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Abstract

One of the biggest challenges in the development and deployment of spoken dialogue
systems is the design of the spoken language generation module. This challenge arises
from the need for the generator to adapt to many features of the dialogue domain, user
population, and dialogue context. A promising approach is trainable generation, which
uses general-purpose linguistic knowledge that is automatically adapted to the features of
interest, such as the application domain, individual user, or user group. In this paper
we present and evaluate a trainable sentence planner for providing restaurant information
in the MATCH dialogue system. We show that trainable sentence planning can produce
complex information presentations whose quality is comparable to the output of a template-
based generator tuned to this domain. We also show that our method easily supports
adapting the sentence planner to individuals, and that the individualized sentence planners
generally perform better than models trained and tested on a population of individuals.
Previous work has documented and utilized individual preferences for content selection, but
to our knowledge, these results provide the first demonstration of individual preferences for
sentence planning operations, affecting the content order, discourse structure and sentence
structure of system responses. Finally, we evaluate the contribution of different feature
sets, and show that, in our application, n-gram features often do as well as features based
on higher-level linguistic representations.

1. Introduction

One of the most robust findings of studies of human-human dialogue is that people adapt
their interactions to match their conversational partners’ needs and behaviors (Goffman,
1981; Brown & Levinson, 1987; Pennebaker & King, 1999). People adapt the content of
their utterances (Garrod & Anderson, 1987; Luchok & McCroskey, 1978). They choose
syntactic structures to match their partners’ syntax (Levelt & Kelter, 1982; Branigan,
Pickering, & Cleland, 2000; Reitter, Keller, & Moore, 2006; Stenchikova & Stent, 2007),
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and adapt their choice of words and referring expressions (Clark & Wilkes-Gibbs, 1986;
Brennan & Clark, 1996). They also adapt their speaking rate, amplitude, and clarity of
pronunciation (Jungers, Palmer, & Speer, 2002; Coulston, Oviatt, & Darves, 2002; Ferguson
& Kewley-Port, 2002).

However, it is beyond the state of the art to reproduce this type of adaptation in
the spoken language generation module of a dialogue system, i.e. the components that
handle response generation and information presentation. A standard generation system
includes modules for content planning, sentence planning, and surface realization (Kittredge,
Korelsky, & Rambow, 1991; Reiter & Dale, 2000). A content planner takes as input a
communicative goal; it selects content to realize that goal and organizes that content into
a content plan. A sentence planner takes as input a content plan. It decides how the
content is allocated into sentences, how the sentences are ordered, and which discourse cues
to use to express the relationships between content elements. It outputs a sentence plan.
Finally, a surface realizer determines the words and word order for each sentence in the
sentence plan. It outputs a text or speech realization for the original communicative goal.

The findings from human-human dialogue suggest that adaptation could potentially be
useful at any stage of the generation pipeline. Yet to date, the only work on adaptation
to individual users utilizes models of the user’s knowledge, needs, or preferences to adapt
the content for content planning (Jokinen & Kanto, 2004; Rich, 1979; Wahlster & Kobsa,
1989; Zukerman & Litman, 2001; Carenini & Moore, 2006), rather than applying models
of individual linguistic preferences as to the form of the output, as determined by sentence
planning or surface realization.

However, consider the alternative realizations for a restaurant recommendation in Fig-
ure 1. Columns A and B contain human ratings of the quality of the realizations from users
A and B. The differences in the rating feedback suggest that each user has different per-
ceptions as to the quality of the potential realizations. Data from an experiment collecting
feedback from users A and B, for 20 realizations of 30 different recommendation content
plans (600 examples), shows that the feedback of the two users are easily distinguished: a
paired t-test supports the hypothesis that the two samples are sampled from distinct dis-
tributions (t = 17.4, p < 0.001). These perceptual differences appear to be more general:
when we examined the user feedback from the evaluation experiment described by Rambow,
Rogati, and Walker (2001) where 60 users rated the output of 7 different spoken language
generators for 20 content plans, we again found significant differences in user perceptions
of utterance quality (F = 1.2, p < 0.002). This led us to hypothesize that individualized
sentence planners for dialogue systems might be of high utility.

In addition to our own studies, we also find evidence in other work that individual
variation is inherent to many aspects of language generation, including content ordering,
referring expression generation, syntactic choice, lexical choice, and prosody generation.

• It is common knowledge that individual authors can be identified from the linguistic
features of their written texts (Madigan, Genkin, Lewis, Argamon, Fradkin, & Ye,
2005; Oberlander & Brew, 2000).

• An examination of a weather report corpus for five weather forecasters showed in-
dividual differences in lexical choice for expressing specific weather-related concepts
(Reiter & Sripada, 2002).
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Alt Realization A B AVG
6 Chanpen Thai has the best overall quality among the selected restau-

rants since it is a Thai restaurant, with good service, its price is 24
dollars, and it has good food quality.

1 4 2.5

7 Chanpen Thai has the best overall quality among the selected restau-
rants because it has good service, it has good food quality, it is a Thai
restaurant, and its price is 24 dollars.

2 5 3.5

4 Chanpen Thai has the best overall quality among the selected restau-
rants. It has good food quality, with good service, it is a Thai restau-
rant, and its price is 24 dollars.

2 4 3

9 Chanpen Thai is a Thai restaurant, with good food quality, its price
is 24 dollars, and it has good service. It has the best overall quality
among the selected restaurants.

2 4 3

5 Chanpen Thai has the best overall quality among the selected restau-
rants. It has good service. It has good food quality. Its price is 24
dollars, and it is a Thai restaurant.

3 2 2.5

3 Chanpen Thai has the best overall quality among the selected restau-
rants. Its price is 24 dollars. It is a Thai restaurant, with good
service. It has good food quality.

3 3 3

10 Chanpen Thai has the best overall quality among the selected restau-
rants. It has good food quality. Its price is 24 dollars. It is a Thai
restaurant, with good service.

3 3 3

2 Chanpen Thai has the best overall quality among the selected restau-
rants. Its price is 24 dollars, and it is a Thai restaurant. It has good
food quality and good service.

4 4 4

1 Chanpen Thai has the best overall quality among the selected restau-
rants. This Thai restaurant has good food quality. Its price is 24
dollars, and it has good service.

4 3 3.5

8 Chanpen Thai is a Thai restaurant, with good food quality. It has
good service. Its price is 24 dollars. It has the best overall quality
among the selected restaurants.

4 2 3

Figure 1: Some alternative realizations for the content plan in Figure 4, with feedback from
Users A and B, and the mean (AVG) of their feedback (1=worst and 5=best).

• Rules learned for generating nominal referring expressions perform better when indi-
vidual speakers are provided as a feature to the learning algorithm (Jordan & Walker,
2005), and an experiment evaluating choice of referring expression shows only 70%
agreement among native speakers as to the best choice (Yeh & Mellish, 1997). Chai,
Hong, Zhou, and Prasov (2004) show that there are also individual differences in
gesture when generating multimodal references, and the corpus study of accented
pronouns reported by Kothari (2007) suggests that accentuation is also partly deter-
mined by individual linguistic style.

• Automatic evaluation techniques applied to human-generated reference outputs for
machine translation and automatic summarization perform better when multiple out-
puts are provided for comparison (Papenini, Roukos, Ward, & Zhu, 2002; Nenkova,
Passonneau, & McKeown, 2007): this can be attributed to the large variation in what
humans generate given particular content to express. This is also reflected in the find-
ing that human subjects produce many different valid content orderings when asked to
order a specific set of content items to produce the best possible summary (Barzilay,
Elhadad, & McKeown, 2002; Lapata, 2003).
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In the past, linguistic variation among individuals was considered a problem for genera-
tion researchers to work around, rather than a potential area of study (McKeown, Kukich,
& Shaw, 1994; Reiter, 2002; Reiter, Sripada, & Robertson, 2003). In part, this was due
to the hand-crafting of generation components and resources. It is impossible to encode
by hand, for each individual, rules for sentence planning and realization. Furthermore, if
domain experts don’t agree on the best way to express a domain concept, how can the
generation dictionary be encoded? It is difficult simply to get good output that respects
all the interacting domain and linguistic constraints even with considerable handcrafting of
rules (Kittredge, Korelsky, & Rambow, 1991).

Modeling individual differences can also be a problem for statistical methods when
learning paradigms are used that assume there is a single correct output (Lapata, 2003;
Jordan & Walker, 2005; Hardt & Rambow, 2001) inter alia. We believe that the simplest
way to deal with the inherent variability in possible generation outputs is to treat generation
as a ranking problem as we explain below, with techniques that overgenerate using user or
domain-independent rules, and then filter or rank the possibilities using domain or user-
specific corpora or feedback (Langkilde & Knight, 1998; Langkilde-Geary, 2002; Bangalore
& Rambow, 2000; Rambow, Rogati, & Walker, 2001). This approach has an advantage for
dialogue systems because it also affords joint optimization of the generator and the text-
to-speech engine (Bulyko & Ostendorf, 2001; Nakatsu & White, 2006). There are many
problems in generation to which ranking models and individualization could be applied, such
as text planning, cue word selection, or referring expression generation (Mellish, O’Donnell,
Oberlander, & Knott, 1998; Litman, 1996; Di Eugenio, Moore, & Paolucci, 1997; Marciniak
& Strube, 2004). However, only recently has any work in generation acknowledged that
there are individual differences and tried to model them (Guo & Stent, 2005; Mairesse &
Walker, 2005; Belz, 2005; Lin, 2006).

This article describes SPaRKy (Sentence Planning with Rhetorical Knowledge), a sen-
tence planner that uses rhetorical relations and adapts to the user’s individual sentence
planning preferences.1 SPaRKy has two components: a randomized sentence plan gener-
ator (SPG) that produces multiple alternative realizations of an information presentation,
and a sentence plan ranker (SPR) that is trained (using human feedback) to rank these
alternative realizations (See Figure 1). As mentioned above, previous work has documented
and utilized individual preferences for content selection, but to our knowledge, our results
provide the first demonstration of individual preferences for sentence planning operations,
affecting the content ordering, discourse structure, sentence structure, and sentence scope
of system responses. We also show that some of the learned preferences are domain-specific.

Section 2 compares our approach and results with previous work. Section 3 provides an
overview of the MATCH system architecture, which can generate dialogue system responses
using either SPaRKy, or a domain-specific template-based generator described and eval-
uated in previous work (Stent, Walker, Whittaker, & Maloor, 2002; Walker et al., 2004).
Sections 4, 5 and 6 describe SPaRKy in detail; they describe the SPG, the automatic
generation of features used in training the SPR, and how boosting is used to train the SPR.
Sections 7 and 8 present both quantitative and qualitative results:

1. A Java version of SPaRKy can be downloaded from www.dcs.shef.ac.uk/cogsys/sparky.html

416



Individual and Domain Adaptation in Dialogue

1. First, we show that SPaRKy learns to select sentence plans that are significantly
better than a randomly selected sentence plan, and on average less than 10% worse
than a sentence plan ranked highest by human judges. We also show that, in our
experiments, simple n-gram features perform as well as features based on higher-level
linguistic representations.

2. Second, we show that SPaRKy’s SPG can produce realizations that are comparable
to that of MATCH’s template-based generator, but that there is a gap between the
realization that the SPR selects when trained on multiple users and those selected by
a human.

3. Third, we show that when SPaRKy is trained for particular individuals, it performs
better than when trained on feedback from multiple individuals. These are the first
results suggesting that individual sentence planning preferences exist, and that they
can be modeled by a trainable generation system. We also show that in most cases
the performance of the individualized SPRs are statistically indistinguishable from
MATCH’s template-based generator, but for compare-2, User B prefers SPaRKy,
while for compare-3, User A prefers the template-based generator.

