
Indistinguishability Obfuscation from Functional Encryption

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Bitansky, Nir, and Vinod Vaikuntanathan. "Indistinguishability
Obfuscation from Functional Encryption." 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science (FOCS), 17-20
October 2015, Berkeley, CA, 2015, pp. 171–90.

As Published http://dx.doi.org/10.1109/FOCS.2015.20

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Original manuscript

Citable link http://hdl.handle.net/1721.1/113077

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/113077
http://creativecommons.org/licenses/by-nc-sa/4.0/

Indistinguishability Obfuscation from
Functional Encryption∗

Nir Bitansky† Vinod Vaikuntanathan‡

Abstract

Indistinguishability obfuscation (IO) is a tremendous notion, powerful enough to give
rise to almost any known cryptographic object. Prior candidate IO constructions were
based on specific assumptions on algebraic objects called multi-linear graded encodings.

We present a generic construction of indistinguishability obfuscation from public-key
functional encryption with succinct encryption circuits and subexponential security. This
shows the equivalence of indistinguishability obfuscation and public-key functional en-
cryption, a primitive that has so far seemed to be much weaker, lacking the power and the
staggering range of applications of indistinguishability obfuscation.

Our main construction can be based on functional encryption schemes that support a
single function key, and where the encryption circuit grows sub-linearly in the circuit-size
of the function. We further show that sublinear succinctness in circuit-size for single-key
schemes can be traded with sublinear succinctness in the number of keys (also known as the
collusion-size) for multi-key schemes. As a consequence, we obtain a new candidate IO con-
struction based on the functional encryption scheme of Garg, Gentry, Halevi and Zhandry
(TCC’16) under their assumptions on multi-linear graded encodings. We also show that,
under the Learning with Errors assumption, our techniques imply that any indistinguisha-
bility obfuscator can be converted into one where the size of obfuscated circuits is twice
that of the original circuit plus an additive overhead that is polynomial in its depth, input
length, and the security parameter.

Our reduction highlights the importance of succinctness in functional encryption schemes,
which we hope will serve as a pathway to new IO constructions based on solid crypto-
graphic foundations.

∗An extended abstract of this paper appears in the proceedings of FOCS 2015.
†MIT. E-mail:nirbitan@csail.mit.edu. Research supported in part by NSF Grants CNS-1350619 and

CNS-1414119, and by the NEC Corporation.
‡MIT. E-mail:vinodv@csail.mit.edu. Research supported in part by NSF Grants CNS-1350619 and CNS-

1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven and
Renee Finn Career Development Chair from MIT. This work was also sponsored in part by the Defense Advanced
Research Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and
FA8750-11-2-0225.

Contents

1 Introduction 1
1.1 This Work . 1
1.2 Main Ideas . 3
1.3 Concurrent Work . 6
1.4 Followup Work . 7

2 Definitions 8
2.1 Standard Computational Concepts . 8
2.2 Functional Encryption . 8
2.3 Indistinguishability Obfuscation . 10
2.4 Puncturable Pseudorandom Functions . 11
2.5 Symmetric Encryption . 11
2.6 Randomized Encodings . 12

3 The Transformation 12
3.1 Security Analysis . 14
3.2 Extended Efficiency Analysis . 18
3.3 IO with Linear Overhead . 21

4 IO from Collusion-Succinct Functional Encryption 21

5 On the Possibility of Using Symmetric-Key FE 23
5.1 Impossibility of Instantiation with Any Symmetric-Key Scheme 23
5.2 Puncturable Symmetric-Key FE is Sufficient . 29

1 Introduction

Program obfuscation, aiming to turn programs into “unintelligible” ones while preserving
functionality, has been a holy grail in cryptography for over a decade. While heuristic methods
of obfuscation are widely practiced, our theoretical understanding of obfuscation is still in
its early stages. Rather unfortunately, the most natural and intuitively appealing notion of
obfuscation, namely virtual-black-box (VBB) obfuscation [Had00, BGI+12], was shown to have
strong limitations [BGI+12, GK05, BCC+14]. Furthermore, except for very restricted function
classes, no candidate construction with any form of meaningful security was known for a long
time.

This changed dramatically with recent breakthrough results. First, Garg, Gentry, Halevi,
Raykova, Sahai and Waters [GGH+13c] demonstrated a candidate obfuscation algorithm for
all circuits, and conjectured that it satisfies an apparently weak notion of indistinguishability
obfuscation (IO) [BGI+12, GR07], requiring only that the obfuscations of any two circuits of the
same size and the same functionality (namely, the same truth table) are computationally indis-
tinguishable. Since then, a sequence of works, pioneered by Sahai and Waters [SW14], have
demonstrated that IO is not such a weak notion after all, leading to a plethora of applications
and even resolving long-standing open problems. The number of cryptographic primitives
that we do not know how to construct from IO is small and dwindling fast.1

The tremendous power of IO also begets its reliance on strong and untested computational
assumptions. Despite significant progress [PST14, GLSW15], known IO constructions prior
to this work [GGH+13c, PST14, BR14, BGK+14, GLSW15, AB15, Zim15] were based on the
hardness of little-studied problems on multi-linear maps [GGH13a]. Thus, an outstanding
foundational question in cryptography is:

Can we base indistinguishability obfuscation on solid cryptographic foundations?

1.1 This Work

In this work, aiming to make progress in the above direction, we show how to construct in-
distinguishability obfuscation from an apparently weaker primitive: public-key functional en-
cryption. In a functional encryption scheme [BCOP04, SW05, BSW12, O’N10], the owner of a
master secret key MSK can produce functional keys FSKf for functions f (represented as cir-
cuits throughout this paper). Given an encryption of an input x, computed using the master
public key PK and the functional key FSKf , anyone can compute f(x), but nothing more about
x itself.

In the past few years, functional encryption (FE) schemes with different efficiency and se-
curity features were constructed from various computational assumptions. A central measure
of interest (in general and in the specific context of this work) is the size of ciphertexts, or more
generally the encryption time. Here the ideal requirement is that the time to encrypt depends
only on the underlying plaintext x, but this requirement may be relaxed in several meaningful
ways, such as allowing dependence on the size of the circuits computing the corresponding
functions, just the size of their output, or the number of generated functional keys.

Functional encryption, on the face of it, seems much less powerful than IO and sure enough,
it has not had nearly as many applications. Seemingly, IO derives its power from the fact that it
allows anyone to compute meaningfully with a hidden object (say, a circuit) with no additional

1Strictly speaking, we need the assumption that IO exists, plus a very mild (and minimal) complexity-theoretic
assumption that NP 6= ioBPP [KMN+14].

1

help. In contrast, FE does allow us to encrypt circuits2 but to evaluate the circuit on an input,
one needs a secret key associated with the input! Not surprisingly, the power of FE seems to
be limited to achieving a notion of “obfuscation on a leash” or “token-based obfuscation”, as
defined by Goldwasser, Kalai, Popa, Vaikuntanthan and Zeldovich [GKP+12].

Perhaps surprisingly, we show:

Theorem 1.1 (informal). Assuming the existence of a sub-exponentially secure public-key functional
encryption scheme for all circuits, where encryption time is polynomial in the input-size and sub-linear
in the circuit-size, there exists indistinguishability obfuscation for all circuits.

Furthermore, in the above theorem, it suffices to start from a scheme that supports only a
single-key and satisfies a mild selective-security indistinguishability-based guarantee. We can
further relax the above to allow the encryption to also depend polynomially on circuit-depth
(or even exponentially, assuming pseudo-random functions in NC1).

We also show that the requirement for sub-linear dependence on circuit size can be traded,
when moving to multi-key functional encryption schemes, with sub-linear dependence on the
number of derived keys. We do this by showing a generic transformation from the latter to the
former (which we find to be of independent interest).

Theorem 1.2 (informal). Assuming the existence of multi-key functional encryption schemes for all
circuits, where encryption time is polynomial in the input-size and circuit-size, but sub-linear in the
number of released keys, there exist single-key functional encryption schemes with sub-linear depen-
dence on circuit-size.

As a corollary of this transformation, relying on the recent functional encryption scheme of
Garg et al. [GGHZ16], we obtain a new IO candidate constructions whose security is based on
the same assumptions on multi-linear graded encodings (in their subepxonential version).

Corollary 1.3 (informal). Under a sub-exponential variant of the assumptions in [GGHZ16] on multi-
linear graded encodings, there exists an IO construction.

Another corollary that follows as a simple case of our technique and of previous results on
FE with succinct keys [BGG+14] is that obfuscation size can always be reduced to linear in the
function’s circuit size plus some overhead in the circuit’s depth.

Corollary 1.4 (informal). Assuming sub-exponential hardness of the Learning with Errors problem
and IO, there exists IO such that an obfuscation of any circuit C is of size 2|C|+ poly(n, dep(C), λ).

Interpretation. Functional encryption schemes satisfying the succinctness properties required
in Theorem 1.2 are known based on indistinguishability obfuscation [GGH+13c] or the stronger
notion of differing-inputs obfuscation [BCP14]. Thus, our result establishes the equivalence of
functional encryption and IO, up to some sub-exponential security loss. The question of bas-
ing IO on more standard assumptions still stands, but is now reduced to improving the state
of the art in functional encryption.

It is rather tempting to be pessimistic and to interpret our result as a lower-bound show-
ing that improving functional encryption based on standard assumptions may be very hard,
or perhaps straight out impossible. Our take on the result is quite optimistic. We hope that
the construction would eventually lead to IO from more standard assumptions, or improved
assumptions on multilinear graded encodings.3 Indeed, in the past few years, we have seen

2Given FE for a sufficiently expressive class, we can switch the roles of circuits and inputs, going through a
universal circuit.

3Below, we mention subsequent work that has already partially fulfilled this hope.

2

a remarkable progress in constructions of functional encryption based on standard assump-
tions [SS10, GVW12, GVW13]. The state of the art scheme based on a standard assumption
is that of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+12] relying on the
sub-exponential learning with errors assumption. The construction achieves ciphertext size
that only grows polynomially with the circuit output size and depth; thus, for circuits with
say a single output bit, ciphertexts may indeed be sub-linear in circuit size, but this will not be
the case for circuits with long outputs. Interestingly, the latter construction achieves a strong
simulation-based security guarantee, under which sub-linear growth in the output size (let
alone circuit-size) is actually impossible [AGVW13, GKP+12]. Reducing the dependence on
the output (under an indistinguishability-based notion) has been a tantalizing problem. Now
this question becomes of central importance in the quest to achieve indistinguishability obfus-
cation.

Gorbunov, Vaikuntanathan and Wee [GVW15] showed how to construct predicate encryp-
tion schemes for all circuits (with a-priori bounded depth) from sub-exponential hardness of
the Learning with Errors problem (LWE). In their scheme, the ciphertext size is polynomial
in the input length and the depth of the circuit, and otherwise independent of the circuit size
and output size. A predicate encryption scheme can be interpreted as a functional encryption
scheme with a “weak attribute hiding” property (see [KSW13, AFV11, GVW15] for more de-
tails). Strengthening this to “full attribute hiding” will give us a functional encryption scheme
that satisfies the requirements of Theorem 1.2, and is yet another frontier in achieving indistin-
guishability obfuscation from LWE.

We next explain the main ideas standing behind our construction.

1.2 Main Ideas

Our starting point is a natural input extension approach: given an obfuscator On−1 for circuits
with input length n−1, design an obfuscatorOn for circuits with input length n. Intuitively, this
way we can get obfuscation for circuits with arbitrary polynomial input length — recursively
apply the input extension step polynomially many times. The base case is trivial — for circuits
C with a single input bit, simply define the obfuscation O1(C) to be the corresponding truth
table (C(0), C(1)).

A crucial feature of any such input extension procedure is the blowup it incurs in complex-
ity. Indeed, a trivial input extension procedure such as bit fixing:

On(C(x1, . . . , xn)) := On−1(C(x1, . . . , xn−1, 0) ◦ C(x1, . . . , xn−1, 1)) ,

blows up the obfuscation size, at each step, at least by a multiplicative factor of two, since the
circuit obfuscated by On−1 blows up at every step. Accordingly, such a procedure can only be
applied logarithmically-many times (indeed, it is equivalent to simply writing the truth table
of the circuit). To avoid such blowup, we must ensure that the total size of circuits obfuscated
in each recursive step does not outgrow the size of previous circuits (except perhaps by an
additive amount).

