the NE remains the same
even the game is played a finite number of times. Such a
non-cooperative optimal strategy is mainly because of the use
of direct reciprocity, where the action of a transmitter taking
towards a receiver is purely determined by the history of how
the receiver treats him/her. Obviously, under such a scenario,
all transmitters have no incentive to forward packets since their
behaviors will not be evaluated by other players except their
corresponding receivers.

To stimulate the cooperation under such a scenario, we use
the indirect reciprocity game modelling, where the essential
concept is: “I help you not because you have helped me but
because you have helped others”. Therefore, a key concept
in indirect reciprocity game is the establishment of the notion
of reputation, which is the evaluation of the history of the
players’ action. In this paper, to simplify the analysis, we
assume that the reputation is quantized to 𝐿+1 levels with “0”
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being the worst reputation and “𝐿” being the best reputation,
i.e., the reputation set can be represented as T = {0, 1, ..., 𝐿}.
However, the results can be easily extended to the case that
the reputation set has different size from the action set. Here,
we also assume that everyone agrees on the reputation of
an individual and no private opinions are allowed. However,
errors in assigning reputation are possible. During each inter-
action, the transmitter determines his action, i.e. how many
packets to forward to the receiver, based on the receiver’s and
his/her own reputations. After each interaction, the reputation
of the receiver remains the same, while the reputation of the
transmitter is first updated by the receiver and the observers,
and propagated to the whole population through a noisy gossip
channel. Then, each participant (including both the transmitter
and receiver) goes back to the population with probability 𝛿 or
leaves the population with probability 1− 𝛿. The parameter 𝛿
can be treated as a discounting factor of the future. For every
player who leaves the population, a new individual enters with
an initial reputation randomly chosen from the reputation set
with equal probability 1

𝐿+1 .

A. Social Norms

A social norm, Q, is a matrix used for updating the imme-
diate reputation of players, where the immediate reputation
is the reputation that a transmitter can immediately obtain by
taking an action. Each element 𝑄𝑖,𝑗 in the social norm stands
for the immediate reputation assigned to a transmitter who
has taken the action 𝑖 toward a receiver whose reputation is
𝑗. Without loss of generality, we assume that all players in
the population share the same norm. Although the immediate
reputation is only determined by the action of the transmitter
and the reputation of the receiver, we can see from the later
discussion, the final reputation updating rule also involves the
reputation of the transmitter.

Since both the cardinalities of the action set and the
reputation set are 𝐿+1, there are (𝐿+1)(𝐿+1)×(𝐿+1) possible
social norms. Based on the intuition that forwarding packets
to the receiver with good reputation or denying forwarding
packets to the receiver with bad reputation should receive good
reputation, in this paper, we define the immediate reputation
𝑄𝑖,𝑗 as follows

𝑄𝑖,𝑗 = 𝐿− ∣𝑖− 𝑗∣, (1)

which means that the social norm is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝐿 𝐿− 1 . . . 1 0

𝐿− 1 𝐿 . . .
... 1

... 𝐿− 1
. . . 𝐿− 1

...

1
... . . . 𝐿 𝐿− 1

0 1 . . . 𝐿− 1 𝐿

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

For the special case when 𝐿 = 1, the 2×2 social norm can
be written as

Q2×2 =

(
1 0
0 1

)
, (3)

where “1” stands for good reputation and “0” stands for bad
reputation.

Social Norm Noisy Gossip 
Channel

Fig. 2. Reputation updating policy.

With such a social norm shown in (3), we can see that
the transmitter can obtain a good immediate reputation by
either forwarding packets to the receiver with good reputa-
tion or denying forwarding packets to the receiver with bad
reputation. On the other hand, the transmitter will obtain a
bad immediate reputation if he/she either denies forwarding
packets to the receiver with good reputation or forwards
packets to the receiver with bad reputation.

B. Action Rules

An action rule, a, is an action table of the transmitter,
where the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column element 𝑎𝑖,𝑗 stands for
the action of the transmitter based on his/her own reputation
𝑖 and the corresponding receiver’s reputation 𝑗. Since both
the cardinalities of the action set and the reputation set are
𝐿 + 1, there are (𝐿 + 1)(𝐿+1)×(𝐿+1) possible action rules.
The optimal action rule, a★, should be the one that maximizes
the payoff function as discussed later.

