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Abstract

Objective—We used native sensorimotor representations of fingers in a brain-machine interface 

to achieve immediate online control of individual prosthetic fingers.

Approach—Using high gamma responses recorded with a high-density ECoG array, we rapidly 

mapped the functional anatomy of cued finger movements. We used these cortical maps to select 

ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) 

if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, 

we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used 

this prediction framework to provide immediate online control over individual fingers of the Johns 

Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL).

Main Results—The balanced classification accuracy for detection of movements during the 

online control session was 92% (chance: 50%). At the onset of movement, finger classification 

was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were 

coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined 

pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% 

(chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated 

significant finger-specific activations throughout sensorimotor cortex. Activations either prior to 

movement onset or during sensory feedback led to discriminable finger control.
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Significance—Our results demonstrate the ability of ECoG-based BMIs to leverage the native 

functional anatomy of sensorimotor cortical populations to immediately control individual finger 

movements in real time.

1. Introduction

Brain-machine interfaces (BMIs) offer a promising approach for restoring function to 

patients with severe paralysis. By delivering direct cortical control over robotic prosthetic 

devices, BMIs could enable spinal cord injury (SCI) patients to perform activities of daily 

living (ADLs) necessary for self-sufficiency. However, many of these activities, such as 

preparing food or taking medications, require a level of hand dexterity that has yet to be 

achieved by BMIs. This dexterity can only be achieved by means of complex hand 

movements based on control of individual fingers. Decoding the neural correlates of finger 

control has been explored [1]–[6], but researchers have so far been unable to demonstrate 

online independent control of individual fingers.

To date, online cortical control of finger movements has only been achieved in the context of 

coordinated movements of multiple fingers. Electrocorticography (ECoG) signals recorded 

from sensorimotor areas have been used offline to reconstruct hand aperture [7] and classify 

different hand gestures [8]–[10]. ECoG has also been used online to continuously control 

grasping movements in parallel with arm movements [11], [12] and to classify different 

grasp types [9]. Neuronal firing rates from microelectrode arrays (MEAs) have also been 

used to achieve online cortical control over grasping in both nonhuman primates [13]–[16] 

and humans [17]–[19].

Offline decoding of single finger movements has been achieved with MEAs in non-human 

primates [2], [20], but MEA recordings in humans are rare and suffer from attrition of 

reliable single units over time [21]. Moreover, the restricted cortical areas covered by MEAs 

may not sufficiently sample the cortical networks of potential use in BMIs. Finger 

movements are represented in a larger area of sensorimotor cortex in humans than monkeys, 

and although there may be significant overlap in motor representations for individual fingers 

[22], [23], it is inherently difficult for MEA’s to leverage what somatotopic organization is 

present.

In contrast, ECoG is able to deliver stable large-area coverage of sensorimotor areas [24], 

delivering control from multiple anatomical sites. For example, coverage of both arm and 

hand areas with a single ECoG grid enabled a subject to simultaneously control the ability to 

reach and grasp with a prosthetic limb [12]. This and other studies have chiefly used ECoG 

high gamma responses for online control. These spectral responses are robust enough to be 

detected in single trials, but because they reflect firing rate changes in populations of cortical 

neurons, their utility depends on the degree of functional segregation among these 

populations.

In spite of the evidence of limited finger somatotopy in motor cortex [22], [23], [25], both 

ECoG and fMRI studies have found a degree of separability in the peak population 

responses for different fingers in the precentral gyrus [26], [27]. These differential finger 
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responses have been used to perform offline classification and reconstruction of finger 

movements from ECoG recordings over sensorimotor areas [1], [3]. Offline classification 

between rest and four fingers (ignoring pinky) was near perfect in one subject in [9], though 

the system’s performance dropped drastically when translated to an online grasp 

classification system synchronized to cue presentation. Additionally, several groups have 

performed offline regression of single finger movements [1], [4]–[6]. However, until now 

these achievements in offline classification and regression have not been translated into 

asynchronous (i.e., without knowledge of the cue) online control of individual fingers.