At high-level, this work is dedicated to developing such an input-extension procedure,
based on functional encryption.

From token-based obfuscation to efficient input-extension. The basic idea behind our input
extension procedure is founded on the concept of token-based obfuscation and its connection
to function-hiding functional encryption. A token-based obfuscation algorithm consists of an
obfuscation algorithm Tok.Obf(C) that given a circuitC produces an obfuscation C̃ and a secret
key SK. Unlike, the standard notion of obfuscation, which would allow evaluating C̃ on any

3

input x to learn C(x), here evaluation requires a token x̃ corresponding to x. The token x̃ can
be generated by an encoding algorithm Tok.Enc(SK, x) using the secret key SK (for simplicity
of exposition, we shall assume that Tok.Enc is deterministic). Security is guaranteed against
any adversary that does not posses the secret key and only gets the obfuscation C̃, as well as
an polynomial number of encoded inputs x̃ of its choice. For the notion to be non-trivial, the
complexity of Tok.Enc is required to only depend on the input x, and not on the circuit C.

Intuitively (and for now thinking about an obfuscation as an opaque black-box), token-
based obfuscation suggests a simple input-extension procedure:

On(C(x1, . . . , xn)) :=Tok.Obf(C(x1, . . . , xn))

On−1(Tok.Enc(SK, x1, . . . , xn−1, 0) ◦ Tok.Enc(SK, x1, . . . , xn−1, 1) ;

namely, to obfuscate a circuit C with n-bit inputs (x0, . . . , xn), obfuscate C using the token
based obfuscation, and then use the obfuscator On−1, to obfuscate a bit-fixing variant of the
token generator

Tok.Enc(SK, x1, . . . , xn−1, 0) ◦ Tok.Enc(SK, x1, . . . , xn−1, 1)

that given (x1, . . . , xn−1) generates the two encodings corresponding to to fixing xn to either 0
or 1.

Crucially, since the complexity of Tok.Enc(SK, x) only grows with the encoded input x ∈
{0, 1}n, the circuit recursively obfuscated by On−1 is now bounded, through all steps, by a
fixed polynomial poly(n) in the input length n. Accordingly, unwinding the recursion, the
complexity of On will now be bounded by poly(|C|) + n · poly(n).

From functional encryption to token-based obfuscation. As observed in [GKP+12, BKS16],
token-based obfuscation can be constructed from any private-key functional encryption scheme
that has a succinct encryption circuit. Concretely, they show that it is possible to harness the
existing message-hiding of functional encryption to also guarantee function hiding. Here a
functional key FSKC is guaranteed to hide the circuit C and can be viewed as a token-based
obfuscation of C. The encryption algorithm Enc(SK, ·), with the corresponding private encryp-
tion key SK, is then viewed as the token generator.

Combined with the token-based input extension procedure, this suggests a strategy for con-
structing obfuscation based on (private-key) functional encryption with a succinct encryption
circuit. Materializing this high-level strategy requires of course a more careful examination of
the security guaranteed at each and every step. Assuming all the involved primitives satisfy
an ideal (simulation-based) security guarantee, would indeed allow implementing this strategy
and eventually lead to an ideal obfuscation guarantee (known as virtual black-box security).
However, ideal security is known to be impossible for either (succinct) functional encryption
or obfuscation [AGVW13, BGI+12].

The hope is that starting with a weaker indistinguishability-based guarantee for functional
encryption would still allow to carry through the above strategy, leading to indistinguisha-
bility obfuscation. This turns out to encounter several difficulties, which eventually lead to
our requirement of public-key functional encryption (rather than private-key), as well as our
sub-exponential security requirement. We next overview these challenges and the way they
are dealt with.

Under the hood. A natural first attempt to achieve our goal is to mimic the ideal solution.
Namely, starting from a (private-key) function-hiding functional encryption scheme, to obfus-
cate any circuit C with input x1, . . . , xn, generate the functional key FSKC and add an obfus-
cation

iO(Enc(SK, x1, . . . , xn−1, 0) ◦ Enc(SK, x1, . . . , xn−1, 1))

4

of the corresponding (bit fixing) encryption circuit. While this clearly satisfies the required
functionality, it is not clear how to prove security based on IO. In fact, using ideas inspired by
impossibility results for obfuscation [BGI+12, GK05, BCC+14], we show that we cannot hope
to rely any private-key (function-hiding) scheme, since there exists such schemes where access
to an encryption circuit may lead to a devastating attack (see Section 5.1).

Our solution relies on public-key functional encryption. In the public-key setting, it is
not known how to generically obtain function-hiding like in the private-key setting; rather,
we shall enforce it explicitly in our construction using similar techniques to those used in the
private-key setting [BS15].

Concretely, to obfuscate C, our obfuscation will once again consist of a functional key
FSKC∗ , this time for an augmented circuit C∗, and an obfuscation iO(Enc∗) for an augmented
(bit fixing) encryption algorithm Enc∗. The circuit C∗ will consist of two (plain) symmetric-key
encryptions CT0,CT1, under two independently chosen symmetric keys SK0,SK1, where in
the real world both ciphertexts encrypt C. The circuit C∗ expects as input, not only an input
x for C, but also a key SKb. Given those, it decrypts the corresponding ciphertext CTb, and
applies the decrypted circuit to the input x. Accordingly, the encryption algorithm Enc∗, given
input x1, . . . , xn−1, will generate two (public-key) encryptions of ((x1, . . . , xn−1, 0),SKb) and
((x1, . . . , xn−1, 1),SKb), where in the real scheme b will always be set to say 0, and may take a
different value during our analysis.

Proving that the above construction is secure can be decoupled into two main ideas that go
back to previous works. The first comes from the work of Brakerski and Segev [BS15]. There,
the adversary, whose goal is to distinguish between a functional key corresponding to C0 to
one corresponding to a functionally-equivalentC1, does not ever obtain a circuit that computes
the above encryptions. Rather it only views the outputs of this circuit. Let us, in fact, think
about a simple case where the distinguisher only obtains a single pair of encryptions

Enc∗(x1, . . . , cn−1) := Enc(PK, ((x1, . . . , xn−1, 0), SK0)) ◦ Enc(PK, ((x1, . . . , xn−1, 1),SK0))

of some pre-selected input (x1, . . . , xn−1). In this setting, we can employ a straight forward
hybrid argument to show that the functional keys (FSKC∗0 ,FSKC∗1) corresponding to C0 and C1

are indistinguishable. Indeed, relying on the symmetric-key guarantee we can change CT1 to
encrypt C1, and then relying on the FE guarantee we change Enc∗ to encrypt SK1 instead of
SK0, indeed we know that C0(x) = C1(x). Then, we can symmetrically switch the other cipher
to encrypt C1 and switch the keys again.

The above argument would even hold had the functional encryption scheme been a symmetric-
key one. However, going back to reality, we have to deal with a setting where the adversary
does not get a single (or a polynomial) number of encryptions, but rather has the actual circuit
for generating any encryption. Can we still employ the previous argument? It turns out that,
at least if we use public-key functional encryption, the answer is yes.

Concretely, it would suffice to show that we can change the circuit Enc∗ to freely switch be-
tween encrypting SK0 to encrypting SK1 for all inputs simultaneously. Here comes into play an-
other idea that has been used in several recent works and formalized by Canetti, Lin, Tessaro,
and Vaikuntanathan [CLTV15] as probabilistic IO. They show that given two public samplers
C0(x; r), C1(x; r) such that for any input x C0(x) and C1(x) are computationally indistinguish-
able, the circuits can be derandomized using a puncturable PRF and obfuscated so that their
IO obfuscations are indistinguishable. In our setting, we simply apply this argument to the
circuits Cb(x) := Enc∗(x, SKb), and make sure to derandomize it with a puncturable PRF. One
restriction inherited from this argument is that it only works assuming that the underlying IO
and puncturable PRF are both sub-exponentially secure. Also, for the argument to hold, indis-
tinguishability is required even given the public circuits, which is the reason for our reliance

5

on public-key functional encryption.

Putting it all together. Unravelling the recursive input extension procedure implemented as
describe above, an obfuscation of C eventually consists of n functional keys FSK1, . . . ,FSKn as
well as a single initial pair of encryptions of 0 and 1. The evaluator gradually constructs an
encryption of its input x, where at step i it chooses the encryption of x1, . . . xi−1, xi between the
two encryptions of x1 . . . xi−10 and x1 . . . xi−11 produced by the previous function decryption
step. Then, the next key FSKi is used to obtain the next two encryptions. Eventually, having
constructed the encryption of x, the evaluator decrypts using FSKn and obtains the actual
function value C(x).

Crucially, for this recursion to be efficient and not result in an obfuscation of exponential
size, we must require that encrypting (corresponding to token generation) is simple enough.
Indeed, as long as it only depends on the underlying plaintext, throughout we will have the
invariant that the functions Enc∗ that we recursively obfuscate are always bounded by a fixed
polynomial in the total input size n and the security parameter, and accordingly so do the
functions C∗i for which keys are derived (except for the last one which depends on the size of
the functionC we started from). In the body, we show that we may in fact allow the complexity
of encryption to depend also on the circuit-size, as long as this dependence is only sub-linear
(and also polynomially on the depth, or even exponentially if we also assume PRFs in NC1).

In terms of security, the exponential loss due to the use of probabilistic IO accumulates
recursively: roughly, the indistinguishability gap δi for level i of the recursion is at most 2i·δi−1,
requiring that all underlying cryptographic primitives are roughly 2−Ω(n2)-secure.

Is Private-Key FE Enough? As mentioned above, we show that instantiating our transforma-
tion with an arbitrary private-key FE scheme may result in an insecure IO scheme.

Proposition 1.1 (informal). If there exists a succinct private-key functional encryption FE, then there
also exists a succinct private-key functional encryption FE∗, so that the transformation given by Theo-
rem 1.2 is insecure when instantiated with FE∗.

Complementing this negative result, we show that a notion of puncturable private-key FE
suffices for our transformation. However, at this point, we do not know how to achieve this
notion without relying on public-key schemes. (See Section 5 for more details). The real
power of obfuscation manifests itself in transforming private-key schemes into public-key
schemes [DH76], and for this reason, we believe that finding a (different) transformation from
private-key FE to IO is a central open question.

1.3 Concurrent Work

We mention several concurrent and independent works:

• Ananth and Jain [AJ15] also show how to construct indistinguishability obfuscation from
sub-exponentially secure public-key functional encryption. The two works take a some-
what different perspective to the problem. At high-level, Ananth and Jain show that any
(sub-exponentially secure) public key functional encryption scheme can be converted
into a multi-input functional encryption, a notion defined by Goldwasser et al. [GGG+14]
that is known to imply indistinguishability obfuscation. The core step of their construc-
tion is a transformation from n-input FE to (n + 1)-input FE, which is analogous to our
recursive step of basing (n + 1)-bit-input IO on n-bit-input IO. Our proof of security is
perhaps more simple and concise, which we attribute to the fact that in each recursive
step we fully exploit the expressive power of the IO guarantee, compared to the less ex-
pressive (multi-input) FE guarantee. In particular, we are able directly invoke previous
techniques developed for IO, such as the concept of probabilistic IO [CLTV15].

6

• Brakerski, Komargodski, and Segev [BKS16] show how to convert any (single-input)
private-key functional encryption scheme into an O(1)-input private-key scheme (or
doubly-logarithmic-input assuming sub-exponential security), which is not known to
be sufficient to go all the way to IO polynomially large inputs.

• Ananth, Jain, and Sahai [AJS15] show how IO can be bootstrapped to always have linear-
size overhead. By developing new techniques, they improve on the above Corollary 1.4
in two aspects. First, they avoid the LWE assumption. Second, they avoid the polynomial
dependence of the obfuscated circuit-size on the depth of the original circuit.

• Ananth, Jain, and Sahai [AJS15] also show how to transform any collusion-resistant FE
into a single-key FE scheme with succinct encryption circuits.

