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Abstract 

This paper assesses earnings mobility among workers in Australia between 2001/2 and 2008/9 using 
HILDA household panel data. We examine the pattern of individuals’ earnings growth and explore the 
importance of mobility as an equaliser of longer-term earnings. We find that progressive earnings 
growth decreased overall inequality even after considering the re-ranking that occurred in the 
distribution. This was partly driven by age-earnings growth and partly by step changes associated with 
job-to-job moves, promotions and taking on more responsibility. Shocks also acted against this 
equalising process, most notably job loss, which had substantial negative effects on earnings and 
disproportionately fell on lower waged workers.     
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1. Introduction 

 

Rising earnings inequality in Australia over the last twenty five years, although flattening somewhat in 

the last decade, continues to be of concern (Grenville, et al. 2013; OECD, 2011). When assessing 

inequality patterns it is important to not only assess the extent of inequality at a point-in-time but also 

the degree of mobility in a society, as the lowest paid or poorest individuals in one year are not 

necessarily the lowest paid in the next as individuals move both up and down the earnings distribution 

over time. Thus researchers have assessed the importance of mobility as an equaliser of longer-term 

incomes (Fields, 2010; Shorrocks, 1978).  Social evaluations of mobility, therefore, depend on how 

changes in income or earnings are distributed relative to people’s original positions in the overall 

distribution (Van Kern 2006). In addition, various subgroups of the population may find it more or less 

difficult to progress up the earnings distribution, either because of their initial characteristics or because 

they face adverse shocks. For policy purposes it is critical to understand the factors that underlie any 

observed mobility to get a sense of how it may be influenced.  

In this paper we utilise the Household, Income and Labour Dynamics in Australia (HILDA) 

survey to examine earnings mobility among workers in Australia between 2001/2 and 2008/9. 

Specifically, by examining the pattern of individuals’ earnings growth and isolating where in the initial 

earnings distribution earnings growth occurred, we explore the importance of mobility as an equaliser 

of longer-term earnings. We do this within a framework that also allows us to explore the major drivers 

behind observed earnings movements. This includes life-cycle movements in earnings, which tend to 

equalise earnings as younger workers start among the lowest paid but receive rapid earnings growth. 

The evolution of individuals’ earnings is also heavily influenced by job changes:  promotions, moving 

positions to secure higher pay and job loss all effect patterns of earnings growth in various ways. For 
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instance, job losses hit lower-paid workers more frequently than higher paid workers and result in 

earnings losses. In addition earnings whilst in the same job can vary for reasons such as bonuses, 

overtime worked and unpaid absences from work which reduce monthly earnings.  

Our study adds to the very limited evidence base on income mobility in Australia, which is 

much less established than in the international literature, and is the first, to our knowledge, that 

examines how individuals’ earnings evolved between 2001/2 and 2008/9, the second decade of 

Australia’s long economic boom.  We also fill a considerable gap in the international literature on 

mobility. Although, following Shorrocks (1978) seminal paper on income mobility, there have been a 

large number of studies and measures developed of different concepts of mobility (see Fields 2010, 

Solon, 1992, Schluter & Trede, 2003 and Jenkins & Van Kerm 2006, among others), the measures 

developed  largely provide an assessment of aggregate mobility. They do not however provide the 

analyst with information about the local underlying process that generates this mobility. Therefore 

analysts are left with little understanding of who it is in the population that has actually experienced 

mobility and why. This is important as even if there is substantial mobility in aggregate, various 

subgroups of the population may find it more difficult to progress up the earnings distribution either 

because of their initial characteristics or because they face adverse shocks. We address this gap by 

providing a much more nuanced assessment of the process underlying earnings mobility.  

The starting point of our analysis is to assess the degree to which changes in earnings are 

progressive (that is earnings growth is faster for the lowest paid). We do this by calculating the 

standard Gini measure of inequality using individuals’ initial (2001/2) rank position but their earnings 

in the later period (2008/9) as proposed by Jenkins & Van Kerm (2006). This can alternatively be 

thought of as the persistence of the original pattern of inequality over time. This measure of the 

inequality reducing effect of the earnings mobility observed in the data is then linked to Van Kerm’s 

(2009a) mobility profiles, which provides a “distributional sense” of the inequality reduction from 
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earnings mobility (Van Kerm, 2006). This provides a graphical picture of where in the original 

distribution the inequality reduction emanates from (i.e. the contributions of rapid rises in the earnings 

of the low paid or falls among high earners). The crucial advance in this approach compared to other 

mobility measures is that the summary measure is assessed as the sum of individual movements 

integrated with respect to each person’s rank in the original period. Here we offer the first direct 

application of this link. 

Second, we investigate the economic drivers of mobility. Here we explore the extent to which 

earnings growth patterns are explained by the life-cycle evolution of earnings, key life events, job 

related changes and changes in working time by approximating the mobility profile with a linear 

regression model. We are then able to examine “directional mobility” by isolating the factors which 

equalise longer-term earnings (by inducing reversion to the mean) from those which exacerbate it. 

Importantly, our approach shows the impact of any economic shock as a function of the associated 

wage change and where those people experiencing the shock were in the original distribution.  

Finally, we use a number of approaches to address measurement error in our estimates, which 

can lead to significant upward biases in estimated measures of mobility. We find, after accounting for 

measurement error, that two-thirds to three-quarters of earnings inequality in the original distribution is 

still apparent after eight years. Around forty percent of the reduction in inequality reflects life-cycle 

movements in earnings as individual’s age in the workforce or other major life-cycle events, like 

motherhood. Job changes, promotions and job loss account for another quarter over and above how job 

changes drive the life-cycle events. Changes in hours of work and weeks worked in a year only explain 

a little over and above movements associated with other job changes. On the other hand, many major 

factors behind movements in earnings do not materially affect our assessment of inequality or act to 

increase inequalities. Examples of the latter include , job loss, which is more common for lower-paid 

workers, and rising returns to education among young well-educated men, as they are earning above 
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average earnings when quite young.    

The remainder of the paper is structured as follows. The next section provides an overview of 

the existing literature on mobility, emphasising limitations of existing approaches that we seek to 

resolve. Section 3 then describes the approach taken, first integrating the theoretical framework of the 

Gini decomposition (Jenkins and Van Kerm, 2006) with mobility profiles (Van Kerm, 2009a), and 

finally showing how these mobility profiles can be approximated within a linear regression framework 

thus allowing us to investigate the determinants of mobility and measurement error. Section 4 describes 

data and variables used. The final two sections discuss the results and draw general conclusions.  

2. Background 

As discussed in Fields (2007) there are a wide range of mobility measures available each capturing a 

slightly different concept of mobility. One major group looks at overall measures of inequality 

reduction as a result of mobility (see Shorrocks, 1978; Fields 2010; Solon, 1992; and Jenkins & Van 

Kerm 2006, among others). Jenkins & Van Kerm (2006) offers an approach that is of particular 

interest, showing that when assessing the change in inequality between two periods with the widely 

used Gini measure that there are two offsetting forces contributing to the change. The first, which they 

call pro-poor growth, is the progressivity of income growth, or the degree to which incomes grow 

fastest for those who were initially the poorest. This is offset by the degree of re-ranking that occurs in 

the distribution as incomes have evolved.  Thus even when aggregate inequality is equivalent at two 

points in time, the poorest or lowest paid are not always the same people. Some of the originally poor 

(low paid) have progressed up the distributional hierarchy to some degree and been replaced by others 

who have fallen in the distribution. A similar story in reverse is likely to occur for the richest. In an 

empirical application of this method Jenkins & Van Kerm (2008) explore the differences in pro-poor 

income growth in the UK between two sub-periods: the period 1992-1996 under a Conservative 

government, and the period 1999-2003, under Labour. The analysis of the mobility profiles reveals that 
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growth was pro-poor in both periods, but to a larger extent during the Labour government.1 

While providing a global assessment of the importance of mobility as an equaliser of longer-

term incomes (Fields, 2010; Shorrocks, 1978), the global indices cited above don’t provide the analyst 

with any information about where mobility occurs in the distribution. This is important as ‘most social 

evaluations of mobility depend on how income changes are distributed relative to people’s positions in 

the base period income distribution’ (Van Kerm 2006, p. 4). To address this, a recent research literature 

has emerged that has been focused on providing a “distributional picture” of mobility. The local 

approximation method (Schluter & Trede, 2003) allows measures of mobility to be expressed as a 

weighted local distributional change. This approach gives the reader the possibility to get a 

distributional sense of mobility and to identify which parts of the overall distribution contribute most to 

the global mobility measure. Gregg & Vittori (2008) offer an application for a set of European 

countries. One of the main limitations of this approach is that, since it is based on kernel estimates, it 

does not allow analysts to capture mobility at the individual level.  

