
INDIVIDUAL DIFFERENCES IN EWA LEARNING WITH
PARTIAL PAYOFF INFORMATION
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We extend experience-weighted attraction (EWA) learning to games in which only the set of possible
foregone payoffs from unchosen strategies are known, and estimate parameters separately for each
player to study heterogeneity. We assume players estimate unknown foregone payoffs from a strategy,
by substituting the last payoff actually received from that strategy, by clairvoyantly guessing the actual
foregone payoff, or by averaging the set of possible foregone payoffs conditional on the actual
outcomes. All three assumptions improve predictive accuracy of EWA. Individual parameter esti-
mates suggest that players cluster into two separate subgroups (which differ from traditional rein-
forcement and belief learning).
JFL Classifications: C70, C91

Central to economic analysis are the twin concepts of equilibrium and learning. In
game theory, attention has turned recently to the study of learning (partly due to an
interest in which types of equilibria might be reached by various kinds of learning,
e.g. Mailath, 1998). Learning should be of general interest in economics because
strategies and markets may be adapting much of the time or non-equilibrium
behaviour emerges, due to imperfect information, rationality limits of agents, trading
asynchronies, and supply and demand shocks. Understanding more about how
learning works can be helpful in predicting time paths of behaviour in the economy,
and designing institutional rules which speed learning. In game theory, under-
standing initial conditions and how learning occurs might also supply us with tools to
predict which of many equilibria will result when there are multiple equilibria
(Crawford, 1995).
The models of learning in simple games described in this article are not meant to be

applied directly to complex markets and macroeconomic processes. However, the hope
is that by honing models sharply on experimental data (where we can observe the game
structure and the players moves clearly), we can create robust models that could
eventually be applied to learning in naturally-occurring situations, e.g., hyperinflations,
as in Marcet and Nicolini (2003).
There are two general empirical approaches to understanding learning in games

(Ho, forthcoming; Camerer, 2003, chapter 6):
Population models and individual models.

1. Population models make predictions about how the aggregate behaviour in a
population will change as a result of aggregate experience. For example, in
replicator dynamics, a population’s propensity to play a certain strategy will
depend on its �fitness� (payoff) relative to the mixture of strategies played pre-
viously.1 Models like this are obviously useful but submerge differences in
individual learning paths.
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1 Another important class of models involve imitation (Schlag, 1999); still another is learning among
various abstract decision rules (Stahl and Haruvy, 2004).
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2. Individual learning models allow each person to choose differently, depending on
the experiences they have. Our �experience-weighted attraction� (EWA) model,
for example, assumes that people learn by decaying experience-weighted lagged
attractions, updating them according to received payoffs or weighted foregone
payoffs, and normalising those attractions. Attractions are then mapped into
choice probabilities using a logit rule. This general approach includes the key
features of reinforcement and belief learning (including Cournot and fictitious
play), and predicts behaviour well in many different games see, Camerer et al.
(2002) for a comprehensive list.

In this article, we extend the applicability of EWA in two ways: By estimating learning
rules at the individual level, and modeling cases where the foregone payoff from
unchosen strategies is not perfectly known (e.g., most extensive-form games).

First, we allow different players to have different learning parameters. In many
previous empirical applications, players are assumed to have a common learning rule
exceptions include Cheung and Friedman (1997); Stahl (2000); Broseta (2000).

Allowing heterogeneous parameter values is an important step for four possible
reasons.

(i) While it seems very likely that detectable heterogeneity exists, it is conceivable
that allowing heterogeneity does not improve fit much. If not, then we have
some assurance that �representative agent� modelling with common parameter
values is an adequate approximation.

(ii) If players are heterogeneous, it is likely that players fall into distinct clusters,
perhaps corresponding to familiar learning rules like fictitious play or rein-
forcement learning, or to some other kinds of clusters not yet identified.2

(iii) If players are heterogeneous, then it is possible that a single parameter esti-
mated from a homogeneous representative-agent model will misspecify the
mean of the distribution of parameters across individuals.3 We can test for such
a bias by comparing the mean of individual estimates with the single repre-
sentative-agent estimate.

(iv) If players learn in different ways, the interactions among them can produce
interesting effects. For example, suppose some players learn according to an
adaptive rule and others are �sophisticated� and know how the first group learn
(e.g., Stahl, 1999). Then in repeated games, the sophisticated players have an
incentive to �strategically teach� the learners in a way that benefits the sophis-
ticates (Chong et al., 2006). Understanding how this teaching works requires an
understanding of heterogeneity in learning.

2 Camerer and Ho (1998) allowed two separate configurations of parameters (or �segments�) to see whe-
ther the superior fit of EWA was due to its ability to mimic a population mixture of reinforcement and belief
learners but they found that this was clearly not so. The current study serves as another test of this possibility,
with more reliable estimation of parameters for all players.

3 Wilcox (2006) shows precisely such a bias using Monte Carlo simulation, which is strongest in a game with
a mixed-strategy equilibrium but weaker in a stag-hunt coordination game. The strongest bias is that when the
response sensitivity k values are dispersed, then when a single vector of parameters is estimated for all subjects
the recovered value of d is severely downward-biased compared to its true value. He suggests random effects
estimation of a distribution of k values to reduce the bias.
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Second, most theories of learning in games assume that players know the foregone
payoffs to strategies they did not choose. Theories differ in the extent to which
unchosen strategies are reinforced by foregone payoffs. For example, fictitious play
belief learning theories are equivalent to generalized reinforcement theories in which
unchosen strategies are reinforced according to their foregone payoffs as strongly as
chosen strategies are. But then, as Vriend (1997) noted, how does learning occur when
players are not sure what foregone payoffs are? This is a crucial question for applying
these theories to naturally-occurring situations in which the modeller may not know the
foregone payoffs, or to extensive-form games in which players who choose one branch
of a tree do not know what would have resulted if they chose another path. In this
article we compare three ways to add learning about unknown foregone payoffs (�payoff
learning�) to describe learning in low-information environments.4

The basic results can be easily stated. We estimated individual-level EWA parameters
for 60 subjects who played a normal-form centipede game (with extensive-form feed-
back) 100 times (Nagel and Tang, 1998). Parameters do differ systematically across
individuals. While parameter estimates do not cluster naturally around the values
predicted by belief or reinforcement models, they do cluster in a similar way in two
different player roles, into learning in which attractions cumulate past payoffs, and
learning in which attractions are averages of past payoffs.
Three payoff learning models are used to describe how subjects estimate foregone

payoffs, then use these estimates to reinforce strategies whose foregone payoffs are not
known precisely. All three are substantial improvements over the default assumption
that these strategies are not reinforced at all. The best model is the one in which
�clairvoyant� subjects update unchosen strategies with perfect guesses of their foregone
payoffs.

1. EWA Learning with Partial Payoff Information

1.1. The Basic EWA Model

Experience-weighted attraction learning was introduced to hybridise elements of
reinforcement and belief-based approaches to learning and includes familiar variants
of both as special cases. This Section will highlight only the most important features of
the model. Further details are available in Camerer and Ho (1999) and Camerer et al.
(2002).
In EWA learning, strategies have attraction levels which are updated according to

either the payoffs the strategies actually provided, or some fraction of the payoffs
unchosen strategies would have provided. These attractions are decayed or depreciated
each period, and also normalised by a factor which captures the (decayed) amount of
experience players have accumulated. Attractions to strategies are then mapped into
the probabilities of choosing those strategies using a response function which guar-
antees that more attractive strategies are played more often.

