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Abstract

Empirical work and models of visual word recognition have traditionally focused on group-level

performance. Despite the emphasis on the prototypical reader, there is clear evidence that variation

in reading skill modulates word recognition performance. In the present study, we examined

differences between individuals who contributed to the English Lexicon Project

(http://elexicon.wustl.edu), an online behavioral database containing nearly four million word

recognition (speeded pronunciation and lexical decision) trials from over 1,200 participants. We

observed considerable within- and between-session reliability across distinct sets of items, in

terms of overall mean response time (RT), RT distributional characteristics, diffusion model

parameters (Ratcliff, Gomez, & McKoon, 2004), and sensitivity to underlying lexical dimensions.

This indicates reliably detectable individual differences in word recognition performance. In

addition, higher vocabulary knowledge was associated with faster, more accurate word recognition

performance, attenuated sensitivity to stimuli characteristics, and more efficient accumulation of

information. Finally, in contrast to suggestions in the literature, we did not find evidence that

individuals were trading-off in their utilization of lexical and nonlexical information.

How do people recognize visually presented words? The ability to read is one of the

towering achievements of human civilization and cognition, with word recognition being a

focus of inquiry since Cattell’s (1886) pioneering work. Insights from this field have

informed a host of domains, including reading acquisition (Adams, 1990; Perfetti, 1994),

literacy instruction (Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001), automatic

versus attentional processing (Neely, 1977; Posner & Snyder, 1975), the neural correlates of

lexical processing (e.g., Petersen, Fox, Posner, Mintun, & Raichle, 1989), social cognition

(Bargh, Chen, & Burrows, 1996; Devine, 1989), and cognitive aging (Balota & Ferraro,

1996).

Although converging procedures have been developed to study the processes underlying

word recognition, the tasks most often used to study isolated word recognition are speeded

pronunciation and lexical decision. In speeded pronunciation, words (and sometimes,

nonwords, e.g., flirp) are presented, and participants have to read these aloud. In lexical

decision, participants discriminate between words and nonwords, typically with a button
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press. Using these tasks to provide a window into the processes involved in accessing and

using lexical representations (Seidenberg, 1990), researchers have identified many

properties of words that influence word recognition speed and accuracy. For example, more

commonly encountered words (e.g., world) are recognized faster than less common words

(e.g., glitch); this is known as the word-frequency effect. Similarly, words with fewer

syllables (Ferrand & New, 2003) and letters (New, Ferrand, Pallier, & Brysbaert, 2006) tend

to be recognized faster and more accurately. Words also differ with respect to the number of

orthographic neighbors (Coltheart, Davelaar, Jonasson, & Besner, 1977) they possess, where

orthographic neighbors refer to the number of words one can obtain by changing a single

letter in the target word (e.g., sand’s neighbors include band, send, said, and sank). The

general finding is that words with many neighbors are recognized faster than words with few

neighbors (see Andrews, 1997, for a review).

Most studies of word recognition have focused on group-level data that average across

participants. Likewise, computational models of word recognition have rarely considered

individual differences between skilled adult readers (but see Zevin & Seidenberg, 2006, for

an exception). These efforts emphasize the characterization of the “prototypical” reader.

However, an emerging body of work indicates substantial individual differences between

readers. These studies have demonstrated processing differences related to reading skill

(e.g., Ashby, Rayner, & Clifton, 2005; Chateau & Jared, 2000; Jared, Levy, & Rayner,

1999; Schilling, Rayner, & Chumbley, 1998; Unsworth & Pexman, 2003; Yap, Tse, &

Balota, 2009), and it is possible that some of the inconsistencies in the literature may be

driven by individual differences between participants (see Yap et al., 2009, for an example).

The present study harnesses the power of the English Lexicon Project (ELP; Balota et al.,

2007) to explore individual differences in word recognition performance. The ELP is an on-

line repository (http://elexicon.wustl.edu) of behavioral (speeded pronunciation and lexical

decision) measures for 40,481 words. Importantly, the ELP contains trial-level data from

1289 (470 for speeded pronunciation and 819 for lexical decision) participants across six

universities. Each participant contributed approximately 2,500 pronunciation latencies or

3,400 lexical decision latencies. Data were collected over two sessions, separated at most by

one week. Hence, the ELP contains data for almost four million word recognition trials,

sampled across a large population of participants, making it the most comprehensive

resource of its kind presently available. Examining data from such a large sample should

provide an excellent way to estimate individual differences in word recognition behavior.

Finally, vocabulary knowledge (Shipley, 1940; Zachary, 1992) was also measured for each

participant, in order to estimate the integrity of that participant’s lexical representations (see

Yap et al., 2009).

The present study will use the ELP to address three broad questions. First, can subtle

individual differences be reliably detected, and if so, how great is the variation in these

differences? Second, what are the systematic relationships between an individual’s reading

skill, word recognition efficiency, and sensitivity to lexical dimensions? For example, if a

reader produces a large effect of word-frequency, will he or she also produce a large effect

of orthographic neighborhood size? Finally, there is evidence that moving beyond measures

of central tendency when analyzing response time (RT) data provides finer-grained insights

into individual differences in performance (see Balota & Yap, in press, for a review).

Specifically, how is variability in the leading edge and tail of RT distributions systematically

related to other outcomes in word recognition? Do individuals who produce large word-

frequency effects produce more skewing in their RT distribution, and are they less efficient

in accumulating evidence about the stimulus, as reflected by diffusion model (Ratcliff,

1978) parameters? The present investigation represents the first attempt to answer these

interrelated questions in a unified manner, using a very large, well-characterized set of
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words and participants. We will first consider the issue of reliability in word recognition

performance before turning to a selective review of studies exploring individual differences

in word recognition.

Are Word Recognition Measures Reliable?

Reliability is usually assessed in the domain of psychological testing, where one determines

if a measure of an individual is similar at different points in time (Anastasi & Urbina, 1997).

Establishing test-retest reliability is a critical prerequisite for developing valid measures of

individual differences in intelligence, aptitude, personality, interests, values, and attitudes.

Interestingly, the reliability of RT measures is rarely evaluated; instead, researchers’

confidence in a measure increases as effects replicate across different studies (Goodwin,

2009). Indeed, classic measures of cognitive performance, such as the Stroop task, have

relatively low test-retest reliability (see Lowe & Rabbitt, 1998). Low reliability not only

limits the sensitivity of an individual measure but also circumscribes the extent to which that

measure can be expected to correlate with other measures (Lowe & Rabbitt). Furthermore,

and more critically for our purposes, without first establishing reliability, it is unclear

whether variability between readers reflects meaningful individual differences or

measurement noise.

Hence, if one is going to make inferences about individual differences in word recognition

processing, then it is critical that one has some estimate of the stability of pronunciation and

lexical decision performance across time. For example, consider a participant who does the

lexical decision task on two separate occasions, with a different randomly selected large set

of stimuli in each session. Will the participant exhibit qualitatively similar behavior at both

points in time? Despite the intuitive importance of this question, no study, to our knowledge,

has systematically explored the long-range stability or alternate-form reliability of different

word recognition measures. The study that comes closest to doing this is one by Schilling et

al. (1998), who examined performance on the speeded pronunciation, lexical decision, and

eye tracking tasks. Each participant was randomly assigned to two of the three tasks, which

were conducted at least one week apart. Although they could not estimate within-task test-

retest reliability, they observed significant pairwise correlations in mean RT and frequency

effects across tasks, attesting to the cross-task stability of these effects.

Hence, the first objective of the paper is to explore the within-task reliability of word

recognition performance, reflected by both within-session reliability (assessed by correlation

between performance for odd versus even items) and between-session reliability (assessed

by correlation between performance on different sets of stimuli at two time points across

multiple days). One, at the simplest level, the reliability of mean RTs can be evaluated,

which addresses the stability of overall processing speed. Two, beyond mean RTs, one can

also examine the reliability of the RT distributional characteristics for each participant, and

ascertain whether participants carry with them a distributional profile above and beyond

simple mean speed. Three, we can also estimate the reliability of different parameters from a

computational model (the diffusion model) of lexical decision performance. Finally, and

perhaps most importantly, we can assess the extent to which there is stability in participants’

sensitivity to theoretically important variables such as word-frequency, length, and

neighborhood size.

Vocabulary Knowledge and Word Recognition Performance

Reading skill is a complex, multifaceted construct encompassing word decoding efficiency

(Perfetti, 1983, 1985), orthographic and phonological processing skill (Stanovich & West,

1989), and sentence comprehension (Chateau & Jared, 2000). Reading skill is related to

vocabulary knowledge (i.e., knowledge of word forms and meaning) and print exposure
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(i.e., the amount of text a person reads), both of which strongly modulate word recognition

performance. For example, participants with more vocabulary knowledge (as reflected by

the number of words they know the meaning of) pronounce words faster (Butler & Hains,

1979). There is also evidence that performance on the lexical decision and speeded

pronunciation tasks predicts vocabulary size (Katz et al., in press). Likewise, participants

with more exposure to print (as reflected by the number of author names they recognize) are

faster and more accurate on various lexical processing tasks, including speeded

pronunciation, lexical decision, semantic classification, and nonword naming (Chateau &

Jared, 2000; Lewellen, Goldinger, Pisoni, & Greene, 1993). In addition, vocabulary

knowledge and print exposure have been shown to be statistically related, even when

general cognitive ability is controlled for (Stanovich & Cunningham, 1992).

