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Abstract. An (X ,Y)-random system takes inputs X1, X2, . . . ∈ X and
generates, for each new input Xi, an output Yi ∈ Y, depending proba-
bilistically on X1, . . . , Xi and Y1, . . . , Yi−1. Many cryptographic systems
like block ciphers, MAC-schemes, pseudo-random functions, etc., can be
modeled as random systems, where in fact Yi often depends only on Xi,
i.e., the system is stateless. The security proof of such a system (e.g.
a block cipher) amounts to showing that it is indistinguishable from a
certain perfect system (e.g. a random permutation).
We propose a general framework for proving the indistinguishability of
two random systems, based on the concept of the equivalence of two
systems, conditioned on certain events. This abstraction demonstrates
the common denominator among many security proofs in the literature,
allows to unify, simplify, generalize, and in some cases strengthen them,
and opens the door to proving new indistinguishability results.
We also propose the previously implicit concept of quasi-randomness
and give an efficient construction of a quasi-random function which can
be used as a building block in cryptographic systems based on pseudo-
random functions.

Key words. Indistinguishability, random systems, pseudo-random func-
tions, pseudo-random permutations, quasi-randomness, CBC-MAC.

1 Introduction

1.1 Indistinguishability

Indistinguishability of two systems, introduced by Blum and Micali [7] for defin-
ing pseudo-random bit generators, is a central concept in cryptographic security
definitions and proofs. The simplest distinguisher problem is that for two random
variables: The success probability (or advantage) of the optimal distinguisher is
just the distance of the two probability distributions. As a slight generalization,
one can define indistinguishability for infinite sequences of random variables, e.g.
of a pseudo-random bit generator from a true random bit generator [7].
It is substantially more difficult to investigate the indistinguishability of two

interactive random systems F and G because the distinguisher can adaptively
choose its inputs (also called queries) to the system, depending on the outputs
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Fig. 1. Real system S, idealized system I, and perfect system P.

seen for previous inputs. Every distinguisher D defines a pair of generally very
complex random experiments, one when D queries F and the other one when D
queries G. A security proof requires to prove an upper bound, holding for every
D, on the difference of the probability of some event in the corresponding two
experiments. In general, this is a hard probability-theoretic problem.

1.2 Security Proofs Based on Pseudo-Random Functions

The security of many cryptographic systems (e.g., block ciphers, message authen-
tication codes, challenge-response protocols) is based on the assumption that a
certain component (e.g. DES, IDEA, or Rijndael) used in the construction is
a pseudo-random function (PRF) [8]. Such systems are proven secure, relative
to this assumption, by showing that any algorithm for breaking the system can
be transformed into a distinguisher for the PRF. For example, in a classic pa-
per, Luby and Rackoff [10] showed how to construct a secure block cipher from
any pseudo-random function, and Bellare et al. [2] proved the security of the
CBC-MAC. The following general steps can be used to prove the security of a
cryptographic system based on a pseudo-random function (cf. Fig. 1):

1. The attacker’s capabilities, i.e., the types and number of allowed queries to
S are defined. Moreover, security of S is defined by specifying what it means
for the attacker to break S, and a purely theoretical perfect system P is
defined which is trivially secure (see examples below).

2. One considers an idealized system I obtained from S by replacing the PRF
by a truly random function and proves that I and P are information-
theoretically indistinguishable: no adaptive computationally unbounded dis-
tinguisher algorithm D has a non-negligible advantage unless it queries the
system for an infeasibly large (e.g. super-polynomial) number of queries.1

3. Hence, because S is computationally indistinguishable from I if the underly-
ing function is pseudo-random, S is also computationally indistinguishable
from P. Because P is unbreakable, there exists no breaking algorithm for S
since it could directly be used as a distinguisher for S and P.

1 This is the only technical step in such a proof. It is purely information-theoretic, not
involving complexity theory, and is the subject of this paper.



Example 1. For a block cipher the attacker is assumed to obtain the ciphertexts
(plaintexts) for adaptively chosen plaintexts (ciphertexts). A perfect block cipher
is a truly random permutation on the input space.

Example 2. For a MAC, the attacker may obtain the MAC for arbitrary adap-
tively chosen messages. A perfect MAC is a random oracle, i.e., a random func-
tion from {0, 1}∗, the finite-length bit strings, to the l-bit strings (e.g. l = 64).

1.3 Previous Work

Many authors were intrigued by the complexity of certain security proofs in the
literature, most notably [10], and have given shorter proofs for these and more
general results. It is beyond the scope of this paper to discuss all of these results,
but a few are mentioned below. Patarin [14, 15] developed a technique called “co-
efficient H method” and used it to analyze Feistel ciphers, even with more than
four rounds [16]. To the best of our knowledge, the concept of conditioning events
in security proofs was first made explicit in [11] and [12] where, using appropriate
conditioning events, the proof for the Luby-Rackoff construction and generaliza-
tions thereof was shown to boil down to simple collision arguments (but the
proof was stated only for non-adaptive distinguishers). Naor and Reingold [18]
generalized the Luby-Rackoff constructions. In a sequence of papers (e.g., see [21,
22]), Vaudenay developed decorrelation theory and applied it to the design of
block ciphers and the analysis of constructions like the CBC-MAC. Petrank and
Rackoff [17] gave a generalized treatment of the CBC-MAC.

1.4 Contributions of the Paper and Sketch of the Framework

This paper defines the natural concept of a random system and proposes a
general framework for proving the indistinguishability of two random systems F
and G by identifying internal events such that, conditioned on these events, F
and G are equivalent, i.e., have the identical input-output behavior.
The advantage in distinguishing F and G with k queries and unbounded

computing power is shown to be at most the probability of success in provoking
one of these events not to occur (Theorem 1). Under a certain condition, adaptive
strategies can be shown to be not more powerful than non-adaptive strategies,
thus allowing to eliminate the distinguisher from the analysis (Theorem 2 and
Corollary 1).
The framework is illustrated for a few application areas and by giving simple

and intuitive analyses and generalizations of some classical results. Due to the
high level of abstraction, one can apply the basic techniques in settings where
previous proof techniques appeared to be too complex or where changing a small
detail in the construction requires a complete rehash of the proof.
Moreover, in some cases one can prove stronger bounds. For instance, under

certain conditions one can prove that if a construction involves several com-
ponents, each indistinguishable from a certain perfect system, then the overall
system is distinguishable from its perfect counterpart with probability only the



product (rather than the sum or the maximum) of the maximal distinguishing
probabilities of the component systems (Theorem 3).

1.5 A Motivating Example

The security proof [2] for the CBC-MAC (cf. Fig. 6), and several generalizations
thereof, will follow as a simple consequence of our framework (see Section 6).
Roughly speaking, the proof consists of the following simple steps. First, condi-
tioned on the event that all inputs to the internal random function R (modeling
the PRF used in an actual implementation), corresponding to a final block of a
message, are distinct, the CBC-MAC behaves like a random oracle, i.e., a perfect
MAC. Second, one can hence restrict attention to algorithms trying to prevent
this event from occurring by any adaptive choice of the inputs. Third, since the
outputs are independent of the inputs, given this event, one can restrict the
analysis to non-adaptive strategies, which turn out to be easy to analyze.

