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Attribute reduction is a popular topic in research on rough sets. In the classical model, much progress has been made in the study
of the attribute reduction of indiscernibility and discernibility relations. To enhance the fault tolerance of the model, concepts of
both indiscernibility and discernibility relations involving uncertain or imprecise information are proposed in this paper.  e
attribute reductions of the relative β-indiscernibility relation and relative β-discernibility relation and their algorithms are
proposed. When the precision satis�es certain conditions, the reduction of two relation concepts can be converted into a positive
region reduction.  erefore, the discernibility matrix is used to construct the reductions of the two relation concepts and the
positive region. Furthermore, the corresponding algorithm of the relative β-indiscernibility (discernibility) relation reduction can
be optimized when the precision is greater than 0.5, and this is used to develop an optimization algorithm that constructs the
discernibility matrix more e�ciently. Experiments show the feasibility of the two relation reduction algorithms. More im-
portantly, the reduction algorithms of the two relations and the optimization algorithm are compared to demonstrate the
feasibility of the optimization algorithm proposed in this paper.

1. Introduction

 e rough set (RS) theory [1, 2], proposed by Polish
mathematician Zdzislaw Pawlak, is a useful data processing
method for dealing with incomplete and inconsistent
problems.  e investigation of indiscernibility and dis-
cernibility relations between objects is an important task in
RS theory. In classical RS theory, an indiscernibility relation
between objects exists when all of the objects have the same
attribute values. A discernibility relation exists between the
objects if and only if not every attribute value of the objects is
the same. Existing research has studied in-depth indis-
cernibility and discernibility relations in RSs [3–5] in certain
research �elds. For instance, in political sociology, if one side
emphasizes the di�erence between countries, this can cause
con�ict to expand; on the contrary, if one side emphasizes
the commonality between countries, this can provide better

conditions for negotiation [6]. Because classical RS theory is
sensitive to classi�cation error, its application is quite
limited, and its classi�cation ability is poor. To overcome this
limitation, the variable precision (VP) model [7, 8] is
constructed using precision, which processes the data more
e�ectively, thus advancing the development of RS theory and
broadening its application to other �elds.

Even more in-depth research has been performed on
attribute reduction, which forms the minimum subset of
knowledge classi�cation by deleting redundant or unrelated
attributes according to speci�c rules. Attribute reduction has
been studied in reference [9–14] and has been applied to
fault diagnosis, risk assessment, and other �elds [15]. In
reference [16], a VP model that is more fault-tolerant than
the RS model was proposed, and seven forms of reduction in
the VP model were discussed. In reference [17–19], the
concept of attribute reduction in the VP model was
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proposed, and through a strict proof of the corresponding
discernibility matrix, a reduction algorithm based on that
matrix was given. Beynon [20] studied the VP reduction by
comparing different thresholds. ,e influence of parameters
on classification was studied in the VP model [21]. Chen
et al. [22] defined a fuzzy relation on condition attributes,
and then, a local attribute reduction algorithm was proposed
using the corresponding discernibility matrix. In addition,
fuzzy relations [23–25] have been studied in [26–28]. ,e
aim of most research on attribute reduction is to solve
practical problems in different scenarios and has led to
various forms of attribute reduction, such as covering re-
duction [29, 30], cost-sensitive reduction [31–33], local at-
tribute reduction [22, 34, 35], incremental attribute
reduction [36–38], and information entropy reduction [39,
40].

Skowron et al. [41, 42] were the first to propose using the
discernibility matrix to reduce attributes in information
systems. ,is method can determine all the reductions by
transforming the function in conjunctive normal form
(CNF) into a function in disjunctive normal form (DNF).
,is method is called the discernibility matrix-based re-
duction method and is supported by mathematical proofs.
Although its calculation complexity is high, it remains the
main method to obtain all reductions.

In this paper, the relative β-indiscernibility relation (β
–IR) and relative β-discernibility relation (β −DR) of the VP
model are proposed, in which VPmodel, probabilistic model
[43], and decision-theoretic model [44] all extend RS.
However, the differences among them lie in the selection of
parameters. Because all the results can be obtained using the
discernibility matrix, this paper is based on the discernibility
matrix. Moreover, the relationships among relative β–IR
reduction, relative β-DR reduction, and positive region
reduction when the precision is greater than 0.5 are in-
vestigated after modifying the decision values of some
objects.

,e structure of this paper is divided into six parts. In
Section 2, there are reviews of upper approximation, lower
approximation, and β-approximation. In Section 3, the
definition and reduction of the relative β–IR are proposed,
and then, an algorithm for relative β–IR reduction is
given. In Section 4, the definition and reduction of the
relative β-DR are proposed, and then, an algorithm for
relative β-DR relation reduction is also given. In Section 5,
it is shown that when the precision is greater than 0.5, the
relative β–IR (relative β-DR) reduction in a decision table
is equivalent to the positive region reduction in a new
decision table in which some objects’ decision values have
been updated. ,en, an optimization algorithm for con-
verting the relative β–IR (relative β-DR) reduction to a
positive region reduction is proposed. In Section 6, we
used a naive Bayes (NB) classifier, support vector machine
(SVM), and decision tree (DT) on UCI datasets to
compare the accuracy after reduction and evaluate the
effectiveness of the proposed algorithms. Section 7 con-
cludes the paper.