To address this limitation Van Kerm (2009a) shows how a broad range of mobility measures 

can be expressed as population averages of statistics derived from individual level mobility profiles and 

hence can be applied in the “different and largely simplified context of “distance-based” measures” 

(Van Kerm, 2003, p.2). To date, mobility profiles have been a graphical tool to show differences in 

income growth across countries (Van Kerm 2009a), periods, and population sub-groups (Jenkins & 

Van Kerm, 2008)2. In addition, they can also be adopted to explore progressive growth hence providing 

a clear link with the Jenkins & Van Kerm (2006) decomposition (Van Kerm, 2006). Our paper offers 

                                                 
1In the first period, progressivity is below re-ranking hence inequality increases. In the second period, the small decline in 

inequality is due to progressivity prevailing on re-ranking (associated also with a decline in re-ranking). Income inequality 
increases from 0.290 to 0.294 during the Conservative period, while it declines from 0.288 to 0.270 during the Labour 
period. 
2Both Jenkins & Van Kerm (2008) and Van Kerm (2009) define individual mobility as changes in logs income from one 
year to another (average growth rate). This is explained more technically in the next section. 
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the first direct application of this link.3  

There is also a parallel literature on individual earnings dynamics and the modelling of the 

covariance structure of earnings.4 Pioneering contributions were provided by Lillard and Willis (1978), 

MaCurdy (1982) and Abowd and Card (1989). This literature focuses on how the covariance structure 

should be modelled and how the structure varies over the life cycle and with other individual 

characteristics. The evolution of earnings over time is specified as a combination of a permanent and 

transitory component. Hence a persons’ earnings profile over time can be thought of as a combination 

of continuous incremental changes in returns to pre-existing characteristics over the life course, such as 

education, and the incidence of and returns to newly arrived characteristics. These new characteristics 

may well be a discrete event such as a shift in hours resulting from becoming part-time after child birth, 

or job loss or a promotion.   

Numerous labour market studies have modelled hourly wages as a function of years of 

schooling completed and a quadratic function of years since leaving school, following the human 

capital theory developed by Mincer (1974).5 This function describes the relationship between age and 

earnings of an individual and is commonly used to describe the growth of earnings over the life-cycle 

(see for instance Manning, 2000 and Thornton et al. 1997). Gosling et al. (2000) analyse the male 

wages distribution in the UK and its evolution as people age, highlighting how wages rise with age 

until a plateau in the mid part of a working life, but less so and for a shorter period for the less 

educated. In addition, there are a large range of individual life or job events that are likely to influence 

wage growth between periods such gaining further education, promotional opportunities or job loss. 

Here we bring together this literature on earnings dynamics with the literature on income mobility to 

                                                 
3 In doing so, we build on Vittori (2011) who explored the degree of progressive earnings growth across some European 
countries over the period 1994-2001. 
4See Atkinson et al. (1992) for an overview of the literature. 
5“An individual’s “earnings profile” reflects his lifetime acquisition of human capital, and the aggregate distribution of 
earnings is viewed as a distribution of individual earnings profiles” (Mincer, 1974, p.2). 
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more formally examine directional mobility of earnings.   

Also, measurement error is a major concern in studies of mobility. If the error is non-

permanent, where a person always under or over reports by the same magnitude, then differences in 

reporting errors across periods will look like mobility. We attempt to account for measurement error 

using two different approaches both based on the commonly used two-stage estimation approach.  

The literature described above has largely come out of the US and Europe: the Australian 

literature on mobility (income or earnings) is much less well established. At the time of writing, there 

was only two studies formally examining mobility: Leigh (2009), examining income mobility, and 

Rodhe et al (2010) examining earnings mobility. These studies focus on comparing aggregate patterns 

of mobility across countries rather than on an in-depth examination of individual level mobility. 

Therefore in addition to making a contribution to the international literature on mobility we also fill a 

major gap in the empirical understanding of earnings mobility and resulting impacts on inequality in 

Australia. 

3. Approach  

When examining differences in inequality across time periods, the most common inequality measure 

used is the single parameter Gini or S-Gini (Donaldson & Weymark, 1980, 1983; Yitzhaki, 1983). 

Letting 𝑝 = 𝐹(𝑦) be the individual rank, expressed as the proportion of people with income less than y, 

and 𝑓(𝑦) as the probability density function of income y with mean µ. The S-Gini is then a weighted 

mean of each individual’s relative income: 

( ) =1 ( ; ) ( ) ,
y

G w p f y dy 


       υ > 1                  (1) 

where the weighting function 𝑤(𝑝, υ) = υ(1 − 𝑝)υ−1 or social weight, depends on the individual rank 

p and on the inequality aversion parameter υ, set at 2 for the conventional Gini index.  
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Jenkins & Van Kerm (2006) show that a change in the Gini index can be written as a change in 

individuals’ relative income as well as a change in the individuals’ position (rank):  

                                                        ∆𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖1−𝐺𝑖𝑛𝑖0                                                 (2) = ( )R  − 𝑃 ( )  

 

Where, 

01
0 0 1 0 1

1 0

( ) = ( ; ) ( , )
yy

P w p f y y dy y 
 
 

 
 

             (3)              

1
0 1 0 1 0 1

1

( ) = ( ; ) ( ; ) ( , )
y

R w p w p f y y dy y  


     (4) 

Hence, the overall change in inequality can be separated into the contribution of two 

components, each representing one particular aspect of the change. 𝑃(υ), from equation (3), reflects the 

change in inequality attributable solely to changes in individual relative incomes, with the rank fixed at 

the base year. This is a measure of mobility as progressivity of income growth (or earnings in our 

study), which Jenkins & Van Kerm (2006) describe as pro-poor growth. This captures the extent to 

which mobility acts as an equaliser of longer-term incomes or, alternatively, of the persistence of the 

original pattern of inequality over time. This is the main focus in the rest of this paper and is what we 

mean when we refer to mobility being inequality reducing.  

By contrast, 𝑅(υ) is a measure of the extent of re-ordering, reflecting changes in the rank order 

of individuals from income changes, while fixing relative incomes to those observed in the second 

year. This captures the re-sorting in the population reflecting that those who are the poorest or richest 

(lowest or highest paid) in the later period were not necessarily those that were initially the poorest or 

richest.  

In our context this allows us to show the extent to which earnings growth is progressive, i.e. 

fastest among those who were the original lowest paid individuals, from equation (3), whilst noting, as 

we are using a balanced panel, that they will have been replaced as the lowest paid by some of those 
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who were originally further up the distribution. For our purposes only the first part of the 

decomposition is used for further analysis as this part tells about the persistence in earnings inequality 

or how earnings movements equalise the assessment of inequality over the longer term    

The limitation with this decomposition is that whilst it offers an informative summary measure 

of inequality reducing impact of mobility in Gini units; it does not provide any sense of where in the 

distribution economic mobility is occurring or as to who the individuals are who benefit or lost out as a 

result of the observed mobility patterns. We can however offer a pictorial representation of the 

individual process behind the overall mobility measure by adapting the mobility profiles developed by 

Van Kerm (2006) to our framework. As Van Kerm points out, a mobility profile is generated by 

plotting the overall expected individual mobility conditional on a person’s position (rank) in the base 

period distribution: 

0 1 0 0 0( ) ( ( ))m p m Y Y Y y p          (5) 

A summary measure of mobility can then be obtained by integrating the regression function in 

(5) with respect to the individual rank 
0p . 

Van Kerm (2006) shows that in the special case where the distance measure adopted is the 

change in relative earnings from one year to another and if the mobility profile is weighted according to 

the Gini social weight, 1

0 0( ; ) (1 )w p p     , the integral of equation (5) will be exactly equivalent to 

the measure in (3). This equivalence enables us to capture each individuals’ contribution to the overall 

degree of progressive earnings or income growth 

Approximating the mobility profile 

The mobility profile expressed in equation (5) captures the underlying individual process behind the 

aggregate picture of mobility. As equation (5) is a conditional expectation it can be estimated using 

regression based techniques, either using non-linear non-parametric regression methods, as in Van 
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Kerm (2006) and (2009a), or by using linear methods as shown in equation (6) below.6 This then 

creates a regression based approximation of the inequality reducing process. As before, we consider the 

change in earnings relative to the mean from year 0 to year 1 and we regress it on the initial rank at 

time 0 𝑝𝑖,0: 

∆𝑦𝑖,𝑡 = 𝛽𝑝𝑖,0 + 𝜀𝑖,1        (6)  
 

  

The estimated coefficient  �̂� captures the degree to which each individual’s initial rank is 

associated with earnings changes, so the overall degree of progressive earnings growth.7 Where 

mobility is equalising earnings over the longer-term, �̂� will be negative, such that individuals who 

initially start with a low rank see faster earnings growth. Where earnings movements are unrelated to 

the initial distribution �̂� will be zero.  