Studies have explored how reading skill, as reflected by vocabulary knowledge or print

exposure, might interact with how stimulus characteristics affect recognition. Consider the

general hypothesis that as readers acquire more experience with words, they become

increasingly reliant on automatic lexical processing mechanisms (LaBerge & Samuels,

1974; Stanovich, 1980). In this case, it is possible that as automatic mechanisms develop,

words may be less influenced by lexical characteristics (Butler & Hains, 1979) and even

context (Stanovich & West, 1983; Yap et al., 2009). This hypothesis seems consistent with

extant data. Specifically, readers with more vocabulary knowledge or print exposure are less

sensitive to a number of lexical dimensions, including number of letters (Butler & Hains,

1979), word-frequency (Chateau & Jared, 2000), and orthographic neighborhood size

(Chateau & Jared. 2000).

These results are compatible with many other findings. For example, faster readers produce

smaller regularity and lexicality effects in speeded pronunciation (Brown, Lupker, &

Colombo, 1994), readers with more years of education produce smaller frequency effects in

lexical decision (Tainturier, Tremblay, & Lecours, 1992), and rapid word decoders produce

smaller frequency effects in speeded pronunciation (Schilling et al., 1998; Seidenberg,

1985). It is worth noting that all the studies listed above, with the exception of Butler and

Hains (1979), did not control for overall processing speed when computing effects. That is,

effects were based on actual, not standardized, RTs. We will revisit this issue in greater

depth later.

However, there are reports that readers who are more skilled do not always produce smaller

effects. For example, Lewellen et al. (1993) compared low- and high-ability readers, who

were contrasted based on their subjective familiarity ratings of words, print exposure, and

vocabulary knowledge. They then measured participants’ frequency and neighborhood

density effects on speeded pronunciation and lexical decision. Interestingly, frequency and

neighborhood size effects were of the same size for low- and high-ability readers in both

tasks, prompting the conclusion that such effects did not interact with reading skill. These

findings obviously conflict with Chateau and Jared (2000), who reported smaller frequency

effects in their low-print-exposure participants. Sears, Siakaluk, Chow, and Buchanan

(2008) suggested that the discrepancy might be due to Lewellen et al. using legal nonwords

(e.g., brone) as distracters in their lexical decision task, and Chateau and Jared using

pseudohomophones (i.e., nonwords that sound like real words, e.g., brane). Indeed, Sears et

al. demonstrated that the moderating effects of print exposure on frequency and

neighborhood size effects were reliable only when pseudohomophones, but not legal

nonwords, were used. Consistent with this, Yap, Balota, Tse, and Besner (2008), who also

used pseudohomophone distracters, observed smaller frequency effects for participants with

more vocabulary knowledge.
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According to Sears et al. (2008), low-print-exposure participants, compared to their high-

print-exposure counterparts, possess less efficient orthographic processing skills, which

results in slower and less accurate recognition of words with lower quality representations,

such as low-frequency words. However, when discriminating between words and legal

nonwords, lower-exposure participants can compensate for their relatively inefficient

orthographic processing by switching to phonological processing, resulting in similar size

word-frequency effects for low- and high-print-exposure participants. This phonological

strategy is not viable in the pseudohomophone condition, since phonology, by definition,

cannot be used to discriminate between words and pseudohomophones. As a result, the low-

print-exposure participants are slowed down, particularly for the low-frequency words,

which exaggerates their word-frequency effect.

While Sears et al. (2008) make a plausible attempt to reconcile the conflicting findings,

there is a simpler alternative. In both Chateau and Jared (2000) and Sears et al.’s

pseudohomophone condition, low-print-exposure participants were reliably slower on the

lexical decision task. In contrast, in Lewellen et al. (1993) and Sears et al.’s legal nonword

condition, there was no significant (by-participants) effect of print exposure on lexical

decision latencies. Faust, Balota, Spieler, and Ferraro (1999) have pointed out that Group ×

Treatment interactions can be difficult to interpret when the groups are not matched on

overall latency (see also Cerella, 1990, 1991; Salthouse, 1985). Specifically, because a

participant’s overall processing time is positively correlated with the magnitude of his or her

effect (i.e., larger effects for slower participants), slower participants can spuriously produce

larger effects due to slowing. Hence, the larger frequency effects seen in low-print-exposure

participants (e.g., Chateau & Jared) may simply result from these participants being slower.

In contrast, when overall response latency was matched across groups, print exposure did

not moderate word-frequency effects (e.g., Lewellen et al.).

One way to rule out processing speed as a confound is to standardize raw latencies using a z-

score transformation1 (see Faust et al., 1999). Consistent with this, Butler and Hains (1979),

who did standardize their effects, were also unable to detect a relationship between

vocabulary knowledge and word-frequency effects. Interestingly however, although

vocabulary knowledge was unrelated to the size of word-frequency effects, high-vocabulary-

knowledge readers still showed smaller effects of length. In summary, the mixed findings

make it unclear if better readers are indeed less sensitive to lexical characteristics.

Furthermore, it is unclear if reader proficiency interacts with certain variables (e.g., length)

but not others (e.g., word-frequency), and if these interactions are task-modulated (e.g.,

lexical decision vs. speeded pronunciation).

Closely related to the foregoing issues is the question of whether there are individual

differences that reflect distinct types of proficient readers. One source of individual

differences could arise from readers emphasizing different strategies or types of information

during reading. If this was the case, one might expect to find trade-offs in a reader’s

sensitivity to different lexical characteristics. For example, are readers who are more

sensitive to word-frequency less sensitive to word length (and vice versa)? This trade-off

could emerge if individuals are differentially emphasizing two distinct reading mechanisms,

where one mechanism is sensitive to frequency and the other is sensitive to length.

1However, note that the z-transformation has mathematical assumptions about the form of distributions and is therefore not theory-
independent. A reviewer also pointed out that z-scoring and standardized regression coefficients fully adjust for processing speed only

if all participants are equally reliable, an assumption which seems intuitively untenable. Future work could explore individual
differences in effects when the influence of reliability is controlled for.
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According to the dual-route perspective (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler,

2001), word recognition is mediated by two pathways, a lexical pathway that directly maps

words onto underlying lexical representations, and a nonlexical pathway that assembles the

pronunciations of words via abstract spelling-to-sound rules. This dichotomy was in large

part motivated by studies of acquired dyslexia that revealed a striking dissociation between

the two pathways. Specifically, individuals with phonological dyslexia (Patterson, 1982) can

pronounce real words but perform poorly for non-words, while individuals with surface

dyslexia (Shallice & Warrington, 1980) tend to regularize irregular words (e.g., pronounce

PINT so that it rhymes with HINT). Because the two pathways make independent and

unique contributions to reading, each pathway is sensitive to different properties of a word.

The lexical pathway is sensitive to word-frequency (but not to length), while the nonlexical

pathway is sensitive to length (but not word-frequency).

Early work by Baron and Strawson (1976) suggested that there are different types of readers

who selectively rely on these two pathways; Phoenician readers rely predominantly on

nonlexical processing while Chinese rely predominantly on lexical processing. If this is

correct, one would expect a trade-off between word-frequency and length effects, which

implies a negative correlation between sensitivity to these two variables. Interestingly, using

Baron and Strawson’s methodology, Brown et al. (1994) were unable to meaningfully

separate their participants into Phoenicians and Chinese. There was no evidence for a trade-

off between lexical and nonlexical processing (as suggested by Baron and Strawson’s work).

Instead, participants who relied less on lexical processing also appeared to rely less on

nonlexical processing. While this pattern is difficult for an unembellished dual-route model

to accommodate (see Brown et al. for more discussion), it is consistent with the simpler

notion that faster, more skilled readers are simply less sensitive to a wide array of lexical

variables. In summary, the second objective of this study is to more systematically explore

the intriguing interplay between reader proficiency (as reflected by vocabulary knowledge),

word recognition efficiency (as assessed by RT and error rate), and readers’ sensitivity to

different lexical characteristics.

Response Time Distributions, Word Recognition Performance, and

Individual Differences

As pointed out in the Introduction, most word recognition studies are based on group-level

data that aggregate across participants. In addition to averaging across participants, the

typical word recognition experiment also collapses across trials in each condition to examine

data at the level of mean RTs. There is increasing evidence that finer-grained consideration

of performance at the level of RT distributional characteristics (Balota & Yap, in press;

Hohle, 1965; Luce, 1986; Ratcliff, 1978; Ratcliff, 1979) yields additional insights into

important aspects of human cognition, including selective attention (Castel, Balota,

Hutchison, Logan, & Yap, 2007; Heathcote, Popiel, & Mewhort, 1991; Tse, Balota, Yap,

Duchek, & McCabe, 2010; Spieler, Balota, & Faust, 2000), visual search (Palmer, Horowitz,

Torralba, & Wolfe, 2011), episodic memory (Hockley, 1984; Ratcliff, 1978; Rohrer &

Wixted, 1994), priming (Balota, Yap, Cortese, & Watson, 2008; Kinoshita & Hunt, 2008;

Lyons, Kellas, & Martin, 1995; Tse, Hutchison, & Li, in press; Yap et al., 2009), eye

fixation durations (Staub, White, Drieghe, Hollway, & Rayner, 2010), and isolated word

recognition (Andrews & Heathcote, 2001; Balota & Spieler, 1999; Goh, Suárez, Yap, &

Tan, 2009; Plourde & Besner, 1997; Ratcliff, Gomez, & McKoon, 2004; Yap & Balota,

2007; Yap, Balota, Cortese, & Watson, 2006; Yap et al., 2008).