4 Ho and Weigelt (1996) studied learning in extensive-form coordination games and Anderson and
Camerer (2000) studied learning in extensive-form signalling games but both did not consider the full range
of models of foregone payoff estimation considered here.
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EWA was originally designed to study n-person normal form games. The players are
indexed by i (i ¼ 1, 2, . . . ,n), and each one has a strategy space Si ¼
fs1i ; s

2
i ; . . . ; s

mi�1
i ; smi

i g, where si denotes a pure strategy of player i. The strategy space for
the game is the Cartesian products of the Si, S ¼ S1 � S2 � . . .� Sn. Let s ¼

(s1, s2, . . . ,sn) denote a strategy combination consisting of n strategies, one for each
player. Let s�i ¼ (s1, . . . ,si�1, siþ1, . . . ,sn) denote the strategies of everyone but player i.
The game description is completed with specification of a payoff function
pi(si, s�i) 2 <, which is the payoff i receives for playing si when everyone else is playing
the strategy specified in the strategy combination s�i. Finally, let si(t) denote i �s actual
strategy choice in period t, and s�i(t) the vector chosen by all other players. Thus,
player i �s payoff in period t is given by pi[si(t), s�i(t)].

1.2. Updating Rules

The EWA model updates two variables after each round. The first variable is the
experience weight N(t), which is like a count of �observation-equivalents� of past
experience and is used to weight lagged attractions when they are updated. The second
variable is A

j
i ðtÞ, i�s attraction for strategy j after period t has taken place. The variables

N(t) and A
j
i ðtÞ begin with initial values N(0) and A

j
ið0Þ. These prior values can be

thought of as reflecting pregame experience, either due to learning transferred from
different games or due to introspection.5

Updating after a period of play is governed by two rules. First, experience weights are
updated according to

N ðtÞ ¼ qN ðt � 1Þ þ 1; t � 1: ð1Þ

where q is a discount factor that depreciates the lagged experience weight. The second
rule updates the level of attraction. A key component of the updating is the payoff that
a strategy either yielded, or would have yielded, in a period. The model weights
hypothetical payoffs that unchosen strategies would have earned by a parameter d, and
weights payoff actually received, from chosen strategy si(t), by an additional 1 � d (so it
receives a total weight of 1). Using an indicator function I(x, y) which equals 1 if x ¼ y

and 0 if x 6¼ y, the weighted payoff for i �s j th strategy can be written
fdþ ð1� dÞI ½s

j
i ; siðtÞ�gpi ½s

j
i ; s�iðtÞ�. The rule for updating attraction sets A

j
iðtÞ to be a

depreciated, experience-weighted lagged attraction, plus an increment for the received
or foregone payoff, normalised by the new experience weight. That is,

A
j
iðtÞ ¼

/N ðt � 1ÞA
j
i ðt � 1Þ þ fdþ ð1� dÞI ½s

j
i ; siðtÞ�gpi ½s

j
i ; s�iðtÞ�

N ðtÞ
: ð2Þ

The factor / is a discount factor that depreciates previous attractions. Let j ¼
(/ � q)//. Then the parameter j adjusts whether the experience weight depreciates
more rapidly than the attractions. Notice that the steady-state value of N(t) is 1/(1 � q)
(and does not depend on N(0)). In the estimation we impose the restriction

5 Boulding et al. (1999) and Biyalogorsky et al. (2006) show that managers tend to have a large initial
experience count N(0).
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N(0) � 1/(1 � q) which guarantees that the experience weight rises over time, so the
relative weight on new payoffs falls and learning slows down.
Finally, attractions must be mapped into the probabilities of choosing strategies in

some way. Obviously we would like P
j
i ðtÞ to be monotonically increasing in A

j
iðtÞ and

decreasing in Ak
i ðtÞ (where k 6¼ j). Three forms have been used in previous research:

A logit or exponential form, a power form, and a normal (probit) form. The various
probability functions each have advantages and disadvantages. We prefer the logit
form

P
j
i ðt þ 1Þ ¼

ekA
j

i ðtÞ

Pmi

k¼1 e
kAk

i ðtÞ
ð3Þ

because it allows negative attractions and fits a little better in a direct comparison with
the power form (Camerer and Ho, 1998). The parameter k measures sensitivity of
players to differences among attractions. When k is small, probabilities are not very
sensitive to differences in attractions (when k ¼ 0 all strategies are equally likely to be
chosen). As k increases, it converges to a best-response function in which the strategy
with the highest attraction is always chosen.
Bracht and Ichimura (2001) investigate the econometric identification of the EWA

model and show that it is identified if the payoff matrix is regular (i.e., no two strategies
receive the same payoff) and k 6¼ 0, jqN(0)j < 1 and N(0) 6¼ 1 þ qN(0). Conse-
quently, we impose k > 0, 0 � q < 1, and 0 � N(0) < 1/(1 � q) in our estimation.6

In some other recent research, we have also found it useful to replace the free
parameters for initial attractions, A

j
ið0Þ, with expected payoffs generated by a cognitive

hierarchy model designed to explain choices in one-shot games and supply initial
conditions for learning (Camerer et al., 2002 and Chong et al., 2006).7

1.3. Special Cases

One special case of EWA is choice reinforcement models in which strategies have levels
of reinforcement or propensity which are depreciated and incremented by received
payoffs. In the model of Harley (1981) and Roth and Erev (1995), for example

R
j
i ðtÞ ¼

/R
j
i ðt � 1Þ þ pi ½s

j
i ; s�iðtÞ� if s

j
i ¼ siðtÞ,

/R
j
i ðt � 1Þ if s

j
i 6¼ siðtÞ.

(

ð4Þ

Using the indicator function, the two equations can be reduced to one:

R
j
i ðtÞ ¼ /R

j
i ðt � 1Þ þ I ½s

j
i ; siðtÞ�pi ½s

j
i ; s�iðtÞ�: ð5Þ

6 Salmon (2001) evaluates the identification properties of reinforcement, belief-based, and the EWA
models by simulation analysis. He uses each of these models to generate simulated data in simple matrix
games and investigate whether standard estimation methods can accurately recover the model. He shows that
all models have difficulties in recovering the true model but the EWA model can identify its true parameters
(particularly d) more accurately than reinforcement and belief-based models.

7 Another approach to reducing parameters is to replacing fixed parameters with �self-tuning� functions of
experience (Ho et al., forthcoming). This model fits almost as well as one with more free parameters and
seems capable of explaining cross-game differences in parameter values.
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This updating formula is a special case of the EWA rule, when d ¼ 0, N(0) ¼ 1, and
j ¼ 1. The adequacy of this simple reinforcement model can be tested empirically by
setting the parameters to their restricted values and seeing how much fit is compro-
mised (adjusting, of course, for degrees of freedom).

In another kind of reinforcement, attractions are averages of previous attractions, and
reinforcements, rather than cumulations (Sarin and Vahid, 2004; Mookerjhee and
Sopher, 1994, 1997; Erev and Roth, 1998). For example

R
j
i ðtÞ ¼ /R

j
i ðt � 1Þ þ ð1� /ÞI ½s

j
i ; siðtÞ�pi ½s

j
i ; s�iðtÞ�: ð6Þ

A little algebra shows that this updating formula is a special case of the EWA rule,
when d ¼ 0, N(0) ¼ 1/(1 � /), and j ¼ 0.