4. Fourth, we show that the differences in the learned models make sense in terms of
previous rule-based approaches to sentence planning. We analyze the qualitative
differences between the learned group and individual models, and show that SPaRKy

learns specific rules about the interaction between content items and sentence planning
operations, and rules that model individual differences, that would be difficult to
capture with a hand-crafted generator.

We sum up and discuss future work in Section 9.

2. Related Work

We discuss related work on adaptation in generation using the standard generation ar-
chitecture which contains modules for content planning (Section 2.1), sentence planning
(Section 2.2) and surface realization (Section 2.3) (Kittredge, Korelsky, & Rambow, 1991;
Reiter & Dale, 2000).

2.1 Adaptation in Content Planning

There has been significant research on the use of user models and discourse context to adapt
the content of information presentations in dialogue (Joshi, Webber, & Weischedel, 1984,
1986; Chu-Carroll & Carberry, 1995; Zukerman & Litman, 2001) inter alia, but only the
user models (not the information presentation strategies) are sensitive to particular individ-
uals. Several studies have investigated the use of quantitative models of user preferences in
selection of content for recommendations and comparisons (Carenini & Moore, 2006; Walker
et al., 2004; Polifroni & Walker, 2006), and Moore, Foster, Lemon, and White (2004) use
such models for referring expression generation, sentence planning and some surface real-
ization. Elhadad, Kan, Klavans, and McKeown (2005) applied group models (physician,
lay person) and individual user models to the task of summarizing medical information.
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McCoy (1989) used context information to design helpful system-generated corrections.
Other work has looked at the use of statistical techniques for adapting content selection
and content ordering methods to particular domains (Barzilay, Elhadad, & McKeown, 2002;
Duboue & McKeown, 2003; Lapata, 2003), but not to individual users.

2.2 Adaptation in Sentence Planning

The first trainable sentence planner was SPoT, a precursor to SPaRKy that output in-
formation gathering utterances in the travel domain (Walker, Rambow, & Rogati, 2002).
Evaluations of SPoT demonstrated that it performed as well as a template-based generator
developed for the travel domain and field-tested in the DARPA Communicator evaluations
(Rambow, Rogati, & Walker, 2001; Walker et al., 2002). Information gathering utterances
are considerably simpler than information presentations: they do not usually exhibit any
complexities in rhetorical structure, and there is little interaction between domain-specific
content items and sentence structures. Thus the SPoT generator did not produce utter-
ances with variation in rhetorical structure; it learned to optimize speech-act ordering and
sentence structure choices, but it did not adapt to individuals.

2.3 Adaptation in Surface Realization

Work on adaptation in surface realization has mainly focused on decisions such as lexical and
syntactic choice, using models of a target text, but not individual text models, although
recent research has also shown that n-gram models trained on user-specific corpora can
adapt generators to reproduce individualized lexical and syntactic choices (Lin, 2006; Belz,
2005). Paiva and Evans (2004) present a technique for training a generator by learning the
relationship between particular generation decisions and text variables that can be measured
in the output corpus. This technique was applied to generator decisions such as the form
of referring expression and syntactic structure, and was used to capture stylistic, rather
than individual, differences. Gupta and Stent (2005) use discourse context and speaker
knowledge for referring expression generation in dialogue.

User models have also been used to adapt surface realization. The approach of learning
a ranking from user feedback has been applied to multimedia presentation planning (Stent
& Guo, 2005) and to the joint optimization of the syntactic realizer and the text-to-speech
engine (Nakatsu & White, 2006). This work does not look at individual differences.

Research has also focused on other factors that affect stylistic variation – how realization
choices reflect personality, politeness, emotion or domain specific style (Hovy, 1987; DiMarco
& Foster, 1997; Walker, Cahn, & Whittaker, 1997; André, Rist, van Mulken, Klesen, &
Baldes, 2000; Bouayad-Agha, Scott, & Power, 2000; Fleischman & Hovy, 2002; Piwek,
2003; Porayska-Pomsta & Mellish, 2004; Isard, Brockmann, & Oberlander, 2006; Gupta,
Walker, & Romano, 2007; Mairesse & Walker, 2007). None of this work has attempted to
reproduce individual stylistic variation.

418



Individual and Domain Adaptation in Dialogue

3. Overview of MATCH’s Spoken Language Generator

Dialog Manager

SPUR text planner

Template−based

generator

Sentence plan

generator

ranker

Sentence plan

Ranked list of
(sp−tree, d−tree) pairs

dependency tree [d−tree])
(sentence plan [sp−tree],
Pairs of

(tp−trees)
Text−plan trees

Communicative
goal

Content
plan

SPaRKy

RealPro surface realizer Text

Text

Figure 2: Architecture of MATCH’s Spoken Language Generator.

MATCH (Multimodal Access To City Help) is a multimodal dialogue system for finding
restaurants and entertainment options in New York City (Johnston, Bangalore, Vasireddy,
Stent, Ehlen, Walker, Whittaker, & Maloor, 2002). Information presentations in MATCH

include route descriptions, as well as user-tailored recommendations and comparisons of
restaurants. Figure 2 shows MATCH’s architecture for spoken language generation (SLG).
The content planning module is the SPUR text planner (Section 3.1) (Walker et al., 2004).
There are two modules for producing text or spoken dialogue responses from SPUR’s out-
put: a highly engineered domain-specific template-based realizer (Section 3.2); and the
SPaRKy sentence planner followed by the RealPro surface realizer (Lavoie & Rambow,
1997) (Section 3.3). Example template-based and SPaRKy outputs for each dialogue strat-
egy are in Figure 3. Both SPUR and SPaRKy are trainable, and produce different output
depending on the user and discourse context.
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Strategy System Realization AVG

recommend Template Caffe Cielo has the best overall value among the selected
restaurants. Caffe Cielo has good decor and good service.
It’s an Italian restaurant.

4

recommend SPaRKy Caffe Cielo, which is an Italian restaurant, with good decor
and good service, has the best overall quality among the
selected restaurants.

4

compare-2 Template Caffe Buon Gusto’s an Italian restaurant. On the other
hand, John’s Pizzeria’s an Italian, Pizza restaurant.

2

compare-2 SPaRKy Caffe Buon Gusto is an Italian restaurant, and John’s
Pizzeria is an Italian , Pizza restaurant.

4

compare-3 Template Among the selected restaurants, the following offer excep-
tional overall value. Uguale’s price is 33 dollars. It has
good decor and very good service. It’s a French, Italian
restaurant. Da Andrea’s price is 28 dollars. It has good
decor and very good service. It’s an Italian restaurant.
John’s Pizzeria’s price is 20 dollars. It has mediocre decor
and decent service. It’s an Italian, Pizza restaurant.

4.5

compare-3 SPaRKy Da Andrea, Uguale, and John’s Pizzeria offer exceptional
value among the selected restaurants. Da Andrea is an Ital-
ian restaurant, with very good service, it has good decor,
and its price is 28 dollars. John’s Pizzeria is an Italian ,
Pizza restaurant. It has decent service. It has mediocre
decor. Its price is 20 dollars. Uguale is a French, Italian
restaurant, with very good service. It has good decor, and
its price is 33 dollars.

4

Figure 3: Template outputs and a sample SPaRKy output for each dialogue strategy. AVG
= Averaged score of two human users.

3.1 SPUR

The input to SPUR is a high-level communicative goal from the MATCH dialogue
manager and its output is a content plan for a recommendation or comparison. SPUR

selects and organizes the content to be communicated based on the communicative goal,
a conciseness parameter, and a decision-theoretic user model. It produces targeted recom-
mendations and comparisons: the restaurants mentioned and the attributes selected for
each restaurant are those the user model predicts the user will want to know about. Thus
SPUR can produce a wide variety of content plans.

Figure 4 shows a sample content plan for a recommendation. This content plan gives rise
to the alternate realizations for recommendations for Chanpen Thai in Figure 1. Following
a bottom-up approach to text-planning (Marcu, 1997; Mellish, O’Donnell, Oberlander, &
Knott, 1998), each content plan consists of a set of assertions that must be communicated
to the user and a set of rhetorical relations that hold between those assertions that may be
communicated as well. Each rhetorical relation designates one or more facts as the nuclei
of the relation, i.e. the main point, and the other facts as satellites, i.e. the supplementary
facts (Mann & Thompson, 1987). Three rhetorical relations (Mann & Thompson, 1987) are
used by SPUR: the justify relation for the recommendation strategy, and the contrast

and elaboration relations for the comparison strategies. The relations in Figure 4 specify
that the nucleus (1) is the claim being made in the recommendation, and that the satellites
(assertions 2 to 5) provide justifying evidence for the claim.
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relations:justify(nuc:1, sat:2); justify (nuc:1, sat:3 ); justify(nuc:1, sat:4);
justify(nuc:1, sat:5)

content: 1. assert(best (Chanpen Thai))
2. assert(is (Chanpen Tai, cuisine(Thai)))
3. assert(has-att(Chanpen Thai, food-quality(good)))
4. assert(has-att(Chanpen Thai, service(good)))
5. assert(is (Chanpen Thai, price(24 dollars)))

Figure 4: A content plan for a recommendation.

3.2 Template-Based Generator

In order to produce utterances from the content plans produced by SPUR, we first imple-
mented and evaluated a template-based generator for MATCH (Stent, Walker, Whittaker,
& Maloor, 2002; Walker et al., 2004). The template-based generator was designed to
make it possible to evaluate algorithms for user-specific content selection based on SPUR’s
decision-theoretic user model. It performs sentence planning, including some discourse cue
insertion, clause combining and referring expression generation. It produces one high qual-
ity output for any content plan for our three dialogue strategies: recommend, compare-2

and compare-3. Recommendations and comparisons are one form of evaluative argument,
so its realization strategies are based on guidelines from argumentation theory for producing
effective evaluative arguments, as summarized by Carenini and Moore (2000). Because the
templates are highly tailored to this domain, the template-based generator can be expected
to perform well in comparison to SPaRKy.

Following the argumentation guidelines, the template-based generator realizes recom-
mendations with the nucleus ordered first, followed by the satellites. The satellites are
ordered to maximize the opportunity for aggregation. To produce the most concise recom-
mendations given the content to be communicated, phrases with identical verbs and subjects
are grouped, so that lists and coordination can be used to aggregrate the assertions about
the subject. Figure 5 provides examples of aggregration as the number of assertions varies
according to SPUR’s conciseness parameter (Z-value).

The realization template for comparisons focuses on communicating both the elaboration
and the contrast relations. Figure 6 contains a content plan for comparisons. The nucleus
is the assertion (1) that Above and Carmine’s are exceptional restaurants. The satellites
(assertions 2 to 7 representing the selected attributes for each restaurant) elaborate on the
claim in the nucleus (assertion 1). Contrast relations hold between assertions 2 and 3,
between 4 and 5, and between 6 and 7. One way to communicate the elaboration relation
is to structure the comparison so that all the satellites are grouped together, following the
nucleus. To communicate the contrast relation, the satellites are produced in a fixed order,
with a parallel structure maintained across options (Prevost, 1995; Prince, 1985). The
satellites are initially ordered in terms of their evidential strength, but then are reordered
to allow for aggregation. Figure 7 illustrates aggregation for comparisons with varying
numbers of assertions.
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Z Output

1.5 Komodo has the best overall value among the selected restaurants. Komodo’s a Japanese,
Latin American restaurant.

0.7 Komodo has the best overall value among the selected restaurants. Komodo’s a Japanese,
Latin American restaurant.

0.3 Komodo has the best overall value among the selected restaurants. Komodo’s price is
$29. It’s a Japanese, Latin American restaurant.

-0.5 Komodo has the best overall value among the selected restaurants. Komodo’s price is
$29 and it has very good service. It’s a Japanese, Latin American restaurant.