III. OPTIMAL ACTION RULE

A. Reputation Updating Policy

A key concept in indirect reciprocity game is reputation
[24]. There is a similar notion of trust [25], however, which is
mostly based on direct reciprocity. Players monitor the social
interactions within their group and help others establish the
reputation of being a helpful player. Therefore, one important
step in indirect reciprocity game modelling is how to update
reputation based on players’ actions. In this subsection, we
develop a reputation updating policy based on the action of the
transmitter, the reputation of the transmitter and the reputation
of the receiver.

To capture not only the mean behavior of the transmitter’s
reputation but also all likelihoods of the transmitter’s reputa-
tion that may be, we assign a reputation distribution for each
player. Let d = [𝑑0, 𝑑1, ..., 𝑑𝐿]

𝑇 be a reputation distribution
for a specific player. Then 𝑑𝑖 stands for the likelihood of the
player being assigned with reputation 𝑖.

The proposed reputation updating policy is shown in Fig.
2. Suppose, at time index 𝑛, a transmitter with a reputation
distribution d𝑛

𝑖 is matched with a receiver with a reputation
distribution d𝑛

𝑗 . By taking a certain action, the transmitter is
assigned with an immediate reputation d̂

𝑛

𝑖 based on the social
norm. Then, the receiver and the observers will update the
transmitter’s reputation distribution using a linear combination
of the transmitter’s original and immediate reputations, where
the weight 𝜆 can be treated as a discounting factor of the past
reputation. Finally, the transmitter’s reputation is propagated
among the population by the receiver and observers through
a noisy gossip channel.
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In a simple example, we assume that the transmitter’s
reputation distribution is d𝑛

𝑖 = e𝑖 and the receiver’s reputation
distribution is d𝑛

𝑗 = e𝑗 , where e𝑖 and e𝑗 are the standard basis
vectors. Let 𝑎𝑖,𝑗 be the action the transmitter takes towards the
receiver. Then, the immediate reputation of the transmitter is
e𝑄𝑎𝑖,𝑗 ,𝑗

. According to the reputation updating policy in Fig. 2,
after the transmission, the transmitter’s reputation distribution
becomes

d𝑛+1
𝑖 = P𝑁

(
𝜆e𝑖 + (1− 𝜆)e𝑄𝑎𝑖,𝑗 ,𝑗

)
, (4)

where P𝑁 is the transition matrix of the noisy channel.
Without loss of generality1, we define P𝑁 as follows

P𝑁 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1− 𝜇 𝜇/𝐿 . . . 𝜇/𝐿 𝜇/𝐿

𝜇/𝐿 1− 𝜇 . . .
... 𝜇/𝐿

... 𝜇/𝐿
. . . 𝜇/𝐿

...

𝜇/𝐿
... . . . 1− 𝜇 𝜇/𝐿

𝜇/𝐿 𝜇/𝐿 . . . 𝜇/𝐿 1− 𝜇

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

with 𝜇 ∈ [0, 0.5] being a constant.
The d𝑛+1

𝑖 in (4) is the updated reputation distribution of the
transmitter after the transmitter with an original reputation e𝑖
takes an action 𝑎𝑖,𝑗 towards the receiver with a reputation e𝑗 .
Since this updated reputation distribution will be used later
in the analysis for finding the optimal action rule, we use a
specific symbol d̃𝑖→𝑗 to denote it, i.e.,

d̃𝑖→𝑗 = P𝑁

(
𝜆e𝑖 + (1 − 𝜆)e𝑄𝑎𝑖,𝑗 ,𝑗

)
. (6)

For the general case that d𝑛
𝑖 ∕= e𝑖 and/or d𝑛

𝑗 ∕= e𝑗 , the
transmitter’s updated reputation distribution cannot be simply
expressed using (4) since, given an action rule, different
combinations of the transmitter’s and receiver’s reputations
may lead to the same immediate reputation. In such a case,
we need to first find the immediate reputation using

d̂
𝑛

𝑖 (𝑘) =
∑
𝑝

∑
𝑞: 𝑄𝑎𝑝,𝑞,𝑞=𝑘

d𝑛
𝑖 (𝑝)d

𝑛
𝑗 (𝑞). (7)

Then, according to Fig. 2, the transmitter’s updated reputa-
tion distribution can be computed by

d𝑛+1
𝑖 = P𝑁

(
𝜆d𝑛

𝑖 + (1− 𝜆)d̂
𝑛

𝑖

)
. (8)

B. Stationary Reputation Distribution

Let x = [𝑥0, 𝑥1, ..., 𝑥𝐿]
𝑇 stand for the reputation distri-

bution of the entire population, where 𝑥𝑖 is the portion of
the population that have the reputation 𝑖. Since every pair
of transmitter and receiver is chosen from the population,
given the transmitter with reputation 𝑖, the probability of
matching with the receiver with reputation 𝑘 is 𝑥𝑘. After the
transmission, the reputation of the transmitter is updated using
the policy shown in Fig.2. Therefore, the evolution of x can
be described by the following differential equation

𝑑x
𝑑𝑡

= x𝑛𝑒𝑤 − x, (9)

1Note that the analysis in this paper are also applicable to the P𝑁 with
other forms.

