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Individual differences in the learning potential of human
beings
Elsbeth Stern1

To the best of our knowledge, the genetic foundations that guide human brain development have not changed fundamentally
during the past 50,000 years. However, because of their cognitive potential, humans have changed the world tremendously in the
past centuries. They have invented technical devices, institutions that regulate cooperation and competition, and symbol systems,
such as script and mathematics, that serve as reasoning tools. The exceptional learning ability of humans allows newborns to adapt
to the world they are born into; however, there are tremendous individual differences in learning ability among humans that
become obvious in school at the latest. Cognitive psychology has developed models of memory and information processing that
attempt to explain how humans learn (general perspective), while the variation among individuals (differential perspective) has
been the focus of psychometric intelligence research. Although both lines of research have been proceeding independently, they
increasingly converge, as both investigate the concepts of working memory and knowledge construction. This review begins with
presenting state-of-the-art research on human information processing and its potential in academic learning. Then, a brief overview
of the history of psychometric intelligence research is combined with presenting recent work on the role of intelligence in modern
societies and on the nature-nurture debate. Finally, promising approaches to integrating the general and differential perspective
will be discussed in the conclusion of this review.
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HUMAN LEARNING AND INFORMATION PROCESSING
In psychology textbooks, learning is commonly understood as the
long-term change in mental representations and behavior as a
result of experience.1 As shown by the four criteria, learning is
more than just a temporary use of information or a singular
adaption to a particular situation. Rather, learning is associated
with changes in mental representations that can manifest
themselves in behavioral changes. Mental and behavioral changes
that result from learning must be differentiated from changes that
originate from internal processes, such as maturation or illness.
Learning rather occurs as an interaction with the environment and
is initiated to adapt personal needs to the external world.
From an evolutionary perspective,2 living beings are born into a

world in which they are continuously expected to accomplish
tasks (e.g., getting food, avoiding threats, mating) to survive as
individuals and as species. The brains of all types of living beings
are equipped with instincts that facilitate coping with the
demands of the environment to which their species has been
adapted. However, because environments are variable, brains
have to be flexible enough to optimize their adaptation by
building new associations between various stimuli or between
stimuli and responses. In the case of classical conditioning, one
stimulus signals the occurrence of another stimulus and thereby
allows for the anticipation of a positive or negative consequence.
In the case of operant conditioning, behavior is modified by its
consequence. Human beings constantly react and adapt to their
environment by learning through conditioning, frequently
unconsciously.1

However, there is more to human learning than conditioning,
which to the best of our knowledge, makes us different from other
species. All living beings must learn how to obtain access to food
in their environment, but only human beings cook and have
invented numerous ways to store and conserve their food. While
many animals run faster than humans and are better climbers, the
construction and use of vehicles or ladders is unique to humans.
There is occasional evidence of tool use among non-human
species passed on to the next generation,3,4 but this does not
compare to the tools humans have developed that have helped
them to change the world. The transition from using stonewedges
for hunting to inventing wheels, cars, and iPhones within a time
period of a few thousand years is a testament to the unique
mental flexibility of human beings given that, to the best of our
knowledge, the genes that guide human brain development have
not undergone remarkable changes during the last 50,000 years.5

This means that as a species, humans are genetically adapted to
accomplish requirements of the world as it existed at approxi-
mately 48,000 BC. What is so special about human information
processing? Answers to this question are usually related to the
unique resource of consciousness and symbolic reasoning abilities
that are, first and foremost, practiced in language. Working from
here, a remarkable number of insights on human cognition have
been compiled in the past decades, which now allow for a more
comprehensive view of human learning.