1.6 Quasi-Randomness

The general idea behind such cryptographic constructions is to “package” a given
amount of randomness such that it appears to any observer as a random sys-
tem S which behaves essentially like a (in some sense) perfect random system
P containing a much larger amount of randomness. If S is computationally in-
distinguishable from P, it is generally called pseudo-random (with respect to
P). Informally, we call S quasi-random (with respect to P) if it is indistinguish-
able from P, provided only that the amount of interaction (e.g. the number of
queries) is bounded, but with otherwise unbounded computational resources.
An important question, addressed in this paper, is how an efficient quasi-

random system S of a certain type can be constructed, using as few random bits
as possible, and indistinguishable from the corresponding perfect system P for
as many queries as possible.

1.7 Outline of the Paper

In Section 3 we introduce the concepts of a random automaton and of a ran-
dom system as well as the equivalence of such systems. We also define monotone
conditions and event sequences, the conditional equivalence of random systems,
cascades of random systems, and the invocation of a random system by another
random system. In Section 4 we define the indistinguishability of random sys-
tems, prove a few general results on indistinguishability, and discuss the frame-
work for indistinguishability proofs based on conditional equivalence as well as
consequences thereof. In Section 5 we apply the framework to the construction
of quasi-random functions, and in Sections 6 and 7 to the analysis and security
proofs of MAC’s and of pseudo-random permutations, respectively.
The treatment is more general than necessary just for proving the results in

Sections 5–7. Due to space limitations, many proofs are omitted (but see [13]).



2 Notation and Preliminaries

Random variables and concrete values they can take on are usually denoted by
capital and small letters, respectively. For a set S, an S-sequence is an infinite
(or possibly finite) sequence s = s1, s2, . . . of elements of S. Prefixes of sequences
(of values or random variables) are denoted by a superscript, e.g. sk denotes the
finite sequence [s1, s2, . . . , sk]. For a list L of random variables over the same al-
phabet, dist(L) denotes the event that all values in L are distinct. Let pcoll(n, k)
denote the probability that k independent random variables with uniform distri-
bution over a set of size n contain a collision, i.e., that they are not all distinct.

Of course, pcoll(n, k) = 1−
∏k−1

i=1

(
1− i

n

)
< k2

2n .
In the context of this paper one considers different random experiments, and

when analyzing probabilities it is crucial to be precise about which random ex-
periment is considered. The random experiment is usually defined by one or
several defining, usually independent, random variables. We will use these defin-
ing random variables as superscripts when denoting probabilities. For example,
if F denotes the system under investigation and D the distinguisher, then PDF

denotes probabilities in the combined random experiment where D queries F. In
contrast PF denotes probabilities in the simpler random experiment involving
only the selection of F, without even considering a distinguisher. If no superscript
is used, the random experiment is clear from the context.
We use the following notation for probability distributions. If A and B are

events and U and V are random variables with ranges U and V, respectively,
then PUA|V B denotes the corresponding conditional probability distribution, a
function U × V → R+. Thus PUA|V B(u, v) for u ∈ U and v ∈ V is well-defined
(except if PV B(v) = 0 in which case it is undefined). Note that PA is equivalent
to P (A). For an event E, E denotes the complement of E. Equality of probability
distributions means equality as functions, i.e., for all arguments. This extends to
the equality of conditional probability distributions, even if one of them contains
additional random variables in the conditioning set, meaning that equality holds
for all possible values. For example, PY i|Xk = PY i|Xi for k > i means that for

all xk and yi, PY i|Xk(yi, xk) = PY i|Xi(yi, xi).

3 Random Systems and Monotone Event Sequences

3.1 Sources, Random Automata, and Random Systems

Definition 1. An X -source S is an infinite sequence S = S1, S2, . . . of random
variables Si ∈ X , characterized by the sequence P

S
Si|Si−1 of conditional probability

distributions. This also defines the distributions P S
Si :=

∏i
j=1 P

S
Si|Si−1 .

In the following we consider systems which take inputs (or queries)
X1, X2, . . . ∈ X and generate, for each new input Xi, an output Yi ∈ Y. Such a
system can be deterministic or probabilistic, and it can be stateless or contain
internal memory. A stateless deterministic system is simply a function X → Y.
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Fig. 2. Left: An (X ,Y)-random system F takes inputs X1, X2, X3, . . . ∈ X and outputs
Y1, Y2, Y3, . . . ∈ Y, where Yi is generated after receiving input Xi. It is characterized
by the sequence of conditional probability distributions PF

Yi|XiY i−1 for i ≥ 1. Right:

Random system F with a monotone event sequence A = A0, A1, A2, . . ., denoted FA.

Definition 2. A random function X → Y is a random variable which takes as
values functions X → Y. A deterministic system with state space Σ is called an
(X ,Y)-automaton and is described by an infinite sequence f1, f2, . . . of functions,
with fi : X ×Σ → Y ×Σ, where (Yi, Si) = fi(Xi, Si−1), Si is the state at time
i, and an initial state S0 is fixed. An (X ,Y)-random automaton F is like an
automaton but fi : X × Σ ×R → Y × Σ (where R is the space of the internal
randomness), together with a probability distribution over R×Σ specifying the
internal randomness and the initial state.2

A large variety of constructions and definitions in the cryptographic literature
can be interpreted as random functions, including pseudo-random functions,
pseudo-random permutations, and MAC schemes. We consider the more general
concept of a (stateful) random system because this is just as simple and because
distinguishers can also be modeled as random systems.
The observable input-output behavior of a random automaton F is referred

to as a random system. In the following we use the terms random automaton
and random system interchangeably when no confusion is possible.

Definition 3. An (X ,Y)-random system F is an infinite3 sequence of condi-
tional probability distributions PF

Yi|XiY i−1 for i ≥ 1.4 Two random automata F
and G are equivalent, denoted F ≡ G, if they correspond to the same random
system, i.e., if PF

Yi|XiY i−1 = PG
Yi|XiY i−1 for i ≥ 1.5

The above definition is very general and captures systems that answer several
types of queries (in which case the input set X is the union of the query sets)
and for which the behavior depends on the index i. Note that a source can be
interpreted as a special type of random system for which the input is ignored,
i.e., the outputs are independent of the inputs. We will often assume that the
input and output alphabets of a random system are clear from the context.

2 F can also be considered as a random variable taking on as values (X ,Y)-automata.
3 Random systems with finite-length input sequences could also be defined.
4 PF

Yi|XiY i−1 is a function Y×X i×Yi−1→R+ such that, for all xi∈X i and yi−1∈Yi−1,
∑

yi∈Y
PF

Yi|XiY i−1(yi, x
i, yi−1) = 1.

5 The distribution PF

Y i|Xi =
∏i

j=1
PF

Yi|XiY i−1 is also defined. PF

Yi|XiY i−1(yi, x
i, yi−1)

can be undefined for values xi and yi−1 with PF

Y i−1|Xi(y
i−1, xi) = 0.



Let us discuss a few special examples of random systems. Throughout, the
symbols B, R, P, and O are used exclusively for the systems defined below.