Algorithm 1 : Finding Stationary Reputation Distribution
Using Gradient Descent

1. Given the optimal action 𝑎★𝑖,𝑗 ,∀𝑖, ∀𝑗, the tolerance 𝜂0 = 0.01, the index
𝑡 = 0, and step size 𝛼 = 0.1, initialize x = [𝑥0, 𝑥1, ..., 𝑥𝐿]

𝑇 with x0 =
[𝑥0

0, 𝑥
0
1, ..., 𝑥

0
𝐿]

𝑇 , set 𝜖 = 1, and let F(x) = P𝑁 (𝜆I + (1− 𝜆)P𝑇 (x)) x−
x.
2. while 𝜖 > 𝜂0

∙ Compute the updating vector Δx𝑡+1 using Δx𝑡+1 = −𝛼×∇F(x𝑡)×
F(x𝑡).

∙ Update x𝑡+1 by x𝑡+1 = x𝑡 +Δx𝑡+1.
∙ Normalize x𝑡+1 using x𝑡+1 = x𝑡+1

∣∣x𝑡+1∣∣2 .

∙ Update the parameter 𝜖 by 𝜖 = ∣∣x𝑡+1 − x𝑡∣∣2.
∙ Update the index 𝑡 = 𝑡+ 1.

End
3. The stationary reputation distribution is x★ = x𝑡.

where x𝑛𝑒𝑤 is the new reputation distribution of the entire
population and can be computed by

x𝑛𝑒𝑤 = P𝑁 (𝜆I + (1− 𝜆)P𝑇 ) x, (10)

with the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column element of the matrix P𝑇

being defined as

P𝑇 (𝑗, 𝑖) =
∑

𝑘: 𝑄𝑎★
𝑖,𝑘

,𝑘=𝑗

𝑥𝑘. (11)

According to (9), (10), and (11), the stationary reputation
distribution x★ is the solution to the following equation

P𝑁 (𝜆I + (1− 𝜆)P𝑇 ) x★ = x★. (12)

From (11) and (12), we can see that, given the optimal
action a★, the stationary reputation distribution can be found
by solving the nonlinear equations in (12). In Algorithm 1, we
propose a gradient descent algorithm for finding the stationary
reputation distribution given the optimal action rule.

C. Payoff Function

Suppose that the cost of forwarding a packet is a constant, 𝑐,
the total cost of the transmitter with reputation 𝑖 taking action
𝑎𝑖,𝑗 towards a receiver with reputation 𝑗 is given by

𝐶(𝑎𝑖,𝑗) = 𝑎𝑖,𝑗𝑐. (13)

Similarly, if the gain of receiving a packet is a constant, 𝑔,
the total gain of the receiver with reputation 𝑖 can be computed
by

𝐺(𝑎𝑗,𝑖) = 𝑎𝑗,𝑖𝑔, (14)

where 𝑎𝑗,𝑖 is the action of the corresponding transmitter with
reputation 𝑗.

Let 𝑊𝑖,𝑗 denote the maximum payoff that a player, currently
having reputation 𝑖 and being matched with a player with rep-
utation 𝑗, can gain from this interaction to future. Obviously,
if the player with reputation 𝑖 serves as a transmitter, then the
long-term expected payoff that he/she can obtain by taking
action 𝑎𝑖,𝑗 would be

𝑓1(𝑎𝑖,𝑗) = −𝑎𝑖,𝑗𝑐+ 𝛿
∑
𝑘

∑
𝑙

d̃𝑖→𝑗(𝑘)x★(𝑙)𝑊𝑘,𝑙, (15)

where the first term 𝑎𝑖,𝑗𝑐 is the immediate cost the trans-
mitter incurred by taking action 𝑎𝑖,𝑗 , and the second term
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Algorithm 2 : Modified Value Iteration For Optimal Action
Selection Given Stationary Reputation Distribution