Human learning from a general cognitive perspective
Learning manifests itself in knowledge representations processed
in memory. The encoding, storage, and retrieval of information
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have been modeled in the multi-store model of human memory
depicted in Fig. 1.6 Sensory memory is the earliest stage of
processing the large amount of continuously incoming informa-
tion from sight, hearing, and other senses. To allow
goal-directed behavior and selective attention, only a fractional
amount of this information passes into the working memory,
which is responsible for temporarily maintaining and manipulat-
ing information during cognitive activity.7,8 Working memory
allows for the control of attention and thereby enables goal-
directed and conscious information processing. It is the gate-
keeper to long-term memory, which is assumed to have an
unlimited capacity. Here, information acquired through experi-
ence and learning can be stored in different modalities as well as
in symbol systems (e.g., language, script, mathematical notation
systems, pictorials, music prints).
The multi-store model of human information processing is not a

one-way street, and long-term memory is not to be considered a
storage room or a hard-disk where information remains unaltered
once it has been deposited. A more appropriate model of long-
term memory is a self-organizing network, in which verbal terms,
images, or procedures are represented as interlinked nodes
with varying associative strength.9 Working memory regulates
the interaction between incoming information from sensory
memory and knowledge activated from long-term memory. Very
strong incoming stimuli (e.g., a loud noise or a harsh light), which
may signal danger, can interrupt working memory activities. For
the most part, however, working memory filters out irrelevant and
distracting information to ensure that the necessary goals will be
achieved undisturbed. This means that working memory is
continuously selecting incoming information, aligning it with
knowledge retrieved from long-term memory, and preparing
responses to accomplishing requirements demanded by the
environment or self-set goals. Inappropriate and unsuitable
information intruding from sensory as well as from long-term
memory has to be inhibited, while appropriate and suitable
information from both sources has to be updated.8 The strength
with which a person pursues a particular goal has an impact on

the degree of inhibitory control. In case of intentional learning,
working memory guards more against irrelevant information than
in the case of mind wandering. Less inhibitory control makes
unplanned and unintended learning possible (i.e., incidental
learning).
These working memory activities are permanently changing the

knowledge represented in long-term memory by adding new
nodes and by altering the associative strength between them.
The different formats knowledge can be represented in are listed
in Fig. 1; some of them are more closely related to sensory input
and others to abstract symbolic representations. In cognitive
psychology, learning is associated with modifications of knowl-
edge representations that allow for better use of available working
memory resources. Procedural knowledge (knowing how) enables
actions and is based on a production-rule system. As a
consequence of repeated practice, the associations between
these production rules are strengthened and will eventually result
in a coordinated series of actions that can activate each other
automatically with a minimum or no amount of working memory
resources. This learning process not only allows for carrying out
the tasks that the procedural knowledge is tailored to perform
more efficiently, but also frees working memory resources that can
be used for processing additional information in parallel.10–12

Meaningful learning requires the construction of declarative
knowledge (knowing that), which is represented in symbol
systems (language, script, mathematical, or visual-spatial repre-
sentations). Learning leads to the regrouping of declarative
knowledge, for instance by chunking multiple unrelated pieces
of knowledge into a few meaningful units. Reproducing the orally
presented number series “91119893101990” is beyond working
memory capacity, unless one detects two important dates of
German history: the day of the fall of the Berlin Wall: 9 November
1989 and the day of reunification: 3 October 1990. Individuals who
have stored both dates and can retrieve them from long-term
memory are able to chunk 14 single units into two units, thereby
freeing working memory resources. Memory artists, who can
reproduce dozens of orally presented numbers have built a very
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Fig. 1 A model of human information processing, developed together with Dr. Lennart Schalk
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complex knowledge base that allows for the chunking of
incoming information.13

Learning also manifests itself in the extension of declarative
knowledge using concept formation and inferential reasoning.
Connecting the three concepts of “animal, produce, milk” forms a
basic concept of cow. Often, concepts are hierarchically related
with superordinate (e.g., animal) and subordinate (e.g., cow,
wombat) ordering. This provides the basis for creating meaningful
knowledge by deductive reasoning. If the only thing a person
knows about a wombat is that it is an animal, she can nonetheless
infer that it needs food and oxygen. Depending on individual
learning histories, conceptual representations can contain great
variations. A farmer’s or a veterinarian’s concept of a cow is
connected to many more concepts than “animal, produce, milk”
and is integrated into a broader network of animals. In most
farmers’ long-term memory, “cow” might be strongly connected
to “pig”, while veterinarians should have particularly strong links
to other ruminants. A person’s conceptual network decisively
determines the selection and representation of incoming informa-
tion, and it determines the profile of expertise. For many academic
fields, first and foremost in the STEM area (Science, Technology,
Engineering, Mathematics), it has been demonstrated that experts
and novices who use the same words may have entirely different
representations of their meaning. This has been convincingly
demonstrated for physics and particularly in the area of
mechanics.14 Children can be considered universal novices;15

therefore, their everyday concepts are predominantly based on
characteristic features while educated adults usually consider
defining features,16–18 as the example of “island” demonstrates.
For younger children, it primarily refers to a warm place where one
can spend ones’ holidays. In contrast, adults’ concept of island
does refer to a tract of land that is completely surrounded by
water but not large enough to be considered a continent.
The shift from characteristic to defining features is termed