In belief-based models, adaptive players base their responses on beliefs formed by
observing their opponents� past plays. While there are many ways of forming beliefs, we
consider a fairly general �weighted fictitious play� model, which includes fictitious play
(Brown, 1951; Fudenberg and Levine, 1998) and Cournot best-response (Cournot,
1960) as special cases.

In weighted fictitious play, players begin with prior beliefs about what the other
players will do, which are expressed as ratios of counts to the total experience. Denote
total experience by N ðtÞ ¼

Pm�i

k¼1 N
k
�iðtÞ.

8 Express the probability that others will play
strategy k as Bk

�iðtÞ ¼ N k
�iðtÞ=N ðtÞ, with N k

�iðtÞ � 0 and N(t) > 0.
Beliefs are updated by depreciating the previous counts by /, and adding one for the

strategy combination actually chosen by the other players. That is,

Bk
�iðtÞ ¼

/N k
�iðt � 1Þ þ I ½sk�i ; s�iðtÞ�

Pm�i

h¼1f/N
h
�iðt � 1Þ þ I ½sh�i ; s�iðtÞ�g

: ð7Þ

This form of belief updating weights the belief from one period ago / times as much
as the most recent observation, so / can be interpreted as how quickly previous
experience is discarded.9 When / ¼ 0 players weight only the most recent observation
(Cournot dynamics); when / ¼ 1 all previous observations count equally (fictitious
play).

Given these beliefs, we can compute expected payoffs in each period t,

E
j
iðtÞ ¼

X

m�i

k¼1

Bk
�iðtÞpðs

j
i ; s

k
�iÞ: ð8Þ

The crucial step is to express period t expected payoffs as a function of period t � 1
expected payoffs. This yields:

E
j
iðtÞ ¼

/N ðt � 1ÞE
j
iðt � 1Þ þ p½s

j
i ; s�iðtÞ�

/N ðt � 1Þ þ 1
: ð9Þ

8 Note that N(t) is not subscripted because the count of frequencies is assumed, in our estimation, to be the
same for all players. Obviously this restriction can be relaxed in future research.

9 Some people interpret this parameter as an index of �forgetting� but this interpretation is misleading
because people may recall the previous experience perfectly (or have it available in �external memory� on
computer software) but they will deliberately discount old experience if they think new information is more
useful in forecasting what others will do.
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Expressing expected payoffs as a function of lagged expected payoffs, the belief
terms disappear into thin air. This is because the beliefs are only used to compute
expected payoffs, and when beliefs are formed according to weighted fictitious play, the
expected payoffs which result can also be generated by generalised reinforcement
according to previous payoffs. More precisely, if the initial attractions in the EWA
model are expected payoffs given some initial beliefs (i.e., A

j
i ð0Þ ¼ E

j
i ð0Þ), j ¼ 0 (or

/ ¼ q), and foregone payoffs are weighted as strongly as received payoffs (d ¼ 1), then
EWA attractions are exactly the same as expected payoffs.
This demonstrates a close kinship between reinforcement and belief approaches.

Belief learning is nothing more than generalised attraction learning in which strategies
are reinforced equally strongly by actual payoffs and foregone payoffs, attractions are
weighted averages of past attractions and reinforcements, and initial attractions spring
from prior beliefs.10

1.4. Interpreting EWA

The EWA parameters can be given the following psychological interpretations.

1. The parameter d measures the relative weight given to foregone payoffs, com-
pared to actual payoffs, in updating attractions. It can be interpreted as a kind of
counterfactual reasoning, �imagination� of foregone payoffs, or responsiveness
to foregone payoffs (when d is larger players move more strongly toward ex post

best responses).11 We call it �consideration� of foregone payoffs.
2. The parameter / is naturally interpreted as depreciation of past attractions,
A(t). In a game-theoretic context, / will be affected by the degree to which
players realise other players are adapting, so that old observations on what
others did become less and less useful. Then / can be interpreted as an index of
(perceived) change.

3. The parameter j determines the growth rate of attractions, which in turn affects
how sharply players converge. When j ¼ 1 then N(t) ¼ 1 (for t > 0) and the
denominator in the attraction updating equation disappears. Thus, attractions
cumulate past payoffs as quickly as possible. When j ¼ 0, attractions are
weighted averages of lagged attractions and past payoffs, where the weights are
/N(0) and 1.
In the logit model, whether attractions cumulate payoffs, or average them, is
important because only the difference among the attractions matters for their
relative probabilities of being chosen. If attractions can grow and grow, as they
can when j ¼ 1, then the differences in strategy attractions can be very large.
This implies that, for a fixed response sensitivity, k, the probabilities can be
spread farther apart; convergence to playing a single strategy almost all the time
can be sharper. If attractions cannot grow outside of the payoff bounds, when

10 Hopkins (2002) compares the convergence properties of reinforcement and fictitious play and finds
that they are quite similar in nature and that they will in many cases have the same asymptotic behaviour.

11 The parameter d may also be related to psychological phenomena like regret. These interpretations also
invite thinking about the EWA model as a two-process model that splices basic reinforcement, perhaps
encoded in dopaminergic activity in the midbrain and striatum, and a more frontal process of imagined
reinforcement. In principle these processes could be isolated using tools like eyetracking and brain imaging.
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j ¼ 0 then convergence cannot produce choice probabilities which are so ex-
treme. Thus, we think of j as an index of the degree of commitment to one choice
or another (it could also be thought of as a convergence index, or confidence).

4. The term A
j
ið0Þ represents the initial attraction, which might be derived from

some analysis of the game, from selection principles or decision rules, from
surface similarity between strategies in the game being played and strategies
which were successful in similar games, etc. Belief models impose strong
restrictions on A

j
ið0Þ by requiring initial attractions to be derived from prior

beliefs.12 Additionally, they require attraction updating with d ¼ 1 and j ¼ 0.
EWA allows one to separate these two processes: Players could have arbitrary
initial attractions but begin to update attractions in a belief-learning way after
they gain experience.

5. The initial-attraction weight N(0) is in the EWA model to allow players in belief-
based models to have an initial prior which has a strength (measured in units of
actual experience). In EWA, N(0) is therefore naturally interpreted as the
strength of initial attractions, relative to incremental changes in attractions due
to actual experience and payoffs. If N(0) is small then the effect of the initial
attractions wears off very quickly (compared to the effect of actual experience).
If N(0) is large then the effect of the initial attractions persists.13

In previous research, the EWA model has been estimated on several samples of
experimental data, and estimates have been used to predict out-of-sample. Forecasting
out of sample completely removes any inherent advantage of EWA over restricted
special cases because it has more parameters. Indeed, if EWA fits well in-sample purely
by overfitting, the overfitting will be clearly revealed by the fact that predictive accuracy
is much worse predicting out-of-sample than fitting in-sample.

Compared to the belief and reinforcement special cases, EWA fits better in weak –
link coordination games (Camerer and Ho, 1998) – out-of-sample accuracy was not
measured– and predicts better out of sample in median-action coordination games and
dominance solvable �p-beauty contests� (Camerer and Ho, 1999), call markets (Hsia,
1998),�unprofitable games� (Morgan and Sefton, 2002), partially-dominance-solvable
R&D games (Rapoport and Almadoss, 2000), and in unpublished estimates we made in
other �continental divide� coordination games (Van Huyck et al., 1997). EWA only
predicted worse than belief learning in some constant-sum games (Camerer and Ho,
1999), and has never predicted worse than reinforcement learning.