The advantage in adopting a linear approximation method is that it makes it fairly 

straightforward to assess the economic drivers of mobility in terms of both their size and direction. 

First we predict the overall change in earnings attributable to individual predictors iq  without capturing 

any direction of movement in the sense that they are inequality reducing or enhancing: 

       ,1i i iy q            (7) 

For simplicity we now refer to the predicted individual earnings growth from (7) ,1iy  as  
qy . 

This tells us what factors are driving earnings changes from one period to the next. 

If we estimate equation (7) with a linear OLS model we can explore the extent to which the observed  

predicted mobility qy is moving people away or towards the mean by regressing it on the initial rank 

                                                 
6 In selecting a specific weight one is required to make an explicit ethical judgment on the importance given to individuals 
of any given rank. Once we move from the overall measure (3) to a local analysis of the individual process and its drivers, 
we abstract from any judgment and hence avoid the inclusion of any weight. Let us note that although we do not adopt an 
explicit pro-poor weighting a downward sloping mobility profile would still signal faster earnings growth of low earnings 
people and hence inequality reducing pro-poor growth. 
7 In the results section we denote  �̂�  with “b0” and we refer to it as the degree of mean reversion or progressive earnings 

growth.  
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and can retrieve the contribution made by each regressor term in equation (7).      

                                                           0=q qy p 8       (8) 

This exercise can be applied to each predictor in equation (7) or to specific groups of covariates, 

allowing us to identify what factors have been “progressive” and “regressive”, hence introducing an 

assessment of directional mobility.  Secondly, by building up the regressions we can observe the extent 

to which the apparently continuous process of the age-earnings profile is made up of a series of discrete 

events such as job to job moves, promotions and job loss. Finally, we can compare the predictors of 

earnings changes and the extent to which they are inequality reducing. It is likely that earnings changes 

for those in the middle of the distribution will reduce inequality less than if the movements occurred in 

the tails of the distribution, thus rather different drivers may be explaining inequality reduction relative 

to the drivers of earnings growth more broadly.    

Measurement error 

A key concern in recent literature on economic mobility concerns measurement error which can lead to 

significant upward biases in estimated measures of mobility (see for example Zimmerman, 1992).  In 

our application we are exploring the relationship between a person’s change in earnings between two 

periods and their initial starting point or rank (equation 6). Any reporting error in the initial period 

report of earnings will thus be on both sides of the estimating equation, being in both the lagged 

earnings on the LHS and the initial rank on the RHS. This then creates a bias to the estimated �̂�. This 

bias will  make the coefficient appear more negative, as the lagged earnings on the LHS has a negative 

sign attached to it, which leads to an over estimation of the progressivity of changes in earnings  

(overstating the extent earnings mobility reduces inequality).  

                                                 
8 Given the overall ̂  from equation 6 and ˆ

q  from equation 8, the following condition holds: ˆ ˆ ˆ
q residuals    where 

ˆ
residuals  is obtained by regressing the i from equation 7 on the initial rank 0p ; 0

ˆ
î residuals p   
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To address measurement error in our analysis we adopt two approaches, both of which try to rid 

the model of the same reporting error being on both sides of the estimating equation. First we utilise an 

alternative earnings measure from the same data but reported in a different year to construct an 

alternative measure of the initial rank 
0p  (see data description below), which to the extent it has a 

different error structure will break this correlation. This approach has a long history in medical studies, 

such as Davis (1976) in an epidemiological study. Jenkins & Van Kerm (2011) does this using an 

average of lead and lagged income. Approaches that utilise data from other periods through averaging 

or lead/lag averaging are likely to also remove some aspects of genuine, period specific, transitory 

income variation, remove those with missing data in the lagged (lead) period, and in the case of studies 

of earnings, also lose cases zero earnings in the lagged (lead) period.9 Moreover, if reporting errors 

from the two alternative measures of initial earnings are correlated, despite being reported in different 

years, some over estimation of mobility may still be present.  

Our second approach to account for measurement error is to use an explicit two-stage approach 

using the predicted earnings changes from equation 7. Dearden et al. (1997) proposed and 

operationalised this approach with respect to intergenerational mobility and Fields (2003) uses it in a 

mobility setting akin to our own. The two-stage approach argues that if any error is unrelated to 

observable characteristics of the individual, then earnings proxies and indeed changes in earnings 

proxies can be used to identify earnings free from error reporting. This approach should eliminate 

measurement error from our estimation but any true earnings mobility not captured by our proxy 

measure is lost.  

4. Data and definitions 

The HILDA survey 

The data used for this study comprise the first nine waves of the Household Income and Labour 

                                                 
9 See also, Gottschalk & Danziger (1997) and Jenkins & Van Kerm (2006) amongst others. 
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Dynamics in Australia (HILDA) Survey (Release 9.0), providing information collected annually over 

the period 2001 to 2009. Described in detail in Goode & Watson (2006), the HILDA Survey began in 

2001 with 13,969 respondents in 7,682 households. Of these, 9,245 respondents were interviewed in 

wave 9, although the total number of respondents in Wave 9 was 13,301 due to new entrants to the 

sample between Waves 1 and 9 (for example, because an individual has joined a household containing 

a sample member or because a child of a sample member has turned 15 years of age).  

Non-response rates are similar to those experienced by comparable household panel studies 

internationally, such as the British Household Panel Study (BHPS) and the German Socio-Economic 

Panel (GSOEP), but there are nonetheless some concerns about the ongoing representativeness of the 

sample. Rates of sample attrition are, for example, highest among persons who are young, living alone, 

born overseas and from a non-English-speaking background and who, at Wave 1, were living in 

Sydney. However, analysis by Watson & Wooden (2004) suggests that the impact of any resultant bias 

is likely to be relatively small. Also our results are not sensitive to the use of panel weights to account 

for attrition.  

Measures of earnings 

In this analysis we are interested in individuals gross annual earnings. Fieldwork for the HILDA survey 

occurs between the periods of September and February each year, with respondents interviewed at 

annual intervals. At each interview respondents are asked to record their total annual gross earnings 

from the previous financial year (i.e. the period between July 1st and June 30th immediately prior to 

the interview). Therefore in wave 1 they will be asked to report their annual earnings for the 2000/2001 

financial year, in wave 2 the 2001/2 financial year, and so on. Respondents are also asked to report 

their current gross earnings, which are recorded in the release data file as a weekly estimate.  

This gives us two estimates of earnings from which to base our analysis on, one that directly 

records individual annual earnings from the previous financial year –our main variable of interest– and 
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also one based on current earnings. To ensure that the two variables cover a similar period we match 

the annual (financial year) earnings estimate from wave = t+1 with the current weekly earnings 

estimate and all other characteristics from wave = t. Hence the two estimates are derived from two 

separate waves of HILDA, which is likely to reduce any correlation in reporting errors. We can then 

impute an equivalent annualised earnings estimate from the current weekly earnings estimate by 

multiplying it by the number of weeks each person was in employment in the corresponding year. The 

difference between the two estimates will include any measurement error which is not common to the 

two estimates plus any within year transitory earnings. Finally, as we are interested in real changes in 

earnings, we adjust all of our earnings estimates for inflation, and reflect earnings in base year (2001) 

prices.  