Definition 4. An (X ,Y)-beacon [19] B is a random system (actually a source)
for which Y1, Y2, . . . are independent and uniformly distributed over Y, indepen-
dent of the inputs X1, X2, . . .. A uniform random function (URF) R : X → Y
(a uniform random permutation (URP) P on X ) is a random function with
uniform distribution over all functions from X to Y (permutations on X ). A
Y-random oracle O is a random function with input alphabet X = {0, 1}∗ with
PO
Yi|Xi

(y, x) = 1/|Y| for all i ≥ 1, x ∈ X and y ∈ Y.

3.2 Monotone Conditions and Event Sequences

For a given (X ,Y)-random function or automaton F, the evaluation of Yi usually
requires the evaluation of some internal random variables.6 Consider the internal
sequence of random variables U1, U2, . . .. In the sequel it is very useful to consider
an internal condition defined, for each i, after input Xi is entered. As a simple
example, the condition could be dist(U i), i.e., that U1, . . . , Ui are all distinct.
Such an internal condition can be modeled as a binary random variable, say

Zi, indicating whether the condition is satisfied (Zi = 1) or not (Zi = 0) after
input Xi has been given. If Zi is taken as part of the ith output of F, i.e.,
the ith output is the pair (Yi, Zi) instead of just Yi, then this corresponds to a
(X ,Y×{0, 1})-random system.7 One can also define several such conditions for
F, each corresponding to a binary random variable.
We will only consider monotone conditions, meaning that once it fails to be

satisfied it remains so for all future inputs. For example, the condition dist(U i)
is obviously monotone. If Ui is a vector in some vector space, another monotone
condition is that U1, . . . , Ui are linearly independent.
For a random automaton F and a given monotone internal condition we will

often be interested in F’s behavior only as long as the condition is satisfied. For
example, a URF behaves like a beacon as long as the inputs are distinct. We
therefore consider the monotone sequenceA = A0, A1, A2, . . . of events, where Ai

is the event that the condition is satisfied (and Ai is the complementary event)
and where A0 is for convenience defined to be the certain event (cf. Fig. 2).
We will also consider two or more monotone conditions simultaneously. For

two monotone event sequences (MES) A and B defined for F, A∧B denotes the
MES defined by (A∧B)i = Ai ∧Bi for i ≥ 1, and A∨B is defined analogously.

Definition 5. For MESs A and C defined for random automata F and G,
respectively, F with A is equivalent to G with C, denoted FA ≡ GC , if
PF
YiAi|XiY i−1Ai−1

= PG
YiCi|XiY i−1Ci−1

for i ≥ 1.8

6 For example, in the CBC-MAC Ui could be the input to the internal random function
corresponding to the last block of the ith message.

7 One can also think of an internal device (or genie) in F which beeps when the
condition fails to be satisfied (Zi = 0).

8 Note that FA ≡ GC does not imply F ≡ G.



We refer to later sections for examples.

Definition 6. For a random system F with MES A = A0, A1, A2, . . ., F condi-
tioned on A is equivalent to G, denoted F|A ≡ G, if PF

Yi|XiY i−1Ai
= PG

Yi|XiY i−1

for i ≥ 1, for all arguments for which PF
Yi|XiY i−1Ai

is defined. More generally,

if A and B are defined for F, then we write FB|A ≡ GC if PG
YiCi|XiY i−1Ci−1

=

PF
YiBi|XiY i−1Bi−1Ai

for i ≥ 1.

Definition 7. One can adjoin an MES C to a random system G by defining Ci

as depending probabilistically on X i and Y i, i.e., by a sequence of distributions
PG
Ci|XiY iCi−1

. If an MES C is already defined forG, then one can adjoin a further

MES D according to a sequence PG
Di|XiY iCiDi−1

of distributions.9

Lemma 1. (i) If FA ≡ GC, then F|A ≡ G|C10 (but not vice versa).
(ii) If F|A ≡ G, then FA ≡ GC for some MES C adjoined to G.
(iii) More generally, if FB|A ≡ GC, then FA∧B ≡ GC∧D for some MES D.
(iv) If F|A ≡ G|C and PF

Ai|XiY i−1Ai−1

≤ PG
Ci|XiY i−1Ci−1

for i ≥ 1 (and for all

xi and yi−1), then one can adjoin an MES D to G such that FA ≡ GC∧D.

Proof. Claim (i) is obvious. Claim (ii) follows from (iii), which follows
by defining the MES D via PG

Di|XiY iCiDi−1

= PF
Ai|XiY i−1Ai−1Bi−1

. The

proof uses PG
YiCi|XiY i−1Ci−1Di−1

= PG
YiCi|XiY i−1Ci−1

(since PG
Di−1|XiY iCi

=

PG
Di−1|XiY i−1Ci−1

) and PG
YiCi|XiY i−1Ci−1

= PF
YiBi|XiY i−1Bi−1Ai

(from FA ≡ GC).

The proof of (iv) is omitted. ut

The following lemma states the trivial fact that given that all inputs are
distinct, a random function behaves like a beacon. The proof is obvious.

Lemma 2. Let C (D) be an MES defined on the inputs (outputs) of a system.
(i) F|C ≡ F for every random system F.
(ii) If FA ≡ GB, then FA∧C ≡ GB∧C and FA∧D ≡ GB∧D.
(iii) If Ci implies that the first i inputs are distinct, then R

C ≡ BC and R|C ≡ B.

3.3 Cascades and Invocations of Random Systems

Definition 8. The cascade of an (X ,Y)-random system F and a (Y,Z)-random
system G, denoted FG, is the (X ,Z)-random system defined as applying F to
the input sequence and G to the output of F (cf. Fig. 3). For MESs A and B
defined for F and G, respectively, A, B, and A∧B are defined naturally for FG.

9 Informally, one connects an independent component, characterized by
PG

Di|XiY iCiDi−1
, to the input and output of G and to the indicator random

variable of C which generates the indicator random variable for D.
10 F|A ≡ G|C should be read as: there exists H such that F|A ≡ H and G|C ≡ H.
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Fig. 4. A random system C(.) invoking an internal random system F, then the com-
bined random system is C(F).

Lemma 3. (i) For any source S and any (compatible) E we have ES ≡ S.
(ii) If F|A ≡ G, then EF|A ≡ EG for any compatible E.

We denote by C(.) a random system that invokes an internal random system
(with specified input and output alphabets). If the internal system is F, then the
combined random system is C(F) (cf. Fig. 4). For the evaluation of the output
Yi for a given input Xi to C(F), F is called zero, one, or several times, where
the inputs to F and even the number of such inputs may depend on the state of
C(.), hence on X1, . . . , Xi.

11

An MES, say C = C0, C1, C2, . . ., can be defined also for such a system
C(.). If A is an MES defined for the invoked F, one can associate a natural
corresponding MES Ã = Ã0, Ã1, Ã2, . . . with C(F), where Ãi is the event that
the A-event occurs for F up to the evaluation of the ith input to C(F). If F
is called t times for each input to C(F), then Ãi = Ati. Let mC(.)(k) be the
maximal number of evaluations of any internal system F for any sequence of k
inputs to C(F), if it is defined.

The following lemma states the simple fact that by replacing a random system
by an equivalent random system, the overall behavior of a system does not
change. Let C(.) be any random system and let F and G be input/output
compatible with C(.). Let A,B, and C be defined for C(.), F andG, respectively.