“conceptual change”,16 and promoting this kind of learning is a
major challenge for school education. Students’ understanding of
central concepts in an academic subject can undergo funda-
mental changes (e.g., the concept of weight in physics). Younger
elementary school children often agree that a pile of rice has
weight, but they may also deny that an individual grain of rice has
weight at all. This apparently implausible answer is under-
standable given that younger children consider the concepts of
“weight” and “being heavy” as equivalent. As such, children tend
to agree that a grain of rice has weight if it is put on an ant’s
back.16 As a consequence of their education, students usually
understand that an object’s weight is determined with the
assistance of scales and not necessarily by personal sensation.
However, representing weight as the property of an object is still
not compatible with scientific physics in the Newtonian sense by
which weight is conceptualized as a relation between objects.
Understanding weight in this sense requires an interrelated
network of knowledge, including the concepts of force, gravity,
and mass (among others).
As a result of classroom instruction, students are expected to

acquire procedural and conceptual knowledge of the subjects
they were taught. While procedures emerge as a function of
repetition and practice, the acquisition of advanced concepts,
which are consistent with state of the art science, is less
straightforward.14,19 To support this kind of conceptual learning,
insights from cognitive learning research have been integrated
into educational research and are increasingly informing class-
room practice. Several instructional methods have been devel-
oped and evaluated that support students in restructuring and
refining their knowledge and thereby promote appropriate
conceptual understanding, including self-explanations,20 contrast-
ing cases,21,22 and metacognitive questions.23 Cognitive research
has also informed the development of the “taxonomy of learning
objects”.24 This instrument is widely employed for curriculum

development and in teacher training programs to support the
alignment of content-specific learning goals, means of classroom
practice, and assessment. The taxonomy acknowledges the
distinction between procedural and conceptual knowledge and
includes six cognitive processes (listed in Fig. 1) that describe how
knowledge can be transformed into observable achievement.

How core knowledge innate to humans can meet with academic
learning
What makes humans efficient learners, however, goes beyond
general memory functions discussed so far. Similar to other living
beings, humans do not enter the world as empty slates2 but are
equipped with so-called core knowledge (Fig. 1). Evidence for core
knowledge comes from preferential looking experiments with
infants who are first habituated to a particular stimulus or
scenario. Then, the infant is shown a second scenario that differs
from the first in a specific manner. If the time he or she looks at
this stimulus exceeds the looking-time at the end of the
habituation phase of the first stimulus, this suggests that the
infant can discriminate between the stimuli. This paradigm helps
to determine whether infants detect violations of principles that
underlie the physical world, such as the solidity of objects, where
an object cannot occupy the same space as another object.25,26

Core knowledge, which allows privileged learning and behavioral
functioning with little effort, also guides the unique human ability
of symbolic communication and reasoning, first and foremost,
langue learning.27,28 It is uncontested that humans are born with
capacities for language learning, which includes the awareness of
phonological, grammatical, and social aspects of language.4,29,30

Core knowledge can serve as a starting point for the acquisition
of content knowledge that has emerged as a result of cultural
development. This has been examined in detail for numerical and
mathematical reasoning. Two core systems have been detected in
infants. As early as at 6 months of age, infants show an ability for
the approximate representations of numerical magnitude, which
allow them to discriminate two magnitudes depending on their
ratio.31 At the same age, the system of precise representations of
distinct individuals allows infants to keep track of changes in small
sets of up to three elements.32 Mathematical competencies
emerge as a result of combining both core systems and linking
them to number words provided by the respective culture.33 The
Arabic place value number system, which is now common in most
parts of the world, was only developed a few 100 years ago. Only
after the number “0” had made its way from India via the Arabic
countries to Europe were the preconditions for developing our
decimal system available.34 The Arabic number system opened up
the pathway to academic mathematics. Cultural transformations
based on invented symbol systems were the key to advanced
mathematics. Today’s children are expected to understand
concepts within a few years of schooling that took mankind
centennials to develop. Central content areas in mathematics
curricula of high schools, such as calculus, were only developed
less than three centuries ago.35 Given the differences between the
Arabic and the Roman number systems, children born 2000 years
ago could not make use of their numerical core knowledge in the
same way today’s children can.
Core knowledge about navigation is meant to guide the