1.4 Followup Work

We mention several subsequent works that have relied on our result, or have extended it:

• Lin, Pass, Seth and Telang [LPST16b] show a different transformation from (public-key)
functional encryption to IO. While their transformation shares much of the structure of
our transformation, it has different features such as better (but still sub-exponential) se-
curity loss, and admits a very elegant description in the language of succinct random-
ized encodings [BGL+15, CHJV15, KLW15]. Their description of the transformation
from public-key FE to IO shares much of the same high-level structure as the classi-
cal Goldreich-Goldwasser-Micali transformation from a pseudorandom generator to a
pseudorandom function.

• Lin, Pass, Seth and Telang [LPST16a], in another work, introduce a relaxation of IO called
Exponential Indistinguishability Obfuscation (XIO) that only requires that the size of an
obfuscated circuit is sub-linear in the size of its truth table. Based on our result and
the learning with errors (LWE) assumption, they show that this relaxation suffices for
obtaining full-fledged IO.

• Lin [Lin16] shows how to construct IO from a concrete (but complex) assumption on
constant-degree graded encodings [GGH13b], LWE, and a low-depth polynomial-stretch
pseudorandom generator. Previously, all IO constructions from graded encodings re-
quired polynomial degree. The result relies on our transformation as an intermediate step.

• Lin and Vaikuntanathan [LV16], extending [Lin16], show how to construct IO using
constant-degree graded encodings and a low-depth polynomial-stretch pseudorandom
generator, but rather than rely on a complex assumption on the graded encodings, they
rely on a natural generalization of the symmetric external Diffie-Hellman (SXDH) as-
sumption. Their work constructs an FE scheme, and they use our result to generically
transform this into an IO scheme.

• Bitansky, Nishimaki, Passelegue and Wichs [BNPW16] show how to obtain IO from sub-
exponentially-secure private-key functional encryption and plain public-key encryption.
In fact, they show how these primitives together imply a public-key functional encryp-
tion scheme and then invoke our transformation. It is still not known whether IO can be
obtain from private-key functional encryption alone (without relying on any “public-key
object”).

7

• Garg, Pandey, Srinivasan and Zhandry [GPS16, GPSZ16] show how many of the appli-
cations of IO (such as the hardness of PPAD and multiparty key exchange) can be based
directly on polynomially-secure functional encryption instead. Their reduction invokes
a variant of our input-extension technique, but avoids the sub-exponential security loss.

• Li and Micciancio [LM16] and Garg and Srinivasan [GS16] independently show a con-
struction of a many-key (collusion-resistant) functional encryption starting from any
polynomially secure single-key functional encryption scheme with succinct encryption
circuits. Such a transformation follows from our results as IO implies a collusion-resistant
functional encryption scheme by the results of [GGH+13c], except that we lose a sub-
exponential security factor that comes from invoking our transformation. The results of
[LM16, GS16] avoid this loss. Together with our result that transforms a polynomially se-
cure collusion-resistant FE into a single-key FE scheme with succinct encryption circuits.
This shows that both variants of FE are in fact equivalent.

2 Definitions

We review basic concepts and present the basic definitions used throughout the paper.

2.1 Standard Computational Concepts

We rely on the standard notions of Turing machines and Boolean circuits.

• We say that a (uniform) Turing machine is PPT if it is probabilistic and runs in polynomial
time.

• A polynomial-size (or just polynomial-size) circuit family C is a sequence of circuits C =
{Cλ}λ∈N, such that each circuit Cλ is of polynomial size λO(1) and has λO(1) input and
output bits.

• We follow the standard habit of modeling any efficient adversary strategy as a family of
polynomial-size circuits. For an adversary A corresponding to a family of polynomial-
size circuits {Aλ}λ∈N, we often omit the subscript λ, when it is clear from the context.

• We say that a function f : N→ R is negligible if it decays faster than any polynomial.

• Two ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are said to be
computationally indistinguishable, denoted by X ≈c Y , if for all polynomial-size distin-
guishers D, there exists a negligible function ν such that for all λ,

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ ν(λ).

For a concrete function δ, we denote by X ≈δ Y the case that the above indistinguisha-
bility gap is bounded by δΩ(1).

2.2 Functional Encryption

We recall the definition of public-key functional encryption (FE) with selective indistinguishability-
based security [BSW12, O’N10].

A public-key functional encryption scheme FE, for a function class F (represented by boolean
circuits) and message space {0, 1}∗, consists of four PPT algorithms (FE.Setup, FE.Gen, FE.Enc,
FE.Dec) with the following syntax:

8

• FE.Setup(1λ): Takes as input a security parameter λ in unary and outputs a (master)
public key and a secret key (PK,MSK).

• FE.Gen(MSK, f): Takes as input a secret key MSK, a function f ∈ F and outputs a func-
tional key FSKf .

• FE.Enc(PK,m): Takes as input a public key PK, a message m ∈ {0, 1}∗ and outputs
an encryption of m. We shall sometimes address the randomness r used in encryption
explicitly, which we denote by FE.Enc(PK,m; r).

• FE.Dec(FSKf ,CT): Takes as input a functional key FSKf , a ciphertext CT and outputs m̂.

We next the define the required correctness and security properties.

Definition 2.1 (Selectively-secure public-key FE). A tuple of PPT algorithms FE = (FE.Setup,
FE.Gen, FE.Enc, FE.Dec) is a selectively-secure public-key functional encryption scheme, for function
class F , and message space {0, 1}∗, if it satisfies:

1. Correctness: for every λ, n ∈ N, message m ∈ {0, 1}n, and function f ∈ F , with domain
{0, 1}n,

Pr

f(m)← FE.Dec(FSKf ,CT)

∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1λ)
FSKf ← FE.Gen(MSK, f)
CT← FE.Enc(PK,m)

 = 1 .

2. Selective-security: for any polynomial-size adversaryA, there exists a negligible function µ(λ)
such that for any λ ∈ N, it holds that

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a game between
the challenger and the adversary A, is defined as follows:

(a) The adversary submits the challenge message-pair m0,m1 ∈ {0, 1}n to the challenger.

(b) The challenger executes FE.Setup(1λ) to obtain (PK,MSK). It then executes FE.Enc(PK,mb)
to obtain CT. The challenger sends (PK,CT) to the adversary.

(c) The adversary submits function queries to the challenger. For any submitted function query
f ∈ F defined over {0, 1}n, if f(m0) = f(m1), the challenger generates and sends FSKf ←
FE.Gen(MSK, f). In any other case, the challenger aborts.

(d) The output of the experiment is the output of A.

We further say that FE is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Single-key FE with succinct encryption. In this work, we consider a special case of a single
functional key for a function that is known in setup time, where we require that the encryption
is succinct in some sense. This will be sufficient in our application.

Such a scheme FE, for a function class F (represented by boolean circuits) and message space
{0, 1}∗, consists of three PPT algorithms (FE.Setup, FE.Enc, FE.Dec) with the following syntax:

• FE.Setup(1λ, f): takes as input a security parameter λ in unary and function f ∈ F and
outputs a public key PK and a functional key FSKf .

9

• FE.Enc(PK,m): takes as input a public key PK, a message m ∈ {0, 1}∗ and outputs an
encryption of m. We shall sometimes address the randomness r used in encryption ex-
plicitly, which we denote by FE.Enc(PK,m; r).

• FE.Dec(FSKf ,CT): takes as input a functional key FSKf , a ciphertext CT and outputs m̂.

We next the define the required correctness, security, and efficiency properties. While the first
two are a special case of Definition 2.1, they can be restated more simply.

Definition 2.2 (Single-key, selectively-secure, public-key FE with succinct encryption). A tuple
of PPT algorithms FE = (FE.Setup, FE.Enc, FE.Dec) is a single-key, selectively-secure, public-key
functional encryption scheme with succinct encryption, for function classF , and message space {0, 1}∗,
if it satisfies:

1. Correctness: for every λ, n ∈ N, message m ∈ {0, 1}n, and function f ∈ F , with domain
{0, 1}n,

Pr

[
f(m)← FE.Dec(FSKf ,CT)

∣∣∣∣ (PK,FSKf)← FE.Setup(1λ, f)
CT← FE.Enc(PK,m)

]
= 1 .

2. Selective security: for any polynomial-size adversary A, there exists a negligible function µ(λ)
such that for any λ, n ∈ N, any m0,m1 ∈ {0, 1}n, and function f ∈ F such that f(m0) =
f(m1),

|Pr [A(PK,FSKf ,FE.Enc(PK,m0)) = 1]− Pr [A(PK,FSKf ,FE.Enc(PK,m1)) = 1]| ≤ µ(λ) ,

where (PK,FSKf)← FE.Setup(1λ, f).

We further say that FE is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

3. Succinct encryption:

• Encryption is fully succinct if the size of the encryption circuit is bounded by poly(n, λ)
for a fixed polynomial poly, independent of the function f , chosen during the setup phase.

• Encryption is weakly succinct with ∆(d)-dependence on the depth if the size of the encryp-
tion circuit is bounded by s1−ε · poly(n, λ,∆(d)) where n, s, d, are the input-size, circuit-
size, and depth of the function f chosen during the setup phase, poly is a fixed polynomial,
and ε < 1 is a constant, both independent of f .

Remark 2.3 (Succinctness for general schemes). In the above definition of single-key FE, we
define the succinctness of the scheme in terms of the concrete function that the setup algorithm
gets as input. In more general functional encryption schemes, where the setup algorithm does
not get in advance the function, it would get instead a bound on the parameters n, s, d, and
succinctness is defined with respect to these bounds. (The constant ε, and polynomial poly,
quantifying the compression are fixed and independent of the specific bounds.)

2.3 Indistinguishability Obfuscation

We define indistinguishability obfuscation (IO) with respect to a give class of circuits. The
definition is formulated as in [BGI+12].

Definition 2.4 (Indistinguishability obfuscation). A PPT algorithm iO is said to be an indistin-
guishability obfuscator for a class of circuits C, if it satisfies:

10

1. Functionality: for any C ∈ C and security parameter λ,

Pr
iO

[
∀x : iO(C, 1λ)(x) = C(x)

]
= 1 .

2. Indistinguishability: for any polynomial-size distinguisherD there exists a negligible function
µ(·), such that for any two circuits C0, C1 ∈ C that compute the same function and are of the
same size: ∣∣∣Pr[D(iO(C0, 1

λ)) = 1]− Pr[D(iO(C1, 1
λ)) = 1]

∣∣∣ ≤ µ(λ) ,

where the probability is over the coins of D and iO.

We further say that iO is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.4 Puncturable Pseudorandom Functions

We consider a simple case of the puncturable pseudo-random functions (PRFs) where any PRF
may be punctured at a single point. The definition is formulated as in [SW14], and is satisfied
by the GGM [GGM86] PRF [BW13, KPTZ13, BGI14].

Definition 2.5 (Puncturable PRFs). Let n, k be polynomially bounded length functions. An efficiently
computable family of functions

PRF =
{
PRFK : {0, 1}∗ → {0, 1}λ

∣∣∣ K ∈ {0, 1}k(λ), λ ∈ N
}

,

associated with an efficient (probabilistic) key sampler GenPRF , is a puncturable PRF if there exists a
polynomial-time puncturing algorithm Punc that takes as input a key K, and a point x∗, and outputs a
punctured key K{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}∗,

Pr
K←GenPRF (1λ)

[
∀x 6= x∗ : PRFK(x) = PRFK{x∗}(x)

∣∣ K{x∗} = Punc(K, x∗)
]

= 1 .

2. Indistinguishability at punctured points: for any polynomial-size distinguisher D there ex-
ists a negligible function µ(·), such that for all λ ∈ N, and any x∗ ∈ {0, 1}∗,

|Pr[D(x∗,K{x∗},PRFK(x∗)) = 1]− Pr[D(x∗,K{x∗}, u) = 1]| ≤ µ(λ) ,

where K← GenPRF (1λ),K{x∗} = Punc(K, x∗), and u← {0, 1}λ.

We further say thatPRF is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.5 Symmetric Encryption

A symmetric encryption scheme Sym consists of a tuple of two PPT algorithms (Sym.Enc,
Sym.Dec). The encryption algorithm takes as input a symmetric key SK ∈ {0, 1}λ, where λ
is the security parameter and a message m ∈ {0, 1}∗ of polynomial size in the security param-
eter, and outputs is a ciphertext CT. The decryption algorithm takes as input (SK,CT), and
outputs the decrypted message m. For this work we only require one-time security.