-0.7 Komodo has the best overall value among the selected restaurants. Komodo’s price is
$29 and it has very good service and very good food quality. It’s a Japanese, Latin
American restaurant.

-1.5 Komodo has the best overall value among the selected restaurants. Komodo’s price is
$29 and it has very good service, very good food quality and good decor. It’s a Japanese,
Latin American restaurant.

Figure 5: Recommendations for the East Village Japanese Task, for different settings of the
conciseness parameter Z.

strategy: compare3
items: Above, Carmine’s

relations: elaboration(nuc:1,sat:2); elaboration(nuc:1,sat:3); elab-
oration(nuc:1,sat:4); elaboration(nuc:1,sat:5); elabora-
tion(nuc:1,sat:6); elaboration(nuc:1,sat:7); contrast(nuc:2,nuc:3);
contrast(nuc:4,nuc:5); contrast(nuc:6,nuc:7)

content: 1. assert(exceptional(Above,Carmine’s))
2. assert(has-att(Above, decor(good)))
3. assert(has-att(Carmine’s, decor(decent)))
4. assert(has-att(Above, service(good)))
5. assert(has-att(Carmine’s, service(good)))
6. assert(has-att(Above, cuisine(New American)))
7. assert(has-att(Carmine’s, cuisine(Italian)))

Figure 6: A content plan for a comparison.

3.3 SPaRKy

Like the template-based generator, SPaRKy takes as input any of the content plans pro-
duced by SPUR. Figure 2 shows that SPaRKy has two modules: the sentence plan gener-
ator (SPG), and the sentence plan ranker (SPR). The SPG uses a set of clause-combining
operations (Figure 12); it produces a large set of alternative realizations of an input content
plan (See Figure 1). The SPR ranks the alternative realizations using a model learned from
users’ ratings of a training set of content plans. The SPG is described in Section 4. The
features used to train the SPR are described in Section 5; the procedure for training the
SPR is described in Section 6.

Because SPaRKy is trained using user feedback, rather than being handcrafted, it can
be trained to be an individualized spoken language generator. As discussed above, the
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Z Output

1.5 Among the selected restaurants, the following offer exceptional overall value. Komodo
has very good service.

0.7 Among the selected restaurants, the following offer exceptional overall value. Komodo
has very good service and good decor.

0.3 Among the selected restaurants, the following offer exceptional overall value. Komodo’s
price is $29. It has very good food quality, very good service and good decor. Takahachi’s
price is $27. It has very good food quality, good service and decent decor.

-0.5 Among the selected restaurants, the following offer exceptional overall value. Komodo’s
price is $29. It has very good food quality, very good service and good decor. Takahachi’s
price is $27. It has very good food quality, good service and decent decor. Japonica’s
price is$37. It has excellent food quality, good service and decent decor

-0.7 Among the selected restaurants, the following offer exceptional overall value. Komodo’s
price is $29. It has very good food quality, very good service and good decor. Takahachi’s
price is $27. It has very good food quality, good service and decent decor. Japonica’s
price is $37. It has excellent food quality, good service and decent decor. Shabu-Tatsu’s
price is $31. It has very good food quality, good service and decent decor.

-1.5 Among the selected restaurants, the following offer exceptional overall value. Komodo’s
price is $29. It has very good food quality, very good service and good decor. Takahachi’s
price is $27. It has very good food quality, good service and decent decor. Japonica’s
price is $37. It has excellent food quality, good service and decent decor. Shabu-Tatsu’s
price is $31. It has very good food quality, good service and decent decor. Bond Street’s
price is $51. It has excellent food quality, good service and very good decor. Dojo’s price
is $14. It has decent food quality, mediocre service and mediocre decor.

Figure 7: Comparisons for the East Village Japanese Task, for different settings of the
conciseness parameter Z.

feedback from the two users in Figure 1 suggests that each user has different perceptions
as to the quality of the potential realizations. A significant part of Sections 7 and 8
are dedicated to examining the differences between a model trained on averaged feedback,
shown as AVG in Figure 1, and those trained on individual feedback from users A and B.

4. Sentence Plan Generation

The input to SPaRKy’s SPG is a content plan from SPUR. Content plans for a
sample recommendation and comparison were in Figure 4 and Figure 6. Figure 1 shows
alternative SPaRKy realizations for the recommendation in Figure 4, while Figure 8 shows
alternative SPaRKy realizations for the comparison in Figure 6. Content plans specify
which assertions to include in an information presentation, and the rhetorical relations
holding between them, but not the order of assertions or how to express the rhetorical
relations between them. This task is known as discourse planning. The SPG has two stages
of processing; first it does discourse planning, and then it does sentence planning.

4.1 Discourse Planning

Discourse planning algorithms can be characterized as: schema-based (McKeown, 1985;
Kittredge, Korelsky, & Rambow, 1991); top-down algorithms using plan operators (Moore
& Paris, 1993); or bottom-up approaches that use, for example, constraint satisfaction
algorithms (Marcu, 1996, 1997) or genetic algorithms (Mellish, O’Donnell, Oberlander, &
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Alt Realization A B AVG

11 Above and Carmine’s offer exceptional value among the selected restaurants.
Above, which is a New American restaurant, with good decor, has good service.
Carmine’s, which is an Italian restaurant, with good service, has decent decor.

2 2 2

12 Above and Carmine’s offer exceptional value among the selected restaurants.
Above has good decor, and Carmine’s has decent decor. Above and Carmine’s
have good service. Above is a New American restaurant. On the other hand,
Carmine’s is an Italian restaurant.

3 2 2.5

13 Above and Carmine’s offer exceptional value among the selected restaurants.
Above is a New American restaurant. It has good decor. It has good service.
Carmine’s, which is an Italian restaurant, has decent decor and good service.

3 3 3

14 Above and Carmine’s offer exceptional value among the selected restaurants.
Above has good decor while Carmine’s has decent decor, and Above and
Carmine’s have good service. Above is a New American restaurant while
Carmine’s is an Italian restaurant.

4 5 4.5

20 Above and Carmine’s offer exceptional value among the selected restaurants.
Carmine’s has decent decor but Above has good decor, and Carmine’s and
Above have good service. Carmine’s is an Italian restaurant. Above, however,
is a New American restaurant.

2 3 2.5

25 Above and Carmine’s offer exceptional value among the selected restaurants.
Above has good decor. Carmine’s is an Italian restaurant. Above has good
service. Carmine’s has decent decor. Above is a New American restaurant.
Carmine’s has good service.

NR NR NR

Figure 8: Some alternative realizations for the compare-3 plan in Figure 6, with feedback
from Users A and B, and the mean (AVG) of their feedback (1=worst and 5=best).
NR = Not generated or ranked.

assert−reco−
cuisine

satellite: <2> satellite: <3>
assert−reco−
food−quality service

assert−reco−
satellite: <4>

assert−reco−
price

satellite: <5>

nucleus: <1>
assert−reco−

best

infer

justify

Figure 9: A tp-tree for the plan of Figure 4, used to generate Alternatives 1, 3, 4, 5, 6, 7
and 10 in Figure 1.

Knott, 1998). In SPaRKy, the SPG takes a bottom-up approach to discourse planning
using principles from Centering Theory (Grosz, Joshi, & Weinstein, 1995). Content items
are grouped because they talk about the same thing, but the linear order between and
among the groupings is left unspecified. The centering constraints have the result that
Alt-25 in Figure 8, which repeatedly changes the discourse center, are never generated.

The discourse planning stage produces one or more text-plan trees (tp-trees). A tp-tree
for the recommend plan in Figure 4 is in Figure 9, and tp-trees for the compare-3 plan in
Figure 6 are in Figure 10. In a tp-tree, each leaf represents a single assertion and is labeled
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nucleus:<3>assert-com-decor

contrast

nucleus:<2>assert-com-decor nucleus:<6>assert-com-cuisine

nucleus:<7>assert-com-cuisine

contrast

nucleus:<4>assert-com-service

nucleus:<5>assert-com-service

contrast

elaboration

nucleus:<1>assert-com-list_exceptional infer

nucleus:<3>assert-com-decor

nucleus:<5>assert-com-service

nucleus:<7>assert-com-cuisine

inferinfer

nucleus:<2>assert-com-decor nucleus:<6>assert-com-cuisine

nucleus:<4>assert-com-service

elaboration

nucleus:<1>assert-com-list_exceptional contrast

Figure 10: Tp-trees for the comparisons shown as alternatives 12 and 14 (top) and alterna-
tives 11 and 13 (bottom) in Figure 8.

with a speech act. Interior nodes are labeled with rhetorical relations. In addition to the
rhetorical relations in the content plan, the SPG uses the relation infer for combinations
of speech acts for which there is no rhetorical relation expressed in the content plan (Marcu,
1997). The infer relation is similar to the joint relation in RST; it joins multiple satellites
in a mononuclear relation or the nuclei in a multinuclear relation.

Each simple assertion, or leaf, in a tp-tree is associated with one or more syntactic
realizations (d-trees), using a dependency tree representation, called DSyntS (Figure 11)
(Melčuk, 1988; Lavoie & Rambow, 1997). The association between the simple assertions
and any potential d-trees specifying their syntactic realizations is specified in a hand-crafted
generation dictionary. Leaves of some d-trees in the generation dictionary are variables,
which are instantiated from the content plan, e.g. Thai replaces a cuisine type variable.

4.2 Sentence Planning

During sentence planning, the SPG assigns assertions to sentences, orders the sentences,
inserts discourse cues, and performs referring expression generation. It uses a set of clause-
combining operations that operate on tp-trees and incrementally transform the elementary
d-trees associated with their leaves into a single lexico-structural representation. The output
from this process is two parallel structures: (1) a sentence plan tree (sp-tree), a binary tree
with leaves labeled with the assertions from the input tp-tree, and interior nodes labeled with
clause-combining operations; and (2) one or more d-trees which reflect parallel operations
on the predicate-argument representations.

The clause-combining operations are general operations similar to aggregation opera-
tions used in other research (Rambow & Korelsky, 1992; Danlos, 2000). The operations and
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assert-com-cuisine BE3 [class:verb ]
(
I Chanpen Thai [number:sg class:proper noun article:no-art person:3rd ]
II restaurant [class:common noun article:indef ]
(
Thai [class:adjective ]

)
)

assert-com-food quality HAVE1 [class:verb ]
(
I Chanpen Thai [number:sg class:proper noun article:no-art person:3rd ]
II quality [class:common noun article:no-art ]
(
ATTR good [class:adjective ]
ATTR food [class:common noun ]

)
)

Figure 11: Example d-trees from the generation dictionary used by the SPG.

examples of their use are given in Figure 12. They are applied in a bottom-up left-to-right
fashion, with the choice of operation constrained by the rhetorical relation holding between
the assertions to be combined (Scott & de Souza, 1990), as specified in Figure 12.

In addition to ordering assertions, a clause-combining operation may insert cue words
between assertions. Figure 13 gives the list of cue words used by the SPG. The choice of
cue-word is determined by the type of rhetorical relation2.

The SPG generates a random sample of possible sp-trees for each tp-tree, up to a pre-
specified number of sp-trees, by randomly selecting among the clause-combining operations
according to a probability distribution that favors preferred operations. Table 14 shows the
probability distribution used in our experiments, which is hand-crafted based on assumed
preferences for operations such as merge, relative-clause and with-reduction, and
is one way in which some knowledge can be injected into the random process to bias it
towards producing higher quality sentence plans.3

The SPG handles referring expression generation by converting a proper name to a pro-
noun when the same proper name appears in the previous utterance. Referring expression
generation rules are applied locally, across adjacent utterances, rather than globally across
the entire presentation at once (Brennan, Friedman, & Pollard, 1987). Referring expressions
are manipulated in the d-trees, either intrasententially during the incremental creation of
the sp-tree, or intersententially, if the full sp-tree contains any period operations. The

2. An alternative approach is for the cue-word to impose a constraint on the rhetorical relation that must
hold (Webber, Knott, Stone, & Joshi, 1999; Forbes, Miltsakaki, Prasad, Sarkar, Joshi, & Webber, 2003).