acquisition of geometry, an area involved in numerous academic
fields.36,37 The cornerstone of cultural development was the
invention of writing, in which language is expressed by letters or
other marks. Script is a rather recent cultural invention, going back
approximately 5,000 years, whereas the human genome emerged
approximately 50,000 years ago.38 Clearly, unlike oral language,
humans are not directly prepared for writing and reading.
Nonetheless, today, most 6-year-old children become literate
during their 1st years of schooling without experiencing major
obstacles. Human beings are endowed with the many skills that
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contribute to the ability to write and read, such as, first and
foremost, language as well as auditory and visual perception and
drawing. These initially independent working resources were
coopted when script was invented, and teaching children to write
and read at school predominantly means supporting the
development of associations among these resources.39

Part of the core knowledge innate to humans has also been
found in animals, for instance numerical knowledge and
geometry, but to the best of our knowledge, no other animals
have invented mathematics.40 Only humans have been able to use
core knowledge for developing higher order cognition, which
serves as a precondition for culture, technology, and civilization.
Additionally, the unique function of human working memory is
the precondition for the integration of initially independent
representational systems. However, the full potential of working
memory is not in place at birth, but rather matures during
childhood and undergoes changes until puberty.41 Children under
the age of two are unable to switch goals42 and memorize symbol
representations appropriately.43

To summarize what has been discussed so far, there are two
sources for the exceptional learning capacity of humans. The first
is the function of working memory as a general-purpose resource
that allows for holding several mental representations simulta-
neously for further manipulation. The second is the ancient corpus
of the modularized core knowledge of space, quantities, and the
physical and social world. Working memory allows for the
connection of this knowledge to language, numerals, and other
symbol systems, which provides the basis for reasoning and the
acquisition of knowledge in academic domains, if appropriate
learning opportunities are provided. Both resources are innate to
human beings, but they are also sources of individual differences,
as will be discussed in the following sections.

LEARNING POTENTIALS ARE NOT ALIKE AMONG HUMANS:
THE DIFFERENTIAL PERSPECTIVE
In the early twentieth century, a pragmatic need for predicting the
learning potential of individuals initiated the development of
standardized tests. The Frenchman Alfred Binet, who held a
degree in law, constructed problems designed to determine
whether children who did not meet certain school requirements
suffered from mental retardation or from behavioral distur-
bances.44 He asked questions that still resemble items in today’s
intelligence tests; children had to repeat simple sentences and
series of digits forwards and backwards as well as define words
such as “house” or “money”. They were asked in what respect a fly,
an ant, a butterfly and a flea are alike, and they had to reproduce
drawings from memory. William Stern, an early professor of
psychology at the newly founded University of Hamburg/
Germany, intended to quantify individual differences in intelli-
gence during childhood and adolescence by developing the first
formula for the intelligence quotient (IQ):45 IQ =Mental age/
chronological age*100. Mental age refers to the average test score
for a particular age group; this means that a 6-year-old child would
have an IQ = 133 if their test score was equivalent to the mean
score achieved in the group of 8-year-olds. From adolescence on,
however, the average mental age scores increasingly converge,
and because of the linear increase in chronological age, the IQ
would decline—a trend that obviously does not match reality.
Psychologists from the United States, specifically headed by the

Harvard and later Yale professor Robert Yerkes, decided to look at
a person’s score relative to other people of the same age group.
The average test score was assigned to an IQ = 100 by convention,
and an individual’s actual score is compared to this value in terms
of a standard deviation, an approach that has been retained to
this day. World War I pushed the development of non-verbal
intelligence tests, which were used to select young male
immigrants with poor English language skills for military service.46