11

Definition 2.6 (One-Time Symmetric Encryption). A pair of PPT algorithms (Sym.Enc,Sym.Dec)
is a one-time symmetric encryption scheme for message space {0, 1}∗ if it satisfies:

1. Correctness: For every security parameter λ and message m ∈ {0, 1}∗,

Pr

[
Sym.Dec(SK,CT) = m

∣∣∣∣ SK← {0, 1}λ
CT← Sym.Enc(SK,m)

]
= 1 .

2. Indistinguishability: for any polynomial-size distinguisherD there exists a negligible function
µ(·), such that for all λ ∈ N, and any equal size messages m0,m1,

|Pr[D(Sym.Enc(SK,m0)) = 1]− Pr[D(Sym.Enc(SK,m1)) = 1]| ≤ µ(λ) ,

where SK← {0, 1}λ.

We further say that Sym is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.6 Randomized Encodings

We rely on the notion of randomized encodings from [IK00, AIK06]. Let c ≥ 1 be an integer
constant. A (c-local, decomposable) randomized encoding for a function f : {0, 1}n → {0, 1}m
is a function f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ with the following properties. Let sf̂ (resp. sf)

denote the size of the circuit computing f̂ (resp. f).

• f̂(x; r) = (f̂1(x; r), f̂2(x; r), . . . , f̂µ(x; r)) where each f̂i depends on at most a single bit of
x and c bits of r. We will write

f̂(x; r) = (f̂1(x; rS1), f̂2(x; rS2), . . . , f̂µ(x; rSµ))

where Si denotes the subset of bits of r that f̂i depends on.

• µ and ρ are of size sf · poly(n, λ).

• There is a polynomial time decoder algorithm that, given f̂(x; r), outputs f(x).

• There is a PPT simulator RE.Sim that takes as input (1λ, f(x)) and outputs SimOutf(x)

such that no polynomial-size adversary can distinguish between the distributions {f̂(x; r)}x∈{0,1}∗
and the distribution {SimOutf(x)}x∈{0,1}∗ .

Such randomized encodings can be constructed from one-way functions [Yao86]. Further-
more, each f̂i can be computed by a shallow circuit whose depth is determined by the depth
in which a linear stretch PRG can be computed (over strings of length λ) [AIK06].

3 The Transformation

In this section, we describe the transformation and analyze it.

Ingredients. We rely on the following primitives:

• A 2−λ̃
ε
-secure single-key, selectively-secure, public-key functional encryption scheme FE

for all circuits, with (fully or weakly) succinct encryption.

• A 2−λ̃
ε
-secure one-time symmetric encryption scheme Sym,

12

• A 2−λ̃
ε
-secure puncturable pseudo-random function family PRF .

where λ̃ is the security parameter and ε < 1.

The obfuscator iO. Given a circuit C : {0, 1}n → {0, 1} and security parameter λ, the ob-
fuscator iO(C, 1λ), computes a new security parameter λ̃ = ω((n2 + log λ)1/ε), and invokes a
recursive obfuscation procedure rO.Obf(n,C, 1λ̃). In general, the recursive obfuscation proce-
dure rO.Obf(i, Ci, 1λ̃) extends obfuscation for circuits with i− 1 bits to obfuscation for circuits
with i bits. To this end, it generates an obfuscation of an encryption circuit Ei that takes a
prefix xi−1 ∈ {0, 1}i−1 and generates two encyptions of each possible continuation x0 or x1.
The procedure is given in Figure 1. A corresponding recursive evaluation procedure rO.Eval
is described right after.

rO.Obf(i, Ci, 1λ̃)

Input: An input length i ∈ N, a circuit Ci : {0, 1}i → {0, 1}∗, and security parameter λ̃.

1. If i = 1, output (Ci(0), Ci(1)).

2. Otherwise, generate:

• Symmetric encryption keys (SK0
i ,SK

1
i)← {0, 1}λ̃ × {0, 1}λ̃.

• Symmetric encryptions (CT0
i ,CT

1
i)← Sym.Enc(SK0

i , Ci)× Sym.Enc(SK1
i , Ci).

• A circuit fi defined for (xi,SK, β) ∈ {0, 1}i × {0, 1}λ̃ × {0, 1} by

fi(xi,SK, β) = U(Sym.Dec(SK,CTβi),xi) ,

where U(·, ·) is the universal circuit.

• Public key and functional key (PKi,FSKi)← FE.Setup(1λ̃, fi).

• Seed Ki ← GenPRF (1λ̃) for a puncturable pseudo random function.

• A circuit E0
i−1 defined for any xi−1 ∈ {0, 1}i−1 by

E0
i−1(xi−1) =

{
FE.Enc(PKi, ((xi−1, xi),SK

0
i , 0);PRFKi(xi−1, xi))

}
xi∈{0,1}

,

padded to some size `(λ̃) for some polynomial `(·) determined in the analysis.

• An obfuscation
Ẽi−1 = rO.Obf(i− 1,E0

i−1, 1
λ̃) .

3. Output Ẽi := (Ẽi−1,FSKi).

Figure 1: The recursive obfuscation procedure.

Theorem 3.1. iO is an indistinguishability obfuscator for al circuits.

Functionality. The evaluation of the obfuscated iO(C, 1λ) = Ẽn on input x ∈ {0, 1}n is done
by invoking the recursive evaluation procedure rO.Eval(n, Ẽn,x). This procedure gradually
constructs an encryption FCTn of x. At step i, given encryptions (FCT0

i ,FCT
1
i) of (xi−1, 0) and

(xi−1, 1) it chooses FCTxii and decrypts with FSKi to compute (FCT0
i+1,FCT

1
i+1) or C(xn) in the

very last step. The procedure is given in Figure 2.
Functionality follows readily by the correctness of the functional encryption scheme FE

and the symmetric encryption scheme Sym. Indeed, each FCTxii is an encryption of xi, the ith

13

rO.Eval(i, Ẽi,xi)

Input: An input length i ∈ N, an obfuscation Ẽi = (Ẽi−1,FSKi), and prefix xi ∈ {0, 1}i.

1. If i = 1, parse Ẽ1 = (FCT0
1,FCT

1
1), and output FCTx1

1 .

2. Otherwise, compute (FCT0
i ,FCT

1
i) = rO.Eval(Ẽi−1,xi−1), where xi−1 are the first i − 1 bits

of xi.

3. Output FE.Dec(FSKi,FCTxi
i).

Figure 2: The recursive evaluation procedure.

prefix of x; in particular, FCTxnn encrypts x = xn. Thus, the last decryption operation results in
C(x).

Efficiency. For simplicity, let us first assume that the encryption is fully succinct. In Section 3.2,
we extend the analysis to the case of sub-linear dependence on the circuit size and even expo-
nential dependence on circuit-depth.

Note that the running time of each invocation of rO.Obf(i, Ci, 1λ̃) is bounded by some
polynomial poly(|Ci|, |E0

i−1|, λ, n) plus the running time of the recursive call to rO.Obf(i −
1, · · ·) (and poly is fixed independently of i). Second, note that the obfuscated circuit Ci is C
when i = n, and E0

i for any i ∈ [n − 1]. It is left to see that the maximal size of any circuit E0
i ,

maxi |E0
i | is bounded by some fixed polynomial poly(n, λ). Indeed, each such circuit computes

two encryptions of i+ λ+ 1 bits and a pseudo-random function to derive randomness for this
operation. Here we invoke the assumption that the size of the encryption circuit only depends
on the size of the plaintext and the security parameter (and not on the circuit-size of functions).
Thus, overall the time to obfuscate (and size of the resuting obfuscation) is bounded by a fixed
polynomial poly(|C|, λ) as required.

3.1 Security Analysis

Let s(·), n(·) be any two polynomially-bounded functions andD = {Dλ}λ∈N be any polynomial-
size distinguisher that works on obfuscations iO(C, 1λ) for any circuit C of size s(λ), defined
on {0, 1}n(λ).
Our goal is to show that for all λ ∈ N,

δiO(λ) := max
C0,C1

∣∣∣Pr
[
D(iO(C0, 1

λ)) = 1
]
− Pr

[
D(iO(C1, 1

λ)) = 1
] ∣∣∣ =

max
C0,C1

∣∣∣Pr
[
D(rO.Obf(n,C0, 1

λ̃)) = 1
]
− Pr

[
D(rO.Obf(n,C1, 1

λ̃)) = 1
] ∣∣∣ ≤ 2−ω(log λ) ,

where C0 and C1 are any two circuits defined on {0, 1}n(λ) of the same functionality and size
s(λ).
For every every λ ∈ N, define δn(λ) := δiO(λ) and for 1 ≤ i < n(λ), define

δi := max
C0,C1,z

∣∣∣Pr
[
D(rO.Obf(i, C0, 1

λ̃), z) = 1
]
− Pr

[
D(rO.Obf(i, C1, 1

λ̃), z) = 1
]∣∣∣ ,

where C0 and C1 are any two circuits defined on {0, 1}i of the same functionality and size `(λ̃).

Proposition 3.1. δ1 = 0 and for any i ∈ {2, . . . , n(λ)}, δi ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)).

14

Before proving the proposition, note that it concludes the security analysis since it implies

δiO(λ) = δn ≤

2n−1 ·O(δn−1 + 2−Ω(λ̃ε)) ≤

2n−1 ·O(2−Ω(λ̃ε)) + 2n−1 · 2n−2 ·O(δn−2 + 2−Ω(λ̃ε)) ≤
... n∑

i=1

i∏
j=1

2n−j

 ·O(2−Ω(λ̃ε)) ≤

O(n · 2n2/2) ·O(2−Ω(λ̃ε)) ≤

O(n · 2n2/2) ·O(2−ω(n2+log λ)) =

2−ω(log λ) .

Proof of Proposition 3.1. First, to see that δ1 = 0, note that for any C defined on {0, 1},

rO.Obf(1, C, 1λ̃) = (C(0), C(1))

by definition, and thus for any two C0, C1 with the same functionality

rO.Obf(1, C0, 1
λ̃) ≡ rO.Obf(1, C1, 1

λ̃) .

We now prove the main part of the proposition. Fix i ∈ {2, . . . , n(λ)}, and let C0, C1 be any
two circuits defined on {0, 1}i of eqaul size `(λ̃) and fix any auxiliary z. Our goal is to show
that∣∣∣Pr
[
D(rO.Obf(i, C0, 1

λ̃), z) = 1
]
− Pr

[
D(rO.Obf(i, C1, 1

λ̃), z) = 1
]∣∣∣ ≤ 2i−1 ·O(δi−1+2−Ω(λ̃ε)) .

Recall that
rO.Obf(i, Cb, 1λ̃) =

(
Ẽi−1,FSKi

)
,

where Ẽi−1 = rO.Obf(i−1,E0
i−1, 1

λ̃) and E0
i−1 is a circuit that has (PKi, SK

0
i ,Ki) hardwired, and

which, on input xi−1 ∈ {0, 1}i−1, computes two encryptions{
FE.Enc(PKi, ((xi−1, xi),SK

0
i , 0);PRFKi(xi−1, xi))

}
xi∈{0,1}

,

and FSKi is a functional decryption that has two hardwired syemmetric encryptions CT0
i and

CT1
i both of the circuit Cb; FSKi corresponds to the function that decrypts according to the key

specified in the plaintext.
For every three bits β, γ0, γ1 ∈ {0, 1}, we consider a hybrid experimentHγ0,γ1β where

• Ẽi−1 is an obfuscation of Eβi−1 that encrypts (SKβi , β), rather than always encrypting
(SK0

i , 0). (The circuit is independent of SK1−β
i .)

• CT0
i encrypts Cγ0 and CT1

i encrypts Cγ1 . (It may be that γ0 6= γ1.)