2. Preliminary

An information table [1, 2, 5] is also called an information
system. It is assumed that the knowledge in an information
table is described and represented by a set of rows and a set
of columns, in which rows and columns denote objects and
attributes, respectively. ,e information table is a tuple
S � (U, At, Va|a ∈ At ), Ia|a ∈ At , where U is a universal
set, At is a attribute set, Va is nonempty set of values for an
attribute a, and Ia: U⟶ Va is a function such that each
x ∈ U takes a value Ia(x) on attribute a. Given A⊆At, the
equivalence relation is defined by RA � (x, y)|x, y ∈ U ×

U, Ia(x) � Ia(y) } for each a ∈ A. Moreover, an equivalence
class for x on a set of attribute A is denoted as
[x]A � y|(x, y) ∈ RA . It can be easily seen that this
equivalence relation is reflexive, symmetric, and transitive.
For A⊆At, the quotient set is denoted by
U/A � A1, A2, . . . , Al , where [x]A ∈ U/A.

In S � (U, At), if C is a set of condition attributes and D
is a set of decision attributes, where At � C∪D and
C∩D � ∅, then an information table is called a decision
table. In this paper, a decision table S is written as
(U, C∪D), where C � a1, a2, . . . , am , D � d1, d2, . . . , dt{ },
and Rd � ∩ t

i�1Rdi. For the convenience of proof, a set of
decision attributes is written as a singleton set, namely
D � d{ }.

Definition 1 (see [1, 2]). Let (U, C) be an information system
and X be a subset of U, B⊆C. ,e lower and upper ap-
proximations of X are as follows:

R(X) � x|[x]R⊆X ,

R(X) � x|[x]R ∩X≠∅ .
(1)

Definition 2 (see [1, 2]). Let (U, C∪D) be a decision table in
which U/D is a quotient set induced by D. ,e positive
region is defined as follows:

PosC(D) � ∪ l
i�1 RC Di(  , (2)

where Di ∈ U/D.
,at is, for each [x]C, if [x]C⊆PosC(D), then [x]C is

contained in [x]D. Conversely, if [x]C is contained in [x]D,
then [x]C⊆PosC(D).

Definition 3 (see [19]). Let (U, C∪D) be a decision table,
where B⊆C. If it satisfies the following conditions,

PosC(D) � PosB(D),

for any B’ ⊂ B, PosB(D)≠PosB’(D).
(3)

then B is called the positive region reduction of C.
Given a decision table, its corresponding discernibility

matrix [11] of positive region reduction MP � (mpij)s×n is
as follows:
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mpij �
a|a ∈ C, xi, xj  ∉ Ra, xi ∈ PosC(D), xi, xj  ∉ RD,

∅, otherwise.

⎧⎨

⎩

(4)

In a matrix F, s is equal to |PosC(D)|, n is the cardinality
of U, and |PosC(D)| is the cardinality of the positive region.

Definition 4. (see [34]). Given X⊆U, for each x ∈ U, the
characteristic function λX(x) is defined as follows:

λX(x) �
1, x ∈ X,

0, x ∉ X.
 (5)

Lemma 1 (see [7, 34]). For positive integers i ∈ 1, 2, . . . , n{ },
where [xi]R is an equivalence class on relation R and X⊆U,
WRλX is expressed as follows:

WRλX �
x1 R∩X




x1 R




,
x2 R∩X




x2 R




, . . . ,
xn R∩X




xn R




 

T

, (6)

where T denotes the transpose.
For xi ∈ U, |[xi]R∩X|/|[xi]R| � [(λR (xi, x1)/|[xi]R|λX

(x1)) + (λR(xi, x2)/|[xi]R|λX(x2)) + . . . + (λR(xi, xn)/|[xi]

R| λX(xn))], where λR(xi, xj) � 1 if and only if (xi, xj) ∈ R.

Definition 5 (see [7, 34]). Let R be an equivalence relation on
U, β ∈ (0, 1). ,en, the β -approximation of X is defined as

R
β
(X) � x|P X|[x]R( ≥ β , (7)

where P(X|[x]R) � |[x]R ∩X|/|[x]R|.

Theorem 1 (see [3, 4]). Let R be an equivalence relation on
U. 8en, for any subset X⊆U, then λR(β)(X) � (WRλX)β,
where Xβ denotes the β-cut set of fuzzy set X.