While there are many different ways to examine the characteristics of an RT distribution

(see Luce, 1986, and Van Zandt, 2000, for reviews), a relatively accessible method, is to fit

RT distributions to a theoretical distribution like the ex-Gaussian (Ratcliff, 1979). The ex-
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Gaussian distribution is a convolution of a Gaussian (normal) and exponential distribution

that approximates the positively skewed RT distribution often seen in empirical data. An ex-

Gaussian distribution contains three parameters; μ and σ respectively reflect the mean and

standard deviation of the Gaussian distribution, while τ reflects the mean and standard

deviation of the exponential distribution. Using maximum likelihood procedures, the ex-

Gaussian function can be fit to empirical data, and changes in μ are consistent with

distributional shifting, while changes in τ reflect modulations in the tail of the distribution. A

very useful aspect of ex-Gaussian analysis is that mean RTs are mathematically constrained

to be the sum of μ and τ. Hence, effects in mean RTs can be partitioned such that one can

evaluate the extent to which the effect is reflected in either distributional shifting or in the

tail of the distribution. Also, it is possible for two conditions with identical mean RTs to be

associated with different underlying RT distribution, due to trade-offs between μ and τ (see

Balota et al., 2008, & Heathcote et al., 1991, for more discussion).

Recently, researchers have used RT distributional analysis to explore questions in individual

differences, particularly in the attention and working memory domain. For example,

individuals with impaired attentional control systems are less able to maintain task goals and

suppress irrelevant information, and may therefore experience lapses in control across time.

Importantly, these lapses are primarily reflected in the slowest RTs, i.e., the tail of the

distribution (see Coyle, 2003, & Larson & Alderton, 1990, for more discussion). Tse et al.

(2010) compared young adults, healthy older adults, and individuals with very mild

dementia of the Alzheimer’s Type (DAT) on three different tasks of selective attention

(Stroop, Simon, and Task Switching). Interestingly, although effects related to healthy aging

predominantly affected μ and σ (the modal portion of the distribution), the slowing due to

early stage DAT was primarily reflected in τ (the tail of the distribution). Structural equation

modeling also revealed that changes in τ were most strongly related to a latent variable that

reflected working memory. In a related study, Schmiedek, Oberauer, Wilhelm, Süβ, and

Wittmann (2007) estimated ex-Gaussian parameters in eight choice RT tasks in young

adults, and showed that τ (but not μ or σ) predicted performance on working memory,

reasoning, and psychometric speed. Furthermore, the predictive power of τ appeared to

generalize across different tasks.

At this juncture, it is worth clarifying that ex-Gaussian analysis primarily serves to provide

an accurate and concise summary of empirical RT distributions (Schwarz, 2001). Ex-

Gaussian parameters do not possess intrinsic theoretical interpretations (Matzke &

Wagenmakers, 2009; Schmiedek et al., 2007), and it is dangerous to map them directly onto

specific cognitive processes (cf. Hohle, 1965; McGill & Gibbon, 1965), unless one has a

specific theoretical framework that makes predictions about the underlying RT distributions.

In order to better understand the behavior of interest, researchers (e.g., Balota & Spieler,

1999; Schmiedek et al., 2007) have recommended linking static RT distributional

characteristics to process-oriented theoretical models that explicitly specify the dynamics of

information accumulation over time. The most well-known of these models is the diffusion

model of binary decision (Ratcliff, 1978; Ratcliff et al., 2004), which is able to

quantitatively fit data from binary decision tasks across various domains, including

recognition memory, numerosity judgments, brightness and color discrimination, visual

search, and lexical decision. More importantly, the diffusion model is able to fit RTs and

error rates simultaneously, while accommodating the shapes of RT distributions for both

correct and error responses.

The central premise of the diffusion model of lexical decision is that binary decision

involves the accumulation of noisy information over time from a starting point (z) toward

one of two decision boundaries, respectively word (a) or nonword (0). Drift rate (v) refers to

the mean rate at which information is accumulated from the stimulus, and is positively
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correlated with the quality of information yielded by processing the stimulus (Ratcliff et al.,

2004). Ter refers to the nondecision component that collectively captures encoding and

response execution. Other model parameters include s (variability in drift within each trial),

η (variability in drift rate across trials), sz (variability in starting point), and st (variability in

the nondecision component). The inclusion of the variability parameters allows better fits of

the model to lexical decision data. In their study, Ratcliff et al. applied the diffusion model

to data from a number of lexical decision experiments and found that the effects of most

variables (e.g., word-frequency, nonword type, repetition) mainly influenced one parameter,

drift rate, indicating that drift rate is the critical parameter for modeling lexical decision

performance. This is perhaps unsurprising as drift rate and τ have been shown to be closely

related. Effects of both parameters are most pronounced on the tail of the distribution, with

steeper drift rates associated with smaller estimates of τ (see Spieler et al., 2000).

Like ex-Gaussian parameters, diffusion model parameters can also be estimated for

individual participants. For example, Ratcliff, Thapar, and McKoon (2010) obtained

diffusion model parameters for three groups of participants (college students, old, and very

old) across three binary decision tasks (numerosity discrimination, item recognition, and

lexical decision); participants also completed the Vocabulary and Matrix Reasoning subtests

of the Wechsler Adult Intelligence Scale – 3rd Edition (WAIS-III; Wechsler, 1997). Ratcliff

et al. observed a robust relationship between drift rate and IQ, with drift rates increasing as

IQ increased; essentially, information accumulation processes were more efficient for the

higher IQ participants. Boundary separation (a) and nondecision time (Ter) were relatively

unaffected by IQ. Intriguingly, age had only minimal effects on drift rates. Older adults were

slower not because their drift rates were decreasing, but because they set more conservative

response criteria and had longer nondecision times. This dissociation between Age and IQ

on different components of the diffusion model provide compelling evidence regarding the

power of this approach.

Although we focus on how the diffusion model explains individual differences in lexical

decision performance, it is important to note that there are important theoretical alternatives,

such as the Bayesian reader model (Norris, 2006), which can also account for the effects of

variables on RT distributions (see Norris, 2009). The Bayesian reader model unifies word

recognition and decision-making processes within an integrated framework that assumes

that readers behave like optimal Bayesian decision-makers when processing words. That is,

during word recognition, posterior probabilities for different words are computed (with their

prior probabilities taken into account), and readers choose the word in the lexicon that best

matches the input. In this light, people recognize high-frequency words faster because high-

frequency words are associated with higher priors than low-frequency words. To carry out

lexical decision, the model computes the probability that the presented letter string is a word

versus a nonword, given the input. Although a detailed comparison of the diffusion and

Bayesian approaches to lexical decision performance is beyond the scope of this paper (see

Norris, 2009, for more discussion), future work could explore individual differences in word

recognition performance by estimating Bayesian reader model parameters for each

participant, and examining how variability in these parameters relate to other outcomes.

To summarize, the extant literature points to stable, task-general individual differences in τ
and diffusion model parameters that are systematically related to outcomes of interest.

Hence, our third and final objective is to extend the individual difference work by

Schmiedek et al. (2007), Tse et al. (2010), and Ratcliff et al. (2010) to the word recognition

domain. As discussed earlier, readers become less reliant on controlled lexical processing

mechanisms as they gain proficiency (LaBerge & Samuels, 1974; Stanovich, 1980). If

controlled processing is marked by larger τ and drift rates (Schmiedek et al.; Tse et al.,

2010), then one would expect fluent lexical processors, operationally defined by their
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vocabulary knowledge, to have lower values on both parameters. In addition to testing this,

we will also be considering how τ and the central diffusion model parameters (i.e., drift rate,

boundary separation, and nondecision time) relate to word recognition efficiency,

vocabulary knowledge, and the extent to which readers are influenced by different lexical

variables. The diffusion model parameters can only be estimated for the lexical decision data

since the pronunciation task has not been modeled using this approach.

Method

Dataset

All analyses reported in this paper were based on archival trial-level data from the English

Lexicon Project. Since a full description of the methodological aspects of the ELP is

available in Balota et al. (2007), we will simply highlight some of the more salient aspects

of the database. There were a total of 1289 participants, with 470 providing data for the

speeded pronunciation task and 819 providing data for the lexical decision task. These

participants, who were all native English speakers, were recruited from six Universities (see

Table 1 of Balota et al. for descriptive statistics of participant demographics) that included

private and public institutions situated in the Midwest, Northeast, and Southeast portions of

the United States. Each participant took part in either the speeded pronunciation or lexical

decision task, and data were collected in two sessions on different days, separated by no

more than one week. Across both sessions, each participant received approximately 2,530

speeded pronunciation trials or 3,374 lexical decision trials. Nonword trials on the lexical

decision task were legal nonwords that did not sound like real words. Evidence from

previous work (e.g., Balota & Spieler, 1998) suggests that an individual participant can

produce stable data for these number of stimuli. Additional demographic information

collected included vocabulary knowledge scores, based on the 40-item vocabulary subscale

of the Shipley Institute of Living Scale (Shipley, 1940), and circadian rhythm, based on the

Morningness-Eveningness Questionnaire scores (Horne & Ostberg, 1976).

Results

We first excluded incorrect trials2 and trials with response latencies faster than 200 ms or

slower than 3000 ms. For the remaining correct trials, RTs more than 2.5 SDs away from

each participant’s mean were also identified as outliers. For ease of exposition, we will first

describe the reliability analyses, before considering the relationships between participants’

vocabulary knowledge, word recognition performance, and sensitivity to different lexical

dimensions.