To help illustrate how EWA hybridises features of other theories, Figure 2 shows a
three-dimensional parameter space – a cub – in which the axes are the parameters d, /,
and j. Traditional belief and reinforcement theories assume that learning parameters
are located on specific edges of the cube. For example, cumulative reinforcement

12 This requires, for example, that weakly dominated strategies will always have (weakly) lower initial
attractions than dominant strategies. EWA allows more flexibility. For example, players might choose ran-
domly at first, choose what they chose previously in a different game, or set a strategy’s initial attraction equal
to its minimum payoff (the minimax rule) or maximum payoff (the maximax rule). All these decision rules
generate initial attractions which are not generally allowed by belief models but are permitted in EWA
because A

j
i ð0Þ are flexible.

13 This enables one to test equilibrium theories as a special kind of (non)-learning theory with N(0) very
large and initial attractions equal to equilibrium payoffs.
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theories require low consideration (d ¼ 0) and high commitment (j ¼ 1). (Note that
the combination of low consideration and high commitment may be the worst possible
combination, since such players can get quickly locked in to strategies which are far
from best responses.) Belief models are represented by points on the edge where
consideration is high (d ¼ 1) but commitment is low (j ¼ 0). This constrains the
ability of belief models to produce sharp convergence, in coordination games for
example (Camerer and Ho, 1998, 1999). Cournot best-response and fictitious play
learning are vertices at the ends of the belief-model edge.14

It is worth noting that fictitious play was originally proposed by Brown (1951) and
Robinson (1951) as a computational procedure for finding Nash equilibria, rather than
a theory of trial-by-trial learning. Cournot learning was proposed about 160 years ago
before other ideas were suggested. Models of reinforcement learning were developed
later, and independently, to explain behaviour of animals who presumably lacked
higher-order cognition to imagine or estimate foregone payoffs. They were introduced
into economics by John Cross in the 1970s and Brian Arthur in the 1980s to provide a
simple way to model bounded rationality. Looking at Figure 2, however, one is hard
pressed to think of an empirical rationale why players� parameter values would neces-
sarily cluster on those edges or vertices which correspond to fictitious play or rein-
forcement learning (as opposed to other areas, or the interior of the cube). In fact, we
shall see below that there is no prominent clustering in the regions corresponding to
familiar belief and reinforcement models, but there is substantial clustering near the
faces where commitment is either low (j ¼ 0) or high (j ¼ 1).

1.5. EWA Extensions to Partial Payoff Information

In this paper, partial foregone payoff information arises because we study a reduced
normal-form centipede game but with extensive-form feedback (see Table 1 and
Figure 1). In this game, an Odd player has the opportunity to take the majority of a
growing �pie� at odd numbered decision nodes f1, 3, 5, 7, 9, 11, 13g; the Even player
has the opportunity to take at nodes f2, 4, 6, 8, 10, 12, 14g. Each player chooses when
to take by choosing a number. The lower of the two numbers determines when the pie
stops growing and how much each player gets. The player who chooses the lower
number always gets more. Players receive feedback about their payoffs and not the
other’s strategy. Consequently, the player who chooses to take earlier cannot infer the
other player’s strategy from observing the payoffs because the game is non-generic in
the sense that multiple outcomes lead to the same payoffs (see Table 1).
Our approach to explaining learning in environments with partial payoff informa-

tion is to assume that players form some guess about what the foregone payoff might
be, then plug it into the attraction updating equation. This adds no free parameters to
the model.
First define the estimate of the foregone payoff as p̂iðs

j
i ; tÞ (and p̂ is just the known

foregone payoff when it is known). Note that p̂iðs
j
i ; tÞ does not generally depend on s�i(t)

because, by definition, if the other players� strategy was observed then the foregone

14 Note that EWA learning model has not been adapted to encompass imitative learning rules such as those
studied by Schlag (1999). One way to allow this to allow other payoffs to enter the updating of attractions.
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payoff would be known. When the foregone payoff is known, updating is done as in
standard EWA. When the foregone payoff is not known, updating is done according to

N
j
i ðtÞ ¼ qN

j
i ðt � 1Þ þ 1; t � 1 ð10Þ

and

A
j
iðtÞ ¼

/N
j
i ðt � 1ÞA

j
i ðt � 1Þ þ fdþ ð1� dÞI ½s

j
i ; siðtÞ�gp̂iðs

j
i ; tÞ

N
j
i ðtÞ

: ð11Þ

Three separate specifications of p̂ðs
j
i ; tÞ are tested: last actual payoff updating, payoff

clairvoyance, and the average payoff in the set of possible foregone payoffs conditional
on the actual outcome. When players update according to the last actual payoff, they
recall the last payoff they actually received from a strategy, and use that as an estimate
of the foregone payoff. Formally,

p̂iðs
j
i ; tÞ ¼

pi ½s
j
i ; s�iðtÞ� if s

j
i ¼ siðtÞ,

p̂iðs
j
i ; t � 1Þ otherwise.

(

ð12Þ

To complete the specification, the estimates p̂iðs
j
i ; 0Þ are initialised as the average of

all the possible elements of the set of foregone payoffs.
Let us illustrate how this payoff learning rule works with the Centipede game given in

Table 1 and Figure 1. Suppose player A chooses 7 and player B chooses 8 or higher.
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Fig. 1. The Extensive Form of Centipede Game, Nagel and Tang (1998)

Table 1

Payoffs in Centipede Games, Nagel and Tang (1998)

Odd player
number choices

Even player number choices

2 4 6 8 10 12 14

1 4 4 4 4 4 4 4
1 1 1 1 1 1 1

3 2 8 8 8 8 8 8
5 2 2 2 2 2 2

5 2 3 16 16 16 16 16
5 11 4 4 4 4 4

7 2 3 6 32 32 32 32
5 11 22 8 8 8 8

9 2 3 6 11 64 64 64
5 11 22 45 16 16 16

11 2 3 6 11 22 128 128
5 11 22 45 90 32 32

13 2 3 6 11 22 44 256
5 11 22 45 90 180 64
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Since player A �took first� she receives a payoff of 32, and she knows that if she chose 9
instead, she would receive either 11, if player B chose 8, or 64 if player B chose 10, 12,
or 14. In this case we would initialise p̂ið9; 0Þ ¼ ð11þ 64Þ=2. Notice that we average only
the unique elements of the payoff set, not each payoff associated with every strategy
pair. That is, even though 64 would result if player A chose 8 and B chose 10, 12, or 14,
we only use the payoff 64 once, not three times, in computing the initial p̂ið9; 0Þ.
Updating using the last actual payoff is cognitively economical because it requires

players to remember only the last payoff they received. Furthermore, it enables them to
adjust rapidly when other players� behaviour is changing, by immediately discounting
all previous received payoffs and focusing on only the most recent one.
If one thinks of the last actual payoff as an implicit forecast of what payoff is likely to

have been the �true� foregone one, then it may be a poor forecast when the last actual
payoff was received many periods ago, or if subjects have hunches about which foregone
payoff they would have gotten which are more accurate than distant history. Therefore,
we consider an opposite assumption as well – �payoff clairvoyance�. Under payoff clair-
voyance, p̂iðs

j
i ; tÞ ¼ pi ½s

j
i ; s�iðtÞ�. That is, players accurately guess exactly what the fore-

gone payoff would have been even though they were not told about this information.
Finally, an intermediate payoff learning rule may be is to use the average payoff of

the set of possible foregone payoffs conditional on the actual outcome to estimate the
foregone payoff in each period. It is the same as the way we initialise the last actual
payoff rule but apply the same rule in every period. Like before, we average only the
unique elements in the payoff set.
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Fig. 2. EWA’s Model Parametric Space
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The last-actual-payoff scheme recalls only observed history and does not try to
improve upon it (as a forecast); consequently, it can also be applied when players do
not even know the set of possible foregone payoffs. The payoff-clairvoyance scheme
uses knowledge which the subject is not told (but could conceivably figure out). The
average payoff rule lies between these two extreme. We report estimates and fit mea-
sures for the three models.