Sample restrictions 

As we are focused on earnings mobility we restrict the sample to those persons 18-64 years in the 

initial survey. In practice because of the use of seven years of panel data all participants over 57 will be 

lost to the study. Also, in the interests of not overstating mobility in earnings, we only look at 

respondents with positive, reported financial year earnings, therefore omitting persons with zero or 

imputed earnings values.10   

Table 1 describes the sample selection process. In the first column the sample numbers from 

wave 2 are presented, with details of the impact of each stage of the selection process presented as we 

move down the rows of the table. As we are using both a measure of annual earnings from wave 2 and 

the corresponding earnings measure from wave 1, we must first restrict the sample to individuals 

observed in both waves 1 and wave 2 (thus new entrants at wave 2 are not included), resulting in 9,478 

persons aged 18-64 years. Of these, 7,728 were recorded as having been employed at some stage 

                                                 
10 We do however undertake sensitivity analysis to these exclusions, finding that the final year wage distribution of entrants 
(i.e. those with zero or imputed earnings in the base year but positive earnings in the final year) is similar to the base year 
wage distribution of exiters (i.e. those with positive earnings in the base year and zero or imputed earnings in the final year) 
with entrants and exiters overrepresented in the lower end of the wage distribution.  
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throughout the year. However, only 6,974 had positive annual earnings recorded, 405 of which actually 

had missing earnings information and had their earnings imputed by the HILDA researchers. Following 

the same selection process for persons also responding in waves 8 and 9 we end up with 3,872 

respondents aged 18-57 in the initial period with recorded positive annual earnings. A number of other 

minor restrictions are made to ensure that our resulting sample also has non-missing current earnings in 

wave 1 and that observations where there are inconsistencies in their employment and earnings 

information are omitted. Our resulting sample is therefore made up of 3,733 individuals.11   

Summary information on our earnings estimates in the two periods examined is presented in 

Table 2. The first two columns examine summary statistics of respondents’ reports of their gross 

financial year (annual) earnings for the base and final year, while the final column presents 

corresponding statistics based on the proxy earnings estimate for the corresponding base year (2001/2). 

Also reported in this final column is the correlation between the two alternative earnings estimates for 

the base year. The favourable business cycle conditions in Australia over this period led to a 25 per 

cent increase in real gross earnings over the period. The proxy estimate of annual earnings based on 

current earnings understates average earnings in each period slightly, which is expected as the 

annualised estimate does not account for wage increases that may have occurred within the financial 

year due to annual increments (which tend to occur at the end of calendar years rather than financial 

years) and/or promotion. The two earnings measures are also highly correlated with a correlation 

coefficient of 0.75.  

The predictors of changes in earnings 

As discussed above changes in earnings can arise due to changes in returns to given characteristics as 

                                                 
11 In the interests of keeping as broad a representation of earners in the sample as possible we keep observations where 
respondents are not working at the time of their wave 1 interview but have positive annual earnings.  Furthermore as we use 
the proxy annual earnings measure only to construct a person’s rank in the initial distribution we re-rank people with zero 
proxy earnings based on their weeks worked in the corresponding financial year. The correlation between the two rank 
measures improves when we adopt this.     
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people age in the labour market or they can arise due to changes in the characteristics or other events 

which have an economic return. Hence in predicting the evolution of individual earnings as outlined in 

equation 7 we include both initial levels and changes of most variables in our regressions. The 

variables that we examine can be grouped into four major categories. In the first we examine 

respondents base year (2001) life cycle characteristics typically examined in the human capital 

literature when estimating age-earnings profiles. These include gender; 4 age groups (18 to 29 years, 30 

to 39 years, 40 to 49 years and 50 years plus); and 3 education levels (didn’t complete secondary 

school, completed secondary school and completed a post-secondary qualification). We separate these 

variables by gender as we expect age and education to affect men and women differently, and 

education to affect those of different age groups unequally as well. Hence we have 24 different terms 

for education by age by gender. As having a child typically affects the labour supply (and later 

earnings) of women, we also include indicator terms to reflect the presence of a dependent child under 

15, which we interact with gender. We hereafter refer to these sets of characteristics as ‘life-cycle 

factors’.  

The second set of characteristics examined represents various ‘life events’. These include 

whether over the period examined: the respondent had a child (interacted by gender); attained a further 

educational qualification; experienced a serious illness or injury; or was incarcerated/in detention over 

the period. The third set of characteristics examined relates to a range of job characteristics that the 

literature has found affect earnings. These can be grouped into a set of initial job characteristics12 

(tenure with employer, sector of employment (public, private or other), firm size (whether 20 or more 

employees at workplace), whether in casual employment; whether have supervisory responsibilities in 

their job); factors associated with career advancement (whether had a job promotion, an increase in 

                                                 
12 Initial job characteristics reflect the job of each respondent at the wave 1 interview. An indicator for those not working at 
this interview is included in the model. Also included are indicators for observations with missing information for each of 
the initial job characteristics variables.  
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occupation status, an increase in supervisory responsibility, became a fixed term/permanent employee, 

had work related training, or had a job change without an intervening spell of joblessness at any stage 

over the period examined): a job loss or demotion (a spell of joblessness, was fired or made redundant, 

time spent jobless over the period examined, experienced a decrease in occupation status, a decrease in 

supervisory responsibility, or became a casual employee): or other indicators of job change associated 

with potential changes in earnings (moves between sectors, or to a larger or smaller firm).    

Our final group of variables consists of measures of ‘working time’. Here we include measures 

of both hours worked per week (weekly hours worked at initial interview and indicator variables for 

whether weekly working hours increased or decreased between the initial and final period) and total 

time worked per year (proportion of the initial financial year in employment and indicator variables for 

whether the proportion of the financial year employed increased or decreased between periods). By 

examining the impact of each of these 4 sets of variables in stepwise fashion, we can therefore see how 

much of the changing returns to the life course come through life cycle factors, life events, job 

promotions or job displacements, or changes in time spent working. Summary descriptive statistics of 

these variables are provided in Appendix Table A1. 

5. Results 

We start by exploring the evolution of the earnings distribution between the periods 2001/02 and 

2008/09 in Table 3, decomposing the changes in inequality into the progressivity of earnings growth 

(‘pro-poor’ in the terminology of Jenkins & Van Kerm, 2006 but as we consider earnings rather than 

income, this phrase is somewhat misleading) and the extent of re-ranking that occurred. In contrast to 

earlier studies such as Athanasopoulos & Vahid (2003), Briggs, Buchanan & Watson (2006) and 

Keating (2003) showing growing earnings inequality in the decades immediately preceding the 21st 

century in Australia, the Gini estimates of 0.368 in 2001/2 and 0.331 in 2008/9 and associated 

bootstrapped standard errors suggest a small, but statistically significant, decrease in cross-sectional 
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earnings inequality between 2001/02 and 2008/09.1314  

Decomposing this change in inequality as per equation 2, we disentangle the extent to which 

progressive earnings growth reduces inequality and the positional re-ranking that occurs between the 

first and second period as a result of these earnings changes (equations 3 and 4 respectively). This 

shows how people’s earnings change over time and the lowest earners at a point in time were not 

necessarily the lowest earners some years before. In other words, earnings of the lowest paid tend to 

rise faster than the average, meaning they are no longer the lowest paid. However others experience 

shocks that push them down the earnings distribution becoming the new lowest paid in the second 

period. The progressive earnings growth term, then, measures how mobility equalises longer-term 

earnings measures and thus captures the persistence of the original pattern of earnings inequality as 

people move away from their starting point.  

Table 3 shows that progressive earnings growth (“P-component”) reduced the Gini coefficient 

of inequality by 0.148 units, or 40 per cent of initial inequality, between the two periods. Earnings 

inequality seven years later is thus sharply lower than in the initial period when assessed according to 

peoples initial position (i.e. if we do not re-rank according to who is now the lowest and highest paid). 

This, at face value, suggests that the extent to which the lowest or highest paid remain the lowest or 

highest paid appears quite modest.  