Lemma 2 (see [3, 4]). For a decision table, suppose that
μCD � (WRC

λD1
, WRC

λD2
, . . . , WRC

λDl
), where Di is a deci-

sion class of objects with a decision value that is equal to
fd(i). 8en, (bij)n×l is a fuzzy matrix denoted as

μCD x1( 

μCD x2( 

⋮

μCD xn( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

x1 C∩D1




x1 C




x1 C∩D2




x1 C




· · ·
x1 C∩Dl




x1 C




x2 C∩D1




x2 C




x2 C∩D2




x2 C




· · ·
x2 C∩Dl




x2 C




⋮ ⋮ ⋱ ⋮

xn C∩D1




xn C




xn C∩D2




xn C




· · ·
xn C∩Dl




xn C




⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where bij � |[xi]C∩Dj|/|[xi]C| � P(Dj|[xi]C), i is a positive
integer, and j is a positive integer.

Theorem 2 (see [7, 34]). Given (U, C∪D), ∀x ∈ U, for
β ∈ [0, 1),

μCD( β � λ
RC( )

(β)
D1( )

(x), λ
RC( )

(β)
D2( )

(x), . . . , λ
RC( )

(β)
Dl( )

(x). (9)

,e proof of ,eorem 2 is shown in reference [34]. In
this section, (μCD)β was introduced using the β-cut set of
fuzzy set X. In Section 3, the relative β-indiscernibility re-
lation is proposed for decision tables, and then, the corre-
sponding discernibility matrix is proposed.

3. Relative β-Indiscernibility
Relation Reduction

Given (U, C∪D), with the quotient set
U/D � D1, D2, . . . , Dl  induced by the equivalence relation
RD, we first define the relative β−indiscernibility relation for
β ∈ (0, 1).

Definition 6. Given a set B, the relative β-indiscernibility
relation is defined as follows:
Ind

β
B(D) � (x, y)|x, y ∈ U, μBD(x)( β � μBD(y)( β , (10)

where (μBD(x))β � (|[x]B ∩D1|/|[x]B|, |[x]B ∩D2|/|[x]B|,

. . . , |[x]B ∩Dl|/|[x]B|)β and β ∈ (0, 1).
For a binary relation Ind

β
B(D) on U, because

∀(x, x) ∈ Ind
β
B(D), it is reflexive. If ∀(x, y) ∈ Ind

β
B(D), then

(y, x) ∈ Ind
β
B(D), and it is symmetric. ∀x, y, z ∈ U,

∀(x, y) ∈ Ind
β
B(D) and (y, z) ∈ Ind

β
B(D), then (x, z) ∈

Ind
β
B(D), and hence, it is transitive. Because relation

Ind
β
B(D) satisfies the above three properties, it is an

equivalence relation.
In the decision table presented in Table 1, the condition

set C contains a1, a2, a3, and D is a decision attribute set.
Here, U/C � x1, x2 , x3, x4, x5 , x6 , x7   and
U/D � D1,D2,D3 , where D1 � x1, x3 , D2 � x2x4,

x5, x6}, and D3 � x7 . For different values of the threshold
β, Ind

β
B(D) may be different.

If β � 0.3, then by ,eorem 2, we have
(μCD(x1))0.3 � (μCD(x2))0.3 � (1, 1, 0), (μCD(x3))0.3
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� (μCD(x4))0.3 � (μCD(x5))0.3 � (1, 1, 0), (μCD(x6))0.3
� (0, 1, 0), and (μCD(x7))0.3 � (0, 0, 1).

If β � 0.6, then by ,eorem 2, we have
(μCD(x1))0.6 � (μCD(x2))0.6 � (0, 0, 0),

(μCD(x3))0.6 � (μCD(x4))0.6 � (μCD(x5))0.6 � (0, 1, 0),
(μCD(x6))0.6 � (0, 1, 0), and (μCD(x7))0.6 � (0, 0, 1).

According to Definition 6, we have, for example,
(x1, x3) ∈ Ind0.3

C (D) and (x3, x6) ∉ Ind0.3
C (D); however,

(x1, x3) ∉ Ind0.6
C (D), (x3, x6) ∈ Ind0.6

C (D).

Definition 7. Given (U, C∪D), if B⊆C satisfies the following
two conditions:

(a) Ind
β
C(D) � Ind

β
B(D)

(b) for any B′ ⊂ B, Ind
β
B′(D)≠ Ind

β
C(D)

then B is the reduction of the relative β–IR.
Given a decision table, a corresponding discernibility

matrix Mβ � (m
β
ij)n×n for the relative β–IR is as follows:

m
β
ij �

a|a ∈ C, xi, xj  ∉ Ra , xi ∈ PosC(D), if xi, xj  ∉ Ind
β
C(D)

∅, otherwise

⎧⎨

⎩ , (11)

where n is |U|.

Lemma 3. Let (U, C∪D) be a decision table and
∀(x, y) ∈ U × U. If (x, y) ∉ Ind

β
C(D), then m

β
ij ≠∅.

Proof. If (x, y) ∉ Ind
β
C(D), then ∃Dk ∈ U/D s.t.