Here we show that high-density electrocorticography (ECoG) electrodes over sensorimotor 

areas can not only discriminate individual fingers offline, but that they can be used to 

asynchronously detect and classify finger movements online. A human subject demonstrated 

online control of the highly dexterous Modular Prosthetic Limb (MPL) [28]. The BMI relied 

only on the subject’s cortical responses during movements of his corresponding native 

fingers, without extensive training or arbitrary mapping of user inputs to finger movements. 

Our approach of using the native functional anatomy of sensorimotor cortex obviates the 

need for operant conditioning, potentially providing immediate intuitive control to patients 

that can be expanded to a large number of degrees of freedom without placing significant 

cognitive burden on the patient. We performed further offline analysis to control for possible 

somatosensory feedback. These results demonstrate, for the first time, online control of 

individual fingers of a prosthetic hand, as well as offline analyses indicating a role for pre-

movement signals in achieving this control.

2. Methods

2.1 Subject Info

The patient, a 20-year old right-handed male, underwent a left craniotomy for implantation 

of intracranial electrodes to localize the brain regions responsible for his seizures to guide 

resective surgery. These included a high-density 8 × 16 array of subdural electrodes (PMT 

Corp., Chanhassen, MN; 3mm center-to-center spacing, 1mm diameter) over sensorimotor 

regions. ECoG signals were recorded using distant standard subdural electrodes (2.3 mm 

diameter exposed) for ground and reference.

The subject gave informed consent for testing to be done according to a protocol approved 

by the Institutional Review Board of the Johns Hopkins Medical Institutions. Electrodes 

were localized with respect to cortical surface anatomy by volumetric co-registration of the 

subject’s pre-implantation MRI with their post-surgical CT using the BioImage Suite [29]. 

This was used to help guide our electrode selection process for the BMI. After running the 

BMI, the reconstruction was checked against intraoperative photos from the implantation 

and explantation of the high density grid. The electrode locations on a two-dimensional 

snapshot of the reconstruction were manually adjusted relative to the underlying cortex via 

rotation, scaling, and translation of the grid to optimize the alignment between the grid and 

prominent gyral and sulcal landmarks present in both the 3D reconstruction and the 

intraoperative photos.
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2.2. Offline Experimental Testing

A finger tapping task was performed to collect training data for the online finger decoder. 

Online BMI testing was performed the subsequent day. A passive vibration task and an 

additional finger tapping task were performed for offline analysis. Table 1 outlines the 

experiments performed. The tasks are described in more detail below.

2.2.1. Vibrotactile Stimulation—To investigate activation due to somatosensory 

feedback, we ran a vibrotactile stimulation experiment. While activation of post-central 

gyrus has been observed in paralyzed individuals [30] and able-bodied individuals during 

motor-imagery (without overt movement) [31]–[35], deafferented subjects lack cortical 

activation directly induced by somatosensory feedback. To address this, we used a 

vibrotactile stimulation experiment as a control. Vibrational motors were placed on the 

fingertips of the subject’s right hand. The motors were turned on for 0.5 seconds every two 

seconds in a pseudorandom order by an Arduino microcontroller (Sparkfun Electronics, 

Boulder, CO) with two Adafruit v2.3 motor control shields (Adafruit Industries, New York 

City, NY). Each finger was vibrated 50 times, for a total of 250 trials.

2.2.2. Finger Tapping—The subject performed a visually cued finger tapping experiment. 

Trials were initiated by an experimenter on a presentation computer running psychtoolbox-3 

[36] in MATLAB (MathWorks, Inc., Natick, MA, USA). After a trial was initiated, the 

system paused for two seconds, then displayed an image of a hand with one finger pseudo-

randomly highlighted. The patient then alternately flexed and extended the corresponding 

finger on his right hand 5 times. Each finger was cued 25 times, for a total of 125 trials. 

Finger movements were recorded with a CyberGlove II (CyberGlove Systems LLC, San 

Jose, CA).