1. Given the stationary reputation x★, tolerance 𝜂0 = 0.01, initialize 𝑎★𝑖,𝑗
with 𝑎0𝑖,𝑗 ∀𝑖 ∀𝑗, set 𝜖1 = 1 and 𝜖2 = 1.
2. while 𝜖1 > 𝜂0

∙ Set 𝜖2 = 1.
∙ Initialize 𝑊𝑖,𝑗 = 0 ∀𝑖 ∀𝑗.
∙ while 𝜖2 > 𝜂0

– Compute d̃𝑖→𝑗 using d̃𝑖→𝑗 = P𝑁

(
𝜆e𝑖 + (1 − 𝜆)e𝑄𝑎𝑖,𝑗 ,𝑗

)
.

– Compute �̂�𝑖,𝑗 using

�̂�𝑖,𝑗 = max
𝑎𝑖,𝑗

[
1

2

(
−𝑎𝑖,𝑗𝑐+ 𝛿

∑
𝑘

∑
𝑙

d̃𝑖→𝑗(𝑘)x★(𝑙)𝑊𝑘,𝑙

)

+
1

2

(
𝑎★𝑗,𝑖𝑔 + 𝛿

∑
𝑙

x★(𝑙)𝑊𝑖,𝑙

)]
.

– Compute �̂�𝑖,𝑗 using

�̂�𝑖,𝑗 = argmax
𝑎𝑖,𝑗

[
1

2

(
−𝑎𝑖,𝑗𝑐+ 𝛿

∑
𝑘

∑
𝑙

d̃𝑖→𝑗(𝑘)x★(𝑙)𝑊𝑘,𝑙

)]
.

– Update the parameter 𝜖2 by 𝜖2 = ∣∣Ŵ − W∣∣2.
– Update W by W = Ŵ.
– End

∙ Update the parameter 𝜖1 by 𝜖1 = ∣∣â − a★∣∣2.
∙ Update a★ by a★ = â.

End
3. The optimal action is a★.

∑
𝑘

∑
𝑙 d̃𝑖→𝑗(𝑘)x★(𝑙)𝑊𝑘,𝑙 stands for the benefit he gains in the

future with a discounting factor 𝛿. According to (6), by taking
action 𝑎𝑖,𝑗 , the reputation distribution of the transmitter will
change from e𝑖 to d̃𝑖→𝑗 . Since his opponent in the next round
is randomly sampled from the population with a stationary
reputation distribution x★, with probability d̃𝑖→𝑗(𝑘)x★(𝑙), the
transmitter’s reputation becomes 𝑘 and his opponent’s reputa-
tion is 𝑙.

On the other hand, if the player with reputation 𝑖 serves
as a receiver, the long-term expected payoff that he/she can
obtain is

𝑓2 = 𝑎★𝑗,𝑖𝑔 + 𝛿
∑
𝑙

𝑥★𝑙 𝑊𝑖,𝑙, (16)

where the first term 𝑎★𝑗,𝑖𝑔 is the immediate gain he/she can
obtain when the transmitter takes the optimal action 𝑎★𝑗,𝑖,
and the second term

∑
𝑙 𝑥

★
𝑙 𝑊𝑖,𝑙 stands for the benefit he

gains in the future with a discounting factor 𝛿. As a receiver,
the reputation will not change after the transmission. Since
his opponent in the next round is randomly sampled from
the population with a stationary reputation distribution x★,
with probability x★(𝑙), the receiver’s reputation is 𝑖 and his
opponent’s reputation is 𝑙.

With each interaction, the play acts either as a transmitter or
as a receiver with equal probability 1

2 . Therefore, the Bellman
equation of 𝑊𝑖,𝑗 can be written as

𝑊𝑖,𝑗 = max
𝑎𝑖,𝑗

[
1

2

(
−𝑎𝑖,𝑗𝑐+ 𝛿

∑
𝑘

∑
𝑙

d̃𝑖→𝑗(𝑘)x★(𝑙)𝑊𝑘,𝑙

)

+
1

2

(
𝑎★𝑗,𝑖𝑔 + 𝛿

∑
𝑙

x★(𝑙)𝑊𝑖,𝑙

)]
, (17)

Algorithm 3 : An Alternative Algorithm For Finding
Stationary Reputation Distribution And Optimal Action

1. Given the tolerance 𝜂0 = 0.01, initialize a★ with a0 and set 𝜖 = 1.
2. while 𝜖 > 𝜂0

∙ Given the optimal action a★, finding the stationary reputation distri-
bution x★ using Algorithm 1.