Individuals’ relative earnings changes, or earnings share movements, between 2001/2 and 

2008/9 are plotted in Figure 1. These are the mobility profiles of Van Kerm (2009a) corresponding to 

equation 5. Actual changes (dots) are compared with a non-linear semi-parametric estimate of the 

                                                 
13 Weighting these estimates for sample attrition makes little difference to the overall estimates. 
14 In contrast, the Australian Bureau of Statistics Survey of Income and Housing (SIH) finds that cross-sectional earnings 
inequality over this decade continued to rise marginally, however as Wilkins (2014) notes: ‘while the SIH show that the 
wage distribution among employed persons became more unequal, the absence of a similar increase in inequality in the 
HILDA data, combined with the fact that much of the increase occurred when methods and concepts were changing, 
including the move to measuring salary sacrificed income, means we cannot be certain of the veracity of this trend. Looking 
to other ABS earnings data collected over the early to mid-2000s cannot resolve this uncertainty, because all ABS surveys 
conducted over this period experienced the same changes in wage measurement.’  
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profile, using local polynomial regression, and a linear approximation of the profile denoted in equation 

6. The earnings change is defined relative to the mean in this approach to allow a direct link to Gini 

based inequality, rather than the more typical log change. Looking first at the plots of actual earnings 

changes, most movements in earnings are bound by gains or losses equivalent to a one mean change 

but there are a small number where the change is twice the mean. At very high initial earnings there are 

more large earnings gains and losses.15 The non-linear approximation essentially captures this pattern, 

while the linear approximation captures the overall regression to the mean, but fails to capture the 

steeper slopes at the tails of the distribution.16  

Measurement Error  

Figure 2 presents the non-linear estimates of the mobility profiles (equation 5), alongside our two 

approaches to dealing with measurement error. Thus we present the regression based approximation 

mobility profiles of changes in annual earnings on the rank with no correction for measurement error, 

annual earnings change where the rank is based on the alternative annual earnings measure and 

predicted annual earnings growth on the original rank.17 The profile obtained derived from the weekly 

earnings measure  matches the original profile quite closely over most of the distribution but differs 

substantially in the tails, where measurement error would be expected to be greatest. Both new profiles 

suggest far less true mobility at the very top decile once accounting for measurement error. A concern 

is that both approaches to dealing with measurement error systematically underestimate earnings 

changes at the top end. When using the predictors of earnings changes, this may reflect that there are 

few good predictors of earnings movements among high earners. For the other profile the concern is 

                                                 
15 Of the 51 individuals who experienced an earnings change equivalent to at least twice the mean, 38 were in the top 
earnings decile in the base year.   
16 Approximations of the progressive earnings growth component generated by these profiles are very close to that observed 
in the data for both linear and non-linear approximations and indeed across the approaches to reducing measurement error 
discussed below. These can be provided by the authors on request. The non-linear estimate is obtained using  locally 
weighted regression (LOESS), (Cleveland, 1979). 
17 Results from the earnings growth regressions forming the basis of the second approach to take out measurement error are 
presented fully in Table 7 and will be discussed when exploring the predictors of mobility later. 
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that our weekly earnings measure systematically underestimates some part of high earnings such as 

bonus payments related to firm performance. We, however, find no evidence of this when we compare 

the earnings distributions using the two measures.18 Therefore we are confident that a significant part of 

the mobility observed at this top decile is due to reporting error.   

The extent of mobility occurring in the bottom quintile differs to a degree across the two 

approaches suggesting that the predicted earnings approach may not be fully capturing true mobility in 

this part of the distribution. Although it may also be possible that reporting errors are more persistent 

here and the alternative rank measure overstates mobility. The mobility profile that relies on using the 

alternative earnings measure to construct the rank shows quite a flat profile between the 40 and 80th 

percentiles, suggesting very limited reversion to the mean in this part of the distribution.  

Figure 3 shows the mobility profiles weighted by the standard weighting function used to 

construct the standard Gini coefficient (equation 5 weighted by the Gini social weight with  =2). By 

integrating the area under these curves we are then able to derive the approximations of the extent of 

earnings inequality reduction through mobility (equation 3 with  =2), presented in Table 4. Here we 

see that by using the alternative measure of earnings to rank people the resulting estimate of 

progressivity of earnings growth is 5 to 7 Gini points lower taking account of measurement error than 

our original estimate. Measurement error will also lead to an overstatement of inequality and we can 

also construct an estimate of the initial level of inequality using this alternative rank measure. This 

suggests a moderately lower level of initial inequality (a Gini of 0.311) and hence the inequality 

reduction as a result of progressive earnings changes is about one quarter (0.072 Gini points reduction 

from a base of 0.31) to one third (0.1/0.31) over seven years compared to the 40 per cent reduction 

observed without addressing measurement error. Still this suggests that cross-sectional earnings 

inequality is substantially reduced over a longer time horizon. 

                                                 
18 These can be provided by the authors on request. 
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Explaining directional mobility 

Tables 5 and 6 present the results of decomposing the slope term as per equation 8 (seen as the 

predicted earnings slope in Figure 3). This enables us to see how each of the broad sets of 

characteristics contributes to the inequality reduction associated with the progressiveness of earnings 

growth. The estimated beta slope presented in row 1/column 1 of Table 5 corresponds to the slope of 

the linear approximation of the mobility profile shown in Figure 1, whilst in Table 6 the alternative 

rank based on current reported weekly earnings is used to address measurement error. From Table 6 we 

can see that the estimate of beta is reduced by just under a third when the alternative rank is used, in 

line with the discussion of measurement error above. The results of decomposing the beta slope to 

examine the contribution of the 4 sets of factors examined: life cycle, life events, job characteristics and 

working time are presented in each of the corresponding columns. In row (2) we examine the 

contribution that life-cycle effects have in isolation, with the contribution of each additional set of 

factors examined in a step-wise fashion as you move down each row of the table.  

A comparison of the original slope coefficients (row 1 in each table) with those in row 2 

suggests that the evolution of earnings across age, education and gender groups explains around a 

quarter of progressive earnings mobility when measurement error is not considered and about one third 

when the alternative rank measure is used to reduce the effect of measurement error. Hence a sizable 

part of the inequality reduction from earnings mobility reflects age and experience and can be thought 

of as the difference between current earnings and life-time earnings inequality. The contribution of life 

cycle mobility itself does not differ whether we control for measurement error through the proxy 

earnings measure. This remains true as we include more regressors, this strongly suggests that the 

deviation between the original and proxy earnings measure is unrelated to the observed characteristics 

in the data, reinforcing the sense that this is reporting error. 

Adding life events in row 3 improves the total share explained to a modest degree and reduces 
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the life cycle effect by a small amount.  On the other hand, respondents’ initial job characteristics (e.g. 

tenure) and observed job changes such as promotions explain a substantial amount of mobility. Job 

related changes are also quite correlated with life cycle characteristics, as the life cycle contribution is 

reduced substantially when job related changes are included. This shows that the young and especially 

the more educated young workers seeing faster earnings growth through experiencing more 

opportunities for job promotion, gaining supervisory responsibilities and career advancement. Working 

time factors (changes in hours and share of the year employed) predict a large share of the progressivity 

of earnings growth (a bit over half of the total predicted as shown in row 5 of each table). However, 

this is really telling us that the bulk of the observed earnings mobility related to the life-cycle and 

changes in job characteristics flow through changes in hours per week and weeks worked.   

Whilst the summary results presented in Tables 5 and 6 offer an overall picture of progressive 

earnings mobility they don’t show what individual factors predict overall earnings movements. A large 

portion of earnings changes may in fact be regressive with initial higher earners seeing faster growth in 

their earnings. Table 7 therefore presents the full regression results that formed the basis for the 

summary data used in Tables 5 and 6 and Figures 2 and 3. Column 1 reports the detailed regression 

results for predicting earnings changes excluding working time variables (hours worked per week and 

proportion of year worked) and column 3 includes them. This is to show how all other factors 

considered interact with these work intensity movements. Columns 2 and 4 show the respective 

contributions to the overall progressivity of earnings growth and thus we can directly observe the 

contribution each regressor makes to inequality reduction and indeed which are pushing the other way. 

Here it matters little as to whether we look at the contributions when regressing annual earnings on 

either rank measure, thus we only present the results using the original rank measure.19 

The first section of the table covers the life cycle age-earnings profiles by education group 

                                                 
19 Results using the alternative rank measure can be obtained from the authors on request. 
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where the findings are consistent with the literature on age-earnings profiles (for instance see Gosling 

et al. 2000 and Manning, 2000). Column 1 shows the average earnings growth for each age-education 

group. It is clear that the young show very rapid earnings growth when they have completed upper 

secondary education or higher education. This is most marked for men but is still substantial for 

women. On the other hand those aged over 50 generally experienced lower earnings growth, at least for 

men. Women who already have children also experienced significant earnings growth over the period. 

The fully interacted model means that many terms are not individually significant, however.  

Column 2 shows the contribution each component of earnings growth to inequality reduction. 

Thus groups with faster earnings growth will lead to reduced inequality if they start low in initial 

distribution but will increase inequality if they start already well paid. Earnings growth experienced by 

the young is thus quite progressive, as these people start lower in the distribution. The exception here is 

young males with a post-secondary qualification (degree) whose earnings growth is rapid but 

regressive as they are already in the top half of the distribution in the initial period. Introducing hours 

and weeks worked changes the earnings growth coefficients and the degree of progressivity very little. 