3. This probability distribution could be learned from a corpus (Marcu, 1997; Prasad, Joshi, Dinesh, Lee,
& Miltsakaki, 2005).

4. If an infer relation holds and both clauses contain the have possession predicate, the second clause is
arbitrarily selected for reduction. If a justify relation holds, it is the satellite of the RST relation that
always undergoes reduction, if the syntactic constraints are satisfied.

5. If an infer relation holds, any clause is arbitrarily selected for reduction. If a justify relation holds, the
clause that undergoes relative clause formation is the satellite clause. This is motivated by the fact that
relative clause formation is generally seen to occur when the modifying relative clause provides additional
information about the noun it modifies, but where the additional/elaborated information does not have
the same informational status as the information in the main clause.
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Operation Rel Description Sample 1st

arg

Sample

2nd arg

Result

Merge infer or
contrast

Two clauses can be combined if
they have identical matrix verbs
and identical arguments and ad-
juncts except one. The non-
identical arguments are coordi-
nated.

Chanpen
Thai has
good service.

Chanpen
Thai has
good food
quality.

Chanpen Thai has
good service and
good food quality.

With-

reduction

justify or
infer

Two clauses with identical sub-
ject arguments can be identified
if one of the clauses has a have-
possession matrix verb. The
possession clause undergoes with-
participial clause formation and
is attached to the non-reduced
clause.4

Chanpen
Thai is a
Thai restau-
rant.

Chanpen
Thai has
good food
quality.

Chanpen Thai is
a Thai restaurant,
with good food
quality.

Relative-
clause

justify or
infer

Two clauses with an identical
subject can be identified. One
clause is attached to the subject
of the other clause as a relative
clause.5

Chanpen
Thai has
the best
overall qual-
ity among
the selected
restaurants.

Chanpen
Thai is
located in
Midtown
West.

Chanpen Thai,
which is located
in Midtown West,
has the best overall
quality among the
selected restau-
rants.

Cue-

word-

conjunction

justify, in-

fer or con-

trast

Two clauses are conjoined with a
cue word (coordinating or subor-
dinating conjunction). The order
of the arguments of the connec-
tive is determined by the order of
the nucleus (N) and the satellite
(S), yielding two distinct oper-
ations, cue-word-conjunction-

ns and cue-word-conjunction-

sn.

Chanpen
Thai has
the best
overall qual-
ity among
the selected
restaurants.

Chanpen
Thai is
a Thai
restaurant,
with good
service.

Chanpen Thai has
the best overall
quality among the
selected restau-
rants, since it is a
Thai restaurant,
with good service.

Cue-

word-

insertion

(on the

other

hand)

contrast cue-word insertion combines
clauses by inserting a cue word
at the start of the second clause
(Carmine’s is an Italian restau-

rant. HOWEVER, Above is a

New American restaurant), re-
sulting in two separate sentences.

Penang has
very good
decor.

Baluchi’s
has
mediocre
decor.

Penang has very
good decor. On
the other hand,
Baluchi’s has
mediocre decor.

Period justify,
contrast,
infer or
elabora-

tion

Two clauses are joined by a pe-
riod.

Chanpen
Thai is a
Thai restau-
rant, with
good food
quality.

Chanpen
Thai has
good ser-
vice.

Chanpen Thai is
a Thai restaurant,
with good food
quality. It has
good service.

Figure 12: Clause combining operations and examples.

third and fourth sentences for Alt 13 in Figure 8 show the conversion of a named restaurant
(Carmine’s) to a pronoun.

The sp-trees for Alts 6 and 8 in Figure 1 are shown in Figs. 15 and 16. Leaf labels are
concise names for assertions in the content plan, e.g. assert-reco-best is the claim (labelled
1) in Figure 4. Because combination operations can switch the order of their arguments,
from satellite before nucleus (SN) to nucleus before satellite (NS), the labels on the interior
nodes indicate whether this occurred, and specify the rhetorical relation that the operation
realizes. These labels keep track of the operations and substitutions used in constructing
the tree and are subsequently used in the tree feature set described in Section 5, one of the
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RST relation Aggregation operator

justify with-reduction, relative-clause, cue-word conj. because, cue-word

conj. since, period

contrast merge, cue-word insert. however, cue-word conj. while, cue-word conj.

and, cue-word conj. but, cue-word insert. on the other hand, period

infer merge, cue-word conj. and, period

elaboration period

Figure 13: RST relation constraints on aggregation operators.

Aggregation operator Probability

merge, with-reduction, relative-clause 0.80

cue-word conj. because, cue-word conj. since, cue-word conj. while,
cue-word conj. and, cue-word conj. but

0.10

cue-word insert. however, cue-word insert. on the other hand 0.09

period 0.01

Figure 14: Probability distribution of aggregation operators. The final operation is ran-
domly chosen from the selected set with a uniform distribution.

feature sets tested for training the SPR. For example, the label at the root of the tree in
Figure 15 (CW-SINCE-NS-justify) specifies that the cw-conjunction operation was
used, with the since cue word, with the nucleus first (NS), to realize the justify relation.
Similarly, the bottom left-most interior node (WITH-NS-infer) indicates that the with-

reduction operation was used, with the nucleus before the satellite (NS), to realize the
infer relation.

Figure 17 shows a d-tree for the content plan in Figure 4. This d-tree shows that the
SPG treats the period operation as part of the lexico-structural representation for the
d-tree. The d-tree is split into multiple d-trees at these nodes before being sent to RealPro
for surface realization.

Note that a tp-tree can have very different realizations, depending on the operations of
the SPG. For example, the tp-tree in Figure 9 yields both Alt 6 and Alt 2 in Figure 1. Alt

service
assert−reco− assert−reco−

price

assert−reco−
best

assert−reco−
cuisine

assert−reco−
food−quality

WITH−NS−infer CW−CONJUNCTION−infer

CW−SINCE−NS−justify

CW−CONJUNCTION−infer

Figure 15: Sentence Plan Tree (SP-tree) for Alternative 6 of Figure 1.
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assert−reco−
food−quality cuisine

assert−reco−
service

assert−reco−
price

assert−reco−

assert−reco−
best

WITH−NS−infer PERIOD−infer

PERIOD−infer

 PERIOD−justify

Figure 16: Sentence Plan Tree (SP-tree) for Alternative 8 of Figure 1.

Champen_Thai’s

price

24

dollar

BE3

good

service

HAVE1

Champen_Thai

PERIOD_infer

foodgood

quality

with

Thai

restaurantChampen_Thai

BE3

PERIOD_infer

selected

restaurant

AMONG1

overallbest

quality

HAVE1

Champen_Thai

PERIOD_justify

Figure 17: Dependency tree for alternative 8 in Figure 1.

2 is highly rated, with an average human rating of 4. However, Alt 6 is a poor realization
of this plan, with an average human rating of 2.5.

To summarize, SPaRKy’s SPG transforms an input content plan into a set of alternative
pairs of sentence-plan trees and d-trees. First, assertions in the input content plan are
grouped using principles from centering theory. Second, assertions are assigned to sentences
and discourse cues inserted using clause combining operations. Third, decisions about the
realization of referring expressions are made on the basis of recency. The rhetorical relations
and clause-combining operations are domain-independent.

SPaRKy uses two types of domain-dependent knowledge: the probability distribution
over clause-combining operations, and the d-trees that are input to the RealPro surface
realizer. In order to use SPaRKy in a new domain, it might be necessary to:
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• add new rhetorical relations if the content planner used additional rhetorical relations;

• modify the probability distribution over clause-combining operations, either by hand
or by learning from a corpus;

• construct a new set of d-trees to capture the syntactic structure of sentences in the
domain, unless we used a surface realizer that could take logical forms or semantic
representations as input.

5. Feature Generation

To train or use the SPR, each potential realization generated by the SPG, along with its
corresponding sp-tree and d-tree, is encoded as a set of real-valued features (binary features
are modeled with values 0 and 1) from three feature types:

• N-Gram features – simple word n-gram features generated from the realization of
SPG outputs;

• Concept features – concept n-gram features generated from named entities in the
realization of SPG outputs;

• Tree features – these features represent structural configurations in the sp-trees and
d-trees output by the SPG.

These features are automatically generated as described below.

5.1 N-Gram Features

N-gram features capture information about lexical selection and lexical ordering in the real-
izations output by SPaRKy. A two-step approach is used to generate these features. First,
a domain-specific rule-based named-entity tagger (using MATCH’s lexicons for restaurant,
cuisine type and location names) replaces specific tokens with their types, e.g. Babbo with
restname. Then, unigram, bigram and trigram features and their counts are automatically
generated. The tokens begin and end indicate the beginning and end of a realization.

N-gram feature names are prefixed with n-gram. For example, ngram-cuisinename-

restaurant-with counts the occurrences of cuisine type followed by “restaurant” and
“with” (as in the realization “Italian restaurant with”); ngram-begin-restname-which

counts occurrences of realizations starting with a restaurant’s name followed by “which”.
We also count words per presentation, and per sentence in a presentation.

5.2 Concept Features

Concept features capture information about the concepts selected for a presentation, and
their linear order in the realization. A two-step approach is used to generate these features.
First, a named-entity tagger marks the names of items in our restaurant database, e.g.
Uguale. Then, unigram, bigram and trigram features and their counts are automatically
generated from the sequences of concepts in the sentence plan for the realization. As with
the n-gram features, the tokens begin and end indicate the beginning and end of a realization.
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Concept feature names are prefixed with conc. For example, conc-decor-claim is
set to 1 if the claim is expressed directly after information about decor, while the feature
conc-begin-service characterizes utterances starting with information about service. In
the concept n-gram features, we use ’*’ to separate individual features. We also count
concepts per presentation, and per sentence in a presentation.

5.3 Tree Features

Tree features capture declaratively the way in which merge, infer and cue-word opera-
tions are applied to the tp-trees, and were inspired by the parsing features used by Collins
(2000). They count the occurrences of certain structural linguistic configurations in the
sp-trees and associated d-trees that the SPG generated. Tree feature names are prefixed
with r for “rule” (sp-tree) or s for “sentence” (d-tree).

Several feature templates are used to generate tree features. Local feature templates
record structural configurations local to a particular node (its ancestors, daughters etc.);
global feature templates, used only for sp-tree features, record properties of the entire sp-tree.

There are four types of local feature template: traversal features, sister features, ancestor
features and leaf features. Traversal, sister and ancestor features are generated for all nodes
in sp-trees and d-trees; leaf features are generated for sp-trees only. The value of each
feature is the count of the described configuration in the tree. We discard features that
occur fewer than 10 times to avoid those specific to particular content plans.

For each node in the tree, traversal features record the preorder traversal of the
subtree rooted at that node, for all subtrees of all depths. Feature names are the con-
catenation of the prefix trav-, with the names of the nodes (starting with the current
node) on the traversal path. ’*’ is used to separate node names. An example is r-trav-

with-ns-infer*assert-reco-food-quality*assert-reco-cuisine (with value 1) of the
bottom-left subtree in Figure 16.

Sister features record all consecutive sister nodes. Names are the concatenation of
the prefix sis-, with the names of the sister nodes. An example is r-sis-assert-reco-

best*cw-conjunction-infer (with value 1) of the tree in Figure 15.