Lemma 4. (i) If F ≡ G, then C(F) ≡ C(G) and C(F)C ≡ C(G)C.

(ii) If FA ≡ GB, then C(F)Ã ≡ C(G)B̃ and C(F)Ã∧C ≡ C(G)B̃∧C.12

11 Formally, C(.) is not a random system without specifying an argument F.
12 Note, however, that F|A ≡ G does not imply C(F)|Ã ≡ C(G).
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Fig. 5. Distinguishing two (X ,Y)-random systems F and G by means of a distinguisher
D. The figure shows the two random experiments under consideration.

Proof. The lemma follows directly from the fact that the probability distri-
bution of all random variables and events occurring in C(.), when including
A = A0, A1, A2, . . . (or B = B0, B1, B2, . . .), is the product of conditional distri-
butions defined by the random system and byC(.). The conditional distributions
defined by C(.) are trivially identical and those defined by F (orG) are identical
in both cases because of FA ≡ GB. ut

4 Indistinguishability Proofs for Random Systems

4.1 Distinguishers for Random Systems

We consider the problem of distinguishing two (X ,Y)-random systems F and
G by means of a computationally unbounded, possibly probabilistic adaptive
distinguisher algorithm (or simply distinguisher) D asking at most k queries,
for some k (cf. Fig. 5). The distinguisher generates X1 as an input to F (or
G), receives the output Y1, then generates X2, receives Y2, etc. Finally, after
receiving Yk, it outputs a binary decision bit. More formally:

Definition 9. A distinguisher for (X ,Y)-random systems is a (Y,X )-random
system D together with an initial value X1 ∈ X which outputs a binary decision
value after some specified number k of queries to the system. Without loss of
generality we can assume that D outputs a binary value after every query and
that this sequence is monotone (0 never followed by 1), i.e., we can define the
MES E = E0, E1, E2, . . . where Ei is the event that D outputs 1 after the i-th
query. Application of D to a random system F (cf. Fig. 5) means that X1 is the
first input to F, the i-th input and output of D are Yi and X̃i, respectively, and
Xi := X̃i−1 for i ≥ 2 is the i-th input to F.

Definition 10. The maximal advantage, of any distinguisher issuing k queries,
for distinguishing F and G, is

∆k(F,G) := max
D

∣
∣PDF(Ek)− PDG(Ek)

∣
∣ .

We summarize a few simple facts used in many security proofs. The inequal-
ities hold for any compatible random automata or random systems.

Lemma 5. (i) ∆k(F,H) ≤ ∆k(F,G) +∆k(G,H).
(ii) ∆k(C(F),C(G)) ≤ ∆k′(F,G), where k

′ = mC(.)(k).



(iii) ∆k(FF
′,GG′) ≤ ∆k(F,G) +∆k(F

′,G′).
(iv) (Informal.) If ∆k(F,G) is negligible in k and G is computationally indis-
tinguishable from H, then F is also computationally indistinguishable from H.

Proof. (i) follows by a simple application of the triangle inequality |c − a| ≤
|b− a|+ |c− b| for any real a, b, and c, applied to a = PDF(Ek), b = PDG(Ek),
and c = PDH(Ek) for any distinguisher D. To prove (ii), suppose for the sake
of contradiction that there exists a distinguisher for C(F) and C(G), asking at
most k queries, with advantage greater than ∆k′(F,G). By simulating C(.) one
can construct a distinguisher for F and G with the same advantage, asking at
most k′ queries. This is a contradiction. Now we prove (iii). From (ii) we have
∆k(FF

′,GF′) ≤ ∆k(F,G) and ∆k(GF
′,GG′) ≤ ∆k(F

′,G′). Now we apply (i)
to the random systems FF′, GF′, and GG′. The proof of (iv) is omitted. ut

It is easy to see that the described view of a distinguisher D is equivalent
to an alternative view where D is given access to a blackbox containing F or G
with probability 1

2 each, where D must guess which of the two is the case. The
best success probability with k queries is 1

2 +
1
2∆k(F,G).

4.2 Indistinguishability Proofs Based on Conditional Equivalence

In this section we prove that if F|A ≡ G for some MES A (or if FA ≡ GB),
then a distinguisher D for distinguishing F from G with k queries (according
to the view described above) must provoke the event Ak in F in order to have a
non-zero advantage. Informally this could be proved by assuming a genie sitting
inside F and beeping when it sees that Ai occurs for some i. The genie’s help
can only help since it could always be ignored, and given the genie’s help, the
optimal strategy would be to guess “F” if the genie beeps and to flip a fair coin
between F and G otherwise. Therefore we consider distinguishers D that try to
provoke the event Ak.

Definition 11. For a random system F with MES A, let

ν(F, Ak) := max
D

PDF(Ak)

be the maximal probability, for any adaptive strategy D, of provoking Ak in F.
Moreover, let

µ(F, Ak) := max
xk

PF

Ak|Xk
(xk)

be the maximal probability of Ak for non-adaptive algorithms querying F.

Lemma 6. (i) µ(F, Ak) ≤ ν(F, Ak).
(ii) If FA ≡ GB, then ν(F, Ak) = ν(G, Bk).
(iii) ν(F, Ak ∨Bk) ≤ ν(F, Ak) + ν(F, Bk) if A and B are defined for F.
(iv) For any system C(.) with MES C, invoking F, ν(C(F), Ck) ≤ ν(C(.), Ck)

13

13 ν(C(.), Ck) is defined as the maximal probability of provoking event Ck in C(.) for
algorithms with full control of the input to C(.) and the internal interface.



and ν(C(F), Ãk) ≤ ν(F, Ak′), where k
′ = mC(.)(k).

(v) If A is defined on the inputs of F, then µ(EF, Ak) = µ(E, Ak) for any E.

Proof. (i) holds because the set of adaptive strategies includes the non-adaptive
ones. Claim (ii) follows from ν(F, Ak) = 1 − ν(F, Ak) and ν(G, Bk) = 1 −
ν(G, Bk), using ν(F, Ak) = ν(G, Bk) which follows from Lemma 4. Claim (iii)
is a simple application of the union bound together with the fact that if different
systems D can be used to provoke Ak and Bk, this can only improve the success
probability. Claim (iv) follows from the fact that C(.) can be used as a possible
algorithm for provoking Ak in F, and similarly F can be used as the random
system in an algorithm for provoking Bk in C(.). Claim (v) is trivial. ut

Lemma 7. If FA ≡ GB, then for any (compatible) distinguisher D and any
event Ek defined in D after k queries,

∣
∣PDF(Ek)− PDG(Ek)

∣
∣ ≤ PDF(Ak) = PDG(Bk).

Proof. Lemma 4 gives PDF(Ek ∧Ak) = PDG(Ek ∧Bk) ≤ PDG(Ek). Thus

PDF(Ek) = PDF(Ek ∧Ak) + PDF(Ek ∧Ak) ≤ PDG(Ek) + PDF(Ak).