In the UK, the educational psychologist Cyril Burt promoted the
use of intelligence tests for assigning students to the higher
academic school tracks.47 Charles Spearman from the University
College London was among the first to focus on the correlations
between test items based on verbal, numerical, or visual-spatial
content.48 The substantial correlations he found provided
evidence for a general intelligence model (factor-g), which has
been confirmed in the following decades by numerous studies
performed throughout the world.49

The high psychometric quality of the intelligence tests
constructed in different parts of the world by scientists in the
early decades of the twentieth century have influenced research
ever since. In 1923, Edward Boring, a leading experimental
psychologist concluded, “Intelligence is what the tests test. This
is a narrow definition, but it is the only point of departure for a
rigorous discussion of the tests. It would be better if the
psychologists could have used some other and more technical
term, since the ordinary connotation of intelligence is much
broader. The damage is done, however, and no harm need result if
we but remember that measurable intelligence is simply what the
tests of intelligence test, until further scientific observation allows
us to extend the definition.”(ref. 50, p. 37). More than 70 years
later, psychologists widely agreed on a definition for intelligence
originally offered by Linda Gottfredsonin 1997: “Intelligence is a
very general mental capability that, among other things, involves
the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly, and learn from
experience. It is not merely book learning, a narrow academic
skill, or test-taking smarts. Rather, it reflects a broader and deeper
capability for comprehending our surroundings—‘catching on,’
‘making sense’ of things, or ‘figuring out’ what to do” (ref. 51,
p. 13). This definition is in line with the substantial correlations
between intelligence test scores and academic success,52 whereas
correlations with measures of outside-school success, such as
income or professional status, are lower but still significant.53,54

Numerous longitudinal studies have revealed that IQ is a fairly
stable measure across the lifespan, which has been most
convincingly demonstrated in the Lothian Birth Cohorts run in
Scotland. Two groups of people born in 1921 and 1936 took a test
of mental ability at school when they were 11 years old. The
correlation with IQ tests taken more than 60 years later was highly
significant and approached r = .70 (ref. 55). The same data set also
demonstrated a substantial long-term impact of intelligence on
various factors of life success, among them career aspects, health,
and longevity.56

Intelligence tests scores have proven to be objective, reliable,
and valid measures for predicting learning outcome and more
general life success. At the same time, the numerous data sets on
intelligence tests that were created all over the world also
contributed to a better understanding of the underlying structure
of cognitive abilities. Although a factor g could be extracted in
almost all data sets, correlations between subtests varied
considerably, suggesting individual differences beyond general
cognitive capabilities. Modality factors (verbal, numerical, or visual
spatial) have been observed, showing increased correlations
between tests based on the same modality, but requiring different
mental operations. On the other hand, increased correlations were
also observed between tests based on different modalities, but
similar mental operations (e.g., either memorizing or reasoning).
The hierarchical structure of intelligence, with factor g on the top
and specific factors beneath, was quite obvious from the very
beginning of running statistical analyses with intelligence items.
Nonetheless, it appeared a major challenge for intelligence
researchers to agree on a taxonomy of abilities on the second
and subsequent levels. In 1993, John Carroll published his
synthesis of hundreds of published data sets on the structure of
intelligence after decades of research.57 In his suggested three-
stratum model, factor g is the top layer, with the middle layer
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encompassing broader abilities such as comprehension knowl-
edge, reasoning, quantitative knowledge, reading and writing, and
visual and auditory processing. Eighty narrower abilities, such as
spatial scanning, oral production fluency, and sound discrimina-
tion, are located in the bottom layer. To date, Carroll’s work is
considered the most comprehensive view of the structure of
individual variations in cognitive abilities.58 However, the inter-
pretation of factor g is still under discussion among scientists.
Factor g could be a comprehensive characteristic of the brain that
makes information processing generally more or less efficient
(top-down-approach). Existing data sets, however, are also
compatible with a model of intelligence according to which the
human brain is comprised of a large number of single abilities that
have to be sampled for mental work (bottom-up approach). In this
case, factor g can be considered a statistical correlate that is an
emerging synergy of narrow abilities.59