(|[xi]C∩Dk|/|[xi]C|)β≠ (|[xj]C∩Dk|/|[xj]C|)β. ,us,
(xi, xj) ∉ RC. Hence, there exists as ∈ C such that
(xi, xj) ∉ Rs. ,en, m

β
ij ≠∅. □

Theorem 3. Let (U, C∪D) be a decision table. For B⊆C, the
following three conditions are equivalent:

(a) Ind
β
C(D) � Ind

β
B(D)

(b) if m
β
ij ≠∅, m

β
ij ∩B≠∅

(c) if (x, y) ∈ RB, then (x, y) ∈ Ind
β
C(D)

Proof. (a)⇒(b) Let m
β
ij ≠∅. ,en, there exists

(xi, xj) ∉ Ind
β
C(D). Using proof by contradiction, suppose

m
β
ij ∩B � ∅. ,en, (xi, xj) ∈ RB. ,us, by Definition 6,

(xi, xj) ∈ Ind
β
B(D), which leads to a contradiction.

(b)⇒(c) Using proof by contradiction, assume
(xi, xj) ∉ Ind

β
C(D). By Lemma 3, m

β
ij ≠∅. From condition

(b), m
β
ij ∩B≠∅, and hence, aS ∈ m

β
ij ∩B, namely,

(xi, xj) ∉ RB, which is a contradiction.
(c)⇒(a) In this case, (xi, xj) ∈ Ind

β
C(D) holds if and

only if (μCD(xi))β � (μCD(xj))β, namely, for each
Dk ∈ U/D, (|[xi]C∩Dk|/|[xi]C|)β≠ (|[xj]C∩Dk|/|[xj]C|)β,
B⊆C, ∀x ∈ U. ,en, [x]B � ∪ l

s�1[ys]C, which is the partition
of [x]B with respect to RC. We have two cases:

(i) If |[ys]C∩Dk|/|[ys]C|≥ β, then |[x]B ∩Dk|/|[x]B| �


l
s�1 |[ys]C∩Dk|/|[ys]C||[ys]C|/|[x]B|≥ β

l
s�1 |[ys]C

|/|[x]B| � β

(ii) If |[ys]C∩Dk|/|[ys]C|< β, then |[x]B ∩Dk|/|[x]B| �


l
s�1 |[ys]C∩Dk|/|[ys]C| |[ys]C|/|[x]B|≥ β

l
s�1

|[ys]C|/|[x]B| � β

By (I) and (II), (μCD(xi))β � (μBD(xi))β and
(μCD(xj))β � (μBD(xj))β if and only if (xi, xj) ∈ Ind

β
B(D).

,us, ,eorem 3 is proved. □

Corollary 1. Let (U, C∪D) be a decision table. If ∅≠B⊆C
and precision β ∈ (0, 1)], then B is the reduction of the relative
β–IR if and only if it is a minimal subset, which satisfies
m

β
ij ∩B≠∅ for any m

β
ij ≠∅.

Using Corollary 1, we present the following algorithm
for the relative β-lR reduction for (U, C∪D).

Considering the decision table given in Table 1, when
β � 0.6, the discernibility matrix is constructed as follows:
∅ ∅ a1, a3  a1, a3  a1, a3  a2, a3  a1 

∅ ∅ a1, a3  a1, a3  a1, a3  a2, a3  a1 

a1, a3  a1, a3  ∅ ∅ ∅ ∅ a3 

a1, a3  a1, a3  ∅ ∅ ∅ ∅ a3 

a1, a3  a1, a3  ∅ ∅ ∅ ∅ a3 

a2, a3  a2, a3  ∅ ∅ ∅ ∅ C

a1  a1  a3  a3  a3  C ∅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

,e discernibility function in CNF is
f � (a1 + a3)(a2 + a3)a1a3. From CNF to DNF, we have
f � a1a3. ,us, the subset a1a3  is the unique attribute
reduction of the relative β–IR.

4. Relative β-Discernibility Relation Reduction

,e relative β-indiscernibility relation was proposed in Sec-
tion 3, and the concept of its complementary relation is
proposed in this section. In contrast to the discernibility

Table 1: Decision table.

U
C

D
a1 a2 a3

x1 1 1 1 0
x2 1 1 1 0
x3 0 1 0 0
x4 0 1 0 1
x5 0 1 0 1
x6 1 0 0 1
x7 0 1 1 2
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matrix of the relative β–IR(β-DR) reduction, in (U, C∪D),
when the precision is greater than 0.5, the decision values of
some objects can be modified, and then, the relative β-dis-
cernibility relation is calculated using a positive region
reduction.

Definition 8. Let (U, C∪D) be a decision table and B be a
subset of C.,e relative β-discernibility relation is defined as
follows:

Dis
β
B(D) � (x, y)|x, y ∈ U, μBD(x)( β≠ μBD(y)( β , (13)

where (μBD(x))β � (|[x]B ∩D1|/ |[x]B|, |[x]B ∩D2|/
|[x]B|, . . . , |[x]B ∩Dl|/|[x]B|)β.