For each node in the tree, ancestor features record all the initial subpaths of the path
from that node to the root. Feature names are the concatenation of the prefix anc- with the
names of the nodes (starting with the current node). An example is r-anc-assert-reco-

cuisine*with-ns-infer*cw-conjunction-infer (with value 1) of the tree in Figure 15.

Leaf features record all initial substrings of the frontier of the sp-tree. Names are the
concatenation of the prefix leaf-, with the names of the frontier nodes (starting with the
current node). For example, the sp-tree of Figure 15 has value 1 for leaf-assert-reco-

best and also for leaf-assert-reco-best*leaf-assert-reco-cuisine, and the sp-tree
of Figure 16 has value 1 for leaf-assert-reco-food-quality*assert-reco-cuisine.

Global features apply only to the sp-tree. They record, for each sp-tree and for each
operation labeling a non-frontier node, (1) the minimal number of leaves dominated by a
node labeled with that rule in that tree (MIN); (2) the maximal number of leaves dominated
by a node labeled with that rule (MAX); and (3) the average number of leaves dominated
by a node labeled with that rule (AVG). For example, the sp-tree in Figure 15 has value
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4 for cw-conjunction-infer-max, value 2 for cw-conjunction-infer-min and value 3
for cw-conjunction-infer-avg.

6. Training the Sentence Plan Ranker

The SPR ranks alternative information presentations using a model learned from user rat-
ings of a set of training data. The training procedure is as follows:

• For each content plan in the training data, the SPG generates a set of alternative
sentence plans using a random selection of sentence planning operators (Section 4);

• Features are automatically generated from the surface realizations and sentence plans
so that each alternative sentence plan is represented in terms of a number of real-
valued features (Section 5);

• Feedback as to the perceived quality of the realization of each alternative sentence
plan is collected from one or more users;

• The RankBoost boosting method (Freund, Iyer, Schapire, & Singer, 1998) learns a
function from the featural representation of each realization to its feedback, that
attempts to duplicate the rankings in the training examples.

We use RankBoost for three reasons. First, it produces a ranking over the input alter-
natives rather than a selection of one best alternative. Second, it can handle many sparse
features. Third, the function that it learns is a rule-based model showing the effect of
each feature on the ranking of the competing examples. These models can be inspected
and compared. This allows us to qualitatively analyze the models (Section 8) in order to
understand the preferences of individuals, and the differences between SPRs for individuals
vs. groups.

This section describes the training of the SPR in detail. The SPUR content planner
produces content plans for three dialogue strategies:

• recommend: recommend an entity from a set of entities

• compare-2: compare two entities

• compare-3: compare three or more entities

For each dialogue strategy, we start with a set of 30 representative content plans from
SPUR. The SPG was parameterized to produced up to 20 distinct (sp-tree, d-tree) pairs
for each content plan. Each of these was realized by RealPro. Separately, we also obtained
output for each content plan from our template-based generator (Section 3.2).

Both the SPaRKy realizations and the template-based realizations were randomly or-
dered and placed on a series of Web pages. These 1830 realizations were then rated on a
scale from 1 to 5 by the first two authors of this paper, neither of whom had implemented
the template-based realizer or the SPG. The raters worked on this rating task during ses-
sions of one hour at a time for several hours a day, over a period of a week. They were
instructed to look at all 21 realizations for a particular content plan before rating any of
them, to try to use the whole rating scale, and to indicate their spontaneous rating without
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repeatedly re-labelling the alternative realizations. They did not discuss their ratings or
the basis for their ratings at any time. Given the cognitive load and long duration of this
rating task, it was impossible for the raters to keep track of which realizations came from
SPaRKy and which from the template-based generator, and likely to be impossible to do
more than generate a “gestalt” evaluation of each alternative.

Each (sp-tree, d-tree, realization) triple is an example input for RankBoost; the ratings
are used as feedback. The experiments below examine two uses of the ratings. First, we
train and test an SPR with the average of the ratings of the two users, i.e. we consider
the two users as representing a single user group. Second, we train and test individualized
SPRs, one for each user.

The SPR is trained using the RankBoost algorithm (Freund, Iyer, Schapire, & Singer,
1998), which we describe briefly here. First, the training corpus is converted into a set T
of ordered pairs of examples x, y:

T = {(x, y)| x, y are alternatives for the same plan,
x is preferred to y by user ratings}

Each alternative realization x is represented by a set of m indicator functions hs(x)
for 1 ≤ s ≤ m. The indicator functions are calculated by thresholding the feature values
(counts) described in Section 5. For example, one indicator function is:

h100(x) =

{

1 if leaf-assert-reco-best(x) ≥ 1
0 otherwise

So h100(x) = 1 if the leftmost leaf is the assertion of the claim as in Figure 15. A single
parameter αs is associated with each indicator function, and the “ranking score” for an
example x is calculated as

F (x) =
∑

s

αshs(x)

This score is used to rank competing sp-trees of the same content plan with the goal of
duplicating the ranking found in the training data. Training is the process of setting the
parameters αs to minimize the following loss function:

RankLoss =
1

|T |

∑

(x,y)∈T

eval(F (x) ≤ F (y))

The eval function returns 1 if the ranking scores of the (x, y) pair are misordered (so that x

is ranked higher than y even though in the training data y is ranked higher than x), and 0
otherwise. In other words, the RankLoss is the percentage of misordered pairs. As this loss
function is minimized, the ranking errors (cases where ranking scores disagree with human
judgments) are reduced. Initially all parameter values are set to zero. The optimization
method then greedily picks a single parameter at a time – the parameter which will make
the most impact on the loss function – and updates the parameter value to minimize the
loss.

In the experiments described below, we use two evaluation metrics:
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• RankLoss: The value of the training method’s loss function;

• TopRank: The difference between the human rating of the top realization for each
content plan and the human rating of the realization that the SPR predicts to be the
top ranked.

7. Quantitative Results

In this section, we describe three experiments with SPaRKy:

1. Feature sets for trainable sentence planning: We examine which features (n-
gram, concept, tree, all) lead to the best performance for the sentence planning task,
and find that n-gram features sometimes perform as well as all the features.

2. Comparison with template-based generation: We show that the performance of
a trainable sentence planner using the best performing feature set is more consistent
than that of a template-based generator, although overall a template-based generator
still performs better.

3. Individualized sentence planners: We show that people have quite specific indi-
vidual preferences regarding the three tasks of sentence planning: information order-
ing, sentence aggregation, and use of discourse cues; and furthermore, that a trainable
sentence planner can model these individual preferences. Moreover we show that in
some cases the individualized sentence planners are better than, or statistically indis-
tinguishable from, the template-based generator.

We report results below separately for comparisons between two entities and among three
or more entities. These two types of comparison are generated using different strategies in
the SPG, and produce text that is very different both in terms of length and structure.

7.1 Feature Sets for Trainable Sentence Planning

Using a cross-validation methodology, we repeatedly train the SPR on a random 90% of
the corpus, and test on the remaining 10%. Here, we use the averaged feedback from user
A and user B as feedback. Figure 18 repeats the examples in Figure 1, here showing both
the user rankings and the rankings for a ranking function that was learned by the trained
SPRs for both users A and B and for the AVG user.

Table 1 shows RankLoss for each feature set (Section 5). Paired t-tests comparing the
ranking loss for different feature sets show surprisingly few performance differences among
the features. Using all the features (All) always produces the best results, but the differences
are not always significant.

The n-gram features give results comparable to all the features for both compare-2

and recommend. An analysis of the learned models suggests that one reason that n-
gram features perform well is because there are individual lexical items that are uniquely
associated with many of the combination operators, such as the lexical item with for the
with-ns operator. This means that the detailed representations of the content and structure
of an information presentation as represented by the tree features are equivalent to n-gram
features in this application domain.
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Alt Realization A B SPRA SPRB SPRAV G

6 Chanpen Thai has the best overall quality among the se-
lected restaurants since it is a Thai restaurant, with good
service, its price is 24 dollars, and it has good food quality.

1 4 0.16 0.65 0.58

7 Chanpen Thai has the best overall quality among the se-
lected restaurants because it has good service, it has good
food quality, it is a Thai restaurant, and its price is 24
dollars.

2 5 0.38 0.54 0.42

4 Chanpen Thai has the best overall quality among the se-
lected restaurants. It has good food quality, with good
service, it is a Thai restaurant, and its price is 24 dollars.

2 4 0.53 0.62 0.53

9 Chanpen Thai is a Thai restaurant, with good food quality,
its price is 24 dollars, and it has good service. It has the
best overall quality among the selected restaurants.

2 4 0.47 0.53 0.63

5 Chanpen Thai has the best overall quality among the se-
lected restaurants. It has good service. It has good food
quality. Its price is 24 dollars, and it is a Thai restaurant.

3 2 0.59 0.32 0.46

3 Chanpen Thai has the best overall quality among the se-
lected restaurants. Its price is 24 dollars. It is a Thai
restaurant, with good service. It has good food quality.

3 3 0.64 0.40 0.62

10 Chanpen Thai has the best overall quality among the se-
lected restaurants. It has good food quality. Its price is 24
dollars. It is a Thai restaurant, with good service.

3 3 0.67 0.46 0.58

2 Chanpen Thai has the best overall quality among the se-
lected restaurants. Its price is 24 dollars, and it is a Thai
restaurant. It has good food quality and good service.

4 4 0.75 0.50 0.74

1 Chanpen Thai has the best overall quality among the se-
lected restaurants. This Thai restaurant has good food
quality. Its price is 24 dollars, and it has good service.

4 3 0.64 0.52 0.45

8 Chanpen Thai is a Thai restaurant, with good food quality.
It has good service. Its price is 24 dollars. It has the best
overall quality among the selected restaurants.

4 2 0.81 0.29 0.73

Figure 18: Some alternative realizations for the content plan in Figure 4, with feedback
from users A and B (1=worst and 5=best) and rankings from the trained SPRs
for users A and B and mean(A,B) ([0, 1]).

The concept features always perform worse than all the features, indicating that the
linear ordering of concepts only accounts for some of the variation in rating feedback. For
the two types of comparison, performance using the concept features approaches that of the
other feature sets. However, for recommendations, performance using the concept features
is much worse than that using n-gram features or all the features. In the qualitative analysis
presented in Section 8, we discuss some aspects of the models for recommendations that
might account for this large difference in performance.

Table 2 shows results with all the features using the TopRank evaluation metric, calcu-
lated for two-fold cross-validation, to be comparable with previous work (Walker, Rambow,
& Rogati, 2002; Stent, Prasad, & Walker, 2004).6 We evaluated SPaRKy on the test sets by
comparing three data points for each content plan: Human (the score of the best sentence
plan that SPaRKy’s SPG can produce as selected by the human users); SPaRKy (the
score of the SPR’s top-ranked selected sentence); and Random (the score of a sentence plan

6. The TopRank metric is sensitive to the distribution of ranking feedback and SPR scores in the test set,
which means that it is sensitive to the number of cross-validation folds.
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Feature set/Strategy compare-2 compare-3 recommend

Random Baseline 0.50 0.50 0.50

Concept 0.16 (p < .000) 0.16 (p < .021) 0.32 (p < .000)

N-Gram 0.14 (p < .161) 0.15 (p < .035) 0.21 (p < .197)

Tree 0.14 (p < .087) 0.16 (p < .007) 0.22 (p < .001)

All 0.13 0.14 0.20

Table 1: AVG model’s ranking error with different feature sets, for all strategies. Results
are averaged over 10-fold cross-validation, testing over the mean feedback. p values
in parentheses indicate the level of significance of the decrease in accuracy when
compared to the model using all the features. Cases where different feature sets
perform as well as all the features are marked in bold.

randomly selected from the alternative sentence plans). For all three presentation types,
a paired t-test comparing SPaRKy to Human to Random showed that SPaRKy was sig-
nificantly better than Random (df = 59, p < .001) and significantly worse than Human
(df = 59, p < .001). The difference between the SPaRKy scores and the Human scores
indicates how much performance could be improved if the SPR were perfect at replicating
the Human ratings.