2. Data

Nagel and Tang (1998) (NT) studied learning in the reduced normal-form of an
extensive-form centipede game. Table 1 shows the payoffs to the players from taking at
each node. (Points are worth 0.005 deutschemarks). They conducted five sessions with
12 subjects in each, playing 100 rounds in a random-matching fixed-role protocol. A
crucial design feature is that while the players choose normal-form strategies, they are
given extensive-form feedback. That is, each pair of subjects is only told the lower

number chosen in each round, corresponding to the time at which the pie is taken and
the game stops. The player choosing the lower number does not know the higher
number. For example, if Odd chooses 5, takes first, and earns 16, she is not sure
whether she would have earned 6 by taking later, at node 7 (if Even’s number was 6) or
whether she would have earned 32 (if Even had taken at 8 or higher), because she only
knows that Even’s choice was higher than 5. This ambiguity about foregone payoffs is
an important challenge for implementing learning models.

Table 2 shows the overall frequencies of choices (pooled across the five sessions,
which are similar). Most players choose numbers from 7 to 11.

If a subject’s number was the lower one (i.e., they chose �take�), there is a strong
tendency to choose the same number, or a higher number, on the next round. This can
be seen in the transition matrix Table 3, which shows the relative frequency of choices
in round t þ 1 as a function of the choice in round t, for players who �take� in round t

(choosing the lower number). For example, the top row shows that when players
choose 2 and take, they choose 2 in the next round 28% of the time, but 8% choose 4
and 32% choice 6, which is the median choice (and is underlined). For choices below
7, the median choice in the next period is always higher. The overall tendency for
players who chose �take� to choose numbers which increase, decrease, or are

Table 2

Relative Frequencies (%) Choices in Centipede Games, Nagel

and Tang (1998)

Odd numbers % Even numbers %

1 0.5 2 0.9
3 1.6 4 1.7
5 5.4 6 11.3
7 26.1 8 33.1
9 33.1 10 31.1
11 22.5 12 14.3
13 10.8 14 7.7
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unchanged are shown in Figure 3a. Note that most �takers� then choose numbers which
increase, but this tendency shrinks over time.
Table 4 shows the opposite pattern for players who choose the higher number and

�pass� – they tend to choose lower numbers. In addition, as the experiment progressed
this pattern of transitions became weaker (more subjects do not change at all), as
Figure 3a shows.
NT consider several models. Four are benchmarks which assume no learning: Nash

equilibrium (players pick 1 and 2), quantal response equilibrium (McKelvey and Palfrey,
1995), random play, and an individual observed-frequency model which uses each
player’s observed frequencies of choices over all 100 rounds. NT test choice-reinforce-
ment of the Harley-Roth-Erev RPS type and implement a variant of weighted fictitious
play which assumes players know population history information. The equilibrium and
weighted fictitious play predictions do not fit the data well. This is not surprising because
both theories predict either low numbers at the start, or steady movement toward lower
numbers over time, which is obviously not present in the data. QRE and random
guessing don’t predict too badly, but the individual-frequency benchmark is the best of
all. The RPS (reinforcement) models do almost as well as the best benchmark.

3. Estimation Methodology

The method of maximum likelihood was used to estimate model parameters. To
ensure model identification as described in Section 1.2, we impose the necessary
restrictions on the parameters N(0), q, d and k in our estimation procedure.15 We used

Table 3

Transitions after Lower-Number (Take) Choices, Nagel and Tang (1998)

choice in t

Choices in period t þ 1 after �Take�

2 4 6 8 10 12 14 Total no.

2 0.28 0.08 0.32 0.08 0.12 0.04 0.08 25
4 0.11 0.11 0.40 0.15 0.15 0.06 0.02 47
6 0.05 0.32 0.41 0.14 0.06 0.01 296
8 0.01 0.05 0.56 0.36 0.02 0.01 594
10 0.01 0.12 0.73 0.14 0.01 353
12 0.03 0.05 0.07 0.83 0.02 59

1 3 5 7 9 11 13 Total no.

1 0.07 0.29 0.21 0.07 0.21 0.07 0.07 14
3 0.04 0.09 0.44 0.13 0.18 0.09 0.02 45
5 0.01 0.06 0.20 0.47 0.15 0.08 0.03 156
7 0.01 0.04 0.60 0.28 0.07 617
9 0.01 0.08 0.62 0.26 0.03 545
11 0.17 0.60 0.23 173
13 0.09 0.91 46

15 Specifically, we apply an appropriate transformation to ensure each of the parameters will always fall
within the restricted range. For example, we impose k ¼ exp(q1) to guarantee that k > 0, Although q1 is
without restriction, the parameter k will always be positive. Similarly, we apply a logistic transformation, i.e.
q ¼ ð1=1þ expðq2ÞÞ and d ¼ ð1=1þ expðq3ÞÞ to restrict q and d to be between 0 and 1. Finally,
N ð0Þ ¼ ð1=ð1� qÞÞ=ð1þ expðq4ÞÞ so that N(0) is between 0 and 1/(1 � q).
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the first 70% of the data to calibrate the models and the last 30% of the data to predict
out-of-sample. Again, the out-of-sample forecasting completely removes any advantage
more complicated models have over simpler ones which are special cases.

We first estimated a homogeneous single-representative agent model for reinforce-
ment, belief, and three variants of EWA payoff learning. We then estimated the EWA
models at the individual level for all 60 subjects. In the centipede game, each subject
has seven strategies, numbers 1, 3, . . . ,13 for Odd subjects and 2, 4, . . . ,14 for even
subjects. Since the game is asymmetric, the models for Odd and Even players were
estimated separately. The log of the likelihood function for the single-representative
agent EWA model is

LL½d;/; j; k;N ð0Þ� ¼
X

30

i¼1

X

70

t¼2

log½P
SiðtÞ
i ðtÞ� ð13Þ

and for the individual level model for player i is:

LL½di ;/i ; ji ; ki ;Nið0Þ� ¼
X

70

t¼2

log½P
SiðtÞ
i ðtÞ� ð14Þ

where the probabilities P
SiðtÞ
i ðtÞ are given by (2.3).
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Fig. 3. Transition Behaviour. (a) Actual Data; (b) EWA-Payoff Clairvoyance (Representative Agent
Model); (c) EWA-Payoff Clairvoyance (Individual Model)
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There is one substantial change from methods we previously used in Camerer and
Ho (1999). We estimated initial attractions (common to all players) from the first
period of actual data, rather than allowing them to be free parameters which are
estimated as part of the overall maximisation of likelihood.16 We switched to this
method because estimating initial attractions for each of the large number of strategies
chewed up too many degrees of freedom.
To search for regularity in the distributions of individual-level parameter estimates,

we conducted a cluster analysis on the three most important parameters, d, /, and j.
We specified a number of clusters and searched iteratively for cluster means in the
three-dimensional parameter space which maximises the ratio of the distance between
the cluster means and the average within-cluster deviation from the mean. We report
results from two- cluster specifications, since they have special relevance for evaluating

Table 4

Transitions after Higher-Number (Pass) Choices, Nagel and Tang (1998)

choice in t

Choices in period t þ 1 after �Pass�

2 4 6 8 10 12 14 Total no.