∙ Given the stationary reputation distribution x★, finding the optimal
action â★ using Algorithm 2.

∙ Update the parameter 𝜖 by 𝜖 = ∣∣â★ − a★∣∣2.
∙ Update a★ by a★ = â★.

End
3. The stationary reputation distribution is x★ and the optimal action is a★.

and the optimal action 𝑎★𝑖,𝑗 can be computed by

𝑎★𝑖,𝑗=argmax
𝑎𝑖,𝑗

𝑊𝑖,𝑗

=argmax
𝑎𝑖,𝑗

[
1

2

(
−𝑎𝑖,𝑗𝑐+ 𝛿

∑
𝑘

∑
𝑙

d̃𝑖→𝑗(𝑘)x★(𝑙)𝑊𝑘,𝑙

)]
.

(18)

From (17) and (18), we can see that the problem of finding
the optimal action rule is a Markov Decision Process (MDP),
where the state is the reputation pair (𝑖, 𝑗), the action is 𝑎𝑖,𝑗 ,
the transition probability is determined by d̃𝑖→𝑗 and x★, and
the reward is determined by 𝑐 and 𝑔. Therefore, given the
stationary reputation distribution, the optimal action can be
found by solving (18) using dynamic programming. In this
paper, we propose a modified value iteration algorithm to
find the optimal action given stationary reputation distribution,
which is shown in Algorithm 2.

D. Optimal Action Using An Alternative Algorithm

From the previous two subsections, we can see that given
the optimal action, the stationary reputation distribution can be
found using Algorithm 1, and given the stationary reputation
distribution, the optimal action can be found using Algorithm
2. Therefore, we can obtain the optimal action and the
stationary reputation distribution alternatively by iteratively
fixing one and solving the other. The detailed processes are
summarized in Algorithm 3. Note that the convergence speed
of Algorithm 3 is highly determined by the initial action rule
a0. Nevertheless, it will converge since the number of the
possible action rules is finite. Moreover, Algorithm 3 can also
be used to test the evolutionary stability of any action rule.
The idea is to set the tested action rule as the initial action rule
and see whether it can converge in one iteration. The details
will be discussed in section V.

IV. ACTION SPREADING DUE TO NATURAL SELECTION

Based on Algorithm 3, we can find the optimal action
rule and the stationary reputation distribution. However, dur-
ing the above analysis, we do not include the perturbation
effect, where players may take non-optimal action rule due
to uncertainty of the system and/or the incorrect (noisy)
parameters. Taking the perturbation effect into account, we
need to evaluate the stability of the optimal action rule. Here,
we adopt the concept of evolutionarily stable strategy (ESS)
[26], which is “a strategy such that, if all members of the
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population adopt it, then no mutant strategy could invade the
population under the influence of natural selection". In the
following subsections, we first discuss, by natural selection,
how the action rules spread over the population. Specifically,
we discuss two action spreading algorithms: one is action
spreading algorithm using Wright-Fisher model [27] and the
other is action spreading algorithm using replicator dynamic
equation [26]. Then, we examine, in Section V, the stability
of the optimal action rule derived by Algorithm 3 by the
simulations.

Let 𝑀 be the number of action rules, a1, a2, ..., a𝑀 , used
in the population. Let 𝑝𝑡𝑖 be the percentage of the population
that uses action rule a𝑖 at time 𝑡. Then, we have

∑𝑀
𝑖=1 𝑝

𝑡
𝑖 = 1.

Let 𝑈 𝑡
𝑖 be the average payoff using action rule a𝑖 at time 𝑡.

A. Action Spreading Algorithm Using Wright Fisher Model

The Wright-Fisher model is by far the most popular stochas-
tic model for reproduction in population genetics [27]. It is
based on the assumption that the probability of an individual
adopting a certain strategy is proportional to the expected
payoff of the population using that strategy. Due to its sim-
plicity and capability of capturing the essence of the biology
involved, we use the Wright-Fisher model here to characterize
how action rules spread over the population.