2.3. BMI Classifier Training

To perform online classifications of finger movements, we trained a hierarchical classifier on 

the offline finger tapping data. For any given time point, a binary linear discriminant 

analysis (LDA) classification was first used to determine if a movement was occurring. This 

allowed us to decode finger movements without synchronization to any cues (i.e. 

asynchronously). If a movement was detected, a classification from a second LDA classifier 

was used to determine which of the five fingers moved. The binary movement classifier was 

given a first-order Markovian transition probability; the prior for a prediction at time t was 

determined by the prediction at time t-1. These priors were calibrated online just before the 

online testing session to find a good tradeoff between false positives and false negatives.

To extract features for training the classifiers, we first re-referenced the high-density grid 

channels to a common average reference (CAR) with bad channels removed. The high 

gamma power was then extracted from each channel using the Hilbert transform with a flat-

top Gaussian bandpass filter with cutoffs of 72 and 110 Hz using a 256 ms window and 128 

ms step size. The average of the high gamma powers extracted from an 896 ms period before 

cue onset of each trial was used to gauge baseline activity for each electrode. The average of 

the high gamma power in an 896 ms period during finger movement of each trial was used 

to estimate activation due to the finger movement. This resulted in 125 feature vectors (one 
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for each trial) for both baseline and activation. These feature vectors were then used to train 

the movement detection and finger classification LDA classifiers.

When using the classifiers online, we used the same feature extraction workflow we used for 

training. To ensure smooth classifications, the features from the previous 50 samples were 

averaged at each time point. Due to slower computation speeds than anticipated, this resulted 

in a moving average of approximately 2.3 seconds of data to be used for classifications.

2.3. Online BMI Testing

When a finger movement was detected from the neural data, the corresponding MPL finger 

was commanded to flex at a fixed velocity. If a finger was not classified as moving, it was 

commanded to extend back towards the resting position at a fixed velocity. Before the online 

testing session began, the subject was given open use time and a practice session to 

acclimate to controlling the MPL fingers. During this acclimation period, the false positive 

rate of the movement classifier was tuned by adjusting the priors on the Markovian transition 

probabilities. The speed at which the fingers would flex/extend was also adjusted at this 

time, resulting in an extension velocity set to 40% of the flexion velocity. Figure 1 displays a 

flow diagram for the online BMI.

During the online testing session, the experimenter typically waited for all the MPL fingers 

to return to rest before initiating the next trial. There was a two second system pause before 

the appearance of the visual cue after trial initiation. This was used as a baseline (rest) 

period during post-hoc analysis.

2.4. BMI Control Evaluation

To evaluate the performance of the BMI control, we inspected the accuracy of the binary 

movement detection classifications and the 5-way individual finger classifications. 

Movement times relative to trial onsets were obtained from video analysis for trials where 

the subject’s hand was visible. The proportion of movement vs non-movement predictions 

was binned in 250 ms bins relative to movement onset and averaged across trials. The 

proportion of movement predictions over time was used to evaluate the performance of the 

movement detection classifier.

The individual finger classifier performance was evaluated similarly by binning the single 

finger classifications that occurred when a movement was predicted. Because it was 

observed that the ring and little finger movements were often linked, the classification 

accuracy was calculated both considering them as the same and as separate fingers. Finger 

classification confusion matrices were calculated at the onset of peak movement detection, 

and during the time period where movements were most consistently predicted.

We also evaluated the global asynchronous finger classification performance. This was 

accomplished by calculating the accuracy of the individual finger classifier at any time a 

movement was predicted within seven seconds of cue onset. We also calculated the 

percentage of trials where the cued finger, and not any of the others, was fully flexed by the 

MPL. To find the balanced accuracy of flexing the cued finger, we averaged the accuracy of 
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fully flexing during the correct trial with the accuracy of not fully flexing during the 

incorrect trial.

To approximate the relative contributions of the electrodes to classification accuracies, we 

examined the cross-validated regularized LDA performance on its training data with varying 

numbers of electrodes.

2.5. Offline Analysis

Offline analysis was performed to determine the expected range of decoding performance 

with an optimized electrode selection during time periods preceding somatosensory 

feedback. While a lack of somatosensory feedback does not preclude activation of S1[37]–

[39], direct cortical activation caused by somatosensory feedback is not be present in 

deafferented patients in need of BMIs. We attempted to control for this by comparing the 

time course of finger-specific activation during the finger tapping and finger vibration tasks. 