15

Note thatH0,0
0 andH1,1

0 exactly correspond to obfuscating either C0 or C1. We show that∣∣∣Pr
[
D(H0,0

0) = 1
]
− Pr

[
D(H0,1

0) = 1
]∣∣∣ ≤ 2−Ω(λ̃ε) ,∣∣∣Pr

[
D(H0,1

0) = 1
]
− Pr

[
D(H0,1

1) = 1
]∣∣∣ ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) ,∣∣∣Pr

[
D(H0,1

1) = 1
]
− Pr

[
D(H1,1

1) = 1
]∣∣∣ ≤ 2−Ω(λ̃ε) ,∣∣∣Pr

[
D(H1,1

1) = 1
]
− Pr

[
D(H1,1

0) = 1
]∣∣∣ ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) .

In the first and third inequalities, we simply change the symmetrically encrypted plaintext in
some CTbi where only the key SK1−b

i is present. Thus the inequalities follow from the (one-time)
symmetric encryption guarantee.

We now show that the second and fourth equations hold; concretely, we focus on the sec-
ond equation, and the forth is proven using a similar argument. Recall again that the difference
betweenH0,1

0 andH0,1
1 is in the obfuscated Ẽi−1. In the first, the circuit E0

i−1, which always puts
SK0

i in the plaintext, is obfuscated, and in the second E1
i−1, which always puts SK1

i in the plain-
text, is obfuscated. The key to the indistinguishability behind the hybrids is that the output of
the two circuits on any point xi−1 ∈ {0, 1}i−1 is indistinguishable even given the two circuits
themselves as long as the randomness used to generate the output is not revealed. Indeed,
because the circuits encrypted in CT0

i ,CT
1
0 compute the same function, FSKi does not allow

distinguishing between the two cases and we can invoke the FE guarantee. Canetti, Lin, Tes-
saro, and Vaikuntanathan [CLTV15] show that subexponential IO in conjunction with subex-
ponential puncuturable PRFs are sufficient in this setting, which they formalize by probabilistic
IO notion. For the sake of completeness, we next give the full argument.

We consider a sequence of 2i−1 + 1 hybrids {Hx}x∈{0,...,2i−1}, where we naturally identify
integers in [2i−1] with strings in {0, 1}i−1. In Hx, both CT0

i and CT1
i encrypt the same circuit

Ex(x′) that computes E0
i−1(x′) for all x′ > x and E1

i−1(x′) for all x′ ≤ x; the circuit Ex is padded
to size `(λ̃).

We first note that E0 computes the same function as E0
i−1 and that E2i−1 computes the same

function as E1
i−1, and thus∣∣∣Pr

[
D(H0,1

0) = 1
]
− Pr [D(H0) = 1]

∣∣∣ ≤ δi−1 ,∣∣∣Pr [D(H2i−1) = 1]− Pr
[
D(H0,1

0) = 1
]∣∣∣ ≤ δi−1 .

We now show that for any x ∈ [2i−1],

|Pr [D(Hx−1) = 1]− Pr [D(Hx) = 1]| ≤ O(δi−1 + 2−Ω(λ̃ε)) .

Note that the difference betweenHx−1 andHx is in the circuits encrypted in CT0
i ,CT

1
i : Ex−1

in Hx−1 and Ex in Hx. Further note that these two circuits only differ on x: the first returns
E0
i−1(x) whereas the second returns E1

i−1(x). We consider the following sub-hybrids:

• G1: instead of Ex−1, CT0
i ,CT

1
i both encrypt E′x−1 that has

Ex−1(x) = E0
i−1(x) =

{
FE.Enc(PKi, ((x, xi),SK

0
i , 0);PRFKi(x, xi))

∣∣ xi ∈ {0, 1}}
hardwired as well as a punctured key Ki {(x, xi)} used to generate all other encryptions.
The circuit is padded to size `(λ̃).

16

Since Ex−1 and E′x−1 compute the same function:

|Pr [D(Hx−1) = 1]− Pr [D(G1) = 1]| ≤ δi−1 .

• G2: Here we replace the hardwired{
FE.Enc(PKi, ((x, xi),SK

0
i , 0);PRFKi(x, xi))

∣∣ xi ∈ {0, 1}}
so that instead of using the pseudo-randomness PRFKi(x, xi), true randomness r is used{

FE.Enc(PKi, ((x, xi), SK
0
i , 0); r)

∣∣ xi ∈ {0, 1}} .

By pseudo-randomness at punctured points

|Pr [D(G1) = 1]− Pr [D(G2) = 1]| ≤ 2−Ω(λ̃ε) .

• G3: Here we replace the hardwired{
FE.Enc(PKi, ((x, xi),SK

0
i , 0); r)

∣∣ xi ∈ {0, 1}}
to encrypt (SK1

i , 1) instead of (SK0
i , 0):{

FE.Enc(PKi, ((x, xi), SK
1
i , 1); r)

∣∣ xi ∈ {0, 1}} .

Since, CT0
i and CT1

i encrypt circuits C0 and C1, respectively, with the exact same func-
tionality, we can apply the FE guarantee to deduce

|Pr [D(G2) = 1]− Pr [D(G3) = 1]| ≤ 2−Ω(λ̃ε) .

• G2′ : reverses G2, we replace the hardwired{
FE.Enc(PKi, ((x, xi),SK

1
i , 1); r)

∣∣ xi ∈ {0, 1}}
with {

FE.Enc(PKi, ((x, xi), SK
1
i , 1);PRFKi(x, xi))

∣∣ xi ∈ {0, 1}} .

By pseudo-randomness at punctured points

|Pr [D(G3) = 1]− Pr [D(G2′) = 1]| ≤ 2−Ω(λ̃ε) .

• Denote by E′x the circuit E′x−1 after the above changes to the hardwired encryption. Note
that E′x and E2i−1 compute the same function, we deduce

|Pr [D(G2′) = 1]− Pr [D(Hx) = 1]| ≤ 2−Ω(λ̃ε) .

Overall,

|Pr [D(Hx−1) = 1]− Pr [D(Hx) = 1]| ≤ O(δi−1 + 2−Ω(λ̃ε)) ,

as required, which completes the proof of the proposition.
Remark 3.2. Formally, we have defined PRF puncturing at a single point, where as in the above
argument we need to puncture in (x, xi) for both xi ∈ {0, 1}. One can naturally define punc-
turing at two points, or simply go through the above hybrids separately for each xi ∈ {0, 1}.

The padding parameter: `(λ̃) is chosen to account for the maximal-size circuit considered in
any of the above hybrids.

17

3.2 Extended Efficiency Analysis

So far, we have analyzed the efficiency of our obfuscator, assuming that the functional encryp-
tion scheme is fully succinct, namely, the running time of the encryption algorithm is bounded
by some fixed polynomial poly(n, λ̃) in the total input size n and the security parameter λ̃, inde-
pendently of circuit-size, circuit-depth, or output-size of functions (here λ̃ = ω((n2 +log λ)1/ε),
for the security parameter λ). In this section, we show how the efficiency of our transformation
can still be maintained assuming weak succinctness where there is some dependence on these
parameters.

Theorem 3.3. Assuming the existence of a subexponentially secure public-key functional encryption
scheme for all circuits that is weakly succinct with poly(d)-dependence on depth, there exists indistin-
guishability obfuscation for all circuits. If there exist pseudo-random functions in NC1, then this also
holds with poly(2d)-dependence.

Proof. We first show that efficiency is still guaranteed if the size of the encryption circuit (and
ciphertext size) can grow sub-linearly with the circuit size of functions. Namely, encryption
size is at most

s1−ε · poly(n, λ̃) ,

where n, s are the input-size and circuit-size of the function f chosen in the setup phase, ε < 1
is some constant, and poly is a fixed polynomial, both independent of the function f . For
simplicity of exposition, we will first show that this holds for some ε related to the underlying
cryptographic primitives. We will then observe that it can be made to hold for any ε < 1.

First, we note that the size of each circuit fi for which a functional key FSKi is derived is
bounded by

|fi| ≤ |E0
i |c · poly(λ̃) ,

where poly is some fixed polynomial and c is some constant that depends on the efficiency of
symmetric decryption, and application of the universal circuit.

Recall that E0
i first derives pseudo-randomness using a puncturable PRF, and then encrypts

with respect to PKi+1 a plaintext of size at most n+ λ̃. By our assumption on the succinctness
of the scheme, the size of the encryption circuit is bounded by |fi+1|1−ε · poly(n, λ̃), which also
dominates the size of deriving randomness using a PRF (up to fixed poly(n, λ̃) factors).

Using the above bound on each fi, we can now bound the size of each circuit E0
i as follows

|E0
i | ≤ |fi+1|1−ε · poly(n, λ̃) ≤ |E0

i+1|c(1−ε) · poly(n, λ̃) .

Also,
|E0
n−1| ≤ |C|1−ε · poly(n, λ̃) ,

where C is the obfuscated circuit.
It follows that,

|E0
i | ≤ |C|1−ε · poly(n, λ̃) ·

n−i−1∏
j=0

(
poly(n, λ̃)

)(c(1−ε))j
.

Now, provided that c(1− ε) < 1, for any k, p ∈ N,

k∏
j=0

p(c(1−ε))j = p
∑k
j=0(c(1−ε))j ≤ p

1
1−c(1−ε) .

18

We conclude that

max
i
|E0
i | ≤ |C|1−ε ·

(
poly(n, λ̃)

) 1
1−c(1−ε)+1

.

Efficiency now follows, for any ε < 1 − 1
c , as in the case of total independence of the circuit

size.

Efficiency for any ε < 1. Looking more closely at the complexity of fi we observe that we can
assure that c = 1 + o(1). Indeed, c accounts for symmetric decryption and the application of a
universal circuit. First, recall that the overhead of universal circuits is known to be quasi-linear
[Val76]. Second, note that symmetric-decryption can be done in time linear in the plaintext and
polynomial in the security parameter using pseudo-random generators that are linear in their
output size and polynomial in the security parameter (which in turn can be constructed from
any PRF).

To deal with the case that the circuit-size of encryption is also ∆(d)-dependent on the depth of
the circuit, we rely on the following bootstrapping theorem, which gives a direct reduction to
the case that this dependence does not exist.

Proposition 3.2 (follows from [ABSV15]). For every ε < 1, polynomial poly, and function ∆:

• If there is a single-key FE scheme that for circuits of input-size n, circuit-size s, and depth d, has
an encryption circuit of size

s1−ε · poly(n, λ,∆(d)) ,

• If there is a single-key FE scheme that for circuits of input-size n, circuit-size s, and depth d, has
an encryption circuit of size

s1−ε · poly(n, λ,∆(depprg(λ, t))) ,

where depprg(λ, t) is the depth of a pseudo-random generator expanding λ bits to t bits, t =
s · poly(n, λ), and poly is some fixed polynomial.

In [ABSV15] a different version of this theorem is proven for the multi-key setting, which in
particular, relies on the ability to compute pseudo-random functions in low depth, and not just
pseudo-random generators. For completeness, we sketch the proof of Proposition 3.2 below.

Before that, let us show how it concludes the proof of Theorem 3.3. Indeed, a pseudo-
random generator stretching λ̃ to t = t(n, s, λ̃) bits can always be computed in depth log(t) ·
poly(λ), by applying (say the GGM) PRF for each output bit. Since t ≤ s · poly(n, λ̃), this
depth is bounded by poly(n, λ̃) for some fixed poly. This gives the required succinctness in
the case of poly(d)-dependence. Furthermore, given PRFs in NC1, the depth of computing the
pseudo-random generator reduces to log log t, in which case poly(2d) = o(λ).

Proof of Proposition 3.2. Let FE = (FE.Setup,FE.Enc,FE.Dec) be a single-key scheme with depth
dependence as described in the proposition. Let (Sym.Enc, Sym.Dec) be a one time symmetric-
key encryption scheme (Definition 2.6), where for plaintexts of size t, ciphertexts are also of
size t, and decryption is done by a circuit of depth ddec = depprg(λ, t) and size sdec = O(t · ddec).
(Such a one-time encryption scheme can be constructed by simply applying the the generator
PRG, using the one-time key as the seed.)

We construct a new scheme FE? = (FE.Setup?,FE.Enc?,FE.Dec?) that works as follows.

• FE.Setup?(1λ, f) runs FE.Setup(1λ, f?) to generate a key pair (PK,FSKf?), where f? is
generated as follows:

19

1. sample a symmetric one-time encryption CT← Sym.Enc(SK, 0t), where t is defined
below.