Among the next age group earnings growth is still fairly rapid but for males it is now regressive as 

these are an already well-paid group. In fact, earnings growth for men is slightly regressive overall. For 

women, earnings growth is very strongly progressive as young and prime age women get quite rapid 

wage growth and start very much in the lower half of the distribution. This is also true for women in 

their 40s. Women with children in the initial base year tend to see progressive earnings growth. Note 

here that this is women who already have children and so part-time working etc is already priced in to 

lower wages in the first period. Hence higher wage growth reflects a catch up from lower initial wages 

which essentially comes about through an increase in hours and weeks worked, no doubt due to 

working more as children age. Earnings growth among the over 50s is generally slow but has no strong 

progressivity pattern.   
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Life events that occur over this time period, such as increased educational qualifications, having 

a child and going to jail, have sizable wage consequences, positive for the former and negative for the 

latter two, but their overall contribution to progressivity is low as the events are either spread across the 

distribution or, in the instance of going to jail, quite rare. Increased educational qualifications had the 

strongest effect with associated earnings growth slightly concentrated amongst those initially in the 

lower part of the distribution. Of note is the very large wage penalty for women having (further) 

children between the two periods but this is not strongly progressive as those having children are not 

particularly low paid. But this large penalty lies behind the later progressive earnings recovery in 

women’s wages discussed above. 

The effect of job characteristics are then presented in four subcategories: characteristics of 

initial job, career advancement, job loss or demotion and other indicators of job change. We include a 

number of initial job characteristics that predict earnings growth (initial firm size, public sector and a 

casual job) but again they do not contribute much to the degree of progressivity once working time is 

accounted for. Following Altonji & Shakotko (2005) we find slower wage growth in longer tenured 

jobs. In addition we find that this slower wage growth is progressive as those in longer tenured jobs are 

initially higher paid. Plausibly job characteristics associated with job promotion such as increases in 

occupation level, increases in supervisory responsibility, job to job moves (i.e. changing jobs with no 

intervening unemployment), transition from casual employment to ongoing positions and self-reports 

of promotion are all significantly associated with higher earnings growth over this period. Not all of 

these characteristics are however progressive. Earnings growth associated with increases in occupation 

level and in supervisory responsibility did appear to affect those initially in the bottom half of the 

distribution more than their counterparts. However earnings growth associated with self-reports of job 

promotion was regressive, as was training as both of these events occurred more often among those 

already higher earnings.   
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Likewise, and as expected from the related literature (Arulampalam et al. 2001; Farber et al. 

1993 and Jacobson et al. 1993), characteristics associated with job displacement or job demotion are 

associated with earnings penalties. What we add to this literature is the effect that job displacement has 

on mobility, as we find that the earnings penalties associated with job displacement are largely 

concentrated at the lower end of the distribution, and therefore have a substantial regressive effect.  

Likewise the earnings penalties associated with becoming a casual employee in the final period are 

experienced by those who were in the lower half of the earnings distribution in the base year. These 

penalties hit those initially low paid more frequently and hence produce regressive wage mobility. On 

the other hand, changes in working time arrangements over the period examined were substantial 

drivers of earnings changes and indeed progressive, with those initially working less and therefore 

earning less more likely to experience earnings growth than those initially working full-time 

throughout the year.  

6. Conclusion 

This paper adds to recent advances in the literature on economic mobility by offering an integrated 

framework that directly links earnings mobility to conventional inequality measures, assesses the extent 

to which measurement error leads to an overstatement of true mobility, provides an account of where in 

the distribution mobility and indeed measurement error are located, and finally, assesses the 

contribution of the major drivers of observed earnings mobility. The framework developed is very 

flexible and could easily be applied to other settings such as income and intergenerational mobility 

with minor adjustments. 

The particular application is to examine individual earnings growth and mobility in Australia 

between 2001/2 and 2008/9. Using data from the Australian HILDA survey we find that the earnings 

growth that occurred over the period was strongly progressive and, taken on face value, suggests that a 

large portion (40 per cent) of the initial inequality is transitory. Measurement error in the data, 
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however, considerably exaggerates the picture in the raw data. Yet even after accounting for 

measurement error progressive earnings growth, that is faster annual earnings growth among the lower 

paid and slower growth among initial high earners, acted to decrease original inequality by a quarter to 

a third over seven years.  

Examining the pattern of earnings growth across the earnings distribution we find evidence of 

relatively large amounts of upwards earnings mobility in the bottom 40 per cent of the distribution, 

little movement in the mid to upper section of the distribution and only modest downwards earnings 

mobility in the very top of the distribution (the top 10%) after measurement error is considered.  Thus 

persistence in low pay is considerably less than persistence in high pay. 

About one third of all progressive earnings growth, after measurement error adjustment, can be 

attributed to the stage of the life cycle people start at. High earnings growth amongst young people is 

typically very progressive. Continued rapid earnings growth among prime-age men, especially the 

well-educated, is however regressive as they are already well paid. Relatively rapid earnings growth of 

young and prime aged women lies behind a large part of observed progressivity of earnings mobility. 

Other life event changes such as having a baby for women, gaining an educational qualification, 

suffering an illness or going to prison have a powerful effect on earnings but, only explain a modest 

amount of observed progressive mobility. This is because they either occur to a similar extent over the 

full distribution or are rare. The exception is gaining higher educational qualifications, which is 

progressive. 

The major drivers of progressive earnings changes over the period examined, and indeed the 

progressive elements of life-cycle mobility, are related to job change factors such as promotion, 

changing jobs (without intervening unemployment), increases in occupational status and responsibility. 

However, while job characteristics associated with job promotion are all significantly associated with 

earnings growth over this period, they are not always associated with progressive earnings growth. For 
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instance, earnings growth associated with self reports of job promotion and job-related training were 

regressive as the principal beneficiaries were generally already well paid. Importantly, we also find that 

the earnings penalties associated with job displacement or job demotion were regressive, as those 

losing work were more often drawn from the lower paid. This is the first time that the relationship 

between the widely noted cost of job loss and overall earnings mobility has been shown linking 

distributional mobility and directional mobility. Finally, changes in working time arrangements over 

the period examined were generally progressive with those initially working less and therefore earning 

less more likely to experience earnings growth than those initially working full-time. Movements in 

hours worked drive a substantial part of the observed mobility associated with job changes. Hence the 

rather smooth picture of age-earnings profiles showing steadily rising wages in peoples 20s and 30s 

followed by a period slowing growth and then a plateau is substantially made up by a series of events 

in people’s lives such as promotions, redundancies, having children and moves between full and part-

time work, which are irregular, discrete and not always in same direction. 

Finally we note that the findings of this paper are likely to reflect the relatively unique 

conditions of the period examined, the second decade of a long boom with strong employment and 

earnings growth. With no comparable longitudinal data on individuals prior to 2001 we can't infer what 

patterns of mobility were like in previous periods. However we will make the point that in contrast to 

the second decade of the boom, there was a much clearer increase in earnings inequality in the 1990s 

(Greenville et al. 2013) thus the patterns of earnings growth were likely to be very different to those 

experienced by individuals in the 2000s.    
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 Figure 1: Mobility profiles as earnings share movements between 2001/2 and 2008/9 

 
 

Figure 2: Mobility profiles  
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Figure 3. Weighted mobility profiles (inequality aversion parameter  = 2) 

 
 
 

Table 1. Details of sample restrictions and result on sample size 

 Wave 2 Wave 2 & 9 

Responding persons 18-64 years1 9,478 6,588 
Employed 7,728 4,826 
With positive annual earnings  6,974 4,133 

- minus those with earnings imputed -405 -261 

With reported positive annual earnings  6,569 3,872 
   

- minus those with missing current earnings in wave 1 and 
inconsistent earnings and employment status information2 

  

Resulting sample 3,733 

1. Persons must have responded in both waves 1 and 2 as we are combining information from the 2 interviews. Also note 
that the age restriction applies to the age of respondents at the wave 1 interview as this reflects the age of respondents at 
the time of their annual earnings 

2. To be precise we drop those with: 
a. Missing information on contemporaneous current earnings  
b. positive 2001/2 annual earnings but reporting zero contemporaneous current earnings and no time working 

over the financial year, and  
c. positive 2001/2 annual earnings but reporting zero contemporaneous current earnings and worked for full year 

and currently employed 
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Table 2. Summary statistics  

 Reported gross annual earnings ($) Proxy gross annual 

earnings1  ($) 

 2001/02 (w2) 2008/09 (w9) 2001/02 (w1) 

Mean 40,144 49,777 36,582 

Standard deviation 32,195 34,635 27,467 

N 3,733 3,733 3,733 

Correlation between earnings measures for 2001/02   0.75 

1. Estimated by multiplying reported current weekly earnings from the interview of the previous wave multiplied by time 

worked over the corresponding financial year.  