We expect similar patterns of activation between paralyzed and able-bodied patients during 

the time period preceding somatosensory feedback, as suggested by the spatial patterns of 

activation seen in paralyzed patients during attempted movements [30]. The signals during 

this pre-sensory time period are likely representative of the minimum of what could be 

expected from paralyzed individuals for BMI control.

To view the time-course of activation relative to movement onset, the ECoG and CyberGlove 

data were segmented using the CyberGlove recordings. However, it was observed that the 

subject often initiated trials with a gross relaxation/extension movement of his hand and 

fingers before flexing the finger of interest. We therefore aligned the recordings separately to 

both the onset of any detected movement and the onset of flexion by the finger of interest. 

We then excluded any trial with more than a 400 ms disparity between the two alignment 

points, or excessive hand movements before onset of the finger movement; 19 trials were 

excluded in this way. The selection of onset times was verified by performing cross-

validated LDA to predict which finger was moving using only the CyberGlove data (i.e., 

finger kinematics, not neural data). Chance levels were computed via permutation testing, 

and time points significantly above chance were detected via the Wilcoxon rank-sum test 

with a Bonferroni correction for multiple comparisons. We found the CyberGlove tracings of 

hand movement had differentiable features for different fingers during the preliminary hand 

movement (Supplementary Figure 1). We therefore aligned to our more conservative 

estimate of movement onset for all our subsequent offline analyses.

The conservative movement onset marker was used to compare the time course of activation 

during the finger tapping and vibration experiments. Spectrograms were created using the 

multitaper method from Chronux toolbox (http://chronux.org) with a window size of 128 

ms, step size of 10 ms, passband of 16-160 Hz, cutoff frequencies of 10 Hz and 170 Hz, a 

time-bandwidth product of three, and five tapers.

We then investigated the time course of high gamma activation by using the same high 

gamma feature extraction method used for our online BMI. We removed visibly bad 

electrodes, CAR filtered the high-density grid electrodes, and used the Hilbert transform 

with a 72 to 110 Hz bandpass filter to compute the high gamma band power with a window 
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of 128 ms and a 16 ms step size. For every electrode in the motor and vibrotactile 

stimulation experiments, we only included activity during trials for the finger that evoked the 

strongest high gamma response. This allowed us to detect significant trial-averaged 

activations even if an electrode was only modulated by one finger. We then performed a 

Bonferroni corrected Wilcoxon rank-sum test for significant activation of high gamma 

relative to baseline at every point between 256 ms before and 240 ms after the onset of 

movement (or vibration, in the sensory trials). This allowed us to identify the earliest time 

points of cortical activation in each electrode for the motor and sensory task.

Finally, we investigated the time course of discriminable information between individual 

fingers during the motor and vibrotactile experiments. This was done to examine the 

decoding accuracy of finger movements during the period of time before finger-specific 

information was received through somatosensory feedback, which would not be present in 

deafferented subjects. The extracted high gamma features were smoothed using a 15th order 

moving average filter (window centers spanning 224 ms). We then performed 10-fold cross-

validated LDA classification on the smoothed features; ten disjoint testing sets (each 

containing 10% of the trials) were each evaluated by (during each fold, separately) using the 

other 90% of the trials for feature selection and model training. The feature selection was 

performed using cross-validated regularization [40]. This regularization phase helped inform 

us as to what electrodes most consistently contributed to decoding performance. The number 

of times each electrode was chosen across the 10 folds of cross-validation was used as an 

index of its importance. We used extracted features in a causal manner, meaning that for a 

given time point t, features pertaining to that time point were extracted from windows which 

did not extend past t. This alignment was used to ensure our classifications were not 

dependent on future information, and therefore approximate the earliest time points when 

sensory feedback could have been included in the classifications. Feature extraction was 

repeated in a non-causal manner, aligned to the peak flexion time with a 30th order moving 

average filter (window centers spanning 464 ms) to estimate the upper limit on expected 

online decoding performance.