PDG(Ek) ≤ PDF(Ek) + PDG(Bk) follows by symmetry, and PDF(Ak) =
PDG(Bk) follows from Lemma 4. ut

Theorem 1. (i) If FA ≡ GB or F|A ≡ G, then ∆k(F,G) ≤ ν(F, Ak).
(ii) If FB|A ≡ GC, then ∆k(F,G) ≤ ν(F, Ak ∨Bk) ≤ ν(F, Ak) + ν(G, Ck).
(iii) If F|A ≡ G|C and PF

Ai|XiY i−1Ai−1

≤ PG
Ci|XiY i−1Ci−1

for i ≥ 1, then

∆k(F,G) ≤ ν(F, Ak).

Proof. The first claim of (i) is a special case of Lemma 7, where D is the dis-
tinguisher with MES E . The second claim of (i) is a special case of (ii), which
is proved as follows. According to Lemma 1 (iii) we have FA∧B ≡ GC∧D for
some MES D defined for G. Thus we can apply (i). The last inequality of (ii)
follows because for any D, PDF(Ak ∨Bk) ≤ PDF(Ak)+P

DF(Bk|Ak), and since
if PDF(Ak) and P

DF(Bk|Ak) can be maximized separately by choices of D, this
is an upper bound on maxD PDF(Ak ∨ Bk). Moreover, maxD PDF(Bk|Ak) =
maxD PDG(Ck) = ν(G, Ck). To prove (iii), adjoin the MES D to G as in
Lemma 1 (iv) and apply (i) of this theorem. ut

4.3 Adaptive Versus Non-Adaptive Strategies

It is generally substantially easier to analyze non-adaptive as opposed to adap-
tive strategies, e.g. for distinguishing two random systems. The following theo-
rem states simple and easily checkable conditions for a random system F with
MES A which implies that no adaptive strategy for provoking Ak is better than
the best non-adaptive strategy. The optimal strategy hence selects (one of) the
fixed input sequence(s) xk that minimizes PF

Ak|Xk(x
k) (or equivalently, maxi-

mizes PF

Ak|Xk
(xk)). Hence the system D (over choices of which the definition of

ν(F, Ak) maximizes) can be eliminated from the analysis.



Theorem 2. If a random system F with MES A satisfies

PF
Ai|XiY i−1Ai−1

= PF
Ai|XiAi−1

(1)

for i ≥ 1, which holds if
PF
Y i|XiAi

= PG
Y i|Xi (2)

for i ≥ 1, for some system G (actually, G ≡ F|A), then ν(F, Ak) = µ(F, Ak).

Corollary 1. (i) If A is defined on the inputs of F, then F satisfies (1).
(ii) If F with A satisfy (1), then so does FG with A for any (compatible) G.
(iii) If ν(F, Ak) = µ(F, Ak), then ν(FG, Ak) = µ(F, Ak) for any G.
(iv) If A is defined on the inputs of F and F|A ≡ U for a source U, then
ν(EF, Ak) = µ(E, Ak) for any E.
(v) If Ai (Bi) is defined on the inputs (outputs) of F and FB|A ≡ UB for a
source U, then ν(EF, Ak ∨Bk) ≤ µ(E, Ak) + µ(U, Bk) for any E.
(vi) If A is defined on the inputs of F and F|A ≡ B, then for any random
system C(.) such that C(B) ≡ B, ν(C(F), Ak) = µ(C(F), Ak).

4.4 Exploiting Independent Events

Consider a random system C(., .) invoking two independent random systems F
and G with MESs A and B, respectively. For each input to C(F,G), F and G
can be called several times. For a given k, let k′ and k′′ be the maximal number
of invocations of F and G, respectively, for any input sequence to C(F,G) of
length k.

Theorem 3. If C(F,G)|(Ã ∨ B̃) ≡ H, then

∆k(C(F,G),H) ≤ ν(F, Ãk′) · ν(G, B̃k′′).

Proof. We have

∆k(C(F,G),H) ≤ ν(C(F,G), Ãk′ ∧ B̃k′′) = max
D

PDCFG(Ãk′ ∧ B̃k′′)

= max
D

(

PDCFG(Ãk′) · P
DCFG(B̃k′′ |Ãk′)

)

≤ max
D

PDCFG(Ãk′)
︸ ︷︷ ︸

=ν(C(F,G),Ã
k′

)≤ν(F,Ã
k′

)

·max
D

PDCFG(B̃k′′ |Ãk′)
︸ ︷︷ ︸

≤ν(G, ˜B
k′′

)

.

The last inequality holds because in the expression on the last line the two
maximizations over choices of D are independent, as opposed to the pre-

vious line. We have ν(C(F,G), Ãk′) ≤ ν(F, Ãk′) by Lemma 6 (iv) and

maxD PDCFG(B̃k′′ |Ãk′) ≤ ν(G, B̃k′′) because for every particular choices for

D, C, and F, the probability of B̃k′′ is at most ν(G, B̃k′′), whether or not Ãk′

occurs for these choices. Thus the bound on ν(G, B̃k′′) also holds on average. ut



Corollary 2. Let F with MES A and G with MES B be random permutations

such that F|A ≡ P and G|B ≡ P. Then ∆k(FG,P) ≤ ν(F, Ãk′) · ν(G, B̃k′′).

Proof. We have FG|(A ∨ B) ≡ P, hence Theorem 3 can be applied.14 ut

For two (X ,Y)-random automata F and G and a group operation ? on Y,
let F ?G denote the random automaton obtained by using F and G in parallel
(with the same input) and combining the two outputs using ?.

Corollary 3. If F|A ≡ G|B ≡ R, then ∆k(F ?G,R) ≤ ν(F, Ak) · ν(G, Bk).

Proof. We have (F ?G)|(A ∨ B) ≡ R, hence Theorem 3 can be applied. ut

5 Applications to Quasi-Random Functions

5.1 Quasi-Random Functions

Definition 12. For a function d : N → R+, a random function or ran-
dom system F is called a d(k)-quasi-random function (d(k)-QRF for short) if
∆k(F,R) ≤ d(k) for k ≥ 1. Quasi-random permutations, beacons and oracles
are defined analogously, replacing R by P, B, and O, respectively.

By concatenating, for any w, 2w outputs of a d(k)-QRF {0, 1}l → {0, 1}m one
obtains a d̃(k)-QRF {0, 1}l−w → {0, 1}2

wm for d̃(k) = d(2wk), thus increasing
the output size by a factor 2w at the expense of reducing the input size by w
bits.
The problem considered in this section is to expand the input size substan-

tially at the sole expense of increasing d(k) moderately, i.e., to expand a given
supply of random bits into a much larger supply of apparently random bits.
This general problem is important because the core of a cryptographic system

based on a PRF corresponds to the construction of a quasi-random system of
the same type from a URF R. In any such construction, R can be replaced by a
QRF, possibly constructed recursively from smaller QRF’s, where at the lowest
level the randomness is replaced by the PRF. This can for instance be used to
avoid the birthday problem when collisions are a security issue (see below).
For any d(k)-QRF G : {0, 1}L → {0, 1}M constructed from a URF R :

{0, 1}l → {0, 1}m it is obvious that d(k) cannot be negligible for k > 2lm/M ,
i.e., when the internal randomness is exhausted. One could achieve d(k) = 0
for up to k ≈ 2lm/M by defining G as the evaluation of a polynomial whose
coefficients are taken from the function table of R, but this construction would
be exponentially inefficient since the entire table of R must be read for each
evaluation of G. Efficiency, i.e., the number of evaluations of R required for one
evaluation ofG, is an important parameter of a construction. There is a trade-off
between the efficiency and the degree d(k) of indistinguishability.