2 0
4 0.50 0.50 2
6 0.08 0.23 0.15 0.33 0.18 0.03 39
8 0.01 0.04 0.29 0.49 0.15 0.04 0.01 388
10 0.01 0.01 0.08 0.40 0.40 0.06 0.03 572
12 0.01 0.03 0.10 0.21 0.54 0.11 364
14 0.06 0.10 0.19 0.65 231

1 3 5 7 9 11 13 Total no.

3 1.00 1
5 0.60 0.20 0.20 5
7 0.01 0.06 0.25 0.48 0.10 0.06 0.04 156
9 0.01 0.04 0.33 0.48 0.11 0.02 446
11 0.01 0.02 0.10 0.31 0.43 0.12 490
13 0.01 0.05 0.10 0.34 0.50 276

16 Others have used this method too, e.g., Roth and Erev (1995). Formally, define the first-period fre-
quency of strategy j in the population as f j. Then initial attractions are recovered from the equations

ekA
j ð0Þ

P

k e
kAk ð0Þ

¼ f j ; j ¼ 1; . . . ;m: ð15Þ

(This is equivalent to choosing initial attractions to maximise the likelihood of the first-period data, sepa-
rately from the rest of the data, for a value of k derived from the overall likelihood-maximisation.) Some
algebra shows that the initial attractions can be solved for, as a function of k, by

Aj ð0Þ �
1

m

X

j

Aj ð0Þ ¼
1

k
lnð~f j Þ; j ¼ 1; . . . ;m ð16Þ

where ~f j ¼ f j=ðPk f
kÞ1=m is a measure of relative frequency of strategy j. We fix the strategy j with the lowest

frequency to have Aj(0) ¼ 0 (which is necessary for identification) and solve for the other attractions as a
function of k and the frequencies ~f j .
Estimation of the belief-based model (a special case of EWA) is a little trickier. Attractions are equal to
expected payoffs given initial beliefs; therefore, we searched for initial beliefs which optimised the likelihood
of observing the first-period data. For identification, k was set equal to one when likelihood-maximising
beliefs were found, then the derived attractions which resulted were rescaled by 1/k.
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whether parameters cluster around the predictions of belief and reinforcement theo-
ries. Searching for a third cluster generally improved the fit very little.17

4. Results

We discuss the results in three parts: Basic estimation and model fits; individual-level
estimates and uncovered clusters; and comparison of three payoff-learning extensions.

4.1. Basic Estimation and Model Fits

Table 5 reports the log-likelihood of the various models, both in-sample and out-
of-sample. The belief-based model is clearly worst by all measures. This is no surprise
because the centipede game is dominance-solvable. Any belief learning should move
players in the direction of lower numbers, but the numbers they choose rise slightly
over time. The EWA-Payoff Clairvoyance is better than the other EWA variants. Rein-
forcement is worse than any of the EWA variants, by about 50 points of log-likelihood
out-of-sample. (It can also be strongly rejected in- sample using standard v2 tests.) This
finding challenges Nagel and Tang (1998), who concluded that reinforcement cap-
tured the data well, because they did not consider the EWA learning models.

Another way to judge the model fit is to see how well the EWA model estimates
capture the basic patterns in the data. There are two basic patterns:

(i) players who choose the lower number (and �take earlier�, in centipede jargon)
tend to increase their number more often than they decrease it, and this ten-
dency decreases over time; and

(ii) players who choose the higher number (�taking later�), tend to decrease their
numbers.

Figure 3a shows these patterns in the data and Figures 3b–c show how well the EWA
model describes and predicts these patterns. The EWA predictions are generally quite
accurate. Note that if EWA were overfitting in the first 70 periods, accuracy would
degrade badly in the last 30 periods (when parameter estimates are fixed and out-of-
sample prediction begins); but it generally does not.

4.2. Payoff Learning Models

Tables 5–6 show measures of fit and parameter estimates from the three different
payoff learning models. The three models make different conjectures on the way
subjects estimate the foregone payoffs. All three payoff learning models perform better
than reinforcement (which implicitly assumes that the estimated foregone payoff is
zero, or gives it zero weight). This illustrates that EWA can improve statistically on
reinforcement, even in the domain in which reinforcement would seem to have the
biggest advantage over other models – i.e., when foregone payoffs are not known. By
simply adding a payoff-learning assumption to EWA, the extended model outpredicts
reinforcement. Building on our idea, the same value of adding payoff learning to EWA

17 Specifically, a three-segment model always leads to a tiny segment that contains either 1 or 2 subjects.
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is shown by Anderson (1998) in bandit problems, Chen and Khoroshilov (2003) in a
study of joint cost allocation, and Ho and Chong (2003) in consumer product choice at
supermarkets.

The three payoff learning assumptions embody low and high degrees of player
knowledge. The assumption that players recall only the last actual payoff – which
may have been received many periods ago – means they ignore deeper intuitions
about which of the possible payoffs might be the correct foregone one in the very
last period. Conversely, the payoff clairvoyance assumption assumes the players
somehow figure out exactly which foregone payoff they would have got. The average
payoff assumption seems more sensible and infers the foregone payoff based on the
observed actual outcome in each period. Surprisingly, the payoff clairvoyance
assumption predicts better. The right interpretation is surely not that subjects are
truly clairvoyant, always guessing the true foregone payoff perfectly but simply that
their implicit foregone payoff estimate is closer to the truth than the last actual
payoff or the average payoff is. For example, consider a player B who chooses 6 and
has the lower of the two numbers. If she had chosen strategy 8 instead, she does
not know whether the foregone payoff would have been 8 (if the other A subject
chose 7), or 45 (if the A subject chose 9, 11, or 13). The payoff clairvoyance
assumption says she knows precisely whether it would have been 8 or 45 (i.e.,
whether subject A chose 7, or chose 9 or more). While this requires knowledge she
does not have, it only has to be a better guess than the last actual payoff she got
from choosing strategy 8 and the average payoff for the clairvoyance model to
provide the best fit.