Analysis 1: Reliability Analyses

We first partitioned the data for each participant, so that trials were organized into Session 1

(S1) trials, Session 2 (S2) trials, odd-numbered trials, and even-numbered trials; trial number

reflects the order in which trials were presented. Briefly, comparing Session 1 to Session 2

trials allows us to assess between-session reliability, while comparing odd- to even-

numbered trials allows us to assess within-session reliability (as reflected by split-half

correlations). For each participant, we then computed the mean and standard deviation of

RTs, along with ex-Gaussian (μ, σ, τ) and diffusion model parameters3 for S1 trials, S2

trials, odd-numbered trials, and even-numbered trials. Ex-Gaussian parameters were

estimated for each participant using continuous maximum likelihood estimation in R4 (R

Development Core Team, 2004). Using Nelder and Mead’s (1965) simplex algorithm,

2Although incorrect trials were generally not analyzed, they were necessarily included in the diffusion model analyses.
3Satisfactory fits could be obtained for 780 of the 819 participants assigned to the lexical decision task.
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negative log likelihood functions were minimized in the R statistics package (see Speckman

& Rouder, 2004), with all fits successfully converging within 500 iterations. The diffusion

model parameters were estimated simultaneously by fitting each participant’s data to the

model. The data for each participant were comprised of the .1, .3, .5, .7, and .9 quantile RTs

for correct and error responses, along with the corresponding accuracy values. A general

SIMPLEX minimization routine was then used that adjusted the parameters of the model in

order to minimize the value of chi-square (see Ratcliff & Tuerlinckx, 2002, for more

information).

Table 1 presents the mean latency, its standard deviation, and ex-Gaussian parameters by

task (speeded pronunciation and lexical decision) and trial type (overall, Session 1, Session

2, odd-numbered trials, even-numbered trials). Diffusion model parameters are also reported

for the lexical decision task. Participants’ latencies tended to be faster and less variable on

the speeded pronunciation task, compared to the lexical decision task. However, although

speeded pronunciation performance was faster at the level of the mean, this mean difference

was mediated fully by τ (change in the tail of the distribution) rather than by μ (shift in the

modal portion). In fact, an individual’s μ parameter for lexical decision was on average 39

ms faster than for pronunciation. These indicate that lexical decision RTs were associated

with a faster leading edge that was offset by a heavier tail in the distribution. That is, for

most words, participants could initiate a response more rapidly in lexical decision than in

speeded pronunciation. However, the most difficult items in lexical decision produced more

responses in the tail of the distribution, and this is consistent with the argument that the

exaggerated tail in lexical decision reflects the postlexical decision processes engaged by the

word-nonword discrimination demands of the task (Balota & Spieler, 1999; Ratcliff et al.,

2004).

Turning to the diffusion model fits for the lexical decision data, the obtained parameters

were in line with estimates reported elsewhere (e.g., Ratcliff et al., 2004). However, it is

noteworthy that compared to Ratcliff et al.’s samples, the ELP participants were associated

with larger boundary separation (a) and nondecision (Ter, i.e., encoding and response

execution) components, suggesting that they were setting more conservative response

criteria and taking longer to encode and respond to stimuli. Importantly, the mean word drift

rate (vword) was similar to Ratcliff et al.’s observed drift rates for low-frequency words (see

their Table 6), because the ELP participants were responding to a diverse set of items that

included a relatively large proportion of difficult, lower frequency words.

Table 2 presents the Pearson correlations between each individual’s response in Session 1

and Session 2 trials, and between odd- and even-numbered trials, for mean RT, standard

deviation, ex-Gaussian parameters, and diffusion model parameters. For all correlations

reported in this paper, bivariate outliers were detected by first computing Mahalanobis

distance (D2) for each pair of scores. This metric reflects the extent to which a particular

participant is discrepant from the rest of the sample, and we excluded participants who

produced D2 with unusually low probability values (i.e., p < .001).

The very high correlations (all rs ≥ .92) between odd- and even-numbered trials point to

impressive within-session reliability for the mean, standard deviation5, and ex-Gaussian

parameters. Within-session reliability was also high for the majority of diffusion model

4QMPE 2.18 (http://www.newcl.org/software/qmpe.htm; Brown & Heathcote, 2003) is a free and user-friendly computer program
that enables users to carry out distributional analyses on their RT data. In fact, QMPE can fit RT data with as few as 40 observations
per condition.
5It is noteworthy that the standard deviation is reliable, indicating that the ELP behavioral dataset has reliable estimates of the amount
of variability in each individual’s RTs. This is relevant when one uses tests of statistical significance that incorporate estimates of this
variability.
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parameters6, particularly for the central ones, i.e., boundary separation (a), nondecision

component (Ter), and drift rate (v). Moreover, when between-session reliability was

assessed, these correlations were also very high for means (rs ≥ .87), and relatively high for

ex-Gaussian (rs from .51 to .94) and diffusion model (rs from .39 to .74) parameters. These

results provide evidence that readers carry with them a particular RT distributional signature

that goes beyond simple mean performance. Indeed, this signature is maintained across days

of testing on different sets of stimuli.

There are a couple of other noteworthy observations. First, the tail (τ) of the RT distribution

seems to be considerably more stable than the modal portion (μ and σ) of the distribution. In

fact, the between-session reliability of τ (.940 and .872 for pronunciation and lexical

decision, respectively) was comparable to that for the mean (.929 and .871 for pronunciation

and lexical decision, respectively). The between- and within-session reliability of word drift

rate (.692 and .814 respectively) were also relatively high. The stability of τ and drift rate is

consistent with the idea that these two parameters serve as markers of individual differences

(Ratcliff et al., 2010; Schmiedek et al., 2007; Tse et al., 2010). Within the present context,

individuals associated with a lower drift rate or larger τ could be seen as less efficient lexical

processors who rely more heavily on controlled word recognition processes. Second, the

between-session reliabilities for the parameters were higher in speeded pronunciation than in

lexical decision, suggesting that speeded pronunciation performance may be inherently more

stable than lexical decision performance.

Having established the reliability of RT distributional characteristics, we next considered the

reliability of individuals’ sensitivity to different lexical characteristics. For example, if a

participant produces large frequency effects on Session 1, will he or she also produce large

frequency effects on Session 2? The most obvious way to approach this question is to

conduct multiple regression analyses at the level of individual participants, and to estimate,

for each participant, regression coefficients for the various lexical variables of interest7 (see

Balota & Chumbley, 1984; Lorch & Myers, 1990). One might be concerned that the

participant-level regression analyses were conducted on different sets of items, since

participants were presented with different sub-lists of the full set of words in the ELP.

However, the counterbalancing procedure ensured that the means, standard deviations, and

ranges of different variables were similar across the different sub-lists.

For each participant, we first partialled out the effects of word initial phoneme by coding

dichotomously for the following 13 articulatory features: affricative, alveolar, bilabial,

dental, fricative, glottal, labiodental, liquid, nasal, palatal, stop, velar, and voiced (see

Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Chateau & Jared, 2003; Treiman,

Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995). Doing this helps control for biases

associated with using the voice key for measuring vocal responses (Kessler, Treiman, &

Mullennix 2002; Rastle, Croot, Harrington, & Coltheart, 2005). After controlling for the

onset, we examined the effects of the following lexical and semantic variables: log-

transformed Hyperspace Analog to Language (HAL; Lund & Burgess, 1996) frequency

(henceforth word-frequency), number of morphemes, number of syllables, number of letters,

orthographic neighborhood size, phonological neighborhood size, orthographic Levenshtein

distance 208 (OLD20, a measure of orthographic distinctiveness; Yarkoni, Balota, & Yap,

2008), phonological Levenshtein distance 20 (PLD20, a measure of phonological

distinctivness; Yap & Balota, 2009), log-transformed number of senses (Steyvers &

6The within-session reliabilities of the η (drift rate variability) and st (nondecision component variability) parameters are lower
because the variability parameters depend on error RT distributions, which have far fewer observations; these parameters are therefore
always more poorly estimated (see Ratcliff & Tuerlinckx, 2002, for more discussion).
7In order to include neighborhood density and number of senses as predictors, we restricted our analyses to the 28,803 words in the
ELP which are represented on both norms.
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Tenenbaum, 2005), which reflects the number of meanings a word has in the WordNet

database (Miller, 1990), and log-transformed semantic neighborhood density (Shaoul &

Westbury, 2010), estimated using co-occurrence information from a billion-word Wikipedia

corpus (Shaoul & Westbury, 2009). Semantic neighborhood density was estimated by the

average radius of co-occurrence (ARC), which is based on the average semantic distance

between a target word and its closest neighbors in high-dimensional semantic space (see

Shaoul & Westbury, 2006). In other words, words with lower ARC values are associated

with denser semantic neighborhoods.

Figures 1 and 2 present the distributions of standardized regression coefficients across

participants as a function of lexical variable, for speeded pronunciation (Figures 1) and

lexical decision (2) respectively. First, note the substantial variability in the magnitude of

effects produced by participants9. For example, although virtually all participants produced

negative regression coefficients for the word-frequency effect (see Figure 1 and Figure 2),

indicating faster latencies for higher-frequency words, the coefficients were normally

distributed. Second, the direction and relative magnitudes of participant-level effects in

speeded pronunciation and lexical decision were generally consistent with item-level effects

reported in the literature. That is, word-frequency was the best predictor in both tasks,

followed by number of letters, number of syllables, and number of morphemes. Generally,

higher-frequency words and words with more morphemes were recognized faster, while

words with more syllables and letters were recognized slower.