For (U, C∪D), β ∈ (0, 1], relation Ind
β
C(D) and relation

Dis
β
C(D) are complementary to each other. For a binary

relation Dis
β
C(D), if (x, y) ∈ Dis

β
C(D), then

(y, x) ∈ Dis
β
C(D), and hence, it is symmetric. It is not

reflexive because (μCD(x))β � (μCD(x))β for all x ∈ U.
Moreover, it is not necessarily transitive.

For different β, the set of Dis
β
C(D) may also be different.

In Table 1, for example, let β � 0.3. ,en, (x2, x5) ∉
Dis0.3

C (D), and (x5, x6) ∈ Dis0.3
C (D). However, let β � 0.6.

We then have (x2, x5) ∈ Dis0.6
C (D), and (x5, x6) ∉

Dis0.6
C (D).

Definition 9. Let (U, C∪D) be a decision table, B⊆C. If B

satisfies the following conditions:

(a) Dis
β
C(D) � Dis

β
B(D)

(b) for any B’ ⊂ B, Dis
β
B’(D)≠Dis

β
C(D)

then B is the reduction of the relative β-DR.
Given a decision table, its corresponding discernibility

matrix is M′ � (m’)n×n for the relative β-DR, where n is the
cardinality of U. Each element m’ is defined as follows:

m’βij �
a|a ∈ C, xi, xj  ∉ Ra , if xi, xj  ∈ Dis

β
C(D),

∅, otherwise.

⎧⎨

⎩ (14)

Lemma 4. Let (U, C∪D) be a decision table.
∀(xi, xj) ∈ U × U, if (xi, xj) ∈ Dis

β
C(D), then m’βij ≠∅.

Proof. ,e proof is similar to that of Lemma 3 in Section
3. □

Theorem 4. Let (U, C∪D) be a decision table. If B⊆C, then
the following conditions (a), (b), and (c) are equivalent:

(a) Dis
β
C(D) � Dis

β
B(D)

(b) If m
′β
ij ≠∅, m

′β
ij ∩B≠∅

(c) If (x, y) ∈ RB, then (x, y) ∉ Dis
β
C(D)

Proof. ,e proof is similar to that of ,eorem 3 in Section
3. □

Lemma 5. Let (U, C∪D) be a decision table. If
(xi, xj) ∈ U × U, then m

β
ij � m’βij.

Proof. For all (xi, xj) ∈ U × U, then (xi, xj) ∈ Dis
β
C(D) if

and only if (xi, xj) ∉ Ind
β
C(D), and hence, m

β
ij � m’βij.

Input: (U, C∪D)

Output: reduction results of C

(1) m
β
ij � ∅, Bi � ∅;

(2) for each x in U do
(3) compute (μCD(x))β;
(4) endfor

or in U dofx
or in U do fx

(7) if (xi, xj) ∉ Ind
β
C(D) then

m
β
ij � m

β
ij ∪ ai , ai ∈ C.

(8) endif
(9) endfor
(10) endfor
(11) execute CNF to DNF function
(12) return all Bi.// Bi(i � 1, 2, . . . , k) is one of the attribute reductions.

ALGORITHM 1: ,e algorithm of the relative β-lR reduction.
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Because (xi, xj) ∈ Dis
β
C(D) is the complement of a set

Ind
β
C(D), it is known from equations (12) and (14) that their

discernibility matrices are the same. □

Corollary 2. Let (U, C∪D) be a decision table. If and
precision β ∈ (0, 1], then B is the reduction of the relative
β-DR if and only if it is a minimal subset, which satisfies
m
′β
ij ∩B≠∅ for any m

′β
ij ≠∅.

Using Corollary 2, the algorithm of the relative β-DR
reduction for (U, C∪D) is proposed as follows.

Considering the decision table given in Table 1, letting β
� 0.3, the discernibility matrix is constructed as follows:

∅ ∅ ∅ ∅ ∅ a2, a3  a1 

∅ ∅ ∅ ∅ ∅ a2, a3  a1 

∅ ∅ ∅ ∅ ∅ a1, a2  a3 

∅ ∅ ∅ ∅ ∅ a1, a2  a3 

∅ ∅ ∅ ∅ ∅ a1, a2  a3 

a2, a3  a2, a3  a1, a2  a1, a2  a1, a2  ∅ C

a1  a1  a3  a3  a3  C ∅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

,e discernibility function in CNF is
f � (a1 + a3)(a2 + a3)a1a3. From CNF to DNF, it is
f � a1a3. ,us, according to Definition 9, a1a3  is the
unique result in the decision table.

5. Optimization of the Reduction Algorithm

Let (U, C∪D) be a decision table with Dk ∈ U/D. For all
x ∈ Dk and value dk ∈ Vd, let Id(x) � dk, which means that
the object x takes the value dk in Vd. Obviously, every x in
Dk has the same decision value dk for the decision attribute.
Given precision β ∈ (0.5, 1], for any [x]C satisfying
β≤ |[x]C ∩Dk|/|[x]C| <1, suppose xi ∈ [x]C and Id(xi)≠dk.
,en, change the values that objects xi have for decision
attribute d such that Id(xi) � dk, that is, [x]C⊆Dk

′. ,is
constructs a new quotient set U/D′, denoted by
U/D′ � D1′, D2′, . . . , Dl

′ . ,e decision table that changes
the decision values of some objects using this method is
called the new decision table and is denoted by (U, C∪D′).
Indeed, we note that Di

′ may be the empty set for
∃Di
′ ∈ U/D′.