Genetic sources of individual differences in intelligence
From studies with identical and fraternal twins, we know that
genetic differences can explain a considerable amount of variance
in IQ. The correlation between test scores of identical twins raised
together approaches r = .80 and thereby is almost equal to the
reliability coefficient of the respective test. On the other hand, IQ-
correlations between raised-together same-sex fraternal twins are
rarely higher than .50, a value also found for regular siblings. Given
that the shared environment for regular siblings is lower than for
fraternal twins, this result qualifies the impact of environmental
factors on intelligence. The amount of genetic variance is judged
in statistical analyses based on the difference between the intra-
pair correlations for identical and fraternal twins.60 High rates of
heritability, however, do not mean that we can gauge a person’s
cognitive capabilities from his or her DNA. The search for the
genes responsible for the expression of cognitive capabilities has
not yet had much success, despite the money and effort invested
in human genome projects. It is entirely plausible that intelligence
is formed by a very large number of genes, each with a small
effect, spread out across the entire genome. Moreover, these
genes seem to interact in very complicated ways with each other
as well as with environmental cues.61

An entirely false but nonetheless still widespread misunder-
standing is to equate “genetic sources” with “inevitability” because
people fail to recognize the existence of reaction norms, a concept
invented in 1909 by the German biologist, Richard Woltereck.
Reaction norms depict the range of phenotypes a genotype can
produce depending on the environment.62 For some few
physiological individual characteristics (e.g., the color of eyes)
the reaction norm is quite narrow, which means gene expression
will rarely be affected by varying environments. Other physiolo-
gical characteristics, such as height, have a high degree of
heritability and a large reaction norm. Whether an individual
reaches the height made possible by the genome depends on the
nutrition during childhood and adolescence. In a wealthy country
with uniform access to food, average height will be larger than in
a poor country with many malnourished inhabitants. However,
within both countries, people vary in height. The heritability in the
wealthy country can be expected to approach 100% because
everybody enjoyed sufficient nutrition. In contrast, in the poor
country, some were sufficiently nourished and, therefore, reached
the height expressed by their genome, while others were
malnourished and, therefore, remained smaller than their genes
would have allowed under more favorable conditions. For height,
the reaction norm is quite large because gene expression depends
on nutrition during childhood and adolescence. This explains the
well-documented tendency for people who have grown up in
developed countries to become progressively taller in the past
decades.

The environment regulates gene expression, which means that
instead of “nature vs. nurture”, a more accurate phrase is “nature
via nurture”.63 The complex interaction between genes and
environment can also explain the fact that heritability of
intelligence increases during the lifespan.61 This well-established
finding is a result of societies in which a broad variety of cognitive
activities available in professional and private life enable adults
more than children to actively select special environments that fit
their genes. People who have found their niche can perfect their
competencies by deliberate learning.
In the first decades of developing intelligence tests, researchers

were naive to the validity of non-verbal intelligence; so-called
culture-free or culture-fair tests, based on visual-spatial material
such as mirror images, mazes or series and matrices of geometric
figures, were supposed to be suitable for studying people of
different social and cultural levels.64 This is now considered
incorrect because in the meantime, there has been overwhelming
evidence for the impact of schooling on the development of
intelligence and the establishment and stabilization of individual
differences. Approximately 10 years of institutionalized education
is necessary for the intelligence of individuals to approach its
maximum potential.65–67

Altogether, twin and adoption studies suggest that 50–80% of
IQ variation is due to genetic differences.61 This relatively large
range in the percentage across different studies is due to the
heritability of intelligence in the population studied, specifically,
the large reaction norm of the genes giving rise to the
development of intelligence. Generally, the amount of variance
in intelligence test scores explained by genes is higher the more
society members have access to school education, health care,
and sufficient nutrition. There is strong evidence for a decrease in
the heritability of intelligence for children from families with lower
socioeconomic status (SES). For example, lower SES fraternal twins
resembled each other more than higher SES ones, indicating a
stronger impact of shared environment under the former
condition.68 In other words, because of the less stimulating
environment in lower SES families, the expression of genes
involved in the development of intelligence is likely to be
hampered. Although it may be counterintuitive at first, this
suggests that a high heritability rate of intelligence in a society is
an indicator of economic and educational equity. Additionally, this
means that countries that ensure access to nutrition, health care,
and high quality education independent of social background
enable their members to develop their intelligence according to
their genetic potential. This was confirmed by a meta-analysis on
interactions between SES and heritability rate. While studies run in
the United States showed a positive correlation between SES and
heritability rate, studies from Western Europe countries and
Australia with a higher degree of economic and social equality did
not.69,70