3. Results

3.1 BMI Electrode Selection

Preliminary inspection of high gamma activation during the motor task and vibrotactile 

stimulation, along with a preliminary reconstruction of the electrode locations, informed our 

feature selection process for the online decoder. Spectral features were used from a subset of 

electrodes that was chosen to avoid postcentral somatosensory cortex, though an error in the 

preliminary electrode localization led to the inclusion of two electrodes over postcentral 

gyrus. In training data from this subset of electrodes, cross-validated classification achieved 

80% accuracy. Figure 2 depicts the locations of the electrodes chosen for the training set and 

for online BMI testing (below), as well as which electrodes showed significant activation 

during the motor and sensory tasks.
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3.2. Online Testing

The subject performed 39 visually cued trials during online control of the MPL fingers 

(example performance, Supplementary Video 1). The subject began moving the prompted 

finger, on average, 1.43 seconds after cue onset.

Predictions were made at an average rate of 24 Hz. The average of the 50 most recently 

extracted spectral features was used for all predictions. This resulted in using the mean of 

features extracted over 2.34 seconds on average, with a group delay of approximately 1.17 

seconds.

Figure 3 shows the accuracy of the binary movement classifier and the individual finger 

classifier as a function of time relative to cue onset. Movement detection accuracy reached a 

peak of 97%, sustained between 1.6 and 3.1 seconds after movement onset. Classifier 

accuracy during the baseline period was 87%, resulting in a balanced accuracy of 92%. 

Individual finger prediction accuracy peaked at 81% (chance 20%) when predicting which of 

all five fingers was moving, and 94% when classification for the ring and little finger was 

coupled (chance 25%).

At the onset of the peak movement detection period (1.6 seconds post-movement-onset), 

classification among all five fingers had an accuracy of 76%. When combining the ring and 

pinky fingers (they often moved together), accuracy was 88% (Figure 4, top row). The 

average classification accuracy during the peak movement detection period (1.6-3.1 seconds 

post-onset) was 67% for all five fingers, and 79% when combining ring and pinky fingers 

(Figure 4, middle row). The average accuracy at any time a movement was detected within 

seven seconds of trial onset (cue displayed) was 55% and 68% for five and four fingers, 

respectively (Figure 4, bottom row). Given that the accuracy in the baseline period was 87%, 

this equates to 60% and 72% accuracy for 6 and 5 class classifiers that include “rest” 

(chance levels of 17% and 20%, respectively).

The balanced accuracy of flexing the cued MPL finger (within seven seconds of trial onset) 

was 64%, and 77% when pinky and ring positions were summed together. The cued finger 

was the only finger fully flexed by the MPL during 43% of the trials, and 62% when pinky 

and ring commands were combined. The average traces of the normalized MPL finger 

positions during their respectively cued trials are shown in Figure 5. The dashed lines 

represent the average position of the other four fingers during that trial (e.g. the solid blue 

line depicts the thumb, while the dashed blue line depicts the mean position of the other 

fingers during thumb trials).

A cross-validated, regularized parameter search limited to the electrodes selected for the 

online BMI revealed that adding five electrodes (shown in Figure 2) led to the greatest 

reductions in error on the training data, and the addition of other electrodes typically 

increased error. In spite of excluding electrodes identified by preliminary electrode 

localization as being over the postcentral gyrus, the four electrodes which contributed the 

most to decoding accuracy all showed significant activation during the vibration task. We 

therefore performed offline analyses to investigate the motor decoding results when 

controlling for the contributions of somatosensory cortex activity.
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3.3. Offline Analysis

To investigate the relative contributions of somatosensory and motor cortex to the BMI, we 

compared the spatiotemporal patterns of activation during offline passive vibrotactile 

stimulation vs. finger movement. Figure 6 shows spectral activation during passive vibration 

and offline finger movement in the two electrodes that contributed most to online decoding 

performance. Intensities are saturated to better see the earliest activation times.

A total of 33 electrodes displayed significant task-related spectral modulation during finger 

movement in the 512 ms centered on movement onset. These electrodes crossed significance 

thresholds a median of 16 ms before onset of movement. The 25 electrodes with significant 

modulation in the 512 ms centered on vibrotactile stimulus onset reached significance a 

median of 80 ms after vibration onset. This suggests that a good deal of the activation during 

finger movements was not solely due to somatosensory feedback.