Theorem 5. Let (U, C∪D) be a decision table with quotient
set U/D. Given precision β ∈ (0.5, 1], an updated new de-
cision table (U, C∪D′) is constructed with a new quotient set
U/D′ � D1′, D2′, . . . , Dl

′ . 8en, (μCD(x))β � (μCD’(x))1.

Proof. ∀Dk ∈ U/D and for any [x]C satisfying
|[x]C ∩Dk|/|[x]C|≥ β> 0.5, by Lemma 2, we have
|[x]C ∩Di|/|[x]C|< 0.5(i≠ k). ,us, |[x]C ∩Dk|/|[x]C| � 1
for the corresponding D’

k ∈ U/D’, and then, by ,eorem 2,
(μCD(x))β � (μCD′(x))1. If |[x]C ∩Dk|/|[x]C|< β, then
|[x]C ∩D’

k|/|[x]C|< β for the corresponding Dk
′ ∈ U/D′.

,en, (μCD(x))β � (μCD′(x))1. □

Proposition 1. Given a new decision table (U, C∪D′),
where U/D′ is a new quotient set by D′ and B⊆C, B is the
positive region reduction of C if and only if B is the reduction
of the relative β–IR (β-DR) for β � 1.

Proof. (⇒) If B is the attribute reduction of C, and
PosC(D′) � PosB(D′), then [x]C⊆Dk

′ if and only if [x]B⊆Dk
′

for ∀Dk
′ ∈ U/D’, that is, |[x]C ∩Dk

′|/|[x]C| �

|[x]B ∩Dk
′|/|[x]B|. ,us, (μCD’(x))1 � (μBD’(x))1, and

hence, Ind1
C(D′) � Ind1

B(D′). Suppose B′ ⊂ B,
PosC(D′)≠PosB′(D′). ,en, there exists Dk

′ ∈ U/D′, s.t.
[x]C⊆Dk

′ and [x]B’⊈D’
k. ,erefore, Ind1

C(D′)≠ Ind1
B′(D′).

(⇐) If Ind1
C(D′) � Ind1

B(D′), for ∀Dk
′ ∈ U/D′ and

[x]C⊆Dk
′, if and only if [x]B⊆Dk

′, then PosC(D′) �

PosB(D′). Suppose B′ ⊂ B. ,en, Ind1
C(D′)≠ Ind1

B’(D′),
and there exists x ∈ PosC(D′) and x ∉ PosB′(D′). Hence,
PosC(D′)≠PosB′(D′).

From discernibility matrices Mβ (equations (13) and
(15)), the corresponding matrices of the two above concepts
are equivalent. For (U, C∪D′), B is the reduction of the
relative β–IR for β � 1 if and only if B is the reduction of the
relative β-DR for β � 1. □

Corollary 3. Given a decision table (U, C∪D) with preci-
sion β ∈ (0.5, 1], a new decision table (U, C∪D′) is con-
structed. 8en, B is the reduction of the relative β–IR(β-DR)
with respect to (U, C∪D) if and only if B is the positive region
for (U, C∪D′).

Proof. By ,eorem 5 and Proposition 1, Corollary 3 clearly
holds.

,e above shows that the relative β–IR (β-DR) reduction
with a precision greater than 0.5 is equivalent to positive
region reduction, after modifying the decision values of
some objects that satisfy the condition. When the precision
of β–IR (β-DR) reduction is greater than 0.5, the decision
values of some objects can be modified, and a new decision
table can be constructed. In the new decision table, many
heuristic algorithms can be used to calculate the positive
region (Definition 3) reduction.

According to Corollary 3, an optimization algorithm that
converts the relative β–IR (β-DR) reduction to a positive
region reduction (CRRPRR) is as follows.

When comparing the relative β–IR (β-DR) reduction
algorithm with the Algorithm 3, the time complexity of both
algorithms is O((|C| + |D|) × |U|), where C represents the
number of condition attributes andD represents the number
of decision attributes. For Algorithm 1 and 2, the time
complexity of constructing the discernibility matrix is
O(|U|2 × |C|) and the space complexity of constructing
discernibility matrix is O(|U|2 × |U/D|) where |U/D| is the
number of equivalent classifications induced by decision set
D. For the Algorithm 3, the time complexity of calculating
the positive region in the new decision table is
O(|U| × |U/D| × ((|[x]C| × |Dj|) + |[x]C|)), where |U/D| is
the number of equivalent classifications induced by decision
set D and |Dj| is the basis of the equivalent class Dj.
Moreover, the time complexity of constructing the dis-
cernibility matrix is O(|PosC(D′)| × |U| × |C|), and the
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space complexity of constructing discernibility matrix is
O(|U|2). ,e time and space complexities of the dis-
cernibility function transformation of both algorithms are
the same. Obviously, the CRRPRR algorithm is better than
the original algorithm.