One caveat of multiple regression analyses with many lexical predictors is that these

predictors are often correlated (Baayen, Feldman, & Schreuder, 2006; Cutler, 1981). For

example, longer words tend to be lower in frequency and have fewer neighbors; this

collinearity in the predictor matrix (see Table 3) may cause regression coefficients to

fluctuate in magnitude and direction, leading to estimates of individual regression

coefficients that are unreliable due to large standard errors. To alleviate this problem,

principal components analysis (Baayen et al., 2006) was used to reduce the full set of ten

lexical variables to a smaller set of orthogonal principal components. Principal components

analysis was carried out using varimax rotation with Kaiser normalization. Three principal

components, accounting for 85% of the variance, were extracted10. The rotated component

matrix indicated that number of letters, number of syllables, OLD20, PLD20, and number of

morphemes loaded on the first component (PC1)11, orthographic and phonological

neighborhood size loaded on the second component (PC2), and word-frequency, number of

senses, and ARC loaded on the final component (PC3); factor loadings are presented on

Table 4. Thus, PC1 appears to capture the structural properties of words, PC2 neighborhood

size, and PC3 word-frequency/semantics. From the dual-route perspective, one could also

8The Levenshtein-based measures are relatively new measures of orthographic and phonological distinctiveness that are optimized for
longer words. They are based on Levenshtein Distance (LD), a computer science metric reflecting the minimum number of
substitution, insertion, or deletion operations required to convert one string of elements (either letters of phonemes) into another. For
example, the LD from kitten to sitting is 3, reflecting two substitutions (k → s, e → i) and one insertion (insert g at the end). Yarkoni
et al. computed the LD from each word in the ELP to every other word, and this was used to generate LD20 values for each word,
defined as the mean LD between a word and its 20 closest neighbors. OLD20 is based on distances between word spellings, while
PLD20 is based on distances between word pronunciations. Words with higher LD20 values are further from their closest neighbors,
implying they are more orthographically or phonologically distinct. Traditional neighborhood size measures have limited utility for
long words, which have few or no single-letter substitution neighbors. Measures based on LD circumvent this limitation by providing
estimates of distinctiveness for even very long words. Interestingly, Yarkoni et al. have reported that LD-based measures of
orthographic distinctiveness provide a significant advantage over traditional density-based measures in predicting performance on
English word recognition tasks, particularly for longer words.
9According to a reviewer, the distribution of effects reflects both true and residual variance. Consequently, individual differences
between participants may be partly mediated by their variability in residual variance. The extent to which individual differences reflect
true versus residual variance is an interesting question that merits future investigation.
10It is worth noting that the original set of 10 predictors respectively explained 55.4% and 62.5% of the variance in speeded
pronunciation and lexical decision RTs. The principal components respectively accounted for 48.2% and 56.4% of the RT variance,
indicating that the dimensional reduction did not substantially compromise the predictive power of the lexical variables.
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say that PC1 seems to reflect the sublexical properties of words, while PC3 taps whole-word

properties.

We next obtained principal component regression coefficients for each participant across all

trials, S1 trials, S2 trials, odd-numbered trials, and even-numbered trials (see Table 5 and

Figure 3)12. Interestingly, while the between-task differences were in the correct direction

(e.g., effects of word-frequency/semantics were stronger in lexical decision, whereas effects

of structural properties were stronger in speeded pronunciation), they were relatively subtle

compared to those suggested by item-level regression analyses (e.g., Balota et al., 2004; Yap

& Balota, 2009). Of course, those analyses were based on much smaller sets of words (2,428

monosyllabic words for Balota et al., and 9,639 monomorphemic multisyllabic words for

Yap & Balota). For a more appropriate comparison, we also conducted parallel item-level

regression analyses on the full set of items from the ELP; these are presented on an

additional Item column on Table 5. As can be seen, when one considers all the words in the

ELP, the relative magnitudes of the participant- and item-level effects across tasks showed

similar trends, reassuring us that the modest between-task differences are not simply

artifacts of participant-level analyses. It is also worth noting that item-level effects were

consistently larger than participant-level effects. Since item means average across

participants, this might help to decrease measurement error and increase the size of the

effect.

Turning to the reliability analyses, Table 6 presents the Pearson correlations between

Session 1 and Session 2 trials, and between odd- and even-numbered trials, for the three

principal component regression coefficients. Within- and between-session measures of

reliability were quite high in both tasks13, with higher estimates observed in speeded

pronunciation than in lexical decision. In addition, effects of PC1 (structural properties) and

PC3 (word-frequency/semantics) were more reliable than effects of PC2 (neighborhood

size). To summarize, within- and between-session reliabilities are reassuringly high in word

recognition performance, as reflected in RT distributional characteristics, diffusion model

parameters, and in effects of principal components. Reliability was also higher for speeded

pronunciation performance, and this might be related to the additional task-specific

processes entailed by lexical decision (Balota & Chumbley, 1984).

Analysis 2: Vocabulary Knowledge and Word Recognition Performance

We now turn to the relationship between vocabulary knowledge and word recognition

performance. As discussed, readers’ vocabulary knowledge could reflect the integrity of

underlying lexical representations, and the extent to which readers are likely to rely on

relatively more automatic processing mechanisms (Yap et al., 2009). Higher-vocabulary-

11Given that the Levenshtein measures (Yarkoni et al., 2008) have been described as metrics for capturing neighborhood size, one
might find it surprising that OLD20 and PLD20 loaded on a component reflecting structural properties (PC1) instead of neighborhood
size (PC2). However, Yarkoni et al. have shown that although LD20 and neighborhood size are highly correlated for shorter,
monosyllabic words, this relationship is considerably weaker for longer words with more syllables, due to range restriction for
neighborhood size (long words have few or no substitution neighbors). Consistent with this, Table 3 shows that for the full set of
words in our analyses, the LD20 measures are more highly correlated with length than with neighborhood size.
12For ease of exposition, our analyses focus on the principal component effects. However, supplementary tables reporting the
descriptive statistics (Table A1) and reliabilities (Table A2) of effects of individual variables are presented in the Appendix. It is very
clear that reliability estimates are substantially higher for principal component effects than for effects of individual variables (compare
Tables A2 and 6). This attests to the utility of the PCA approach, which provides far more reliable estimates of how stimuli
characteristics affect behavioral data.
13Within-session reliability was consistently higher than between-session reliability, consistent with other studies (e.g., Kimberley,
Khandekar, & Borich, 2008). As the time-gap between two measurements increase, the less similar are the factors that contribute to
error, attenuating correlations (Trochim & Donnelly, 2006). We tested this by examining if the number of days between sessions
moderated the extent to which Session 1 performance predicted Session 2 performance. In both tasks, we found that reliability was
generally significantly lower as the number of intervening days increased, although this trend was seen only in mean RTs and RT
distributional characteristics, but not in effects of principal components.
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knowledge participants should be associated with faster and more accurate word recognition

performance. Specifically, vocabulary knowledge should be negatively correlated with RTs

and positively correlated with accuracy. Figures 4 (RT) and 5 (accuracy) present the

scatterplots between vocabulary knowledge (as assessed by the number of correct responses

on the Shipley, 1940, vocabulary subscale) and word recognition performance, after

excluding participants who were more than 1.5 interquartile ranges below the lower quartile

on a boxplot (3.0% in speeded pronunciation and 3.3% in lexical decision). Vocabulary

knowledge was negatively correlated with mean speeded pronunciation RTs (r = −.402) and

lexical decision RTs (r = −.323), and positively correlated with speeded pronunciation

accuracy (r = .456) and lexical decision accuracy (r = .622).

Schmiedek et al. (2007) and Tse et al. (2009) have shown that the tail of the RT distribution

is a strong predictor of controlled processing, suggesting that this component should be

especially sensitive to variability in word recognition efficiency. If this is correct, then the

correlation between vocabulary knowledge and RTs should be primarily mediated by τ. This

was precisely the pattern observed (see Table 7). Although vocabulary knowledge was

negatively correlated with both μ (leading edge of the modal distribution; rs were −.218 and

−.159 for pronunciation and lexical decision respectively) and τ (tail of the distribution; rs

were −.448 and −.335 for pronunciation and lexical decision respectively), the correlation

was reliably stronger in τ than in μ in both speeded pronunciation (p < .001) and lexical

decision (p < .001). This indicates that variation in recognition performance for difficult

words (e.g., antiestablishment) relative to easy words (e.g., chair), is more systematically

related to individual differences in skill. The predictive power of τ, which has so far been

demonstrated using general binary decision tasks (Schmiedek et al.) and tasks tapping

selective attention (Tse et al.), appears to generalize to lexical processing tasks as well.

We also examined the correlations between the diffusion model parameters and vocabulary

knowledge, lexical decision RTs, and lexical decision accuracy (see Table 8). Although the

full set of model parameters are presented, we are mainly interested in the correlations for

boundary separation (a), nondecision time (Ter), and drift rate (v). Participants who were

faster on the lexical decision task produced smaller values for boundary separation and

nondecision time, and larger values for drift rates. In other words, they were setting more

liberal decision criteria, had a faster nondecision component, and could accumulate

information more rapidly. Notably, individual differences in vocabulary knowledge were

also systematically related to these three parameters. Specifically, higher-vocabulary-

knowledge participants were associated with lower values for boundary separation and

nondecision time, and higher drift rates. At first blush, this might seem inconsistent with

Ratcliff et al. (2010), who found that IQ (which taps vocabulary knowledge) was correlated

with drift rate, but not with boundary separation or nondecision time. However, it should be

noted that the correlations for boundary separation (r = −.085) and nondecision time (r = −.

218) were significantly smaller (all ps < .001) than for drift rate (.536 and −.448 for words

and nonwords, respectively). As the present sample is more than four times larger than

Ratcliff et al.’s sample, the present analyses have more power to detect the more subtle

effects for boundary separation and nondecision time.

Next, we considered the correlations between diffusion model parameters and ex-Gaussian

parameters (see Table 8). Consistent with Schmiedek et al. (2007), drift rates were more

highly correlated with τ than with μ or σ, ps < .001. However, one should note that τ was

also strongly and positively correlated with boundary separation, indicating that participants

producing a large proportion of slow responses were setting more conservative response

criteria. This indicates that there is only limited mapping between ex-Gaussian and diffusion

model parameters, in line with Matzke and Wagenmakers (2009). Having said that, the

relationship between μ and nondecision time was very strong, consistent with the idea that
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the leading edge of a participant’s RT distribution primarily reflects encoding time and

response execution, and is relatively independent of efficiency in accumulating information.