Let 𝑦𝑖 be the probability of an individual using action a𝑖.
Then, we have

∑𝑀
𝑖=1 𝑦𝑖 = 1. With the Wright-Fisher Model,

we assume that 𝑦𝑖 is proportional to the total payoff of the
users using a𝑖. Therefore, 𝑦𝑖 can be computed by

𝑦𝑖 =
𝑝𝑡𝑖𝑈

𝑡
𝑖∑𝑀

𝑗=1 𝑝
𝑡
𝑗𝑈

𝑡
𝑗

, (19)

where the numerator 𝑝𝑡𝑖𝑈
𝑡
𝑖 is the total payoff of the users using

action a𝑖, and the denominator
∑𝑀

𝑗=1 𝑝
𝑡
𝑗𝑈

𝑡
𝑗 is the total payoff

of the whole population, which is the normalization term that
ensures

∑𝑀
𝑖=1 𝑦𝑖 = 1.

Based on the assumption that the population size is suffi-
ciently large, the percentage of the population using action a𝑖
is equal to the probability of an individual using a𝑖. Therefore,
the action spreading equation can be written as

𝑝𝑡+1
𝑖 =

𝑝𝑡𝑖𝑈
𝑡
𝑖∑𝑀

𝑗=1 𝑝
𝑡
𝑗𝑈

𝑡
𝑗

. (20)

B. Action Spreading Algorithm Using Replicator Dynamic
Equation

Replicator dynamic equation is widely used to characterize
the population evolution in evolutionary game theory [26].
It is based on the following intuition: if a certain strategy
results in a higher payoff than the average level, the population
share using that strategy will grow with the growth rate
proportional to the difference between the expected payoff of
the population using that strategy and the expected payoff of
the entire population. In this subsection, we use the replicator
dynamic equation to model the evolution of the percentage of
the population using a certain action rule, which means that
the evolution of 𝑝𝑖 is given by the following equation

𝑑𝑝𝑖
𝑑𝑡

= 𝜂

⎛
⎝𝑈𝑖 −

𝑀∑
𝑗=1

𝑝𝑗𝑈𝑗

⎞
⎠ 𝑝𝑖, (21)

where 𝜂 is a scale factor controlling the speed of the evolution.
By discretizing the replicator dynamic equation in (21), we

have the action spreading equation

𝑝𝑡+1
𝑖 = 𝑝𝑡𝑖 + 𝜂

⎛
⎝𝑈 𝑡

𝑖 −
𝑀∑
𝑗=1

𝑝𝑡𝑗𝑈
𝑡
𝑗

⎞
⎠ 𝑝𝑡𝑖

= 𝑝𝑡𝑖

⎡
⎣1 + 𝜂

⎛
⎝𝑈 𝑡

𝑖 −
𝑀∑
𝑗=1

𝑝𝑡𝑗𝑈
𝑡
𝑗

⎞
⎠
⎤
⎦ . (22)

V. EVOLUTIONARILY STABLE STRATEGY AND

SIMULATIONS

To verify the proposed algorithm, we simulate the packet
forwarding game. We study a fixed-size population, 𝑁 =
1000. Each new player receives an initial reputation, which
is randomly chosen from {0, 1, ..., 𝐿} with equal probability

1
𝐿+1 . Each player uses one of (𝐿 + 1)(𝐿+1)×(𝐿+1) possible
action rules. All players in the population share the fixed
social norm defined in (2). Before any one elementary step
of action updating, each individual has exactly 20 interactions
with other randomly chosen individuals. Individuals act as
transmitter and receiver on average 10 times each. After
each interaction, the reputation of the transmitter is updated
according to the reputation updating policy shown in Fig. 2.
We assume that every player in the population agrees on
the reputation generated by the reputation updating policy.
No private lists of reputation are considered. After all 20
interactions have taken place, each participant including both
the transmitter and receiver goes back to the population with
probability 𝛿 or leaves the population with probability 1 − 𝛿.
For every player who leaves, a new individual enters the
population to keep the total population size constant. The
initial reputation of the new coming is randomly chosen from
{0, 1, ..., 𝐿} with equal probability 1

𝐿+1 . Then, the players
in the population, including the old players who stay in the
population and the new players who enter the population,
choose their new action rules according to previous payoff
history of the whole population. There are two possible action
spreading algorithms as shown in the previous section. One
is the action spreading algorithm using Wright Fisher Model,
which is denoted as “WFM", and the other one is the ac-
tion spreading algorithm using Replicator Dynamic Equation,
which is denoted as “RDE". After updating the action rule,
the payoffs of all players are reset to zero. Therefore, older
players do not accumulate their payoffs. In all the following
simulations, the parameters 𝜆, 𝛿, and 𝜇 are set to be 0.5, 0.9,
and 0.95 respectively. The parameter 𝜂 that controls the speed
of the evolution in RDE is set to be 0.1.