14 The corollary also follows from Vaudenay’s nice proof [22] (stated in our terminology)
that ∆k(FG,P) ≤ ∆k(F,P) ·∆k(G,P) for two random permutations F and G.



5.2 An Efficient Construction of a Quasi-Random Function

We now propose the construction of an efficient QRF C(F) : {0, 1}L → {0, 1}m

from a QRF F : {0, 1}l → {0, 1}m, for LÀ l. The basic idea for the definition of
C(.) is to map an argument to C(.) to a list of t arguments for F and to XOR
the corresponding values of F. In fact, we can (but need not) use the convention
that if a list contains a value more than once, these values are ignored, resulting
in fewer than t values being XORed.
One can associate, in a natural manner, with each such set of t values a

characteristic vector, with at most t 1-entries, in the vector space {0, 1}2
l

. The
described XORing operation corresponds to computing the scalar product of
the characteristic vector with the function table of F (interpreted as a vector in
({0, 1}m)2l).
Hence Lemma 11 in the Appendix implies that, given the event that these k

vectors (for the k arguments to C(.)) are linearly independent, the construction
is equivalent to a URF (and also a beacon). Therefore Theorem 1 (i) can be
applied.
It only remains to find a mapping H : {0, 1}L → S, where S is the subset

of the vector space {0, 1}2
l

consisting of the vectors of weight at most t. The
internal randomness of H can actually be taken from the function table of F
(say for the z highest values, where z is an appropriate small number). For this
to be secure, the mapping H must be restricted slightly to generate vectors with
no 1-entry in the last z coordinates.
Lemma 12 in the Appendix shows that H can be implemented by using

a 2t-wise random function E : {0, 1}L × {1, . . . , t} → {0, . . . , 2l− z−1}. For
an argument x ∈ {0, 1}L of H, E(x, i) for 1 ≤ i ≤ t is evaluated and the
corresponding characteristic vector is formed.15 Note that the z unit vectors
with 1-entries in one of the top z positions must also be taken into account in
Lemma 12, but they are of course linearly independent of the k vectors discussed
above.
Hence we have outlined the proof of the following theorem.

Theorem 4. For a d(k)-QRF F, C(F) is a d̃(k)-QRF for d̃(k) = k
(
kt
2l

)t
+

d(tk + z).

The term k(kt/2l)t is very small, even for k À 2l/2 for which collisions among
random values in the input space of F would be very probable. This was called
“security beyond the birthday barrier” in [1].16 Already for moderate values of
t, the described construction achieves a negligible d̃(k) for k ≈ 2lt/(t+1), i.e., far
beyond the birthday barrier.
The above construction ideas apply in other contexts as well, for instance the

use of some values of a PRF as the key of another component in a manner that

15 Such a function E can for instance be obtained by evaluation of a polynomial of
degree 2t over an appropriate finite field of size at least t2L.

16 This fact was pointed out already in [12], Theorem 2, where the basic idea of XOR-
ing several values of a function to go beyond the birthday bound was proposed.



does not compromise security. Note that the security of the XOR-MAC [3] and of
other constructions based on linearly independent inputs (e.g. [1]) follow directly
from Lemma 11 as well as a (non-adaptive) analysis of the linear independence
event. For the XOR-MAC the analysis of this event is trivial.

6 Applications to MAC’s

A secure MAC-scheme is a PRF M → {0, 1}l for M = ∪Li=1{0, 1}
i for some

maximal message length L and an appropriate security parameter l. If L = ∞,
then this corresponds to a pseudo-random oracle.
A very natural construction originating in [23] and used in many later papers

(e.g. see [5, 20] and the discussion and references therein) is to apply an ε-almost
universal hash function17 U :M→ X for some X to the message and to apply a
PRF F : X → {0, 1}l to the result. Such a scheme has two keys, those ofU and F,
but in fact theU-key can be obtained by evaluating F for an appropriate number
z of fixed arguments, as follows easily from our framework. More precisely, U(.)
is a random system18 invoking F some z times to set up the key of U and then
applies it to the input.19 Of course, the key can be cached so that only one
evaluation of F is needed for each input.
The security proof of such a scheme is trivial in our framework. The following

theorem implies that U(F) is a computationally secure MAC for any PRF F.

Theorem 5. For a d(k)-QRF F, U(F) is a d̃(k)-QRO for d̃(k) = ε(k+ z)2/2+
d(k + z).

Proof. Define Ai as the event that all inputs to F are distinct, includ-
ing the z fixed values needed for the key setup for U. Lemma 5 (i) im-
plies ∆k(U(F),R) ≤ ∆k(U(F),U(R)) + ∆k(U(R),R). Lemma 5 (ii) implies
∆k(U(F),U(R)) ≤ d(k + z). Moreover, U(R)|A ≡ R and hence, using Theo-
rem 1 (i), ∆k(U(R),R) ≤ ν(U(R), Ak). Using Corollary 1 (vi) together with
R|A ≡ B and U(B) ≡ B gives ν(U(R), Ak) = µ(U(R), Ak), hence one can
restrict attention to non-adaptive strategies. Now, for any fixed input sequence
to U(R), Ak is the union of

(
k+z
2

)
< (k + z)2/2 collision events, each with

probability at most ε. Application of the union bound concludes the proof. ut

As a further demonstration of the general applicability of the framework, we
give a simple security proof of a generalized version of the CBC-MAC (e.g., see
Fig. 6 and [2]), with which we assume the reader is familiar. We do not wish to
make an a priori assumption about the maximal message length, hence we need
a prefix-free encoding σ : {0, 1}∗ → {0, 1}∗ of the binary strings which does not
significantly expand the length. A good choice is to prepend a block encoding

17 P (U(x) = U(x′)) ≤ ε for any x 6= x′. Actually, U must satisfy P (U(x) = y) ≤ ε for
any x and y (which is usually the case).

18 This is a cascade UF, but this notation is incorrect because U depends on F.
19 As an alternative, a fixed value of F could be used as the key to generate the key of

U pseudo-randomly. The security of such a scheme follows also from our analysis.
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Fig. 6. The CBC-MAC. The ({0, 1}∗, {0, 1}l)-random system C(F) is defined by ap-
plying some prefix-free encoding σ to the message, then padding the result with 0’s to
complete the last block, then applying the CBC feedback construction with a random
function (or more generally a random automaton) F, and taking the last output (for a
given message) as the MAC-value for that message.

the length of the message, but from a theoretical viewpoint this restricts the
message length and hence does not yield a true quasi-random oracle.20

Let C(F) be the ({0, 1}∗, {0, 1}l)-random system defined by applying σ to
the message, then padding with 0’s to fill the last block, and then applying the
CBC-MAC with a random function (or more generally a random system) F (cf.
Fig. 6). A result similar in spirit to the following theorem was stated (without
proof) independently by Petrank and Rackoff [17].

Theorem 6. If F is a d(k)-QRF, then C(F) is a d̃(k)-quasi-random oracle for
d̃(k) = n22−(l+1) + d(n), where n is the total number of blocks of all k messages
issued by the distinguisher.