In Table 1, [x1]C � x1, x2 , [x3]C � x3, x4, x5 . Given
precision β � 0.6, |[x3]C∩D2|/|[x3]C|≥ β, with
D2 � x2x4, x5, x6 .,us, Id(x3) � 1 in a new decision table.
For |[x1]C∩D1|/|[x1]C|< β, with D1 � x1, x3 , the decision
values of any objects in [x1]C are not changed. Hence, the
new decision table (U, C∪D′) is shown in Table 2.

According to the CRRPRR optimization algorithm,
PosC(D’) � x3, x4, x5, x6, x7  by Definition 2. ,en, the
discernibility matrix is constructed as follows:

a1, a3  a1, a3  ∅ ∅ ∅ a1, a2  a3 

a1, a3  a1, a3  ∅ ∅ ∅ a1, a2  a3 

a1, a3  a1, a3  ∅ ∅ ∅ a1, a2  a3 

a2, a3  a2, a3  a1, a2  a1, a2  a1, a2  ∅ C

a1  a1  a3  a3  a3  C ∅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

,e discernibility function in CNF is
f � (a1 + a3)(a1 + a2)(a2 + a3)a1a3. From CNF into DNF,
we have f � a1a3. ,us, (a1, a3) is the unique attribute
reduction of C in (U, C∪D′).

It must be explained that the basic condition for the
conversion of the relative β –IR (β −DR) reduction into

Input: (U, C∪D)

Output: reduction results of C

(1) m
β
ij � ∅, Bi � ∅;

(2) for x in U do
(3) compute (μCD(x))β;
(4) endfor
forin U dox

forin U do x

(5) if (xi, xj) ∈ Dis
β
C(D) then

m
′β
ij � m

′β
ij ∪ ai , ai ∈ C.

(6) endif
(7) endfor
(8) endfor
(9) execute CNF to DNF function
(10) return all Bi.// Bi(i � 1, 2, . . . , k) is one of the attribute reductions

ALGORITHM 2: ,e algorithm of the relative β-DR reduction.

Input: decision table (U, C∪D), given β ∈ (0.5, 1]

Output: reduction results of C

(1) mpij � ∅, Bi � ∅;
(2) for x in U do
(3) if β≤ |[x]C ∩Dk|/|[x]C|< 1 then
(4) ID(x) is modified;
(5) endif
(6) endfor
new decision table (U,C∪D′) is constructed //a
for in dox|PosC(D)|

for in U do x

(7) if xi ∈ PosC(D), (xi, xj) ∉ RD then
mpij � mpij ∪ ai , ai ∈ C.

(8) endif
(9) endfor
(10) endfor
(11) execute CNF to DNF function
(12) return all Bi.// Bi(i � 1, 2, . . . , k) is one of the attribute reductions

ALGORITHM 3: An optimization algorithm CRRPRR.

Scientific Programming 7



positive region reduction is that the precision must be
greater than 0.5. When the precision is greater than 0.5, this
not only improves the fault tolerance of the model but also
ensures its credibility l. If β � 0.5 is given (e.g., as in Table 1),
for [x1]C � x1, x2 , because Id(x1) � 0, Id(x2) � 1, the
decision values of any objects in x1, x2  cannot be modified
according to the conversion method in this paper. Another
case occurs when β � 0.8. In this case, none of the decision
values of any objects can be modified in Table 1, and the
above conversion method is not feasible. □

6. Experimental Analysis

In this section, we evaluate the performances of the proposed
algorithms through some comparison experiments. In our
experiments, twenty datasets from the UCI were used. All
the information is shown in Table 3, in which |U| is the
cardinality of U, and |C| and |U/D| are the numbers of
condition attributes and decision classes, respectively. Using
tenfold cross-validation, three classifiers (kernel NB, fine
Gaussian SVM, and a DT) were used to test the classification
accuracies of the results after reduction. Kernel NB is a
classifier that uses estimated kernel densities. ,e classifi-
cation accuracy of fine Gaussian SVM is higher than that of
SVM after the Gaussian kernel is introduced. DT is a

supervised learning model that learns decision rules. ,e
algorithms were implemented on a MacBook Pro (early
2015) with an Intel(R) Core(TM) i5 CPU at 2.7GHz and
Intel Iris Graphics 6100 GPU. ,e algorithms in this paper
were coded in Python 3.6.8 using scikit-learn 0.20.3.

Because of the requirements of Algorithm 3, the accu-
racy of the tables in this experiment must be greater than 0.5.
,e runtime results for different precisions (0.7, 0.8, and 0.9)
are shown in Figure 1. In this figure, the yellow line rep-
resents the average time for Algorithm 3 to run for each
precision. ,e experimental results show that Algorithm 1,
Algorithm 2, and Algorithm 3 obtain the same results, but
the runtime of the latter is less than that of the former.
Although the cost of converting CNF to DNF is high, the
advantage of the Algorithm 3 is obvious when the number of
objects is large and the number of attributes is relatively
small.