Table 6

A Comparison between the Representative-Agent and Individual-level Parameter Estimates of

the Various EWA Models

Model

LL Mean Parameter Estimates

In Sample Out of Sample u d j N0 k

Odd Players
EWA, Recent Actual Payoff
Representative-Agent �2667.6 �1069.8 0.91 0.14 1.00 100 0.01
Individual-level �2371.2 �1050.6 0.86 0.25 0.48 1.65 0.19

EWA, Payoff Clairvoyance
Representative-Agent, �2596.6 �1016.8 0.91 0.32 1.00 1.00 0.01
Individual-level �2301.2 �1052.0 0.92 0.44 0.38 1.84 0.13

EWA, Average Payoff
Representative-Agent �2669.3 �1064.9 0.91 0.15 1.00 1.00 0.01
Individual-level �2334.6 �1017.2 0.89 0.26 0.25 2.75 0.22

Even Players
EWA, Recent Actual Payoff
Representative-Agent �2811.9 �983.0 0.91 0.15 1.00 1.00 0.01
Individual-level �2442.5 �912.7 0.89 0.32 0.33 2.80 0.17

EWA, Payoff Clairvoyance
Representative-Agent �2791.4 �953.2 0.90 0.24 1.00 7.91 0.13
Individual-level �2421.7 �927.6 0.90 0.47 0.34 3.94 0.17

EWA, Average Payoff
Representative-Agent �2802.1 �1039.2 0.90 0.17 0.99 1.01 0.01
Individual-level �2432.4 �960.6 0.84 0.35 0.39 4.59 0.15
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4.3. Individual Differences

The fact that Nagel and Tang’s game lasted 100 trials enabled us to estimate individual-
level parameters with some reliability (while imposing common initial attractions).
Figure 4a–b show scatter plot �parameter patches� of the 30 estimates from the payoff-
clairvoyance EWA model in a three-parameter d � / � j space. Each point represents
a triple of estimates for a specific player; a vertical projection to the bottom face of the
cube helps the eye locate the point in space and measure its / � j values. Figure 4a
shows Odd players and Figure 4b shows Even players.
Table 5 shows the mean of the parameter estimates, along with standard deviations

across subjects, for the EWA models. Results for Odd and Even players are reported
separately, because the game is not symmetric. The separate reporting also serves as a
kind of robustness check, since there is no reason to expect their learning parameters
to be systematically different; and in fact, the parameters are quite similar for the two
groups of subjects.
The EWA parameter means of the population are quite similar across the three

payoff-learning specifications and player groups (see Table 6). The consideration
parameter d ranges from 0.25 to 0.47, the change parameter / varies only a little, from
0.84 to 0.92, and the commitment parameter j from 0.25 to 0.48. The standard devi-
ations of these means can be quite large, which indicates the presence of substantial
heterogeneity.
Individuals do not particularly fall into clusters corresponding to any of the familiar

special cases (compare Figure 2 and Figures 4a–b). For example, only a couple of the
subjects are near the cumulative reinforcement line d ¼ 0, j ¼ 1 (the �bottom back
wall�). However, quite a few subjects are clustered near the fictitious play upper left
corner where d ¼ 1, / ¼ 1 and j ¼ 0.
The cluster analyses from the EWA models do reveal two separate clusters which are

easily interpreted. The means and within-cluster standard deviations of parameter
values are given in Table 7. The subjects can be sorted into two clusters, of roughly
equal size. Both clusters tend to have d around 0.40 and / around 0.80–0.90; however,
in one cluster j is very close to zero and in the other cluster j is close to one.
Graphically, subjects tend to cluster on the front wall representing low (j ¼ 0) com-
mitment, and the back wall representing high (j ¼ 1) commitment.
In most of our earlier work (and most other studies), all players are assumed to

have the same learning parameters (i.e., a representative agent approach). Econo-
metrically, it is possible that a parameter estimated with that approach will give a
biased estimate of the population mean of the same parameter estimated across
individuals, when there is heterogeneity. We can test for this danger directly by
comparing the mean of parameter estimates in Table 6 with estimates from a single-
agent analysis assuming homogeneity. The estimates are generally close together, but
there are some slight biases which are worth noting. The estimates from the repre-
sentative agent approach show that / tends to be very close to the population mean.
However, d tends to be under-estimated by the representative-agent model, relative to
the average of individual-agent estimates. This gap explains why some early work on
reinforcement models using representative-agent modeling (which assumes d ¼ 0),
leads to surprisingly good fits. Furthermore, the parameter j from the single-agent
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model tends to take on the extreme value of 0 or 1, when the sample means are
around 0.40. Since there is substantial heterogeneity among subjects – the clusters
show that subjects tend to have high j�s near 1, or low values near 0 – as if the single-
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Fig. 4. Individual-level Payoff Clairvoyance EWA Model Parameter Patches. (a) Odd Subjects; (b)
Even Subjects
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agent model uses a kind of �majority rule� and chooses one extreme value or the
other, rather than choosing the sample mean. Future research can investigate why
this pattern of results occurs.

5. Conclusions

In this paper, we extend our experience-weighted attraction (EWA) learning model to
games in which players know the set of possible foregone payoffs from unchosen
strategies, but do not precisely which payoff they would have gotten. This extension is
crucial for applying the model to naturally-occurring situations in which the modeller
(and even the players) do not know much about the foregone payoffs.
To model how players respond to unknown foregone payoffs, we allowed players to

learn about them by substituting the last payoffs received when those strategies were
actually played, by averaging the set of possible foregone payoffs conditional on the
actual outcomes, or by clairvoyantly guessing the actual foregone payoffs. Our results
show that these EWA variants fit and predict somewhat better than reinforcement and
belief learning. The clairvoyant-guessing model fits slightly better than the other two
variants.
We also estimated parameters separately for each individual player. The individual

estimates showed there is substantial heterogeneity but individuals could not be sharply
clustered into either reinforcement or belief-based models (though many did have
fictitious play learning parameters). They could, however, be clustered into two distinct
subgroups, corresponding to averaging and cumulating of attraction. Compared to the
means of individual level estimates, the parameter estimates from the representative-
agent model have a tendency to modestly underestimate d and take on extreme values
for j.
Future research should apply these payoff-learning specifications, and others, to

environments in which foregone payoffs are unknown (Anderson, 1998; Chen, 1999).
If we can find a payoff-learning specification which fits reasonably well across different
games, then EWA with payoff learning can be used on naturally-occurring data sets - see
Ho and Chong (2003) for a recent application – taking the study of learning outside
the laboratory and providing new challenges.

University of California, Berkeley

Table 7

A Cluster Analysis Using Individual-level Estimates

Mean Parameter Estimates (Std. Dev.)

Odd Players Even Players

Number of subjects u d j Number of subjects u d j

20 0.96 0.40 0.07 21 0.96 0.48 0.02
(0.07) (0.35) (0.10) (0.08) (0.36) (0.03)

10 0.82 0.51 0.99 9 0.76 0.44 0.98
(0.20) (0.33) (0.01) (0.17) (0.27) (0.02)

2008] 57I N D I V I D U A L D I F F E R E N C E S I N EW A L E A R N I N G

� The Author(s). Journal compilation � Royal Economic Society 2008

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



Brandeis University

California Institute of Technology

Submitted: 12 March 2005

Accepted: 16 December 2006

References

Anderson, C. (1998). �Learning in bandit problems�, Caltech Working Paper no?.
Anderson, C. and Camerer, C. F. (2000). �Experience-weighted attraction learning in sender-receiver sig-

naling games�, Economic Theory, vol. 16 (3), pp. 689–718.
Biyalogorsky, E., Boulding, W. and Staelin, R. (2006). �Stuck in the past: why managers persist with new

product failures�, Journal of Marketing, vol. 70 (2), pp. 108–21.
Boulding, W., Kalra, A. and Staelin, R. (1999). �Quality double whammy�,Marketing Science, vol. 18 (4), pp.463–

84.
Bracht, J. and Ichimura, H. (2001). �Identification of a general learning model on experimental game data�,

Hebrew University of Jerusalem Working Paper no?.
Brown, G. (1951). �Iterative solution of games by fictitious play�, in Activity Analysis of Production and Allocation,

New York: John Wiley & Sons.
Broseta, B. (2000). �Adaptive learning and equilibrium selection in experimental coordination games: an

ARCH(1) approach�, Games and Economic Behavior, vol. 32 (1), pp. 25–50.
Camerer, C. F. and Ho, T-H. (1998). �Experience-weighted learning in coordination games: Probability rules,

heterogeneity, and time variation�, Journal of Mathematical Psychology, vol. 42 (2), pp. 305–26.
Camerer, C. F. and Ho, T-H. (1999). �Experience-weighted attraction learning in normal-form games�, Eco-

nometrica, vol. 67 (4), pp. 827–74.
Camerer, C. F., Ho, T-H. and Chong, J-K. (2002). �Sophisticated learning and strategic teaching�, Journal of

Economic Theory, vol. 104 (1), pp. 137–88.
Camerer, C. F. (2003). Behavioral Game Theory. Princeton: Princeton University Press.
Chen, Y. (1999). �Joint cost allocation in asynchronously updated systems�, University of Michigan Working

Paper no?.
Chen, Y. and Khoroshilov, Y. (2003). �Learning under limited information�, Games and Economic Behavior, vol.