COGNITIVE PROCESSES BEHIND INTELLIGENCE TEST SCORES:
HOW INDIVIDUALS DIFFER IN INFORMATION PROCESSING
In the first part of this paper, cognitive processes were discussed
that, in principle, enable human beings to develop the academic
competencies that are particularly advantageous in our world
today. In the second part, intelligence test scores were shown to
be valid indicators of academic and professional success, and
differences in IQ were shown to have sound genetic sources. Over
many decades, research on cognitive processes and psychometric
intelligence has been developing largely independently of one
another, but in the meantime, they have converged. Tests that
were developed to provide evidence for the different components
of human cognition revealed large individual differences and were
substantially correlated with intelligence tests. Tests of memory
function were correlated with tests of factor g. Sensory memory
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tests have shown that the exposure duration required for reliably
identifying a simple stimulus (inspection time) is negatively
correlatedwith intelligence.71 For working memory, there is a
large body of research indicating substantial relationships
between all types of working memory functions and IQ, with
average correlations >.50 (refs 72–74). In these studies, working
memory functions are measured by speed tasks that require goal-
oriented active monitoring of incoming information or reactions
under interfering and distracting conditions. Neural efficiency has
been identified as a major neural characteristic of intelligence;
more intelligent individuals show less brain activation (measured
by electroencephalogram or functional magnetic resonance
imaging) when completing intelligence test items 75,76 as well as
working memory items.77 Differences in information-processing
efficiency were already found in 4-month-old children. Most
importantly, they could predict psychometric intelligence in 8-
year-old children.78

These results clearly suggest that a portion of individual
differences can be traced back to differences in domain-general
cognitive competencies. However, psychometric research also
shows that individual differences do exist beyond factor g on a
more specific level. Differences in numerical, language, and spatial
abilities are well established. Longitudinal studies starting in
infancy suggest that sources of these differences may be traced
back to variations in core knowledge. Non-symbolic numerical
competencies in infancy have an impact on mathematical
achievement.79 Similar long-term effects were found for other
areas of core knowledge,80 particularly language.81

Endowed with general and specific cognitive resources, human
beings growing up in modern societies are exposed to informal
and formal learning environments that foster the acquisition of
procedural as well as declarative knowledge in areas that are part
of the school curriculum. Being endowed with genes that support
efficient working memory functions and that provide the basis for
usable core knowledge allows for the exploitation of learning
opportunities provided by the environment. This facilitates the
acquisition of knowledge that is broad as well as deep enough to
be prepared for mastering the, as of yet, unknown demands of the
future.18 Regression analyses based on longitudinal studies have
revealed that the confounded variance of prior knowledge and
intelligence predicts learning outcome and expertise better than
each single variable.82–84 Importantly, no matter how intelligent a
person is, gaining expertise in a complex and sophisticated field
requires deliberate practice and an immense investment of time.85

However, intelligence differences will come into play in the
amount of time that has to be invested to reach a certain degree
of expertise.86 Moreover, intelligence builds a barrier to content
areas in which a person can excel. As discussed in the first part of
this paper, some content areas—first and foremost from STEM
fields—are characterized by abstract concepts mainly based on
defining features, which are themselves integrated into a broader
network of other abstract concepts and procedures. Only
individuals who clearly score above average on intelligence tests
can excel in these areas.84,87 For individuals who were fortunate
enough to attend schools that offered high-quality education,
intelligence and measures of deep and broad knowledge are
highly correlated.88,89 A strong impact of general intelligence has
also been shown for university entrance tests such as the SAT,
which mainly ask for the application of knowledge in new
fields.90,91 Societies that provide uniform access to cognitively
stimulating environments help individuals to achieve their
potential but also bring to bear differences in intelligence.
Education is not the great equalizer, but rather generates
individual differences rooted in genes.
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