2. construct the circuit f? which, on input a tuple (b, x, s, SK) ∈ {0, 1} × {0, 1}n ×
{0, 1}λ × {0, 1}λ work as follows:

– If b = 0, output e← f̂(x; r), where r = PRG(s). We let t = |f̂(x; r)|.
– If b = 1, output e← Sym.Dec(SK,CT).

• FE.Enc?(PK, x) chooses a seed key s← {0, 1}λ, and outputs FCT← FE.Enc(PK; (0, x, s,⊥)).

• FE.Dec?(FSKf ,FCT) computes e← FE.Dec(FSKf? ,FCT) and runs the decoder of the ran-
domized encoding on input e to get f(x).

Correctness follows directly from that of the functional encryption scheme FE and the ran-
domized encoding scheme. We now analyze the efficiency and security of the scheme.

Efficiency. During the encryption of an input x, the encryption algorithm of FE? is invoked on
an input of size O(n + λ). The circuit-size sf? of f? is bounded by the time required to derive
randomness and compute the randomized encoding of f , as well as decryption time:

sf? ≤ t · depprg(λ, t) + s · poly(n, λ) + t · depprg(λ, t) ,

where in our case t ≤ s · poly(n, λ) is bounded by the size of the randomized encoding time.
Accordingly, and since the depth required to compute a randomized encoding is dominated
by the depth of computing a linear stretch pseudo-random generator, the depth df? of f? is
bounded by

df? ≤ O(depprg(λ, t)) .

By the succinctness of FE, and restricting attention to the case that df? ≤ poly(n, λ), the size of
the encryption circuit in FE? is

s1−ε
f? · poly(n, λ,∆(df?)) = s1−ε · poly(n, λ,∆(depprg(λ, s · poly(n, λ)))) .

Security. We now sketch the proof of security, which proceeds by a sequence of hybrids. Given

that we are in the public-kye setting, it is sufficient to consider the case when the adversary
submits a single challenge pair (x0, x1).

H0: This corresponds to the real experiment where the challenger sends an encryption of x0 to
the adversary.

H1: The challenger replaces CT with a symmetric encryption of the bits of f̂(x0; r) in the func-
tional key for f , where r = PRG(s) is the randomness for the encoding. H1 is computationally
indistinguishable fromH0 based on the semantic security of the symmetric encryption scheme.

H2: The challenge ciphertext will consist of an encryption of (1, x0,⊥,SK) instead of (0, x0, s,⊥).
This hybrid is computationally indistinguishable from H1 by the security of the underlying
functional encryption scheme.

H3: The challenger replaces the encryption CT in the function key with Sym.Enc(SK, f̂(x0; r))
for a uniform r. H3 is computationally indistinguishable fromH2 based on the security of PRG.

H4: The challenger replaces f̂(x0; r) in the ciphertext hardwired in the functional key for f by
f̂(x1; r). H4 is computationally indistinguishable fromH3 based on the security of randomized
encodings and the fact that f(x0) = f(x1).

Observing that this hybrid can also be reached symmetrically from a real experiment where
x1 is encrypted, shows indistinguishability, and finishes our proof sketch.

20

This completes the proof of Theorem 3.3.

3.3 IO with Linear Overhead

In this section, we observe that our technique, combined with known results from the lit-
erature, implies that any IO scheme can be turned into an IO scheme where the size of an
obfuscation of a circuit C of depth d is of size 2|C|+ poly(d, n, λ), assuming LWE.

The basic observation is that a single iteration of our transformation, i.e. running rO.Obf(n,C, 1λ̃),
results in an obfuscation Ẽn−1 of a circuit En−1, generating FE encryptions of inputs, plus a
functional key FSKn for the function fn that performs decryption and evaluation of the circuit
C. In particular:

• the size of the circuit En−1 is dominated by the complexity of FE encryption,

• the function fn can be represented by 2|C| bits, consisting of two one-time encryptions
of |C|. (For example, using a PRG that expends λ bits to |C| bits as a one-time pad.)

We can then rely on the following result by Boneh et al.

Proposition 3.3 (FE with succinct keys [BGG+14]). Assuming subexponential LWE, there exists a
single-key, public-key, functional encryption scheme, where the size of the encryption circuit and of a
functional key are both m ·poly(n, λ, d), for classes of circuits with inputs and outputs of size n and m,
and maximal depth d. (Functional decryption, requires also the (public) description of the function.)

Obfuscating En−1 with any IO scheme, and plugging-in the above FE scheme, we deduce:

Corollary 3.4. Assuming subexponential LWE and IO, there exists IO such that, given any circuit
C : {0, 1}n → {0, 1} of size s and depth d, a corresponding obfuscation is of size 2s+ poly(n, d, λ).

4 IO from Collusion-Succinct Functional Encryption

In this section, we show how to transform any collusion-succinct functional encryption scheme
into a (circuit) succinct functional encryption scheme (according to Definition 2.2), which in
particular is suitable for our IO transformation. In a collusion-succinct FE scheme, the cipher-
texts could grow polynomially with the input length, the maximum circuit-size supported by
the scheme, and the security parameter, but they grow sub-linearly with the number of collu-
sions (derived functional keys) that the scheme can handle. Applying this transformation to
the functional encryption scheme from the work of Garg, Gentry, Halevi and Zhandry [GGHZ16],
we obtain an IO construction based on a subexponential variant of the assumptions in [GGHZ16]
on multi-linear graded encodings.

We now turn to describe the transformation that is similar to several randomized-encoding-
based bootstrapping schemes from the literature [GVW12, App14, ABSV15]. For simplicity,
we describe everything in terms of polynomial security. The transformation can be naturally
scaled for the case of subexponential security.

Proposition 4.1. For every ε = ε(λ,N) < 1:

• If there is a (selectively secure) FE scheme for circuits of size at most s = s(λ) with n = n(λ)
inputs, secure against the release of N = N(λ) functional keys, with encryption circuit of size

N1−ε · poly(n, λ, s) ,

21

• Then, there is a (selectively secure) FE scheme for circuits of size at most s = s(λ) secure against
the release of N = N(λ) functional keys, with encryption circuit of size

(s ·N)1−ε · poly(n, λ) .

In particular, for constant ε, we get a transformation from any weakly collusion-succinct to
a weakly circuit succinct scheme. For ε = 1 − logN poly(n, λ), we get a transformation from a
fully collusion-succinct to a fully circuit succinct scheme.

Proof. Let FE = (FE.Setup,FE.Gen,FE.Enc,FE.Dec) be a collusion-succinct functional encryp-
tion scheme. Let (Sym.Enc, Sym.Dec) be a one time symmetric-key encryption scheme (Defini-
tion 2.6). We construct a scheme sFE = (sFE.Setup, sFE.KeyGen, sFE.Enc, sFE.Dec) that works
as follows.

• sFE.Setup(1λ) runs FE.Setup(1λ) to generate a key pair (MSK,PK).

• sFE.KeyGen(MSK, f) picks a uniformly random tag τ ← {0, 1}λ, symmetric encryptions
CTi ← Sym.Enc(SKi, 0) each under a random key SKi ← {0, 1}λ, and constructs a se-
quence of circuits {gi := gf,τ,CTi}i∈[µ] which, on input a tuple (b, x,K,SK) ∈ {0, 1} ×
{0, 1}n × {0, 1}λ × {0, 1}λ work as follows:

– If b = 0,

∗ Let Si be the subset of random bits on which f̂i(·, ·) depends.
∗ For j ∈ Si, compute rj = PRFK(τ ||j),
∗ output ei ← f̂i(x; rSi).

– If b = 1,

∗ output
ei ← Sym.Dec(SK,CTi)

The functional key for f , denoted sFSKf , is the set of keys for all the circuits {gf,τ,CTi}i=1,2,...,µ

where µ is the output length of the randomized encoding.

• sFE.Enc(PK, x) chooses a random PRF key K← GenPRF (1λ), and outputs

FCT← FE.Enc(PK; (0, x,K,⊥)) .

• sFE.Dec(FSKf ,FCT) parses sFSKf = (FSKg1 , . . . ,FSKgµ), computes ei ← FE.Dec(FSKgi ,FCT)
and runs the decoder of the randomized encoding on input (e1, e2, . . . , eµ) to get f(x).

Correctness follows directly from that of the functional encryption scheme FE and the ran-
domized encoding scheme. We now analyze the efficiency and security of the scheme.

Efficiency. In order to issue N keys in the scheme sFE, we issue N · µ = N · sf · poly(n, λ) keys
in the underlying scheme FE. Each such key is issued for a circuit gi of size poly(λ, n). During
the encryption of an input x, the encryption algorithm of sFE is invoked on an input of size
n+O(λ).

Thus, by the collusion-succinctness guarantee of FE, the size of the encryption circuit in
sFE is

(N · sf · poly(n, λ))1−ε · poly(n, λ) = (N · sf)1−ε · poly(n, λ) .

22

Security. We now sketch the proof of security, which proceeds by a sequence of hybrids. For
simplicity, we consider the case when the adversary submits a single key query for a function
f and a single challenge pair (x0, x1). The argument can be easily generalized to the case of
multiple keys.

H0: This corresponds to the real experiment where the challenger sends an encryption of x0 to
the adversary.

H1: The challenger replaces CT = (CT1, . . . ,CTµ) with a symmetric encryption of the bits of
f̂(x0; r) in the functional key for f , where r = (PRFK(τ ||1), . . . ,PRFK(τ ||µ)) is the randomness
for the encoding. H1 is computationally indistinguishable from H0 based on the semantic
security of the symmetric encryption scheme.

H2: The challenge ciphertext will consist of an encryption of (1, x0,⊥,SK) instead of (0, x0,K,⊥).
This hybrid is computationally indistinguishable from H1 by the security of the underlying
functional encryption scheme.

H3: The challenger replaces the encryption CTi in the function key with Sym.Enc(SKi, f̂i(x0; rSi))
for a uniform r = r1,...,ρ. H3 is computationally indistinguishable from H2 based on the secu-
rity of the PRF.

H4: The challenger replaces f̂(x0; r) in the ciphertext hardwired in the functional key for f by
f̂(x1; r). H4 is computationally indistinguishable fromH3 based on the security of randomized
encodings and the fact that f(x0) = f(x1).

Observing that this hybrid can also be reached symmetrically from a real experiment where
x1 is encrypted, shows indistinguishability, and finishes our proof sketch.

The functional encryption scheme of Garg, Gentry, Halevi, and Zhandry [GGHZ16] satis-
fies collusion-succinctness and thus we obtain the following corollary

Corollary 4.1. Under a subexponential variant of the assumptions in [GGHZ16] on multi-linear
graded encodings, there exists an IO construction.

5 On the Possibility of Using Symmetric-Key FE

Our transformation in Section 3 and its proof of security rely on any public-key functional
encryption (with proper succinctness). Nevertheless, it may seem that this is just limitation of
our proof, and using any symmetric-key scheme instead may be possible. In Section 5.1, we
show that this is not the case, and that for some symmetric-key schemes our transformation
will be insecure. This means that to base IO on symmetric key FE in our transformation one
must require additional properties of the symmetric-key scheme. In Section 5.2, we formalize
a puncturing property that is sufficient.

5.1 Impossibility of Instantiation with Any Symmetric-Key Scheme

We show:

Proposition 5.1. If there exists a succinct symmetric-key functional encryption FE, then there also
exists a succinct symmetric-key functional encryption FE∗, so that the transformation given by Theo-
rem 3.1 is insecure when instantiated with FE∗.

23

To understand the idea behind the above proposition, recall that the core of our transfor-
mation is a (recursive) obfuscation of a circuit that given any input x ∈ {0, 1}n, produces
an FE encryption of x (and of some extra information — a fixed key for a symmetric en-
cryption scheme and a bit). Using techniques from the literature of unobfuscatable functions
[BGI+12, GK05, BCC+14], we show how to construct a symmetric-key FE scheme where en-
cryption is unobfuscatable in the sense that given any encryption circuit as above, it is possible
to recover the entire symmetric key and break the resulting obfuscation scheme.