User Strategy SPaRKy Human Random

AVG recommend 3.6 (0.77) 3.9 (0.55) 2.8 (0.81)

AVG compare-2 4.0 (0.66) 4.4 (0.54) 2.8 (1.30)

AVG compare-3 3.6 (0.68) 4.0 (0.49) 2.7 (1.20)

Table 2: TopRank scores for recommend, compare-2 and compare-3 (N = 180), using
all the features, for SPaRKy trained on AVG feedback, with standard deviations.

7.2 Comparison with Template Generation

User Strategy SPaRKy Human Template

AVG recommend 3.6 (0.59) 4.4 (0.37) 4.2 (0.74)

AVG compare-2 3.9 (0.52) 4.6 (0.39) 3.6 (0.75)

AVG compare-3 3.4 (0.38) 4.6 (0.35) 4.1 (1.23)

Table 3: TopRank scores for MATCH’s template-based generator, SPaRKy(AVG) and
Human. N = 180, with standard deviations.
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As described above, the raters also rated the single output of the template-based gen-
erator for MATCH for each content plan in the training data. Table 3 shows the mean
TopRank scores for the template-based generator’s output (Template), compared to the
best plan the trained SPR selects (SPaRKy), and the best plan as selected by a human
oracle (Human). In each fold, both SPaRKy and the Human oracle select the best of 10
sentence plans for each text plan, while the template-based generator produces a single
output with a single human-rated score. A paired t-test comparing Human with Template
shows that there are no significant differences between them for recommend or compare-

3, but that Human is significantly better for compare-2 (df = 29, t = 4.8, p < .001). The
users evidently did not like the compare-2 template. A paired t-test comparing SPaRKy

to Template shows that the template-based generator is significantly better for both rec-

ommend and compare-3 (df = 29, t = 2.1, p < .05), while there is a trend for SPaRKy

to be better for compare-2 (df = 29, t = 2.0, p = .055).

Also, the standard deviation for Template strategies is wider than for Human or SPaRKy,
indicating that while the template-based generator performs well overall, it performs poorly
on some inputs. One reason for this might be that SPUR’s decision-theoretic user model
selects a wide range and number of content items for different users, and for conciseness
settings (See Figures 5 and 7). This means that it is difficult to handcraft a template-based
generator to handle all the different cases well.

The gap between the Human scores (produced by the SPG but selected by a human
rather than by the SPR) and the Template scores shows that the SPG produces sentence
plans as good as those of the template-based generator, but the accuracy of the SPR needs
to be improved. Below, Section 7.3 shows that when the SPR is trained for individuals,
SPaRKy’s performance is indistinguishable from the template-based generator in most
cases.

7.3 Comparing Individualized Models to Group Models

We discussed in Section 1 that the differences in the rating feedback from users A and B for
competing realizations (See Figure 1) suggest that each user has different perceptions as to
the quality of the potential realizations. To quantify the utility and the feasibility of training
individualized SPRs, we first examine the feasibility of training models for individual users.

The results in Table 1 are based on a corpus of 600 examples, rated by each user,
which may involve too much effort for most users. We would like to know whether a high-
performing individualized SPR can be trained from less labelled data. Figure 19 plots
ranking error rates as a function of the amount of training data. This data suggests that
error rates around 0.20 could be acquired with a much smaller training set, i.e. with a
training set of around 120 examples, which is certainly more feasible.

recommend A’s model B’s model AVG model

A’s test data 0.17 0.52 0.29

B’s test data 0.52 0.17 0.27

AVG’s test data 0.31 0.31 0.20

Table 4: Ranking error for various configurations with the recommend strategy.
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Figure 19: Variation of the testing error for both users as a function of the number of
training utterances.

compare-2 A’s model B’s model AVG model

A’s test data 0.16 0.26 0.20

B’s test data 0.23 0.11 0.13

AVG’s test data 0.17 0.16 0.13

Table 5: Ranking error for various configurations with the compare-2 strategy.

compare-3 A’s model B’s model AVG model

A’s test data 0.13 0.30 0.18

B’s test data 0.26 0.14 0.18

AVG’s test data 0.17 0.20 0.14

Table 6: Ranking error for various configurations with the compare-3 strategy.

We then examine if trained individualized SPRs are accurate. The results in Tables 4, 5
and 6 show RankLoss for several training and testing configurations for each strategy (using
10-fold cross-validation). We compare the two individualized models with models trained
on A and B’s mean feedback (AVG). For each model, we test on its own test data, and on
test data for the other models. This shows how well a model might ‘fit’ if customizing an
SPR to a new domain or user group. For example, if we train a model for recommendations
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using feedback from a group of users, and then deploy this system to an individual user, we
might expect model fit differences similar to those in Table 4.

Of course, there may be strongly conflicting preferences in any group of users. For
example, consider the differences in the ratings for users A and B and the average ratings
in Figure 1. Alt-1 and Alt-7 are equivalent using the average feedback, but user A dislikes
Alt-7 and likes Alt-1 and vice versa for user B. Column 3 of Table 4 shows that the average
model, when used in an SPR for user A or user B has a much higher ranking error (.29
and .27 respectively) than that of an SPR customized to user A (.17 error) or customized
to user B (.17 error).

An examination of Tables 4, 5 and 6 shows that in general, there are striking differences
between models trained and tested on one individual’s feedback (RankLoss ranges from 0.11
to 0.17) and cross-tested models (RankLoss ranges from 0.13 to 0.52). Also, the average
(AVG) models always perform more poorly for both users A and B than individually-tailored
models. As a baseline for comparison, a model ranking sentence alternatives randomly
produces an error rate of 0.5 on average; Table 4 shows that models trained on one user’s
data and tested on the other’s can perform as badly as the random model baseline. This
suggests that the differences in the users’ ratings are not random noise.

In some cases, the average model also performs significantly worse than the individual
models even when tested on feedback from the “average” user (the diagonal in Tables 4, 5
and 6). This suggests that in some cases it is harder to get a good model for the average
user case, possibly because the feedback is more inconsistent. For recommendations, the
performance of each individual model is significantly better than the average model (df = 9,
t = 2.6, p < .02). For compare-2 the average model is better than user A’s (df = 9, t = 2.3,
p < .05), but user B’s model is better than the average model (df = 9, t = 3.1, p < .01).

User Strategy SPaRKy Human Template

A recommend 3.5 (0.87) 3.9 (0.61) 3.9 (1.05)

A compare-2 3.8 (0.98) 4.3 (0.73) 4.2 (0.64)

A compare-3 3.1 (1.02) 3.6 (0.80) 3.9 (1.19)

B recommend 4.4 (0.70) 4.7 (0.46) 4.5 (0.76)

B compare-2 4.4 (0.69) 4.7 (0.53) 3.1 (1.21)

B compare-3 4.4 (0.62) 4.8 (0.40) 4.2 (1.34)

Table 7: TopRank scores for the Individualized SPaRKy as compared with MATCH’s
template-based generator as rated separately by Users A and B, and individual
User A and User B Human Oracles. Standard Deviations are in parentheses. N =
180.

We can also compare the template-based generator to the individualized SPaRKy gen-
erators using the TopRank metric (See Table 7). All comparisons are done with paired
t-tests using the Bonferroni adjustment for multiple comparisons.

For recommend, there are no significant differences between SPaRKy and Template
for User A (df = 59, t = 2.3, p = .07), or for User B (df = 59, t = 1.6, p = .3). There
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are also no significant differences for either user between Template and Human (df = 59,
t < 1.5, p > 0.4).

For compare-2, there are large differences between Users A and B. User A appears to
like the template for compare-2 (average rating is 4.2) while User B does not (average rat-
ing is 3.1). For User A, there are no significant differences between SPaRKy and Template
(df = 59, t = 2.3, p = .07), and between Template and Human (df = 59, t = 0.1, p = .09),
but User B strongly prefers SPaRKy to Template (df = 59, t = 7.7, p < .001).

For compare-3, there are also large differences between Users A and B. User A likes the
template for compare-3 (average rating 3.9), and strongly prefers it to the individualized
SPaRKy (average rating 3.1) (df = 59, t = 3.4, p < .004). User B also likes the template
(average rating 4.2), but there are no significant differences with SPaRKy (average rating
4.4) (df = 59, t = 1.0, p = .95).

For both users, and for every strategy, even with individually trained SPRs, there is still
a significant gap between SPaRKy and Human scores, indicating that the performance of
the SPR could be improved (df = 59, t = 3.0, p < .006).

These results demonstrate that trainable sentence planning can produce output compa-
rable to or better than that of a template-based generator, with less programming effort and
more flexibility.

8. Qualitative Analysis

An important aspect of RankBoost is that the learned models are expressed as rules: a qual-
itative examination of the learned models may highlight individual differences in linguistic
preferences, and help us understand why SPaRKy’s SPG can produce sentence plans that
are better than those produced by the template-based generator, and why the individually
trained SPRs usually select sentence plans that are as good as the templates. To quali-
tatively compare the learned ranking models for the individualized SPRs, we assess both
which linguistic aspects of an utterance (which features) are important to an individual, and
how important they are. We evaluate whether an individual is oriented towards a particular
feature by examining which features’ indicator functions hs(x) have non-zero values. We
evaluate how important a feature is to an individual by examining the magnitude of the
parameters αs.

There are two potential problems with this approach, The first problem is that the
feature templates produce thousands of features, some of which are redundant, so that
differences in each model’s indicator functions can be spurious. Therefore, to allow more
meaningful qualitative comparisons between models, one of a pair of perfectly correlated
features is eliminated.

The second problem arises from RankBoost’s greedy algorithm. The selection of which
parameter αs to set on any round of boosting is highly dependent on the training set, so
that the models derived from a single episode of training are highly variable. To compare
indicator functions independently of the training set, we adopt a bootstrapping method to
identify a feature set for each user that is independent of a particular training episode. By
repeatedly randomly selecting 10 alternatives for training and 10 for testing for each content
plan, we created 50 different training sets for each user. We then average the α values of the
features selected by RankBoost over these 50 training runs, and conduct experiments using
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Model Strategy Feature Type

Tree N-Gram Concept Leaf Global

AVG recommend 45 36 9 7 3
compare-2 37 46 12 1 4
compare-3 63 29 4 1 3

A recommend 50 29 14 4 3
compare-2 35 51 10 3 1
compare-3 47 37 11 1 4

B recommend 47 34 9 6 4
compare-2 45 36 13 1 5
compare-3 47 34 9 6 4

Table 8: Features in the top 100 with the highest average α for each user model.

only the 100 features for each user with the highest average α magnitude. In Section 8.1 we
discuss differences in the types of feature that are selected by the bootsrapping algorithm
just outlined. Section 8.2 discusses differences in models produced using the tree features
for user A and user B, while section 8.3 discusses differences between the average model
and the individual models.

8.1 Types of Bootstrapped Features

The bootstrapping process selects a total of 100 features for each strategy and for each
type of feedback (individual or averaged). We found differences in the features along both
dimensions.

Table 8 shows the number of features of each type that were in the top 100 (averaged
over 50 training runs). Only 9 features are shared by the three strategies for the AVG
model; these shared features are usually n-gram features. For User A, 6 features are shared
by the three strategies (mostly n-gram features). For User B, there are no features shared
by the three strategies.