Analysis 3: Vocabulary Knowledge, Diffusion Model Parameters, and Effects of Lexical
Variables

It has been generally assumed that reading proficiency (as reflected by print exposure or

vocabulary knowledge) is negatively correlated with the effect of variables like frequency

(Chateau & Jared, 2000) or length (Butler & Hains, 1979), such that better readers are less

influenced by different variables. To explore this, Table 9 (see also Figure 6) presents the

correlations between participant-level standardized principal component regression

coefficients, word recognition RTs, and vocabulary knowledge (see Table A3 for

correlations based on individual predictors).

In speeded pronunciation, higher-vocabulary-participants were less sensitive14 to a word’s

structural properties (PC1), neighborhood size (PC2), and word-frequency/semantics (PC3).

Similarly, in the lexical decision task, higher-vocabulary-participants produced smaller

neighborhood effects. However, an individual’s sensitivities to the structural and word-

frequency/semantics stimulus dimensions were only marginally related to vocabulary

knowledge. Moreover, the weak correlation between word-frequency/semantics effects and

vocabulary knowledge indicate that effects were larger for participants with more

vocabulary knowledge. These results challenge the assertion that word-frequency effects in

lexical decision performance are negatively related to an individual’s vocabulary knowledge

when processing speed is controlled. The present results are compatible with earlier work by

Butler and Hains (1979), Lewellen et al. (1993), and Sears et al. (2008). It remains unclear

why this pattern is seen in lexical decision but not in speeded pronunciation, where effects

of all three principal components were attenuated as vocabulary knowledge increased.

Further discussion of this intriguing pattern will be postponed to the General Discussion

section.

We now turn to the correlations between diffusion model parameters and principal

component effects (see Table 10 and Figure 7; see Table A4 in the Appendix for correlations

based on individual predictors) in lexical decision performance (since the diffusion model

only applies to binary decision tasks). As before, our discussion will focus on the three

parameters of greatest theoretical interest, i.e., boundary separation (a), nondecision time

(Ter), and drift rate (v). The results for the structural properties principal component (PC1)

are relatively straightforward. Specifically, structural properties (PC1) effects were

positively correlated with boundary separation and nondecision time, and negatively

correlated with drift rate. In other words, individuals with a greater sensitivity to stimulus

length show more conservative response criteria, longer nondecision times, and less efficient

accumulation of evidence. Results for the other two principal component effects are less

clear. Although boundary separation was reliably related to neighborhood (PC2) and word-

frequency/semantics (PC3) effects, such that individuals with larger PC2 and PC3 effects

produced larger values for boundary separation, the correlations were very low and should

be interpreted with caution. Turning to nondecision time, PC2 and PC3 were negatively

correlated, i.e., participants with larger effects on these principal components yielded longer

nondecision times. Finally, greater sensitivity to neighborhood size was associated with

lower drift rates, but greater influence of word-frequency/semantics produced higher drift

rates. Overall, these observations are compatible with the idea that larger effects of lexical

14Note that a negative correlation between the structural component and vocabulary knowledge indicates that length effects decrease

towards zero as vocabulary increase; length and RTs are positively related. In contrast, a positive correlation between the word-
frequency/semantics dimension and vocabulary knowledge indicates that frequency effects increase towards zero as vocabulary
increase; word-frequency/semantics and RTs are negatively related.
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variables are accompanied by lower drift rates and longer nondecision times. The major

anomaly was the positive relationship between word-frequency/semantics effects and drift

rate, wherein larger word-frequency/semantics effects were associated with larger drift rates.

This finding will be explored in greater depth in the General Discussion.

Analysis 4: Relationships Between the Different Principal Component Effects

We now turn to the correlations between individual’s sensitivity to different lexical

dimensions, as reflected by their effects for the three principal components (see Table 11

and Figure 8). Contrary to Baron and Strawson’s (1976) proposal, there was no evidence for

a trade-off between nonlexical and lexical processes, which would be evident in sensitivity

to length (PC1) and word-frequency/semantics (PC3) respectively. Individual differences in

word recognition performance do not appear to reflect a trade-off between Phoenician and

Chinese reading strategies, as Baron and Strawson suggested. Instead, all effects showed

strong positive correlations, i.e., being more sensitive to one lexical dimension is associated

with a higher sensitivity to other dimensions. Importantly, it is worth pointing out that these

correlations are unlikely to be entirely due to scaling or to general slowing, since they are

based on standardized regression coefficients (but see Footnote 1 for caveats). More

generally, we found no evidence of distinct sub-types of readers or trade-offs that might

reflect qualitatively distinct lexical processing strategies. Also, it is intriguing that the

between-component correlations were considerably higher in speeded pronunciation than in

lexical decision, which is compatible with earlier analyses suggesting that speeded

pronunciation performance is more reliable.

General Discussion

The present study is the first large scale investigation of individual differences using trial-

level data from the English Lexicon Project. There were a number of noteworthy findings.

First, across different sets of stimuli, between- and within-session reliability was relatively

high for an individual’s mean RT, RT distributional characteristics, diffusion model

parameters, and sensitivity to underlying lexical dimensions. Second, higher vocabulary

knowledge was associated with faster and more accurate word recognition performance, and

generally attenuated sensitivity to underlying lexical characteristics, along with steeper drift

rates, and shorter nondecision times. Third, there was no evidence for a trade-off between

sensitivity to different types of lexical information. Instead, participants who showed more

influence of one variable also showed more influence of other variables.

Variability and Reliability of Word Recognition Performance

Lexical decision and speeded pronunciation latencies are the most popular dependent

variables in word recognition research. Our analyses established clear and substantial

between-participant variability in word recognition performance, across virtually all the

parameters (e.g., mean RTs, RT distributional characteristics) examined. Characterizing the

scale of these individual differences within a large sample of participants across different

universities should help constrain future work on individual differences, and also inform

studies that attempt to study a “prototypical” reader using group-level analyses. For

instance, the large individual differences between participants may also be responsible for

some of the empirical inconsistencies in the literature (see, for example, Yap et al., 2009).

We began by exploring the reliability of different measures of individual differences in word

recognition performance. Understanding the reliability of the measures is a critical first step

in the study of individual differences. Without first establishing reliability, it is unclear

whether variability between readers reflects meaningful individual differences or

measurement noise. Our analyses identified several measures of word recognition

Yap et al. Page 16

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2013 February 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



performance that are stable within an individual. Specifically, across distinct sets of words,

within-session and between-session reliabilities were generally quite high with respect to

mean RTs, standard deviations, distributional characteristics, diffusion model parameters,

and sensitivity to underlying dimensions (as reflected by both individual predictors and

principal components). Remarkably, cross-session correlations for the τ parameter estimates

from the ex-Gaussian analyses (.940 and .872 for pronunciation and lexical decision

respectively) were as stable as those for the mean (.929 and .871 respectively), further

underscoring the utility of RT distributional analyses.

Broadly speaking, these results suggest that participants carry with them a relatively stable

distributional and processing profile that goes beyond one’s average processing speed. The

reliability of τ and drift rate (see Table 2) nicely inform claims (e.g., Schmiedek et al., 2007;

Tse et al., 2010) that stable individual differences in these parameters are systematically

related to controlled processing. Of course, τ is a descriptive parameter, whereas drift rate

has the advantage of being an explanatory parameter that can be directly mapped onto an

underlying process (Matzke & Wagenmakers, 2009).

Another striking finding is that reliability seems to be consistently higher in speeded

pronunciation than in lexical decision, in terms of distributional characteristics and

sensitivity to underlying lexical dimensions (see Tables 2 & 6). The reliability of speeded

pronunciation performance is intriguing, given the possible extra sources of measurement

noise in speeded pronunciation (e.g., variations in sensitivity of the voice-key to different

speaker characteristics). However, in contrast to the pronunciation task, lexical decision may

be driven by familiarity-based information and hence taps both lexical mechanisms as well

as postlexical decision-based mechanisms (Balota & Chumbley, 1984; Ratcliff et al., 2004).

In other words, lexical decision performance may be inherently less reliable because it is

jointly influenced by variability in both lexical and postlexical processing. We will comment

further on this intriguing pattern in the next section.

The Interplay Between Vocabulary Knowledge, Word Recognition Performance, and
Diffusion Model Parameters

A second issue addressed in this paper concerns the relationship between vocabulary

knowledge and word recognition performance. Vocabulary knowledge was systematically

related to many other measures of word recognition performance. For example, participants

with higher vocabulary knowledge were associated with faster and more accurate speeded

pronunciation and lexical decision performance. The ex-Gaussian analyses further revealed

that the relationship between vocabulary and speed was predominantly mediated by τ (see

Table 7), in both speeded pronunciation and lexical decision. In other words, vocabulary

knowledge was more strongly correlated with slower, compared to faster, RTs. This extends

the worst performance rule (Coyle, 2003), whereby IQ is most strongly related to the

slowest RTs. Typically, this finding has been observed more strongly in measures of fluid

intelligence.

Vocabulary knowledge was also related to the diffusion model parameters in interesting

ways. In lexical decision, more vocabulary knowledge was associated with larger drift rates

(r = .536), suggesting that as vocabulary increases, individuals process stimuli more

efficiently (see Table 8). These results converge with Ratcliff et al.’s (2010) observation that

IQ was strongly and positively related with drift rate, but not with other diffusion model

parameters. However, vocabulary knowledge was also negatively related to boundary

separation (r = −.085) and nondecision time (r = −.218), consistent with more liberal

response criteria and shorter nondecision times. Obviously, these correlations were not as

strong as the correlation for drift rate, but they suggest that vocabulary size can have

additional effects on the parameters from the diffusion model. Interestingly, although IQ did
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not reliably predict boundary separation and the nondecision component in Ratcliff et al.’s

sample, their correlations (see their Table 5) were in the same direction as the corresponding

correlations in the present study. Of course, the very large ELP sample affords more

statistical power to detect less powerful effects.