Spectral modulations during the motor task significantly exceeded baseline levels in four of 

the five electrodes that contributed most to the classifier performance. In these electrodes, 

activation first became significant during feature extraction windows (256 ms long) centered 

16, 48, 128, and 160 ms before the onset of movement (one did not display significant 

activation). In the sensory task, activation first reached significance 48 ms after the onset of 

vibration in three of the five electrodes, 64 ms in one electrode, and never in one electrode.

To investigate the ability of early motor-related spectral modulations to discriminate between 

fingers, we built and tested classifiers throughout the time course of the finger movement 

task and passive finger vibrations. Supplementary Figure 2 displays finger classification 

accuracies over time relative to the movements recorded by their respective finger sensors in 

the CyberGlove. Prediction of thumb movements was particularly early and robust. Figure 7 

shows the electrodes selected during the regularization phase. The size of the red circle for 

each electrode represents how often that electrode was selected during regularization across 

the ten folds of cross-validation. A high degree of overlap was found between the most 

important electrodes during the sensory and motor tasks, though additional precentral 

electrodes were selected for decoding early in the motor task.

Mean classification accuracy is shown for motor task and vibrotactile stimulation in Figure 

8. Time points were referenced to the onset of any detected movement (via CyberGlove) or 

the onset of vibration. At each time point, the mean of the previous 15 feature extraction 

windows was used for cross-validated classification. This causal decoding scheme made use 

of the 352 ms of data preceding each time point. Classification accuracy during the finger 

tapping task was significantly higher than the corresponding accuracy during vibrotactile 

stimulation between −32 ms to 224 ms (p < 0.05, Wilcoxon rank sum, Bonferroni corrected 

for 30 comparisons). The classification accuracy for finger vibration exceeded chance 192 

ms after stimulation onset. The mean classification accuracy during the motor task reached 

70.7% at the corresponding time of 192 ms after movement onset. Decoding based on the 

ECoG signals showed similar accuracy over time relative to using the CyberGlove 

recordings for finger decoding. This was in spite of the fact that the ECoG features were 

associated with a group delay of 184 ms, whereas CyberGlove relied only on the 

instantaneous time value.
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While peak performance without somatosensory feedback cannot be reliably ascertained 

from this data, the time course of classification accuracies indicate that accuracy using 

signals only related to motor function (without accuracy inflated by sensory feedback not 

present in paralyzed subjects) would likely achieve at least 70.7% accuracy in discriminating 

which finger was being moved. When data was aligned to the peak flexion time and the 

smoothing window was increased to 480 ms, we obtained a maximum accuracy of 96.5% 

and a mean accuracy of 90.2% between 190 ms before to 1250 ms after the peak flexion 

(after correcting for group delays). Based on these findings, we estimate that a high-density 

ECoG array over sensorimotor areas would yield individual finger classification accuracies 

in the range of 70.7-96.5% using motor signals in the deafferented patient population that 

would benefit most from invasive BMI systems.

4. Discussion

We have demonstrated, for the first time in humans, online neural decoding of individual 

finger movements to control a dexterous modular prosthetic limb. We utilized high gamma 

power extracted from a high-density ECoG grid situated over a subject’s sensorimotor cortex 

to produce intuitive BMI finger control. This was accomplished without arbitrary mappings 

of user inputs or extensive training by using the native cortical representations of finger 

movements. During online control, we utilized all available neural information in a subset of 

electrodes to produce highly accurate control of fingers. For further offline analysis, we 

limited our analysis to time periods preceding discriminable sensory afferent information to 

more closely mimic SCI patients’ neural activity. We found this still yielded discriminable 

information useful for finger control.