Proof. Lemma 5 (i) implies ∆k(C(F),O) ≤ ∆k(C(F),C(R)) + ∆k(C(R),O).
Lemma 5 (ii) implies ∆k(C(F),C(R)) ≤ d(n). Consider the event Ai that all
inputs to F are distinct, up to and including the processing of the i-th message,
except those inputs to F that are trivially equal because the prefix of the actual
message processed so far is also a prefix of a previous message. Because due
to σ no (encoded) message is a prefix of another message, Ai implies that for
a given message xi the last input to F (for xi) is distinct from all previous
inputs to F (for x1, . . . , xi−1). Hence C(R)|A ≡ O and by Theorem 1 (i) we
have ∆k(C(R),O) ≤ ν(C(R), Ak). Equation (2) is satisfied (for G = B) for all

i since P
C(R)
Y i|XiAi

is the uniform distribution over {{0, 1}l}i for all input values

(resulting in Ai being satisfied). Hence ν(C(R), Ak) = µ(C(R), Ak) and one can
restrict attention to non-adaptive strategies, which are easy to analyse.

20 A true prefix-free encoding σ : {0, 1}∗ → {0, 1}∗ can be obtained as follows. Let n
be the standard binary representation of the integer n, and let l(x) be the length
of the binary string x. It is not difficult to see that the mapping σ : {0, 1}∗ →
{0, 1}∗ defined by r = l(l(x))−1 and σ(x) := 0r1||l(x)||x is prefix-free. For instance,
σ(1100010111001) = 000111011100010111001. This encoding is efficient: l(σ(x)) ≈
l(x)+2 log l(x). It can be improved to l(σ(x)) ≈ l(x)+log l(x) by using the encoding
x 7→ σ(l(x))||x.



For any given k input messages x1, . . . , xk of arbitrary lengths, but consisting
of a total of n blocks, Ak corresponds to the event that a collision occurs among
n − w(xk) independent and uniformly random values, where w(xk) is the total
number of blocks in the messages x1, . . . , xk ∈ ({0, 1}

l)∗ which belong to a prefix
(say of xi) that was also the prefix of a previous message x1, . . . , xi−1 (see above),

i.e., P
C(R)

Ak|Xk
(xk) = pcoll(2

l, n− w(xk)) ≤ pcoll(2
l, n) ≤ n22−(l+1).21 ut

7 Applications to the Analysis of Random Permutations

7.1 Random Permutations

For a random permutation22 Q, the inverse is also a random permutation and
is denoted by Q−1. Remember that P denotes a uniform random permutation.
Let (E,G) be any pair of (possibly dependent23) random permutations.

Lemma 8. (i) EPG ≡ P. Moreover, if Q|A ≡ P, then EQG|A ≡ P.
(ii) For a MES C defined on the outputs of (X ,Y)-random systems such that Ci

implies that the first i outputs are distinct, we have R|C ≡ P|C and RC ≡ PC∧D

for some MES D adjoined to P.

Proof. EPG ≡ P is a special case of the second statement when Ai is the
certain event for all i. We have EQG|A ≡ EPG for any two fixed permutations
E and G because E and G simply correspond to relabelings of the input and
output alphabets of Q. Hence this equivalence also holds if the pair (E,G) is
a random variable. Now we prove (ii). We have R|C ≡ P|C since conditioned
on the output being distinct, both R and P generate completely new random
outputs. Moreover, PR

Ci|XiY i−1Ci−1

≤ PP
Ci|XiY i−1Ci−1

is a simple consequence of

the fact that for a given X i with distinct values (i.e., dist(X1, . . . , Xi)), only
Y i with distinct values are consistent with P, whereas other values for Y i are
consistent with R, but Ci cannot hold for these Y

i. Now apply Lemma 1 (iv). ut

Definition 13. A pairwise independent permutation (PIP) [18] Q is a random
permutation such that for any two inputs x and x′, Q(x) and Q(x′) are a com-
pletely random pair of (distinct) values.24

21 The proof goes through for more general versions of the CBC-MAC. For example,
in addition to letting the input to F be the current message block XORed with the
previous output of F, as in the CBC-MAC, one could XOR in any further function
of all the previous message blocks and all the previous outputs of F (except the last).
Such a modification could make sense if one considers the risk that F might not be
a PRF and hence wants to build in extra complexity for heuristic security.

22 Much of this section can be generalized to the more general concept of a permu-
tation random system, i.e., a (X ,X )-random system Q which for all i is a random
permutation on X i.

23 However, the pair (E,G) is, as always, assumed to be independent of Q.
24 A PIP can for instance be implemented by interpreting all quantities as elements of

a finite field F and setting Q(x) = ax+ b for random a, b ∈ F with a 6= 0.
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Fig. 7. Left side: Notation for random systems whose inputs and outputs are pairs.
Ai := dist(T i) and Bi := dist(U i). Right side: Special case; two Feistel rounds with
random systems H and K, denoted M(H,K).

7.2 Two Feistel Rounds with Random Functions

Let R be a set and let ? be a group operation on R. Typically R = {0, 1}l for
some l and ? is bitwise XOR. We now consider permutations on R2, i.e., on
pairs which can be considered as “left” and “right” halves, or as high and low
part when the pair is interpreted as a single element of, say, a field. For any
random function F : R2 → R2 we can define the following random variables
(see Figure 7, left): (Si, Ti) is the i-th input and (Ui, Vi) are the i-th output. We
define two MES, Ai := dist(T

i) and Bi := dist(U
i), used throughout Section 7.

For two random functions R → R,H andK, letM(H,K) be the R2-random
permutation defined by two Feistel rounds with H and K (see Figure 7, right).25

More precisely, Ui = Si ?H(Ti) and Vi = Ti ?K(Ui). Let R : R
2 → R2 be a

URF, and let R′ and R′′ be URF’s R → R. We have

Lemma 9. M(R′,R′′)A∧B ≡ BA∧B ≡ RA∧B ≡ PA∧B∧D for some MES D.

Proof. Given Ai, the joint distribution of (Ui, Vi) and Bi is identical for
M(R′,R′′), for B, and for R, independent of the input: Ui and Vi are indepen-
dent new random values and Bi is determined by U

i. Hence M(R′,R′′)A∧B ≡
BA∧B ≡ RA∧B. The last equivalence follows from RB ≡ PB∧D (Lemma 8 (ii))
and because A is defined on the inputs and thus Lemma 2 (ii) can be applied. ut

7.3 Mono-directional Luby-Rackoff and Naor-Reingold

The following theorem generalizes the one-directional Luby-Rackoff [10] and
Naor-Reingold [18] results (cf. Fig. 8 left) and follows easily from our frame-
work.

Theorem 7. Let L := EM(R′,R′′) for some random permutation E. Then
∆k(L,P) ≤ µ(E, Ak) + pcoll(|R|, k). If E is a PIP (Naor-Reingold) or if E
is a Feistel round with another random function R′′′ (Luby-Rackoff), then
∆k(L,P) ≤ 2 · pcoll(|R|, k) < k2/|R|.