We were also interested in the relationship between vocabulary knowledge and sensitivity to

underlying lexical dimensions. Our preliminary hypothesis was that larger effects of lexical

variables should be produced by readers with less vocabulary knowledge. This was

motivated by the perspective that readers who are less skilled should be more reliant on

controlled lexical processing mechanisms, which ought to show a greater influence of

lexical characteristics (LaBerge & Samuels, 1974; Stanovich, 1980). As discussed in the

Introduction, a number of studies (e.g., Brown et al., 1994; Butler & Hains, 1979; Chateau

& Jared, 2000; Schilling et al., 1998) support the view that skilled readers produce smaller

effects of lexical variables. Of course, most of these studies did not control for overall

processing speed, making it possible that these results simply reflect spurious Group ×

Treatment interactions that are driven by scaling differences (Faust et al., 1999).

In order to address this issue, we examined participants’ standardized regression coefficients

for the three principal components of interest, where PC1 reflected structural properties,

PC2 neighborhood size, and PC3 word-frequency/semantics. The results from speeded

pronunciation were very clear. There was a negative relationship between vocabulary

knowledge and the three components, consistent with skilled readers being more reliant on

relatively automatic lexical processing mechanisms, and hence showing less influence of

word characteristics. The findings from lexical decision task are more intriguing. While

high-vocabulary-participants indeed produced smaller neighborhood (PC2) effects, effects

of structural properties (PC1) and word-frequency/semantics (PC3) were only marginally

related to vocabulary knowledge. These results suggest that word-frequency effects in

lexical decision are not negatively related to print exposure/vocabulary knowledge when

processing speed is controlled for, converging with reports by Butler and Hains (1979),

Lewellen et al. (1993), and Sears et al. (2008).

The foregoing findings are also compatible with results from the Ratcliff et al. (2010) lexical

decision study. Recall that their participants (young adults, older adults, very old adults)

responded to high-frequency (HF), low-frequency (LF), and very-low-frequency (VLF)

words in lexical decision, and that vocabulary knowledge was measured for each participant.

We plotted the drift rates for the three frequency classes of words as a function of

vocabulary knowledge and participant age (see Figure 9). As shown, drift rate was generally

positively correlated with vocabulary knowledge, as described earlier. However, the

relationships between drift rate and vocabulary knowledge for the different frequency

classes were represented by parallel lines, indicating that the magnitude of word-frequency

effects was not modulated by vocabulary knowledge15. In addition to the pattern described

above, we also found that when participants showed more of an influence of lexical

variables in lexical decision, this was accompanied by lower drift rates and longer

nondecision times. The major exception to this trend was the positive relationship between

word-frequency/semantics effects and drift rate, whereby larger word-frequency/semantics

effects yielded steeper drift rates.

15The only exception to this trend was seen in the line representing HF words in the young adult data, where there appears to be no
relationship between drift rate and vocabulary knowledge. However, this needs to be qualified by the instability of the HF word drift
rate estimates for these young adults, which were driven by fitting problems associated with very low error rates and some
problematic RTs (see Ratcliff et al., 2010, and Ratcliff & Tuerlinckx, 2002).
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Why are word-frequency effects smaller for high-vocabulary-knowledge participants in

speeded pronunciation, but not in lexical decision? In speeded pronunciation, the effect of

word-frequency is limited to lexical processes and possible production characteristics

(Balota & Chumbley, 1985), but word-frequency affects both lexical access and postlexical

decision-making stages in lexical decision (e.g., Balota & Chumbley, 1984). If the negative

relationship between word-frequency effects and vocabulary knowledge reflects lexical

processes, but word-frequency effects in lexical decision performance predominantly

reflects decision-making mechanisms, this might explain the dissociation between the two

tasks. To further examine this in a more fine-grained manner, we examined the correlations

between vocabulary knowledge and word-frequency effects at different regions of the RT

distribution across both tasks (see Table 14). For each participant, we first obtained the

following quantiles (.1, .3, .5, .7, .9) (Ratcliff, 1979) for high-frequency (25% most frequent)

and low-frequency (25% least frequent) words, which yielded frequency effects for the

fastest to the slowest responses in the RT distribution. Instead of raw RTs, we used

standardized residuals as the dependent variable, which control for correlated variables (e.g.,

length and neighborhood size) and processing speed.

The between-task differences were quite striking. In speeded pronunciation, the correlations

between vocabulary knowledge and word-frequency effects were negative and generally

reliable throughout the RT distribution. In contrast, for lexical decision, reliable positive

correlations between vocabulary knowledge and frequency effects were seen only in the

fastest quantiles. These findings suggest that higher-vocabulary participants, compared to

individuals with less vocabulary, are better able to take advantage of familiarity-based

information (such as word-frequency) in lexical decision; this facilitates responses to high-

frequency words, particularly those at the leading edge. This suggestion is compatible with

the finding that steeper drift rates accompany larger word-frequency/semantics effects (see

Figure 7). Specifically, participants who are more sensitive to familiarity-based information

(which can be used to drive lexical decisions) are also able to accumulate information about

a letter string more rapidly.

Obviously, these explanations are speculative and post hoc, and future investigations are

needed. However, these results suggest that for the ELP dataset, speeded pronunciation

performance is more consistently related to vocabulary knowledge in a predictable manner

than lexical decision performance. This is surprising as one may have expected lexical

processing to be diluted in pronunciation due to the reliance on the sublexical pathway. In

this light, it is noteworthy that the ELP included a large number of low-frequency long

words, which might have attenuated the influence of sublexical processing.

While our analyses focused on vocabulary knowledge, it is important to remember that

reading skill ultimately is a complex, multidimensional concept that subsumes decoding

speed (Perfetti, 1985; Stanovich, 1980, 1986), orthographic (Ehri, 2005) and phonological

(Rayner et al., 2001) processing, and sentential-level comprehension. Ideally, reading ability

should be assessed using multiple constructs, but the archival nature of the English Lexicon

Project dataset constrained us to assess reading skill rather narrowly by vocabulary

knowledge, i.e., knowledge of word forms and meaning. Nonetheless, despite its limitations,

the utility of vocabulary knowledge for predicting word recognition performance in the

present study is quite impressive.

Relationships Between ex-Gaussian and Diffusion Model Parameters

In the present paper, we fit individual-level RT data from the lexical decision task to the ex-

Gaussian distribution and to the diffusion model, and were able to obtain both ex-Gaussian

and diffusion model parameters for each participant. Consistent with the notion that a

participant’s slowest RTs reflect attentional lapses (Coyle, 2003; Larson & Alderton, 1990),
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a number of researchers (e.g., Schmiedek et al., 2007, & Tse et al., 2010) have suggested

that τ may be more related to controlled processing (see Matzke & Wagenmakers, 2009, for

more examples). While ex-Gaussian parameters provide a finer-grained characterization of

RTs, diffusion model parameters additionally map onto psychological processes. In the

preceding section, we considered how vocabulary knowledge relates to ex-Gaussian and

diffusion model parameters, but the relationships between the two sets of parameters are

also interesting. There is evidence from simulations (e.g., Spieler, 2001) that of the three ex-

Gaussian parameters, τ is most closely associated with drift rate, while μ is most closely

associated with the nondecision component. These trends were replicated in the present

analyses (see Table 8). Having said that, we also observed a robust relationship between τ
and boundary separation, in line with Matzke and Wagenmakers’ (2009) claim that ex-

Gaussian parameters cannot be uniquely ascribed to specific parameters of the diffusion

model. With that qualification, the very strong positive correlation between μ and

nondecision time (r = .89) is at least consistent with the possibility that the leading edge of a

participant’s RT distribution primarily reflects a nondecision component, while the tail of

the distribution (i.e., τ ) serves as a marker of decision processes. Clearly, as with all

dependent measures, converging evidence is needed to understand the relationship between

the parameters and underlying mechanisms.

Are There Distinct Types of Readers?

Baron and Strawson (1976) were the first to propose that there were distinct types of readers

who selectively relied on lexical or sublexical processing, a perspective that predicts that

participants who show larger frequency effects should show smaller length effects, and vice

versa. Our study makes it clear that although there are undoubtedly a great deal of variation

in how people recognize words, there is no clear evidence for a trade-off between readers’

sensitivities to different lexical characteristics. Instead, we found strong positive correlations

between effects of the three principal components after overall processing speed is

controlled for, which is more compatible with Brown et al.’s (1994) finding that increased

reliance on lexical processing is associated with increased reliance on sublexical processing.

Of course, this pattern can be easily accommodated by the general claim that as readers get

better, they rely increasingly less on controlled processing (Stanovich, 1980), which is

reflected in a decreased sensitivity to the various characteristics of a word. Also, it is

noteworthy that there may be a subset of participants that show trade-offs, but clearly these

participants are not prevalent in this database.

Modeling Individual Differences

The overarching goal of this work was to characterize individual differences in word

recognition behavior. For instance, we found that an individual’s vocabulary knowledge was

related to their sensitivity to lexical characteristics (see Table 9). This characterization is

generally consistent with the proposal that better readers utilize a more automatic reading

process (Stanovich, 1980). However, this obviously does not explain how or why some

individuals become better readers, how or why they shift to an automatic reading process,

and how or why automatic processes are less sensitive to lexical variables. Building a theory

that addresses these questions will require convergent methodologies.