 

Table 3. Inequality decomposition of earnings in 2001/2 and 2008/91  

 Gross annual earnings 

Initial S-Gini 

 

0.368 

(0.006) 

Final S-Gini 

 

0.345 

(0.005) 

Absolute change 

 

-0.023 

(0.006) 

 R-component 

 

0.126 

(0.005) 

 P-component 

 

0.148 

(0.008) 

Relative change (%) -6.2 

 R-component (%) 34.1 

 P-component (%) 40.3 

N 3,733 

1. Inequality aversion parameter  = 2 

2. Bootstrap standard errors with 999 replications are shown in parentheses 

 

Table 4. Aggregate Progressiveness of earnings growth  

 

Gross annual 

earnings 

Observed P 0.148 

(2SLS estimate) 0.072 

(proxy rank estimate) 0.103 

N 3,733 
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Table 5. Explaining Progressive Earnings movement in gross earnings, no measurement error correction (n=3733) 

 b0 Predicted by 
life-cycle 

factors 

Life events Job 
Characteristics 

Time working All 
characteristics 

Unexplained  Adj R-Squared 

(1) -0.891***       0.128 
 (0.054)        
(2)  -0.216***    -0.216*** -0.674*** 0.096 
  (0.011)    (0.011) (0.054)  
(3)  -0.199*** -0.047***   -0.246*** -0.645*** 0.096 
  (0.011) (0.007)   (0.013) (0.053)  
(4)  -0.133*** -0.022*** -0.217***  -0.371*** -0.519*** 0.130 
  (0.008) (0.004) (0.011)  (0.016) (0.052)  
(5)  -0.079*** -0.017*** -0.042*** -0.306*** -0.444*** -0.446*** 0.156 
  (0.007) (0.003) (0.008) (0.010) (0.017) (0.052)  

 

Table 6. Explaining Progressive Earnings movement in gross earnings, defining ranks using annualized estimate of weekly earnings  
(n=3733) 

 b0 Predicted by 
life-cycle 

factors 

Life events Job 
Characteristics 

Time working All 
characteristics 

Unexplained  Adj R-Squared 

(1) -0.612***       0. 065 
 (0.044)        
(2)  -0.207***    -0.207*** -0.405*** 0.089 
  (0.011)    (0.011) (0.042)  
(3)  -0.190*** -0.050***   -0.240*** -0.371*** 0.094 
  (0.011) (0.006)   (0.012) (0.042)  
(4)  -0.126*** -0.025*** -0.238***  -0.389*** -0.223*** 0.144 
  (0.008) (0.004) (0.011)  (0.016) (0.041)  
(5)  -0.074*** -0.019*** -0.029*** -0.351*** -0.473*** -0.139*** 0.180 
  (0.007) (0.003) (0.008) (0.009) (0.017) (0.040)  

Standard errors in parentheses 
* p<0.1, ** p<0.05, *** p<0.01 
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Table 7. Linear prediction of change in relative earnings growth between 2001/2 and 2008/9 

  
Coeff  
(se’s) 

Contribution  
to βp 

Coeff  
(se’s) 

Contribution  
to βp 

  (1) (2) (3) (4) 

Life cycle  -0.133***  -0.079*** 

Males  0.001***  0.004*** 

Male, 18-29 yrs, no 
secondary  

0.087 -0.004*** 0.059 -0.002*** 

(0.127) (0.001) (0.126) (0.001) 

Male, 18-29 yrs, secondary  
0.464*** -0.047*** 0.407*** -0.042*** 

(0.074) (0.006) (0.075) (0.005) 

Male, 18-29 yrs, post-
secondary  

0.340*** 0.013** 0.312*** 0.012*** 

(0.072) (0.004) (0.071) (0.004) 

Male, 30-39 yrs, no 
secondary  

0.149** 0.000 0.120* 0.000 

(0.065) (0.001) (0.066) (0.001) 

Male, 30-39 yrs, secondary  
0.213*** 0.005*** 0.171** 0.004*** 

(0.078) (0.001) (0.077) (0.001) 

Male, 30-39 yrs, post-
secondary 

0.212*** 0.049*** 0.194*** 0.045*** 

(0.065) (0.004) (0.064) (0.003) 

Male, 40-49 yrs, no 
secondary  

0.053 0.001 0.035 0.000 

(0.062) (0.000) (0.062) (0.000) 

Male, 40-49 yrs, post-
secondary 

0.010 0.003*** 0.000 0.000*** 

(0.073) (0.000) (0.074) (0.000) 

Male, 50 yrs plus, no 
secondary 

-0.066 -0.001** -0.034 -0.000** 

(0.086) (0.000) (0.086) (0.000) 

Male, 50 yrs plus, secondary 
-0.158 -0.001 -0.122 -0.001 

(0.254) (0.001) (0.241) (0.001) 

Male, 50 yrs plus, post-
secondary 

-0.163 -0.015*** -0.135 -0.013*** 

(0.119) (0.002) (0.118) (0.002) 

Females  -0.136***  -0.083*** 

Female, 18-29 yrs, no 
secondary 

0.146* -0.008*** 0.086 -0.005*** 

(0.075) (0.001) (0.074) (0.001) 

Female, 18-29 yrs, 
secondary  

0.341*** -0.045*** 0.250*** -0.033*** 

(0.067) (0.004) (0.068) (0.003) 

Female, 18-29 yrs, post-
secondary 

0.255*** -0.011*** 0.214*** -0.009*** 

(0.069) (0.003) (0.068) (0.003) 

Female, 30-39 yrs, no 
secondary  

0.155** -0.015*** 0.093 -0.009*** 

(0.077) (0.002) (0.077) (0.001) 

Female, 30-39 yrs, 
secondary  

0.096 -0.005*** 0.025 -0.001*** 

(0.073) (0.001) (0.071) (0.000) 

  
Coeff  
(se’s) 

Contribution  
to βp 

Coeff  
(se’s) 

Contribution  
to βp 

  (1) (2) (3) (4) 

Female, 30-39 yrs, post-
secondary 

0.137** -0.008*** 0.090 -0.005*** 

(0.066) (0.002) (0.066) (0.001) 

Female, 40-49 yrs, no 
secondary  

0.035 -0.003*** -0.014 0.001*** 

(0.070) (0.000) (0.070) (0.000) 

Female, 40-49 yrs, 
secondary  

0.157** -0.005*** 0.111 -0.003*** 

(0.071) (0.001) (0.070) (0.001) 

Female, 40-49 yrs, post-
secondary 

0.106 -0.001 0.067 -0.000 

(0.069) (0.002) (0.069) (0.001) 

Female,  50 yrs plus, no 
secondary 

0.052 -0.002*** 0.026 -0.001*** 

(0.063) (0.000) (0.064) (0.000) 

Female,  50 yrs plus, 
secondary 

0.123 -0.000 0.111 -0.000 

(0.087) (0.000) (0.087) (0.000) 

Female,  50 yrs plus, post-
secondary 

-0.068 -0.001** -0.080 -0.002** 

(0.069) (0.001) (0.068) (0.001) 

Male with kids 
-0.003 -0.001*** -0.006 -0.002*** 

(0.047) (0.000) (0.047) (0.000) 

Female with kids 
0.071*** -0.031*** 0.030 -0.013*** 

(0.026) (0.002) (0.026) (0.001) 

Life events between periods -0.022***  -0.017*** 

Gained education 
qualifications 

0.096*** -0.023*** 0.077** -0.018*** 

(0.034) (0.002) (0.032) (0.001) 

Had children (Males) 
0.002 0.000*** 0.011 0.001*** 

(0.054) (0.000) (0.052) (0.000) 

Had children (Females) 
-0.326*** 0.001 -0.248*** 0.001 

(0.039) (0.004) (0.037) (0.003) 

Suffered from major illness 
-0.043 -0.001 -0.034 -0.001 

(0.035) (0.001) (0.035) (0.001) 

Went to jail  
-0.149 0.000* -0.160 0.001* 

(0.132) (0.000) (0.187) (0.000) 

Job characteristics  -0.217***  -0.042*** 

Initial job characteristics  -0.157***  -0.008*** 

2 to 4 years with employer 
0.017 0.000 0.029 0.000 

(0.032) (0.000) (0.030) (0.001) 

5 to 9 years with employer -0.022 -0.003*** -0.010 -0.001*** 
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Coeff  
(se’s) 

Contribution  
to βp 

Coeff  
(se’s) 