Because the proposed algorithms can obtain all the re-
sults, the mean classification accuracy is reported. For all
precision values, the classification accuracies obtained by
kernel NB, fine Gaussian SVM, and DT are shown in
Figures 2–4, respectively.

In Figure 2, in most cases, the classification accuracy of
the kernel NB classifier is low for the reduction results
obtained from a low precision value. For example, for the HS

Table 2: New decision table.

U C D′
a1 a2 a3

x1 1 1 1 0
x2 1 1 1 1
x3 0 1 0 1
x4 0 1 0 1
x5 0 1 0 1
x6 1 0 0 1
x7 0 1 1 2

Table 3: Brief description of the data sets.

ID Datasets Abbreviation |U| |C| |U/D|

1 Iris Iris 150 4 3
2 Statlog (Heart) Sta. 270 13 2
3 Wine Wine 178 13 3
4 SPECT heart S.H. 167 22 2
5 Zoo Zoo 101 16 7
6 Flags Flags 194 28 7
7 Acute inflammations A.I. 120 6 4
8 Computer hardware C.H. 209 9 9
9 Lenses Len. 24 4 3
10 Soybean Soy. 47 34 4
11 E.coli E.coli 336 7 8
12 Haberman’s survival H.S. 306 3 2
13 Balance scale B.S. 625 4 3
14 Servo Ser. 167 4 8
15 Teaching assistant evaluation T.A.E. 151 5 3
16 Cryotherapy Cr. 90 6 2
17 Ionosphere Io. 351 34 2
18 Tic-Tac-Toe T.T.T. 958 9 2
19 ,oracic surgery T.S. 470 16 2
20 Hayes-Roth H.R. 160 4 3
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dataset, given precision values of 0.7, 0.8, and 0.9, the ac-
curacy results are 81.25%, 85.66%, and 92.11%, respectively.

For all data sets except for Wine, SH, and TAE, a higher
precision value leads to a higher classification accuracy for
the fine Gaussian SVM classifier in Figure 3. However, the
classification accuracy is relatively low. In most cases, when
the precision is high, the reduction results lead to higher
classification accuracies for the DT classifier, but the clas-
sification accuracy is low. For example, on the HR dataset,
given precision values of 0.7, 0.8, and 0.9, the accuracy
results are 62.33%, 70.15%, and 76.01%, respectively.

,is experiment demonstrates the feasibility of the
concept proposed in this paper. When the precision is less
than 0.5, its reliability is not high. Moreover, the CRRPRR
optimization algorithm and the relative β–IR (β-DR) re-
duction algorithm could not be linked. ,erefore, the pre-
cision of the algorithmsmust be greater than 0.5. Figures 2–4
show that when the precision is larger, the classification
accuracy is higher when the results are obtained by the
proposed algorithms. On the contrary, it is lower when the
precision is lower.

7. Conclusions

,is study extends the work of [5, 22, 34, 41] to investigate
the relative β–IR (β-DR) for the first time using a dis-
cernibility matrix-based method. Under certain conditions,
precision β> 0.5, and the relationship between the relative β
–IR (β −DR) reduction and positive region reduction was
found by modifying some decision values, which is of a
certain significance to the study of VP RSs. ,e corre-
sponding optimization algorithm was then proposed. ,e
discernibility matrix corresponding to the relative β –IR (β
−DR) reduction has a high time complexity of O(|U|2 × |C|),
whereas the time complexity for constructing a positive
region reduction is much less. ,erefore, when the precision
β> 0.5, although the reduction results are the same, the
optimization CRRPRR algorithm reduces the computational
complexity. In addition, because the attribute importance
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Figure 2: Classification accuracy results of kernel NB.

0

30

20

10

50

40

60

70

80

90

100

Ir
is

St
a.

W
in

e
S.

H
.

Zo
o

Fl
ag

s
A

.I.
C.

H
.

Le
n.

So
y.

Ec
ol

i
H

.S
.

B.
S.

Se
r.

T.
A

.E
.

Cr
.

Io
.

T.
T.

T.
T.

S.
H

.R
.

A
CC

U
RA

CY
 (%

)

β=0.7
β=0.8
β=0.9

Figure 3: Classification accuracy results of fine Gaussian SVM.
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Figure 4: Classification accuracy results of DT.
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cannot be calculated in the relative β –IR (β −DR) reduction
to obtain the results, wemodified some of the decision values
that satisfy the condition so that the attribute importance
can also be calculated in the new decision table. ,e fea-
sibility of the algorithm proposed in this paper was dem-
onstrated by experimental analysis. In future, we will
attempt to remove the restriction of equivalence relation and
further study problems such as precision reduction and the
relative β –IR(β −DR) reduction.
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