We also found that some features capture specific interactions between domain-specific
content items and syntactic structure, which are difficult to model in a rule-based or
template-based generator. An example is Rule (1) in Figure 20 which significantly low-
ers the ranking of any sentence plan in which neighborhood information (assert-reco-

nbhd) is combined with subsequent content items via the with-ns operation. Among the
bootstrapped features for the average user, 16 features for compare-2 count interactions
between domain-specific content and syntactic structure. For compare-3, 22 features count
such interactions, and the bootstrapped features for recommend include 39 such features.
We examine some of the models derived from these features in detail below.

8.2 Differences in Individual Models

To further analyze individual linguistic preferences for information presentation strate-
gies, we now qualitatively compare the two models for Users A and B. We believe that this
qualitative analysis provides additional evidence that the differences in the users’ ranking
preferences are not random noise. We identify differences among the features selected by
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N Condition α

1 r-anc-assert-reco-nbhd*with-ns-infer ≥ 1 -1.26
2 cw-conjunction-infer-avg-leaves-under ≥ 3.1 -0.58
3 r-anc-assert-reco*with-ns-infer*cw-conjunction-infer ≥ 1 -0.33
4 leaf-assert-reco-best*assert-reco-price ≥ 1 -0.29
5 cw-conjunction-infer-avg-leaves-under ≥ 2.8 -0.27
6 r-trav-with-ns-infer*assert*assert ≥ 1 -0.22
7 r-anc-cw-conjunction-infer*cw-conjunction-infer ≥ 1 -0.17
8 with-ns-infer-min-leaves-under ≥ 1 -0.13
9 r-anc-assert-reco*with-ns-infer ≥ 1 -0.11
10 cw-conjunction-infer-max-leaves-under ≥ 3.5 -0.07
11 r-trav-with-ns-infer*assert-reco*assert-reco ≥ 1 -0.07
12 r-anc-assert*with-ns-infer ≥ 1 -0.03
13 r-anc-with-ns-infer*relative-clause-infer ≥ 1 -0.01
14 r-anc-assert*with-ns-infer*relative-clause-infer ≥ 1 -0.01
15 cw-conjunction-infer-avg-leaves-under ≥ 4.1 -0.01
16 r-anc-assert-reco-cuisine*with-ns-infer*period-infer ≥ 1 0.10
17 cw-conjunction-infer-avg-leaves-under ≥ 2.2 0.15
18 r-anc-assert-reco-food-quality*merge-infer ≥ 1 0.18
19 r-anc-assert-reco*merge-infer ≥ 2.5 0.20
20 r-anc-assert-reco-decor*merge-infer ≥ 1 0.22
21 r-anc-assert*merge-infer ≥ 2.5 0.25
22 r-trav-merge-infer ≥ 1.5 0.27
23 r-trav-with-ns-infer*assert-reco-service*assert-reco-food-quality ≥

1
0.40

24 leaf-assert-reco-food-quality*assert-reco-cuisine ≥ 1 0.46
25 cw-conjunction-infer-avg-leaves-under ≥ 3.8 0.46
26 leaf-assert-reco-food-quality ≥ 1 0.60
27 s-trav-have1*propernoun-restaurant*II-quality*attr-among1 ≥ 1 0.68
28 s-anc-attr-with*have1 ≥ 1 0.71

Figure 20: A subset of rules and corresponding α values of User A’s model, ordered by α.

RankBoost, and their α values, using models derived using bootstrapping over the tree fea-
tures only, since they are easier to interpret qualitatively. Of course many different models
are possible. User A’s model consists of 109 rules; a subset are in Figure 20. User B’s
model consists of 90 rules, a subset of which are shown in Figure 21. We first consider
how the individual models account for the rating differences for Alt-6 and Alt-8 from Fig-
ure 1 (repeated in Figure 18 with ratings from the trained SPRs), and then discuss other
differences.

Comparing Alt-6 and Alt-8: Alt-6 is highly ranked by User B but not by User A.
Alt-6 instantiates Rule 21 of Figure 21, expressing User B’s preferences about linear order
of the content. (Alt-6’s sp-tree is in Figure 15.) Rule 21 increases the rating of examples
in which the claim, i.e. assert-reco-best (Chanpen Thai has the best overall quality), is
realized first. Thus, unlike user A, user B prefers the claim at the beginning of the utterance
(the ordering of the claim is left unspecified by argumentation theory (Carenini & Moore,
2000)). Rule 22 increases the rating of examples in which the initial claim is immediately

442



Individual and Domain Adaptation in Dialogue

N Condition α

1 r-sis-assert-reco-relative-clause-infer ≥ 1 -1.01
2 r-sis-period-infer-assert-reco ≥ 1 -0.71
3 r-anc-assert-reco-nbhd*with-ns-infer ≥ 1 -0.50
4 r-anc-assert-reco*period-infer*period-infer ≥ 1.5 -0.49
5 r-anc-assert-reco-food-quality*with-ns-infer*relative-clause-infer ≥ 1 -0.41
6 r-anc-assert-reco-cuisine*with-ns-infer*relative-clause-infer ≥ 1 -0.39
7 r-anc-assert-reco*period-infer ≥ 1 -0.35
8 leaf-assert-reco-price ≥ 1 -0.32
9 r-anc-assert*period-infer*period-infer ≥ 1.5 -0.26
10 leaf-assert-reco-decor ≥ 1 -0.14
11 r-anc-assert*relative-clause-infer*period-infer ≥ 1.5 -0.07
12 r-trav-relative-clause-infer*assert-reco*with-ns-infer ≥ 1 -0.05
13 cw-conjunction-infer-avg-leaves-under ≥ 3.1 -0.03
14 cw-conjunction-infer-avg-leaves-under ≥ 3.3 -0.03
15 cw-conjunction-infer-avg-leaves-under ≥ 2.2 -0.01
16 r-anc-assert*relative-clause-infer*period-infer ≥ 1 0.03
17 leaf-assert-reco-service ≥ 1 0.07
18 s-trav-attr-with ≥ 1 0.18
19 r-anc-assert-reco-cuisine*with-ns-infer*cw-conjunction-infer ≥ 1 0.27
20 cw-conjunction-infer-avg-leaves-under ≥ 3.6 0.36
21 leaf-assert-reco-best ≥ 1 0.47
22 leaf-assert-reco-best*assert-reco-cuisine ≥ 1 0.50
23 cw-conjunction-infer-avg-leaves-under ≥ 2.8 0.52
24 r-trav-with-ns-infer*assert-reco-cuisine*assert-reco-food-quality ≥ 1 0.76

Figure 21: A subset of rules and corresponding α values of User B’s model, ordered by α.

followed by the type of cuisine (assert-reco-cuisine). These rules interact with Rule 19
in Figure 21, which specifies a preference for information following assert-reco-cuisine

to be combined via the with-ns operation, and then conjoined (cw-conjunction-infer)
with additional evidence. Alt-6 also instantiates Rule 23 in User B’s model, with an α value
of .52 associated with multiple uses of the cw-conjunction-infer operation.

User A’s low rating of Alt-6 arises from A’s dislike of the with-ns operation (Rules 3,
8, 9, 11 and 12) and the cw-conjunction-infer operation (Rules 3, 5, 7, 10 and 15) in
Figure 20. (Contrast User B’s Rule 23 with User A’s Rules 5 and 17.) Alt-6 also fails to
instantiate A’s preference for food quality and cuisine information to occur first (Rules 24
and 26). Finally, user A also prefers the claim assert-reco-best to be realized in its own
sentence (Rule 27).

By contrast, Alt-8 is rated highly by User A but not by User B (see Figure 1). Even
though Alt-8 instantiates the negatively evaluated with-ns operation (Rules 3, 8, 9 and 11
in Figure 20), there are no instances of cw-conjunction-infer (Rules 3, 5, 7, 10 and 15).
Moreover Alt-8 follows A’s ordering preferences (Rules 24 and 26) which describe sp-trees
with assert-reco-food-quality on the left frontier, and trees where it is followed by
assert-reco-cuisine. (See Alt-8’s sp-tree in Figure 16.) Rule 27 also increases the rating
of Alt-8 with its large positive α reflecting the expression of the claim in its own sentence.

443



Walker, Stent, Mairesse, & Prasad

On the other hand, Alt-8 is rated poorly by User B; it violates B’s preferences for
linear order (remember that Rules 21 and 22 specify that B prefers the claim first, followed
by cuisine information). Also, B’s model has rules that radically decrease the ranking of
examples using the period-infer operation (Rules 2, 4, 7 and 9).

Thus, Alt-6 and Alt-8 show that users A and B prefer different combination operators,
and different ordering of content, e.g. B likes the claim first and A likes recommendations
with food quality first followed by cuisine. As mentioned above, previous work on the
generation of evaluative arguments states that the claim may appear first or last (Carenini
& Moore, 2000). The relevant guideline for producing effective evaluative arguments states
that “placing the main claim first helps users follow the line of reasoning, but delaying the
claim until the end of the argument can also be effective if the user is likely to disagree with
the claim.” The template-based generator for MATCH always placed the claim first, but
this analysis suggests that this may not be effective for user A.

Other similarities and differences: There are also individual differences in prefer-
ences for particular operations, and for specific content operation interactions. For example,
User A’s model demotes examples where the with-ns operation has been applied (Rules
3, 6 and 8 in Figure 20), while User B generally likes examples where with-ns has been
used (Rule 18 in Figure 21). However, neither A nor B like with-ns when used to combine
other content with neighborhood information. In User A’s model the α value is -1.26, while
in User B’s model the value is -0.50 (see Rule 1 in Figure 20 and Rule 3 in Figure 21.)
These rules capture a specific interaction in the sp-tree between domain-specific content
and the with-ns-infer combination operation. Utterances instantiating these rules place
information in an adjunctival with-clause following the clause realizing the restaurant’s
neighborhood. There is no constraint on the type of information in the with-clause. In
utterance (1) below, the with-clause realizes the restaurant’s food quality, whereas in (2) it
contains information about the restaurant’s service.

(1) Mont Blanc has very good service, its price is 34 dollars, and it is located in Midtown
West, with good food quality. It has the best overall quality among the selected
restaurants.

(2) Mont Blanc is located in Midtown West, with very good service, its price is 34 dollars,
and it has good food quality. It has the best overall quality among the selected
restaurants.

Moreover, both users like with-ns when it combines cuisine and food-quality informa-
tion as in example (3) (Rule 23 in Figure 20 and Rule 24 in Figure 21).

(3) Komodo has the best overall quality among the selected restaurants since it is a
Japanese, Latin American restaurant, with very good food quality, it has very good
service, and its price is 29 dollars.

But User B radically reduces the rating of the cuisine, food-quality combination when
it is combined with further information using the relative-clause-infer operation, as in
example (5) (Rules 5 and 6 in Figure 21).
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(4) Bond Street has very good decor. This Japanese, Sushi restaurant, with excellent
food quality, has good service. It has the best overall quality among the selected
restaurants.

Example (4) is an interesting contrast with example (3). Example (4) instantiates Rule
24 in Figure 21, but it also instantiates a number of negatively valued features. As discussed
above, User B prefers examples where the claim is expressed first (Rule 21 in Figure 21),
and User B’s model explicitly reduces the rating of examples where information about decor
is expressed first (Rule 10 in Figure 21).

In general, User A likes the merge-infer operation (Rules 19, 21 and 22), espe-
cially when applied with assert-reco-food-quality (Rule 18), and assert-reco-decor

(Rule 20). User A strongly prefers to hear about food quality first (Rule 26 in Figure 20),
followed by cuisine information (Rule 24). In contrast, User B has rules that reduce the
rating of examples with price or decor first (Rules 8 and 10 in Figure 21). User B also
has no preferences for merge-infer but likes the cw-conjunction operation (Rule 20
in Figure 21). Finally, User B dislikes the relative-clause-infer operation in general
(Rule 1), and its combination with the with-ns operation (Rule 12) or the period-infer

operation (Rule 11).
In addition to other evidence discussed above as to individual differences in language

generation, we believe that the fact that these model differences are interpretable shows that
the differences in user perception of the quality of system utterances are true individual
differences, and not random noise.