25 This can easily be generalized from random functions to random automata.
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Fig. 8. Illustration for the one-directional (left) and bidirectional (right) Luby-Rackoff
and Naor-Reingold results and generalizations thereof.

Proof. Using Lemma 9 and Lemma 4 we obtain

LA∧B ≡ EBA∧B ≡ EPA∧B∧D (3)

(with the events Ai defined internally). Lemma 8 (i) yields the first step of

∆k(L,P) = ∆k(L,EP) ≤ ν(L, Ak ∨Bk) = ν(EB, Ak ∨Bk)

and the next two steps follow from (3) and Theorem 1 (i), and from (3) and
Lemma 6 (ii), respectively. Now obviously (and by Corollary 1 (v)), ν(EB, Ak ∨
Bk) ≤ µ(E, Ak) + µ(B, Bk) where µ(B, Bk) = pcoll(|R|, k). The second claim
follows by a trivial analysis of a collision event among k random values. ut

Remark. Theorem 7, besides being more general, is also slightly stronger than
that of [18] and [10] (see also [9]) where an additional term k2/(|R|)2 appears on
the right side. This weaker bound would in our context be obtained by proving
∆k(L,R) < k2/|R| and then using ∆k(R,P) ≤ k2/|R|2. One could also append
an additional random permutation G, as follows directly from Corollary 1 (iii).

7.4 Bidirectional Permutations

Definition 14. For an X -random permutation Q, let 〈Q〉 be the bidirectional
permutation26 Q with access from both sides (i.e., one can query both Q and
Q−1). More precisely, 〈Q〉 is the random function X × {0, 1} → X defined as
follows:

〈Q〉(Ui, Di) =

{
Q(Ui) if Di = 0
Q−1(Ui) if Di = 1 .

If A is defined for Q, A can also be defined naturally for 〈Q〉: Let Vi :=
〈Q〉(Ui, Di), and let Xi and Yi be the i-th input and output of Q (i.e., if
Di = 0, then Xi = Ui and Yi = Vi, and if Di = 1, then Yi = Ui and
Xi = Vi). Recall that P

Q

YiAi|XiY i−1Ai−1

= PQ

Yi|XiY i−1Ai−1

· PQ

Ai|XiY iAi−1

. Now

we let P
〈Q〉
Ai|XiY iAi−1

:=PQ

Ai|XiY iAi−1

.

26 This definition is motivated by considering a block cipher which in a mixed chosen-
plaintext and chosen-ciphertext attack can be queried from both sides.



Lemma 10. For any random permutatio F and G,
(i) ∆k(F,G)≤∆k(〈F〉, 〈G〉).
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(ii) If F ≡ G, then F−1 ≡ G−1 and 〈F〉 ≡ 〈G〉.
(iii) More generally, FA ≡ GB implies 〈F〉A ≡ 〈G〉B.

Proof. Claim (i) follows from the fact that being able to query from both sides
can only help the distinguisher. Proof of claim (ii): the behavior of a random
permutation Q uniquely determines the behavior of Q−1 and hence also of 〈Q〉.
Claim (iii) follows because if FA ≡ GB, then PF

Ai|XiY iAi−1

= PG
Bi|XiY iBi−1

and

thus P
〈F〉
Ai|UiDiV iAi−1

= P
〈G〉
Bi|UiDiV iBi−1

. ut

The following theorem generalizes Theorem 3.2 of [18] in several ways. The
proof is omitted.

Theorem 8. Let L be defined as L := EM(R′,R′)G−1 (cf. Fig. 8 right).
(i) If E and G−1 are independent PIP’s, then ∆k(〈L〉, 〈P〉) < k2/|R|.
(ii) If E is a PIP and G = E−1, then ∆k(〈L〉, 〈P〉) < 4k

2/|R|.
(iii) If R′ = R′′, i.e., L := EM(R′,R′)E−1, then ∆k(〈L〉, 〈P〉) < 8k

2/|R|.
(iv) Moreover, if R = GF (q) is a field and E is also derived from R′ by a linear
polynomial ax+ b over GF (q2) with a and b defined by a = (R(ξ1)||R(ξ2)) and
b = (R(ξ3)||R(ξ4)) for some fixed ξ1, ξ2, ξ3, ξ4 ∈ GF (q), then ∆k(〈L〉, 〈P〉) <
8(k + 1)2/|R|+ 1/|R|2.

8 Conclusions

We have described a general framework for indistinguishability proofs of the
most general form of random systems. The purpose of the framework is to prove
results at the most general and abstract level, and this leads to substantial
simplifications in actual security proof (making them for example tractable for a
textbook) and to new security proofs that before may have appeared unrealistic.
It would be a pleasure to see the framework at work in future security proofs.
We suggest as an open problem to find constructions of QRF’s from QRF’s

better than that of Section 5, i.e., with either higher security (degree of indistin-
guishability) or lower complexity (number of evaluations of F), or both. However,
it is possible that this construction is quite close to optimal.
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Appendix

Lemma 11. Let U = [U1, . . . , Un] with Ui ∈ GF (q) be a vector of random
variables with uniform distribution GF (q)n, and define the random function K :
GF (q)n → GF (q) as the scalar product of the input vector x = [x1, . . . , xn] ∈
GF (q)n and U,

K(x) = 〈x,U〉 =

n∑

j=1

xjUj .

ThenKA≡RA≡BA with Ai as the event that x1,. . .,xi are linearly independent.

Proof. For a list vk = [v1, . . . ,vk] of vectors in a finite-dimensional vector space,
let span(vk) denote the subspace spanned by v1, . . . ,vk and let dim(v

k) denote
its dimension. If v1, . . . ,vk are linearly independent, then dim(v

k) = k.
Let T ⊆ GF (q)n be a set of input vectors to K, and let K(T ) denote the

corresponding list of values of K. We prove28 that H(K(T )) = dim(T )r, where
r = log q. This clearly implies that for any set of linearly independent vectors the
corresponding function values have maximal entropy, as is to be proved. Linear
dependence implies functional dependence, henceH(K(T )) = H(K(span(T ))) =
H(K(span(B))), where B is any basis of span(T ) and has cardinality B =
dim(T ). Thus H(K(T )) ≤ dim(T )r. On the other hand, it follows from lin-
ear algebra that T can be complemented by a set T ′ of size n − dim(T ) such
that T ∪T ′ spans the entire space GF (q)n. Hence H(K|K(T )) ≤ (n−dim(T ))r.
Because H(K) = H(K(T )) + H(K|K(T )) = nr we must have equality in the
two previous inequalities. ut

Let Sn := {1, . . . , n}. The characteristic vector in {0, 1}
n of a subset S′ of Sn

has a 1 at position i if and only if i ⊆ S ′. For multi-sets or lists of elements of
Sn, we define the characteristic vector to have a 1-entry only for those elements
of Sn that occur exactly once.
The proof of following lemma is straight-forward.

Lemma 12. If kt elements of Sn are selected b-wise independently (for b ≥ 2t)
and interpreted as k lists of t elements, Vi = [Vi1, . . . , Vit] for 1 ≤ i ≤ k, then
their characteristic vectors W1, . . . ,Wk are linearly independent with probability

at least 1− k
(
kt
n

)t
.

28 See [6] for definitions of the entropy H(X) and the conditional entropy H(X|Y ).