We next define symmetric-key FE and unobfuscatable functions, and then prove the above
proposition. For simplicity, we restrict attention to fully-succinct schemes.

Symmetric-key FE. The definition of symmetric-key FE naturally restricts the public-key Def-
inition 2.2. Concretely, there is one master symmetric-key MSK that is used for encryption,
decryption, and key-derivation.

Definition 5.1 (Selectively-secure symmetric-key FE). A tuple of PPT algorithms FE = (FE.Setup,
FE.Gen, FE.Enc, FE.Dec) is a selectively-secure symmetric-key functional encryption scheme, for func-
tion class F , and message space {0, 1}∗, if it satisfies:

1. Correctness: for every λ, n ∈ N, message m ∈ {0, 1}n, and function f ∈ F , with domain
{0, 1}n,

Pr

f(m)← FE.Dec(FSKf ,CT)

∣∣∣∣∣∣
MSK← FE.Setup(1λ)

FSKf ← FE.Gen(MSK, f)
CT← FE.Enc(MSK,m)

 = 1 .

2. Selective-security: for any polynomial-size adversaryA, there exists a negligible function µ(λ)
such that for any λ ∈ N, it holds that

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a game between
the challenger and the adversary A, is defined as follows:

(a) The adversary submits the challenge message-pair m0,m1 ∈ {0, 1}n to the challenger.

(b) The challenger executes FE.Setup(1λ) to obtain MSK. It then executes FE.Enc(MSK,mb)
to obtain CT. The challenger sends CT to the adversary.

(c) The adversary submits function queries to the challenger. For any submitted function query
f ∈ F defined over {0, 1}n, if f(m0) = f(m1), the challenger generates and sends FSKf ←
FE.Gen(MSK, f). In any other case, the challenger aborts.

(d) The adversary may also submit encryption queries. For any query m , the challenger gener-
ates and sends FE.Enc(MSK,m) to the adversary. (Encryption queries and key queries can
be interleaved.)

(e) The output of the experiment is the output of A.

We further say that FE is δ-secure, for some concrete negligible function δ(·), if for all polynomial-
size adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Auxiliary-input unobfuscatable functions. We now define a variant of auxiliary-input unob-
fuscatable functions and prove their existence based on indistinguishability obfuscation.

24

Definition 5.2 (CPA-secure auxiliary-input unobfuscatable functions, variant of [GK05, BCC+14]).
A CPA-secure auxiliary-input unobfuscatable function (UOF) scheme consists of four algorithms UOF =
(UOF.Gen, UOF.Eval, UOF.Dec, UOF.Ext), with the following syntax:

• Z ← UOF.Gen(S;K, 1`): a PPT algorithm that given an input S, a secret key K ∈ {0, 1}λ, and
a parameter ` ∈ N, samples an auxiliary input Z.

• y ← UOF.Eval(x;K): a PPT algorithm that given an input x ∈ {0, 1}n(λ) and secret key K,
samples some encoding y of x.

• x̃ ← UOF.Dec(y;K): a polynomial-time deterministic algorithm that given an encoding y and
secret key K, decodes it to a value x̃ ∈ {0, 1}n(λ).

• S̃ ← UOF.Ext(C;Z): a polynomial-time deterministic algorithm given a circuit C and auxiliary
input Z, outputs some S̃.

We require that the scheme satisfies the following requirements.

1. Non-Black-box learning from bounded circuits: For all λ ∈ N, secret key K ∈ {0, 1}λ,
secret S ∈ {0, 1}∗, parameter ` ≤ 2n(λ)−1, and Z in the support of UOF.Gen(S;K, 1`), let C
be a circuit of size at most ` such that for any x ∈ {0, 1}n(λ) there exists y in the support of
UOF.Eval(x;K) for which:

UOF.Dec(C(x);K) = UOF.Dec(y;K) .

Then the extractor can extract from C the secret S:

UOF.Ext(C;Z) = S .

2. Black-box unlearnability: For any polynomial-size oracle-aided adversary A, there exists a
negligible function µ(λ), such that for all λ ∈ N, any S0, S1 ∈ {0, 1}poly(λ), and ` ≤ 2n(λ)−1,∣∣∣∣∣∣∣ Pr

b←{0,1},K←{0,1}λ
Z←UOF.Gen(Sb;K,1

`)

[
AUOF.Eval(·;K)(Z, S0, S1) = b

]
− 1

2

∣∣∣∣∣∣∣ ≤ µ(λ) + 2−` .

We say that the scheme satisfies δ-unlearnability, for some concrete negligible function δ(·), if for
all polynomial-size adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

3. Chosen plaintext attack (CPA) security: For any polynomial-size oracle-aided adversary A,
there exists a negligible function µ(λ), such that for all λ ∈ N, any S ∈ {0, 1}poly(λ), any
` ≤ 2n(λ)−1, and any x0, x1 ∈ {0, 1}n(λ)∣∣∣∣∣∣∣∣∣∣

Pr
b←{0,1},K←{0,1}λ
Z←UOF.Gen(S;K,1`)
y←UOF.Eval(xb;K)

[
AUOF.Eval(·;K)(y, Z, S, x0, x1) = b

]
− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ µ(λ) + 2−` .

We say that the scheme satisfies δ-CPA-security, for some concrete negligible function δ(·), if for
all polynomial-size adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Proposition 5.2. Assuming indistinguishability obfuscation and one-way functions, both δ-secure,
there exists an unobfuscatable function scheme with δ-unlearnability and δ-CPA-security.

25

Proof sketch. Roughly speaking, the idea behind the theorem builds on the same ideas as previ-
ous constructions of auxiliary-input unobfuscatable functions (the main difference being that
here we also need to show CPA-security).

To construct the unobfuscatable function scheme, we rely on the following ingredients:

• A δ-CPA-secure symmetric encryption scheme (Sym.Enc,Sym.Dec).

• A δ-secure pseudo-random function family PRF mapping
{
{0, 1}n(λ)

}
λ∈N to {0, 1}.

• A δ-secure indistinguishability obfuscator iO.

The scheme is constructed as follows:

• A random key K = (K,SK) ← {0, 1}λ consists of a random key for a PRF K ← {0, 1}λ/2
and a random key SK← {0, 1}λ/2 for symmetric encryption.

• UOF.Gen(S;K, 1`):

– For all i ∈ [2`] ⊆ {0, 1}n(λ), for some canonical embedding of [2`] in {0, 1}n(λ),4

compute Yi = PRFK(i).

– Outputs an obfuscation Z ← iO(WD[Y1, . . . , Y2`,SK, S], 1λ) of the witness decryp-
tion circuit WD defined in Figure 3.

• UOF.Eval(x;K):

– Compute Yx := PRFK(x).

– Output y ← Sym.Enc(Yx;SK).

• UOF.Dec(y;K):

– Output x̃← Sym.Dec(y; SK).

• S̃ ← UOF.Ext(C;Z):

– Output S̃ = Z(C).

Hardwired: bits Y1, . . . , Y2` ∈ {0, 1}, a symmetric decryption key SK ∈ {0, 1}λ/2, and a secret S.

Input: a circuit C : {0, 1}n(λ) → {0, 1}poly(λ) of size |C| ≤ `.

1. If Sym.Dec(C(i)) = Yi for all i ∈ [2`], output S.

2. Else, return ⊥.

Figure 3: The circuit WD[Y1, . . . , Y2`, SK, S].

Non-black-box learnability of the above scheme follows directly from it definition and
functionality of the underlying primitives. Indeed, for any circuit C of size at most `, assume
that for all x ∈ {0, 1}n(λ) there exists y in the support of UOF.Eval(x;K) for which:

UOF.Dec(C(x);K) = UOF.Dec(y;K) .

4Recall that 2` ≤ 2n(λ).

26

Then for all i ∈ [2`]

Sym.Dec(C(i), k) = Sym.Dec(Sym.Enc(PRFK(i);SK);SK) = Yi .

In this case
UOF.Ext(C,Z) = Z(C) = WD(C) = S .

We now prove black-box unlearnability and CPA security. For this purpose, we first con-
sider a hybrid version of the above scheme where PRFK is replaced with a truly random func-
tion (the scheme is no inefficient, but this is a mental experiment confined to the analysis). In
particular, the bits Y1, . . . , Y2` are now truly random. We claim that the adversary’s advantage
in this hybrid world in either the black-box learning or CPA game changes at most by δΩ(1).
This follows directly from the pseudo-randomness of PRF . Indeed, the real world and the
hybrid world can be efficiently simulated given oracle access to PRFK, in the real world, or the
random function in the hybrid world, respectively.

We now observe that in this hybrid world, the probability that there exists a circuitC of size
at most ` that information theoretically encodes the random string Y1, . . . , Y2` is at most 2−`.
In this case, the circuit WD[Y1, . . . , Y2`, SK, S] always returns ⊥. In particular, we can switch to
yet another hybrid world, where the obfuscation of WD[Y1, . . . , Y2`,SK, S] is replaced with an
obfuscation of a circuit [Y1, . . . , Y2`,⊥,⊥] that is independent of S and SK, and this, by the IO
guarantee, changes the adversary’s advantage by at most δΩ(1) + 2−`.

In this hybrid world, black-box unlearnability is follows from the fact that Z and the oracle
UOF.Eval are completely independent of the secret S. CPA-security follows directly from the
CPA-security of the underlying symmetric encryption. Indeed, the oracle UOF.Eval can be
efficiently simulated, given an oracle to Sym.Enc(·;K).

This completes the proof sketch.

We are now ready to prove Proposition 5.1.

Proof sketch of Proposition 5.1. Let FE = (FE.Setup, FE.Gen, FE.Enc, FE.Dec) be a δ-selectively-
secure symmetric-key functional encryption scheme. Let UOF = (UOF.Gen,UOF.Eval,UOF.Dec,
UOF.Ext) be an unobfuscatable function scheme with δ-unlearnability and δ-CPA-security.

We now define a new FE scheme FE∗. In what follows, we shall assume that encrypted mes-
sages consist of two parts (x, x′) ∈ {0, 1}n(λ) × {0, 1}poly(λ). Later, when considering the trans-
formation from Section 3, x will represent the main part of the input and x′ will represent the
extra information (SK, b), which are both encrypted together under the FE scheme.

• A master key MSK∗ = (MSK,K) consists of a master secret-key MSK for FE, and secret
key K ← {0, 1}λ for UOF.

• (FCT, y) ← FE.Enc∗(MSK∗, x, x′): given MSK∗ and (x, x′) ∈ {0, 1}n(λ) × {0, 1}poly(λ), re-
turns a ciphertext FCT← FE.Enc(MSK, (x, x′)), and an encoding y ← UOF.Eval(x;K).

• (FSKf , Z) ← FE.Gen∗(MSK∗, f): given MSK∗ and f , returns the functional key FSKf
← FE.Gen(MSK, f) and auxiliary input Z ← UOF.Gen(MSK;K, 1`). Here ` = `(λ) is a
polynomial that depends on the original FE and the fixed poly(λ, n(λ)) bound on the
running time of UOF.Eval, which we specify below as part of the analysis.

• FE.Dec∗(FSKf , (FCT, y)) := FE.Dec(FSKf ,FCT).

27

Correctness and succinctness. First, note that FE∗ recovers the required functionality of a
symmetric-key scheme. Indeed, ciphertexts and functional keys in the new scheme in particu-
lar include corresponding ciphertexts and functional keys with respect to the previous scheme.

Also, FE∗ is succinct. Indeed, the new encryption algorithm consists of the previous en-
cryption algorithm and an invocation UOF.Eval that is computed in fixed polynomial time in
n(λ), λ.

Security. We now argue that the scheme FE∗ is a secure symmetric-key FE just as the original
scheme FE. For this purpose, we shall consider two hybrid schemes FE∗1,FE

∗
2. We will show

that these are indistinguishable from FE∗, and that FE∗2 is as secure as the original scheme FE.

Hybrid scheme FE∗1: Here when generating functions keys, (FSKf , Z) ← FE.Gen∗1(MSK∗, f)
does not generate an auxiliary input Z ← UOF.Gen(MSK;K, 1`) as FE.Gen∗(MSK∗, f) would.
Instead, it invokes UOF.Gen(MSK1;K, 1`) for some random MSK1 that is independent of the
master secret key MSK. We claim that

ExptFE
∗

A (1λ, b) ≈δ Expt
FE∗1
A (1λ, b) .