8.3 Average Model Differences

Table 22 shows a subset of rules that have the largest α magnitudes for an example
AVG model using the same 100 feature bootstrapping process described above. Section 8.2
presented results that the average model performs statistically worse for recommendations
than either of the individual models. This may be due to the fact that the average model is
essentially trying to learn from contradictory feedback from the two users. To see whether
an examination of the models provides support for this hypothesis, we first examine how the
learned model ranks Alt-6 And Alt-8 as shown in Figure 18 in the column SPRAV G. The
average feedback for Alt-6 is 2.5 while the average feedback for Alt-8 is 3, but the trained
SPR ranks Alt-8 second highest and Alt-6 fifth out of 10.

The mid-value ranking of Alt-6 arises from a number of interacting rules, some of which
are similar to User B’s and some of which are similar to User A’s. Alt-6 instantiates Rules
26 and 27 in Figure 22 which increase the ranking of sentence plans in which the claim,
i.e. assert-reco-best is realized first, and sentence plans where the claim is immediately
followed by information about the type of cuisine (assert-reco-cuisine). These rules are
identical to B’s Rules 21 and 22 in Figure 21. Rule 18 additionally increases the ranking of
sentence plans where cuisine information is followed by service information, which applies
to Alt-6 to further increase its ranking. However Rule 3 lowers the ranking of Alt-6, since
it combines more than 3 different assertions into a single DSyntS tree.

Alt-8 is highly ranked by SPRAV G, largely as a result of several rules that increase its
ranking. Rule 31 specifies an increase in ranking for sentence plans that have the claim in
its own sentence, which is true of Alt-8 but not of Alt-6. This rule also appears as Rule 27
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N Condition αs

1 s-anc-attr-with*locate ≥ −∞ -0.87
2 s-trav-have1*i-restaurant*cuisine-type*ii-quality*attr-good*attr-

food ≥ −∞
-0.81

3 s-trav-propernoun-restaurant ≥ 2.5 -0.81
4 r-anc-cw-conjunction-infer*cw-conjunction-infer*period-justify ≥ −∞ -0.77
5 r-sis-assert-reco-relative-clause-infer ≥ −∞ -0.74
6 r-anc-assert-reco-decor*with-ns-infer*period-infer*period-justify

≥ −∞
-0.62

7 r-anc-assert-reco-cuisine*with-ns-infer*relative-clause-infer ≥ −∞ -0.62
8 period-justify-avg-leaves-under ≥ 5.5 -0.60
9 cw-conjunction-infer-avg-leaves-under ≥ 3.1 -0.54
10 r-anc-assert-reco-nbhd*with-ns-infer ≥ −∞ -0.45
11 r-sis-cw-conjunction-infer-relative-clause-infer ≥ −∞ -0.40
12 period-infer-avg-leaves-under ≥ 3.4 0.14
13 r-anc-assert-reco-food-quality*merge-infer ≥ −∞ 0.15
14 s-trav-propernoun-restaurant ≥ 5.5 0.19
15 r-anc-assert-reco-decor*merge-infer ≥ −∞ 0.19
16 s-anc-attr-with*i-restaurant*have1 ≥ −∞ 0.22
17 r-anc-assert-reco-decor*with-ns-infer ≥ −∞ 0.26
18 leaf-assert-reco-best*assert-reco-cuisine*assert-reco-service ≥ −∞ 0.26
19 s-trav-propernoun-restaurant ≥ 3.5 0.29
20 r-anc-assert-reco-cuisine*with-ns-infer*period-infer*period-justify

≥ −∞
0.29

21 leaf-assert-reco-food-quality ≥ −∞ 0.32
22 period-infer-avg-leaves-under ≥ 3.2 0.36
23 r-sis-merge-infer-assert-reco ≥ −∞ 0.42
24 period-justify-avg-leaves-under ≥ 6.5 0.48
25 s-anc-attr-with*have1 ≥ −∞ 0.49
26 leaf-assert-reco-best*assert-reco-cuisine ≥ −∞ 0.50
27 leaf-assert-reco-best ≥ −∞ 0.50
28 merge-infer-max-leaves-under ≥ −∞ 0.51
29 leaf-assert-reco-food-quality*assert-reco-cuisine ≥ −∞ 0.77
30 merge-infer-max-leaves-under ≥ 2.5 0.96
31 s-trav-have1*propernoun-restaurant*ii-quality*attr-among1 ≥ −∞ 0.97

Figure 22: A subset of the rules with the largest α magnitudes that were learned for ranking
recommendations given AVG feedback.

in A’s model in Figure 20. Alt-8 also instantiates Rules 21 and 29 which which are identical
to user A’s ordering preferences (Rules 24 and 26 in Figure 20) These rules describe sp-
trees with assert-reco-food-quality on the left frontier, and trees where it is followed
by assert-reco-cuisine. (See Alt-8’s sp-tree in Figure 16.) Rule 3 also applies to Alt-8,
reducing its ranking due to the number of content items it realizes.

Other similarities and differences: There are many rules in the average model that
are similar to either A or B’s models or both, and the average model retains a number of
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preferences seen in the individual models. For example, Rules 1 and 10 both reduce the
ranking of any sentence plan where neighborhood information is combined with subsequent
information using the with-ns combination operator. Rule 1 expresses this in terms of
the lexical items in the d-tree, whereas Rule 10 expresses it in terms of semantic features
derived from the sp-tree. Examples 1 and 2 in Section 8.2 illustrate this interaction.

Some of the rules are more similar to User A. For example, Rules 4 and 9 (like A’s Rules
2 and 5 in Figure 20) reduce the rating of sentence plans that use the operation cw-conj-

infer. In addition, Rules 22, 23, 24, and 28 expresses preferences for merging information,
which are very similar to A’s Rules 19, 21 and 22. Rule 15 expresses a preference for
information about the atmosphere (assert-reco-decor) to be combined using the merge

operation, as specified in A’s Rule 20. Rule 20 in Figure 22 is also similar to A’s Rule 16 with
assert-reco-cuisine combined with subsequent information with the with-ns operation.

Other rules are more similar to B’s model. For example, Rule 5 reduces the ranking of
sentence plans using the relative clause operation, which was also specified in User B’s
Rule 1, and Rules 16 and 25 indicate a general preference for use of the with-ns operation,
which was a strong preference in User B’s model (see B’s Rule 18 in Figure 21).

Note that in some cases, the learned model tries to account for both A’s and B’s prefer-
ences, even when these contradict one another. For example, Rule 27 specifies a preference
for the claim to come first, as in B’s Rule 21, whereas Rule 26 is the same as A’s 24, speci-
fying a preference for food quality and cuisine information to be expressed first. Thus the
model does suggest that a reduction in performance may arise from trying to account for
the contradictory preferences of users A and B.

9. Conclusions

This article describes SPaRKy, a two-stage sentence planner that generates many alter-
native realizations of input content plans and then ranks them using a statistical model
trained on human feedback. We demonstrate that the training technique developed for
SPoT (Walker, Rambow, & Rogati, 2002), generalizes easily to new domains, and that it
can be extended to handle the rhetorical structures required for more complex types of
information presentation.

One of the most novel contributions of this paper is to show that trainable generation
can be used to train sentence planners tailored to individual users’ preferences. Previ-
ous work modeling individuals has mainly applied to content planning. While studies of
human-human dialogue suggest that modeling other types of individual differences could be
valuable for spoken language generation, in the past, linguistic variation among individuals
was considered a problem for generation (McKeown, Kukich, & Shaw, 1994; Reiter, 2002;
Reiter, Sripada, & Robertson, 2003). Here, we show that users have different perceptions of
the quality of alternative realizations of a content plan, and that individualized models per-
form better than those trained for groups of users. Our qualitative analysis indicates that
trainable sentence generation is sensitive to variations in domain application, presentation
type, and individual human preferences about the arrangement of particular content types.
These are the first results showing that individual preferences apply to sentence planning.

We also compared SPaRKy to the template-based generator described in Section 3.2:
this generator is highly tuned to this domain and was previously shown to produce high
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quality outputs in a user evaluation (Stent, Prasad, & Walker, 2004). When SPaRKy is
trained for a group of users, then template-based generation is better for recommend and
compare-3, but in most cases the performance of the individualized SPRs are statistically
indistinguishable from MATCH’s template-based generator: the exceptions are that, for
compare-2, User B prefers SPaRKy, while for compare-3 User A prefers the template-
based generator. In all cases, the Human scores (outputs produced by the SPG but selected
by a human) are as good or better than the template-based generator, even for complex
information presentations such as extended comparisons.

These results show that there is a gap between the performance of the trained SPR
and human performance. This suggests that it might be possible to improve the SPR with
different feature sets or a different ranking algorithm. We leave a comparison with other
ranking algorithms to future work. Here, we report results for many different feature sets
(n-gram, concept and tree) and investigate their effect on performance. Table 1 shows that
a combination of the three feature sets performs significantly better for recommend and
compare-3 than the tree features from our earlier work (Walker, Rambow, & Rogati, 2002;
Stent, Prasad, & Walker, 2004; Mairesse & Walker, 2005). Interestingly, in some cases,
simple features like n-grams perform as well as features representing linguistic structure
such as the tree features. This might be because particular lexical items, e.g. with, are
often uniquely associated with a combination operator, e.g. the with-ns operator, which
was shown to have impact on user perceptions of utterance quality (Section 8). More work
is needed to determine whether these performance similarities are simply due to the fact
that the variation of form generated by SPaRKy’s SPG is limited. Other work has also
examined tradeoffs between n-gram features and linguistically complex features in terms
of tradeoffs between time and accuracy (Pantel, Ravichandran, & Hovy, 2004). Although
SPaRKy is trained offline, the time to compute features and rank SPG outputs remains
an issue when using SPaRKy in a real-time spoken dialogue system.

A potential limitation of our approach is the time and effort required to elicit user
feedback for training the system, as described in Section 6. In Section 7.3 we showed that
RankLoss error rates of around 0.20 could be acquired with a much smaller training set, i.e.
with a training set of around 120 examples. However typical users would probably not want
to provide ratings of 120 examples. Future work should explore alternative training regimes
perhaps by utilizing ratings from several users. For example, we could identify examples
that most distinguish our existing users, and just present these examples to new users.
Also, instead of users rating information presentations before using MATCH, perhaps a
method for users to rate information presentations while using MATCH could be developed,
i.e. in the course of a dialogue with MATCH when a recommendation or comparison
is presented to the user, the system could display on the screen a rating form for that
presentation. Another approach would be to train from a different type of user feedback
collected automatically by monitoring the user’s behavior, e.g. measures of cognitive load
such as reading time.

Another limitation is that SPaRKy’s dictionary is handcrafted, i.e. the associations
between simple assertions and their syntactic realizations (d-trees) are specified by hand, like
all generators. Recent work has begun to address this limitation by investigating techniques
for learning a generation dictionary automatically from different types of corpora, such
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as user reviews (Barzilay & Lee, 2002; Higashinaka, Walker, & Prasad, 2007; Snyder &
Barzilay, 2007).

A final limitation is that we only use two individuals to provide a proof-of-concept argu-
ment for the value of user-tailored trainable sentence planning. We have argued throughout
this paper that the individual differences we document are more general, are not particular
to users A and B, and are not the result of random noise in user feedback. Nevertheless,
we hope that future work will test these results against a larger population of individuals
in order to provide further support for these arguments and in order to characterize the full
range of individual differences in preferences for language variation in dialogue interaction.
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