Contribution  
to βp 

  (1) (2) (3) (4) 

(0.037) (0.000) (0.035) (0.000) 

10 years or more 
-0.058 -0.024*** -0.052 -0.022*** 

(0.038) (0.001) (0.037) (0.001) 

Had supervisory 
responsibilities 

-0.001 -0.001*** 0.012 0.008*** 

(0.024) (0.000) (0.024) (0.000) 

<20 employees at workplace 
in initial year 

-0.022 0.005*** -0.036 0.009*** 

(0.032) (0.001) (0.032) (0.001) 

Not working at initial 
interview 

0.333*** -0.098*** -0.056 0.017*** 

(0.097) (0.006) (0.105) (0.001) 

Public 
0.021 0.007*** 0.001 0.000*** 

(0.030) (0.000) (0.029) (0.000) 

Not for profit or other 
0.008 -0.000 0.015 -0.000 

(0.039) (0.000) (0.038) (0.000) 

In a casual job in initial year 
0.061 -0.031*** -0.003 0.002*** 

(0.046) (0.001) (0.045) (0.000) 

Career advancement   -0.082***  -0.056*** 

Promotion 
0.152*** 0.015*** 0.149*** 0.015*** 

(0.027) (0.003) (0.026) (0.003) 

Increase in occupation level 
0.032 -0.012*** 0.005 -0.002*** 

(0.033) (0.001) (0.033) (0.000) 

Became permanent/fixed 
term 

0.142*** -0.051*** 0.123*** -0.044*** 

(0.048) (0.003) (0.048) (0.002) 

Had work-related training  
0.045 0.007*** 0.035 0.006*** 

(0.033) (0.001) (0.033) (0.001) 

Increase in supervisory 
responsibility 

0.057** -0.011*** 0.035 -0.007*** 

(0.026) (0.001) (0.025) (0.001) 

Job change with no 
intervening joblessness 

0.073*** -0.030*** 0.057** -0.023*** 

(0.026) (0.002) (0.025) (0.002) 

Job loss/demotion between 

periods 
 0.038***  0.036*** 

Jobless spell  
-0.092*** 0.048*** -0.058** 0.030*** 

(0.030) (0.002) (0.028) (0.002) 

Fired or made redundant  
-0.155** 0.002 -0.124 0.001 

(0.076) (0.002) (0.076) (0.001) 

Decrease in supervisory 
responsibility  

-0.355*** -0.020*** -0.143*** -0.018*** 

(0.086) (0.003) (0.043) (0.003) 

Decrease in occupation level  -0.153*** -0.005 -0.113*** -0.004 

  
Coeff  
(se’s) 

Contribution  
to βp 

Coeff  
(se’s) 

Contribution  
to βp 

  (1) (2) (3) (4) 

(0.033) (0.003) (0.031) (0.003) 

Became a casual  
-0.062 0.006*** -0.058 0.006*** 

(0.044) (0.001) (0.043) (0.001) 

Proportion of the 7 years not 
working 

-0.001 0.007*** -0.001 0.019*** 

(0.001) (0.000) (0.001) (0.001) 

Other job change  -0.016***  -0.014*** 

Move to a larger firm 
0.104*** -0.013*** 0.112*** -0.014*** 

(0.039) (0.002) (0.039) (0.002) 

Move to a smaller firm 
-0.041 0.003*** -0.048 0.003*** 

(0.031) (0.001) (0.031) (0.001) 

Move to private sector 
0.072 0.002* 0.068 0.002* 

(0.068) (0.001) (0.066) (0.001) 

Move to public sector 
0.091** -0.008*** 0.061 -0.005*** 

(0.042) (0.001) (0.041) (0.001) 

Working time    -0.306*** 

Initial working time    -0.223*** 

Hours worked in initial 
period (weeks) 

  -0.004*** -0.145*** 

  (0.001) (0.003) 

Worked less than 25% of 
initial year  

  0.237*** -0.020*** 

  (0.087) (0.003) 

Worked 25% to 49% of 
initial year  

  0.249*** -0.035*** 

  (0.079) (0.003) 

Worked 50% to 74% of 
initial year 

  0.147 -0.020*** 

  (0.090) (0.002) 

Worked 75% to 99% of 
initial year 

  0.032 -0.003*** 
  (0.072) (0.000) 

Increase in working time in final year   -0.047*** 

Increase in hours worked  
  0.069*** -0.033*** 

  (0.026) (0.002) 

Increase in proportion of 
year worked 

  0.033 -0.014*** 

  (0.074) (0.001) 

Decrease in working time    -0.038*** 

Decrease in hours worked  
  -0.127*** -0.043*** 

  (0.034) (0.003) 

Decrease in proportion of 
year worked 

  -0.169*** 0.005* 

  (0.051) (0.003) 

Constant -0.213***  -0.118  
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Coeff  
(se’s) 

Contribution  
to βp 

Coeff  
(se’s) 

Contribution  
to βp 

  (1) (2) (3) (4) 

(0.070)  (0.115)  

Observations 3,733 3,733 3,733 3,733 

R-squared 0.172  0.204  

Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
Reference categories are: Male, 40-49 yrs, secondary; <2 yrs with employer in initial year; 
Private sector; Worked entire initial year 
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Appendix table 1. Sample means 

Sample characteristics Mean  Sample characteristics Mean 

Life cycle   10 years or more 0.236 

Male, 18-29 yrs, no secondary  0.024  Had supervisory responsibilities 0.475 

Male, 18-29 yrs, secondary  0.047  Didn't have supervisory responsibilities (reference) 0.524 

Male, 18-29 yrs, post-secondary  0.062  <20 employees at workplace in initial year 0.358 

Male, 30-39 yrs, no secondary  0.038  Not working at initial interview 0.072 

Male, 30-39 yrs, secondary  0.017  Private sector (reference) 0.546 

Male, 30-39 yrs, post-secondary 0.111  Public sector 0.266 

Male, 40-49 yrs, no secondary  0.028  Not for profit or other 0.116 

Male, 40-49 yrs, secondary (reference) 0.015  In a casual job in initial year 0.178 

Male, 40-49 yrs, post-secondary 0.108  Promoted between initial and final years 0.175 

Male, 50 yrs plus, no secondary 0.013  Jobless spell between initial and final years 0.434 

Male, 50 yrs plus, secondary 0.005  Fired or made redundant between initial and final years 0.039 

Male, 50 yrs plus, post-secondary 0.042  Job change with no intervening joblessness 0.544 

Female, 18-29 yrs, no secondary 0.017  Increase in occupation level between initial and final years 0.272 

Female, 18-29 yrs, secondary  0.041  Decrease in occupation level between initial and final years 0.207 

Female, 18-29 yrs, post-secondary 0.063  Move to a larger firm 0.170 

Female, 30-39 yrs, no secondary  0.039  Move to a smaller firm 0.121 

Female, 30-39 yrs, secondary  0.027  Move to private sector 0.098 

Female, 30-39 yrs, post-secondary 0.085  Move to public sector 0.076 

Female, 40-49 yrs, no secondary  0.046  Increase in supervisory responsibility 0.203 

Female, 40-49 yrs, secondary  0.020  Decrease in supervisory responsibility  0.166 

Female, 40-49 yrs, post-secondary 0.090  Became a casual in final year 0.081 

Female,  50 yrs plus, no secondary 0.025  Became permanent/fixed term in final year 0.126 

Female,  50 yrs plus, secondary 0.007  Had work-related training between first and final years 0.784 

Female,  50 yrs plus, post-secondary 0.031  Working time  

Male with kids 0.233  Hours worked at time of initial interview (weeks) 35.811 

Female with kids 0.220  Worked less than 25% of initial year  0.016 

Life events occurring between initial and final period   Worked 25% to 49% of initial year  0.031 
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Sample characteristics Mean  Sample characteristics Mean 

Gained education qualifications 0.097  Worked 50% to 74% of initial year 0.040 

Had children (Males) 0.071  Worked 75% to 99% of initial year 0.059 

Had children (Females) 0.061  Worked 100% of initial year (reference) 0.853 

Suffered from major illness 0.092  Increased hours worked in final year 0.455 

Went to jail  0.001  Decreased hours worked in final year 0.392 

Job characteristics   Increase in proportion of year worked 0.135 

Time with employer in initial year (reference <2 yrs) 0.276  Decrease in proportion of year worked 0.095 

2 to 4 years 0.234  Proportion of total time observed not working  5.359 

5 to 9 years 0.186  N 3,733 

 