44 (1), pp. 1–25.
Cheung, Y-W and Friedman, D. (1997). �Individual learning in normal form games: Some laboratory results�,

Games and Economic Behavior, vol. 19 (1), pp. 46–76.
Chong, J-K, Camerer, C. F. and Ho, T-H. (2006). �A learning-based model of repeated games with incomplete

information�, Games and Economic Behavior, vol. 55 (2), pp. 340–71.
Cournot, A. (1960). Recherches sur les principes mathematiques de la theorie des richesses, translated into English by

N. Bacon as Researches in the Mathematical Principles of the Theory of Wealth, London: Haffner.
Crawford, V. (1995). �Adaptive dynamics in coordination games�, Econometrica, vol. 63 (1), pp. 103–43.
Erev, I. and Roth, A. (1998). �Modelling predicting how people play games: reinforcement learning in

experimental games with unique, mixed-strategy equilibria�, American Economic Review, vol. 88 (4), pp.
848–81.

Fudenberg, D. and Levine, D. (1998). The Theory of Learning in Games, Cambridge, MA: The MIT Press.
Harley, C. B. (1981). �Learning the evolutionarily stable strategy�, Journal of Theoretical Biology, vol. 89 (4), pp.

611–33.
Ho, T-H. and Weigelt, K. (1996). �Task complexity, equilibrium selection, and learning: an experimental

study�, Management Science, vol. 42 (5), pp. 659–79.
Ho, T-H. (forthcoming). �Individual learning in games�, in (L. Blume, and S. Durlauf, eds.), The New Palgrave

Dictionary of Economics: Design of Experiments and Behavioral Economics.
Ho, T-H. and Chong, J-K. (2003). �A parsimonious model of SKU choice�, Journal of Marketing Research, vol. 40

(August), pp. 351–65.
Ho, T-H., Camerer, C. F. and Chong, J-K. (forthcoming). �Self-tuning experience-weighted attraction learning

in games�, Journal of Economic Theory.
Hopkins, E. (2002). �Two competing models of how people learn in games�, Econometrica, vol. 70 (6), pp.

2141–66.
Hsia, D. (1998). �Learning in call markets�, University of Southern California Working Paper no?.
McAllister, P. H. (1991). �Adaptive approaches to stochastic programming�, Annals of Operations Research, vol.

30 (June), pp. 45–62.
McKelvey, R. D. and Palfrey, T. R. (1995). �Quantal response equilibria for normal form games�, Games and

Economic Behavior, vol. 10 (1), pp. 6–38.

58 [ J A N U A R YT H E E CONOM I C J O U RN A L

� The Author(s). Journal compilation � Royal Economic Society 2008

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



Mailath, G. (1998). �Do people play Nash equilibrium? Lessons from evolutionary game theory�, Journal of
Economic Literature, vol. 36 (3), pp. 1347–74.

Marcet, A. and Nicolini, J. P. (2003). �Recurrent hyperinflations and learning�, American Economic Review, vol.
93 (5), pp. 1476–98.

Mookerjee, D. and Sopher, B. (1994). �Learning behavior in an experimental matching pennies game�, Games
and Economic Behavior, vol. 7 (1), pp. 62–91.

Mookerjee, D. and Sopher, B. (1997). �Learning and decision costs in experimental constant-sum games�,
Games and Economic Behavior, vol. 19 (1), pp. 97–132.

Morgan, J. and Sefton, M. (2002). �An experimental investigation of experiments on unprofitable games�,
Games and Economic Behavior, vol. 40 (1), pp. 123–46.

Nagel, R. and Tang, F. (1998). �Experimental results on the centipede game in normal form: an investigation
on learning�, Journal of Mathematical Psychology, vol. 42, pp. 356–84.

Rapoport, A. and Amaldoss, W. (2000). �Mixed strategies and iterative elimination of strongly dominated
strategies: an experimental investigation of states of knowledge�, Journal of Economic Behavior and Orga-
nization, vol. 42 (4), pp. 483–521.

Robinson, J. (1951). �An iterative method of solving a game�, Annals of Mathematics, vol. 54 (2), pp. 296–301.
Roth, A. (1995). �Introduction�, in (J. H. Kagel and A. Roth, eds.) The Handbook of Experimental Economics,

Princeton: Princeton University Press.
Roth, A. and Erev, I. (1995). �Learning in extensive-form games: experimental data and simple dynamic

models in the intermediate term�, Games and Economic Behavior, vol. 8 (1), pp. 164–212.
Salmon, T. (2001). �An evaluation of econometric models of adaptive learning�, Econometrica, vol. 69 (6), pp.

1597–628.
Sarin, R. and Vahid, F. (2004). �Strategy similarity and coordination�, Economic Journal, vol. 114 (497), pp.

506–27.
Schlag, K. (1999). �Which one should I imitate?�, Journal of Mathematical Economics, vol. 31 (4), pp. 493–522.
Selten, R. (forthcoming). �Bounded rationality and learning�, in (E. Kalai ed.), Collected Volume of Nancy

Schwartz Lectures, pp. 1–13, Cambridge: Cambridge University Press.
Selten, R. and Stoecker, R. (1986). �End behavior in sequences of finite prisoner’s dilemma supergames: a

learning theory approach�, Journal of Economic Behavior and Organization, vol. 7 (1), pp. 47–70.
Stahl, D. (1999). �Sophisticated learning and learning sophistication�, University of Texas Working Paper no?.
Stahl, D. (2000). �Rule learning in symmetric normal-form games: theory and evidence�, Games and Economic

Behavior, vol. 32 (1), pp. 105–38.
Stahl, D. and Haruvy, E. (2004). �Rule learning across dissimilar normal-form games�, University of Texas

Working Paper no?.
Van Huyck, J., Cook, J. and Battalio, R. (1997). �Adaptive behavior and coordination failure�, Journal of

Economic Behavior and Organization, vol. 32 (4), pp. 483–503.
Vriend, N. (1997). �Will reasoning improve learning?�, Economics Letters, vol. 55 (1), pp. 9–18.
Wilcox, N. (2006). �Theories of learning in games and heterogeneity bias�, Econometrica, 74 (5), pp. 1271–92.

2008] 59I N D I V I D U A L D I F F E R E N C E S I N EW A L E A R N I N G

� The Author(s). Journal compilation � Royal Economic Society 2008

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