Traditional experimental (e.g., Lewellen et al., 1993; Sears et al., 2008) and neurobiological

(e.g., Frost et al., 2009; Pugh et al., 1997) studies will continue to inform theories of

individual differences. In addition, computational modeling may be particularly well suited

to addressing the behavioral patterns we presented. To date, models have focused on

normative and dyslexic reading behavior (e.g., Coltheart et al., 2001; Harm & Seidenberg,

1999; McClelland & Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Perry, Ziegler, &

Zorzi, 2010; Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland,
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1989; Sibley & Kello, 2004), with relatively less attention given to individual differences

within a typically developing population (but see Zevin & Seidenberg, 2006).

Computational modeling has offered numerous insights about reading behaviors, and can

potentially contribute to theoretical accounts of individual differences in word recognition.

To do this, models will have to go beyond capturing group-level effects and instead help us

understand the source of these individual differences. For example, can the individual

differences reported in the present paper be simulated by training a population of models,

such that different models are imbued with slightly different cognitive mechanisms or

capacities, or are exposed to different learning experiences (e.g., Rueckl, 2010)?

Alternatively, one could also use the computational modeling approach to test the hypothesis

that individual differences phenomena reflect varying positions along the developmental

trajectory of a single model. Clearly, the present results will provide fodder for capturing the

nature of individual differences in standard word recognition tasks.

Limitations and Future Directions

In the present study, we conducted trial-level analyses of the ELP, an on-line behavioral

repository of nearly four million speeded pronunciation and lexical decision trials from over

1,200 participants. We found evidence that word recognition performance is reliable, and

that there are systematic relationships between vocabulary knowledge and word recognition

performance. Of course, there are a number of limitations inherent in the present work. For

example, due to the archival nature of the dataset, our only measure of vocabulary

knowledge is a single measure. In addition, we only considered the linear effects of lexical

predictors that were available for most (if not all) the ELP words. Hence, we did not model

non-linear effects (Baayen et al., 2006) nor did we include variables that have been

theoretically influential, such as phonological consistency (Chateau & Jared, 2003) and

morphological characteristics (Baayen et al., 2006) (see Yap and Balota, 2009, for further

discussion). Third, despite the scope of the ELP, one could argue that a sample based on

college students, who are selected for their vocabulary knowledge, will show a restricted

range of vocabulary knowledge relative to readers in general. Hence, we might be

underestimating the strength of the relationships between vocabulary knowledge and word

recognition performance. Finally, it would be useful to have multiple lexical processing

measures on the same participants to determine the consistency of lexical processing across

tasks including eye fixations and possibly semantic categorization (see Schilling et al., 1998,

for a step in this direction).

In summary, the present study provides the first comprehensive analysis of individual

differences in speeded word recognition tasks across a large set of stimuli and participants.

The results produced clear evidence of stable lexical processing characteristics at the

individual level. In considering how to best conceptualize lexical processing (an important

and critical step in literacy), we believe it will be increasingly important to develop models

that not only capture mean level performance but also capture the variability across

individuals. The present study provides a stable set of empirical relationships that will be

necessary for the next step in understanding visual word recognition.
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Figure 1.

Distributions of standardized regression coefficients across participants as a function of

lexical variable for speeded pronunciation.
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Figure 2.

Distributions of standardized regression coefficients across participants as a function of

lexical variable for lexical decision.
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Figure 3.

Distributions of standardized regression coefficients across participants as a function of

principal component for speeded pronunciation (left) and lexical decision (right).
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Figure 4.

Scatterplots (with 95% confidence intervals) between vocabulary knowledge and speeded

pronunciation (top) and lexical decision (bottom) response times.
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Figure 5.

Scatterplots (with 95% confidence intervals) between vocabulary knowledge and speeded

pronunciation (top) and lexical decision (bottom) accuracy.
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Figure 6.

Scatterplots (with 95% confidence intervals) between vocabulary knowledge and principal

component effects in speeded pronunciation (left) and lexical decision (right).
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Figure 7.

Scatterplots (with 95% confidence intervals) between principal component effects and

diffusion model parameters in lexical decision performance.
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Figure 8.

Scatterplots between principal component effects in speeded pronunciation (top) and lexical

decision (bottom).
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Figure 9.

Scatterplots between vocabulary knowledge and drift rates for high-frequency (HF), low-

frequency (LF), and very-low-frequency (VLF) words in young adults, older adults, and

very old adults.
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Table 2

Correlations between Session 1 and Session 2 parameters, and odd- and even-numbered trial parameters. With

the exception of mean RT and the diffusion model parameters, overall mean RT was partialled from each

correlation.

Speeded Pronunciation Lexical Decision

S1-S2 Odd-Even S1-S2 Odd-Even

Mean RT .929*** .998*** .871*** .997***

SD .958*** .992*** .924*** .993***

μ .865*** .993*** .717*** .983***

σ .732*** .920*** .509*** .921***

τ .940*** .987*** .872*** .988***

a .708*** .906***

z .720*** .910***

Ter .736*** .930***

η .403*** .649***

sz .388*** .812***

st .497*** .647***

vword .692*** .814***

vnonword .645*** .827***
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Table 4

Rotated component matrix for the three principal components extracted.

Component

1 2 3

1. Number of letters 0.901 −.0.284 −.0.146

2. Number of syllables 0.870 −.0.253 −.0.071

3. Phonological Levenshtein distance 0.845 −.0.314 −.0.195

4. Orthographic Levenshtein distance 0.819 −.0.348 −.0.221

5. Number of morphemes 0.796 −.0.050 −.0.130

6. Orthographic neighborhood size −.0.293 0.886 0.134

7. Phonological neighborhood size −.0.329 0.865 0.133

8. Semantic neighborhood density −.0.065 −.0.042 0.883

9. Word-frequency −.0.224 0.138 0.873

10. Number of senses −.0.143 0.308 0.551
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Table 6

Correlations between Session 1 and Session 2 participant-level principal component effects, and odd- and

even-numbered trial participant-level principal component effects.

Speeded Pronunciation Lexical Decision

S1-S2 Odd-Even S1-S2 Odd-Even

PC1 (Length/OLD/PLD) .706*** .799*** .647*** .753***

PC2 (ON/PN) .534*** .623*** .377*** .429***

PC3 (Frequency/Semantics) .625*** .677*** .515*** .638***
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Table 7

Vocabulary knowledge as a predictor of mean RT and ex-Gaussian parameters in speeded pronunciation and

lexical decision.

Mean μ σ τ

Speeded Pronunciation −.402*** −.218*** −.335*** −.448***

Lexical Decision −.323*** −.159*** −.241*** −.335***
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Table 8

Relationships between diffusion model parameters and mean RT, mean accuracy, and vocabulary knowledge.

Diffusion Model Parameters Mean RT Mean Acc Vocabulary
Knowledge

a .744*** .127*** −.085*

z .682*** .191*** −.083*

Ter .636*** −.097** −.218***

η −.311*** .084* .082*

sz .359*** .018 −.053

st .425*** −.334*** −.250***

vword −.476*** .580*** .536***

vnonword .526*** −.568*** −.448***

Diffusion Model Parameters μ Σ τ

a .449*** .237*** .776***

z .388*** .170*** .731***

Ter .891*** .459*** .350***

η −.106** −.168*** −.338***

sz .120*** .121*** .472***

st .475*** .653*** .220***

vword −.239*** −.343*** −.509***

vnonword .274*** .407*** .569***
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Table 9

Correlations between participant-level standardized regression coefficients, vocabulary knowledge, and mean

RT.

Speeded pronunciation (n = 456) Lexical decision (n = 792)

Vocabulary
knowledge

Mean RT
Vocabulary
knowledge

Mean RT

PC1 (length/OLD/PLD) −.200*** .033 −.060† .205***

PC2 (ON/PN) .323*** −.189*** .201*** −.063†

PC3 (frequency/semantics) .280*** −.394*** −.083* .125***
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Table 11

Correlations between the participant-level principal component effects.

Speeded pronunciation (n = 470)

PC1 PC2 PC3

1. PC1 - −.565*** −.516***

2. PC2 - .547***

3. PC3 -

Lexical decision (n = 819)

PC1 PC2 PC3

1. PC1 - −.371*** −.411***

2. PC2 - .197***

3. PC3 -
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Table A2

Correlations between Session 1 and Session 2 participant-level standardized regression coefficients, and odd-

and even-numbered trial participant-level standardized regression coefficients.

Speeded Pronunciation Lexical Decision

S1-S2 Odd-Even S1-S2 Odd-Even

Word-frequency .685*** .753*** .577*** .742***

Number of morphemes .238*** .305*** .135*** .155***

Number of syllables .320*** .472*** .257*** .284***

Number of letters .416*** .493*** .459*** .483***

Orthographic neighborhood size .194*** .179*** .087* .068†

Phonological neighborhood size .129** .151** .113*** .112**

Orthographic Levenshtein distance .353*** .355*** .101** .146***

Phonological Levenshtein distance .121** .133** .038 .036

Number of senses .126** .124** .103** .084*

Semantic neighborhood density .078† .027 .010 −.017
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Table A3

Correlations between participant-level standardized regression coefficients, vocabulary knowledge, and mean

RT.

Speeded pronunciation (n = 456) Lexical decision (n = 792)

Vocabulary
knowledge

Mean RT
Vocabulary
knowledge

Mean RT

Word-frequency .298*** −.446*** −.080* .186***

Number of morphemes .236*** −.106* −.009 .035

Number of syllables −.143** .180*** .071* −.106**

Number of letters −.128** −.120* −.057 .281***

Orthographic neighborhood size .148** −.154** .099** .120***

Phonological neighborhood size .043 .024 .183*** −.141***

Orthographic Levenshtein distance −.094* −.214*** −.066† −.154***

Phonological Levenshtein distance −.066 .077 −.063† .062†

Number of senses .011 −.134** −.094** .038

Semantic neighborhood density −.165*** −.016 −.093** −.024
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