A. Binary Reputation Scenario

To give more insights into the proposed algorithm, we first
evaluate the binary reputation scenario where 𝐿 = 1. We
assume that the gain per unit is 1 and the cost per unit is
0.1, i.e. 𝑔 = 1 and 𝑐 = 0.1. According to Algorithm 3, with
different initial conditions, we can find three pairs of stationary
reputation distribution x★ and the optimal action rule a★, which
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Fig. 3. The population evolution when 𝐿 = 1, 𝑔 = 1 and 𝑐 = 0.1: (a) the percentage of the population with reputation 𝐿 = 1; (b) the percentage of the
population using optimal action shown in (24).
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Fig. 5. The population evolution when 𝐿 = 1, 𝑔 = 1 and 𝑐 = 0.6: (a) the percentage of the population with reputation 𝐿 = 1; (b) the percentage of the
population using optimal action shown in (24).

are

x★1 =

(
0.5
0.5

)
, a★1 =

(
0 0
0 0

)
. (23)

x★2 =

(
0.0909
0.9091

)
, a★2 =

(
0 1
0 1

)
. (24)

x★3 =

(
0.9091
0.0909

)
, a★3 =

(
1 0
1 0

)
. (25)

With (x★1,a★1), the transmitter will not forward any packet
to the receiver regardless his/her own reputation and the
corresponding receiver’s reputation. Obviously, it is a bad
strategy since, with such a strategy, there is no cooperation and
the payoff of every player is zero. The pairs (x★2,a★2) and (x★3,a★3)
are symmetric where with the former pair, the transmitter
will always forward packets to the receiver who has good

reputation, and with the latter pair, the transmitter will always
forward packets to the receiver who has bad reputation. We can
also find that the pair (x★2,a★2) leads to a population with more
than 90 percentage of the players are good reputation while
(x★3,a★3) leads to a population with more than 90 percentage of
the players are bad reputation. Here, we prefer (x★2,a★2) since
it leads to a “good" society with more than 90 percentage of
the population are good reputation.

Then, we evaluate the evolutionary stability of (x★2,a★2). In
the simulation, the initial frequency of the optimal action rule
a★ shown in (24) is set to be 0.6. The initial frequencies
of the other action rules are randomly chosen. The initial
reputation of new players is randomly chosen from {0, 1} with
equal probability 1

2 . In Fig. 3 (a), we show the evolutionary
results of the percentage of the population with reputation
level 𝐿 = 1. From Fig. 3 (a), we can see that for both
WFM and RDE, the reputation distribution converges to the
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Fig. 4. The stable region for the optimal action rule shown in (24) when
𝐿 = 1.

stationary reputation distribution x★2. Compared with WFM,
the convergence speed of RDE is a bit slower since a small
speed controlling parameter 𝜂 = 0.1 is used in RDE.

The evolutionary results of the percentage of the population
using the action rule a★2 are shown in Fig. 3 (b). From Fig.
3 (b), we can see that for both WFM and RDE, the action
rule a★2 will spread over the whole population. And once the
whole population adopt a★2, no one will deviate. Therefore, the
action rule a★2 is an evolutionarily stable strategy (ESS) [26]
in this case.

From (17), we can see that the optimal action rule is
determined by the values of 𝑔 and 𝑐. Intuitively, if 𝑔 ≫ 𝑐,
every player is willing to cooperate with other players since in
such a scenario, the potential cooperation gain will be greater
than the immediate cooperation cost. On the other hand, if
𝑐 ≫ 𝑔, every player tends not to cooperate with other players
since the potential cooperation gain will be smaller than the
immediate cooperation cost in such a scenario. Based on the
intuition, there should exist a critical cost-to-gain ratio 𝛾 such
that the optimal action rule a★2 is stable if 𝑐 < 𝛾𝑔 and is not
stable otherwise.

By setting a★2 as the initial action rule a0 in Algorithm 3 and
varying 𝑔 and 𝑐, we find that if 𝑐

𝑔 ≤ 0.582, the optimal action
rule found by Algorithm 3 is a★2. On the other hand, if 𝑐

𝑔 >
0.582, the optimal action rule changes to be a★1. Therefore,
the critical cost-to-gain ratio 𝛾 is equal to 0.582 in this case,
which means that the stable region for a★2 is the shadow region
shown in Fig. 4.