This follows directly from the δ-unlearnability of UOF. Indeed, any adversary A that distin-
guishes between the above two experiments can violate unlearnability — the experiments can
be perfectly simulated by emulating FE∗ (respectively, FE∗) with an oracle to UOF.Eval(·;K).

Hybrid scheme FE∗2: Here when encrypting, (FCT, y) ← FE.Enc∗2(MSK∗, (x, x′)) does not gen-
erate an encoding of x, y ← UOF.Eval(x;K, 1`), as FE.Enc∗1(MSK∗, (x, x′)) (or FE.Enc∗(MSK∗, (x, x′)))
would. Instead, it invokes y ← UOF.Eval(x2;K, 1`) for some random x2 ∈ {0, 1}n(λ) indepen-
dent of x. We claim that

Expt
FE∗1
A (1λ, b) ≈δ Expt

FE∗2
A (1λ, b) .

This follows from the δ-CPA-security of UOF and a standard hybrid argument. Indeed, any ad-
versaryA that distinguishes between the above two experiments can violate CPA security in a
hybrid experiment where FE.Enc∗1(MSK∗, (x, x′)) for the first i ciphertexts and FE.Enc∗2(MSK∗, (x, x′))
is invoked for the rest — these experiments can be perfectly simulated by emulating FE∗1 (re-
spectively, FE∗2) with an oracle to UOF.Eval(·;K).

Hybrid scheme FE∗2 is secure: We argue that FE∗2 is as secure as the original scheme FE. Indeed,
the view of the adversary in FE∗2 can be completely simulated from its view in FE by simulating
UOF. Indeed, in FE∗2, all algorithms in UOF are invoked on inputs that are independent of FE.

Insecurity of FE to IO transformation when instantiated with FE∗: Consider instantiating the
transformation from FE to IO, given in Section 3, with FE∗, and let us assume that whenever
FE.Enc∗ is invoked to encrypt (xi−1xi, SKi, 0), we treat (SKi, 0) as the extra information x′ and
xi−1xi as the main input x.

Recall that, after applying the transformation, the resulting obfuscation Ẽn consists of func-
tional keys (FSK∗1, . . . ,FSK

∗
n) and a pair of initial encryptions, denoted by E0

1 = (FCT0
1,FCT

1
1).

In our case, FSK∗i = (FSKi, Z) where FSKi is a functional key under the original scheme FE. We
can then construct from the keys (FSK1, . . . ,FSKn−1) and initial encryptions E0

1 a circuit C that
given as input x ∈ {0, 1}n outputs y in the support of UOF.Eval(x,K). In more detail, we can
construct the evaluation circuit rO.Eval(n− 1, Ẽn−1, ·), which given xn−1 ∈ {0, 1}n−1 outputs a
pair of encryptions

{FCT∗xnn ∈ FE.Enc∗(MSK∗, (xn−1xn, SKn, 0))}xn∈{0,1} =

{FCTxnn ∈ FE.Enc(MSK, (xn−1xn, SKn, 0)), yxnn ∈ UOF.Eval(xn−1xn,K)}xn∈{0,1} .

28

From this, we can easily construct the desired circuitC (by outputting the relevant y ∈ UOF.Eval(x,K)
value). We further note that since functional decryption in FE∗ invokes functional decryption
in the original scheme FE (ignoring the extra information embedded in the ciphertexts by FE∗),
the circuit C indeed only depends on (FSK1, . . . ,FSKn−1) and initial encryptions E0

1 and not on
the auxiliary input Z in each FSK∗i = (Z,FSKi). Furthermore, note that the size of each FSKi
only depends on the security parameter λ, n, and the circuit size of UOF.Eval. Accordingly, the
size of the circuit C can be bounded by a fixed polynomial in λ and n(λ), which dictates our
choice of the bound `.

It is now evident that given the circuit C and auxiliary input Z in the last key FSK∗, we can
use UOF.Ext to extract the master secret key MSKn and thus also learn SKn, which completely
reveals the obfuscated circuit (encrypted under SK in FSKn).

5.2 Puncturable Symmetric-Key FE is Sufficient

In the previous section, we have shown that it is not possible to instantiate our transformation
with any symmetric-key FE scheme. In this section, we give a criterion for symmetric key
FE schemes that is sufficient for our transformation to go through. While at this point, we
only know how to satisfy this criterion based on public-key FE, it may be constructed directly,
without going through public-key FE. (Of course that eventually it does imply the existence of
public-key FE, as it leads to IO.)

Specifically, we define puncturable symmetric-key FE, where it is possible puncture the
master secret key MSK on a pair of messages m0,m1 such that it still allows to encrypt any
m /∈ {m0,m1}, but does not allow to distinguish encryptions of m0 and m1, in the presence of
a functional secret-key (that does not separate m0 and m1. We restrict the definition to the case
of a single functional key, which is sufficient for our purpose.

Definition 5.3 (Puncturable symmetric FE). A single-key symmetric-key functional encryption
scheme FE is said to be puncturable if there exists an additional algorithms FE.Punc, FE.PEnc with
the following two properties:

1. Correctness: For any two equal-length messages m0,m1, any MSK in the support of FE.Setup,
and any m /∈ {m0,m1}, it holds that

FE.PEnc(MSK {m0,m1} ,m; r) = FE.Enc(MSK,m; r) ,

where MSK {m0,m1} ← FE.Punc(MSK,m0,m1).

2. Semantic security at punctured points: For any two equal-length messages m0,m1, and any
f such that f(m0) = f(m1):

{FSKf ,MSK {m0,m1} ,FE.Enc(MSK,m0)} ≈c {FSKf ,MSK {m0,m1} ,FE.Enc(MSK,m1)} ,

where MSK← FE.Setup(1λ), FSKf ← FE.Gen(MSK, f), and MSK {m0,m1} ← FE.Punc(MSK,m0,m1).

Proposition 5.3. The public-key FE scheme in the transformation given by Theorem 3.1 can be replaced
by a puncturable symmetric-key FE scheme.

Proof sketch. The only difference is in the proof of Proposition 3.1. When moving from hy-
brid Hx−1 to hybrid G1 not only do we puncture the PRF key at x, but we also puncture the
master encryption key (now the secret MSK) at

{
(x, xi),SK

0
i , 0), (x, xi), SK

1
i , 1)

}
and hardwire

the encryption of (x, xi),SK
0
i , 0), (x, xi). As in the original analysis, functionality is preserved,

this time by the correctness of the puncturable symmetric-key FE. Then, when replacing the
encryption of (x, xi),SK

0
i , 0), (x, xi) with and encryption of (x, xi),SK

1
i , 1), (x, xi), we rely on

semantic security at punctured points.

29

Acknowledgements

We thank Daniel Wichs for pointing out an error in a previous version of Section 5.1.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In TCC, 2015.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. The
trojan method in functional encryption: From selective to adaptive security,
generically. In CRYPTO, 2015.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Func-
tional encryption for inner product predicates from learning with errors. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 21–40. Springer, 2011.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
volume 8043 of Lecture Notes in Computer Science, pages 500–518. Springer, 2013.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. Computational Complexity,
15(2):115–162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In Crypto, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness
generically: Indistinguishability obfuscation from non-compact functional en-
cryption. IACR Cryptology ePrint Archive, 2015:730, 2015.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 162–172. Springer,
2014.

[BCC+14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai,
Omer Paneth, and Alon Rosen. The impossibility of obfuscation with auxiliary
input or a universal simulator. In CRYPTO, pages 71–89, 2014.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
Public key encryption with keyword search. In Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 506–522, 2004.

30

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
TCC, pages 52–73, 2014.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, pages 533–556, 2014.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J.
ACM, 59(2):6, 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Hugo Krawczyk, editor, PKC, volume 8383 of Lecture
Notes in Computer Science, pages 501–519. Springer, 2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
221–238, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Symposium on Theory of Comput-
ing, STOC 2015, 2015.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional en-
cryption in the private-key setting: Stronger security from weaker assumptions.
In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, pages 852–880, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. IACR Cryptology
ePrint Archive, 2016:558, 2016.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all
circuits via generic graded encoding. In Yehuda Lindell, editor, Theory of Cryp-
tography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer Science,
pages 1–25. Springer, 2014.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the
private-key setting. In TCC, 2015.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision
for public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT (2), volume
8270 of Lecture Notes in Computer Science, pages 280–300. Springer, 2013.

31

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Suc-
cinct garbling and indistinguishability obfuscation for RAM programs. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 429–437, 2015.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In TCC, 2015.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 578–602, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 1–17, 2013.

[GGH13b] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, Mariana Raikova, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryp-
tion without obfuscation. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 480–511,
2016.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation
with auxiliary input. In FOCS, pages 553–562. IEEE Computer Society, 2005.

[GKP+12] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nick-
olai Zeldovich. Reusable garbled circuits and succinct functional encryption.
Cryptology ePrint Archive, Report 2012/733, 2012.

[GLSW15] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishabil-
ity obfuscation from the multilinear subgroup elimination assumption. In FOCS
2015, 2015.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryp-
tographic hardness of finding a nash equilibrium. In CRYPTO, 2016.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry.
Breaking the sub-exponential barrier in obfustopia. IACR Cryptology ePrint
Archive, 2016:102, 2016.

32

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC,
pages 194–213, 2007.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional en-
cryption with polynomial loss. Cryptology ePrint Archive, Report 2016/524, 2016.
http://eprint.iacr.org/2016/524.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryp-
tion with bounded collusions via multi-party computation. In CRYPTO, pages
162–179, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 545–554, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. IACR Cryptology ePrint Archive, 2015:29, 2015.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology -
ASIACRYPT 2000, 6th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, pages
443–457, 2000.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new represen-
tation with applications to round-efficient secure computation. In FOCS, pages
294–304. IEEE Computer Society, 2000.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishabil-
ity obfuscation for turing machines with unbounded memory. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 419–428, 2015.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yo-
gev. One-way functions and (im)perfect obfuscation. In 55th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 374–383. IEEE Computer Society, 2014.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, CCS, pages 669–684. ACM,
2013.

[KSW13] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. J. Cryptology, 26(2):191–
224, 2013.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encod-
ing schemes. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part I, pages 28–57, 2016.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in func-
tional encryption. Cryptology ePrint Archive, Report 2016/561, 2016. http:
//eprint.iacr.org/2016/561.

33

http://eprint.iacr.org/2016/524
http://eprint.iacr.org/2016/561
http://eprint.iacr.org/2016/561

[LPST16a] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In Public-Key Cryptography - PKC 2016 - 19th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Taipei, Taiwan, March 6-9, 2016, Proceedings, Part II, pages 447–462, 2016.

[LPST16b] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In Theory of Cryptography - 13th Interna-
tional Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part
I, pages 96–124, 2016.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from
ddh-like assumptions on constant-degree graded encodings. Cryptology ePrint
Archive, Report 2016/795, 2016. http://eprint.iacr.org/2016/795.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
from semantically-secure multilinear encodings. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume
8616 of Lecture Notes in Computer Science, pages 500–517. Springer, 2014.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In ACM CCS, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer
Science, pages 457–473. Springer, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In David B. Shmoys, editor, STOC, pages 475–484.
ACM, 2014.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the 8th
Annual ACM Symposium on Theory of Computing, May 3-5, 1976, Hershey, Pennsyl-
vania, USA, pages 196–203, 1976.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-
29 October 1986, pages 162–167. IEEE Computer Society, 1986.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Eurocrypt, 2015.

34

http://eprint.iacr.org/2016/795

	Introduction
	This Work
	Main Ideas
	Concurrent Work
	Followup Work

	Definitions
	Standard Computational Concepts
	Functional Encryption
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Symmetric Encryption
	Randomized Encodings

	The Transformation
	Security Analysis
	Extended Efficiency Analysis
	IO with Linear Overhead

	IO from Collusion-Succinct Functional Encryption
	On the Possibility of Using Symmetric-Key FE
	Impossibility of Instantiation with Any Symmetric-Key Scheme
	Puncturable Symmetric-Key FE is Sufficient