We verify the above statement by evaluating the stability of
a★2 when 𝑔 = 1 and 𝑐 = 0.6. The corresponding evolutionary
results are shown in Fig. 5. From Fig. 5 (b), we can see that
when 𝑐

𝑔 = 0.6 > 0.582, the percentage of the population using
action rule a★2 does not converge to 1 for both WFM and RDE.
Therefore, a★2 is not stable in this case. Correspondingly, we
can also see from Fig. 5 (a) that the reputation distribution
does not converge to x★2 in this case.

B. Multi-Level Reputation Scenario

For the multi-level reputation scenario where 𝐿 ≥ 2, due to
the large dimension of the action space ((𝐿+1)(𝐿+1)×(𝐿+1)),

Stable region

g

c

c=0.622g

Stable Region

Fig. 6. The stable region for the optimal action rule shown in (26) when
𝐿 = 4.

it is difficult to find all the possible pairs of stationary
reputation distribution x★ and optimal action rule a★. However,
based on the results in the binary reputation scenario, we can
infer that one possible optimal action rule a★0 is to forward 𝑖
packets to the receiver with reputation 𝑖, i.e. a★0 can be written
as

a★0 =

⎛
⎜⎜⎜⎝

0 1 . . . 𝐿
0 1 . . . 𝐿
...

...
...

...
0 1 . . . 𝐿

⎞
⎟⎟⎟⎠ . (26)

According to Algorithm 1, we can find the corresponding
stationary reputation distribution x★0. For the special case with
𝐿 = 4, x★0 is

x★0 =
(
0.0235 0.0235 0.0235 0.0235 0.906

)𝑇
. (27)

Then, similar to the binary reputation scenario, we obtain
the stable region for the optimal action rule a★0. By setting a★0
as the initial action rule a0 in Algorithm 3 and varying 𝑔 and
𝑐, we find that if 𝑐

𝑔 ≤ 0.622, the optimal action rule found
by Algorithm 3 is still a★0. On the other hand, if 𝑐

𝑔 > 0.622,
the optimal action rule changes. Therefore, the critical cost-
to-gain ratio 𝛾 in this case is equal to 0.622, which means that
the stable region for a★0 is the shadow region shown in Fig. 6.

We then verify the above statement by simulating the packet
forwarding game with two different cost-to-gain ratio settings.
One is 𝑔 = 1 and 𝑐 = 0.5, i.e. 𝑐

𝑔 = 0.5 < 0.622, and the
other is 𝑔 = 1 and 𝑐 = 0.7, i.e. 𝑐

𝑔 = 0.7 > 0.622. The
evolutionary results for the former setting are shown in Fig. 7.
From Fig. 7, we can see that when the cost-to-gain ratio is set
to be 𝑐

𝑔 = 0.5 < 0.622, the reputation distribution converges
to x★0 and the optimal action rule a★0 spreads over the whole
population for both WFM and RDE, which verifies that a★0 is
an ESS in this case.

The evolutionary results for the latter cost-to-gain ratio set-
ting are different and shown in Fig. 8. From Fig. 8, we can see
that when the cost-to-gain ratio is set to be 𝑐

𝑔 = 0.7 > 0.622,
for both WFM and RDE, the action rule a★0 does not spread
over the whole population and the reputation distribution does
not converge to x★0. Therefore, a★0 is not stable in this case.
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Fig. 7. The population evolution when 𝐿 = 4, 𝑔 = 1 and 𝑐 = 0.5: (a) the percentage of the population with reputation 𝐿 = 4; (b) the percentage of the
population using optimal action shown in (26).
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Fig. 8. The population evolution when 𝐿 = 4, 𝑔 = 1 and 𝑐 = 0.7: (a) the percentage of the population with reputation 𝐿 = 4; (b) the percentage of the
population using optimal action shown in (26).

VI. CONCLUSIONS

In this paper, we propose a cooperation stimulation scheme
for cognitive networks using indirect reciprocity game mod-
elling. Different from the existing game theoretic approaches,
our proposed scheme does not rely on the assumption that
the number of interactions between a pair of players are
infinite. From the simulation results, we can see that with
a proper cost-to-gain ratio, the action rule of forwarding 𝑖
packets to the receiver with reputation level 𝑖 is an ESS. Even
starting with only 60 percentage of population adopting the
optimal action rule, the optimal action rule will quickly spread
over the whole population by natural selection. And once the
whole population use the optimal action rule, no one will
deviate. Moreover, such an ESS will lead to a “good" society
where more than 90 percentage of the population have good
reputation.
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