We were able to accurately decode finger flexions online using the native sensorimotor 

representations of fingers in the brain. The classification accuracy for the online BMI at the 

onset of the most reliable time period for detecting movements (1.6 seconds post-cue) was 

76% (88% with ring and pinky combined). The balanced accuracy of correctly flexing the 

cued MPL finger was 64% (77% with ring/pinky combined). Our asynchronous binary 

prediction of whether the subject was moving any finger yielded a balanced accuracy of 

92%. To our knowledge, this is the first online demonstration by a human subject of neural 

control of individual finger flexion with a robotic prosthetic limb. We further believe that the 

control of five individual fingers in this study marks the greatest number of distinct degrees 

of freedom controlled online with ECoG signals. By accomplishing this without the need for 

operant conditioning, we have shown that high density ECoG can leverage the native 

somatotopy of individual fingers to provide patients with immediate, more intuitive finger 

control.

Our online results contribute to the growing literature of online ECoG control over robotic 

prosthetics. Subjects have used ECoG to asynchronously modulate the aperture of two grasp 

types (77% of trials correct to completion) while simultaneously controlling elbow 

movements (34% of trials correct to completion) with a prosthetic limb [11]. The ability to 

simultaneously control reach and grasp independently with a prosthetic limb was 

demonstrated with mean accuracies of 84% and 81% for reach and grasp respectively [12]. 

ECoG control signals have been further integrated with intelligent robotics to pick up and 
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move objects with a mean success rate of 70% [41]. Yanagisawa et al. was able to 

asynchronously detected hand movements (61% detected within one second) then decode 

which of three different hand movements was performed (69.2% accuracy) [42]. Chestek et 

al. showed 97% accuracy in classifying between resting and grasping at a fixed time relative 

to cue in two subjects [9]. Their accuracy was 57% in one subject when expanded to two 

different grasp types vs rest, and 55% accuracy in another subject when classifying between 

rest and four grasp types. ECoG signals from hand somatosensory areas were also used in 

[43], where attempted thumb, wrist, and elbow movements were used as control signals for 

3D arm position. Their subject achieved 80% accuracy in a 3D cursor task leading up to 

their MPL endpoint control, demonstrating the ability of postcentral hand area ECoG signals 

recorded from a paralyzed subject to control a BMI. Our online asynchronous classification 

accuracies of 64% and 77% for rest vs five and four fingers respectively build on the 

previous literature to show, for the first time, that neural recordings can be used to provide 

immediate online control of individual fingers without the need for operant conditioning.

In order to more closely mimic the neural activity of an SCI patient, we performed further 

offline analyses where we limited neural activity to time periods preceding sensory 

feedback. Slight pre-trial movements of our subject’s hands led to loss of data from 

conservative estimates of movement onset determination. While cortical reorganization 

occurs after SCI/amputation, multiple groups have demonstrated continued sensorimotor 

activity during imagined or triggered phantom hand movements [44]–[47]. We believe SCI 

patients could harness this continued neural activity to control a robotic limb BMI. Indeed, 

groups working with a SCI patient implanted with ECoG have demonstrated SCI patients' 

ability to modulate this rhythms to control a BMI [43]. In spite of the very conservative 

estimate of movement onset, spectrograms of high gamma activation revealed significant 

pre-movement activity (Figure 6). We estimate a lower bound of 70.7% decoding accuracy 

without sensory feedback. Higher single finger decoding accuracies at movement onset was 

previously found [1], but this was achieved with a non-causal methodology that did not 

account for sensory feedback. Our peak accuracy during offline analysis of the motor task 

reached 96.5%, with a mean accuracy of over 90% during a time period lasting over a 

second. This establishes an upper bound of over 90% for expected online single finger 

decoding accuracy using high-definition ECoG over sensorimotor areas. A comparable drop 

in performance was seen previously [9] when predictions were only made using data from 

before movement onset. This is consistent with our estimate of the expected lower bound 

accuracy.

Our analysis revealed widespread pre-movement activity across both precentral and, 

interestingly, postcentral gyri during the finger tapping task. Much of our decoding accuracy 

was derived from electrodes that also showed activation during vibrotactile stimulation 

(Figure 7). This may have been due in part to the high-density grid having better coverage of 

the finger representation on the postcentral gyrus than the precentral gyrus. Another possible 

reason the somatosensory-modulated electrodes were essential to decoding can be traced to 

more distinct somatotopy of individual fingers in the postcentral gyrus than in the precentral 

gyrus [22], [23], [25], [48], [49]. A large portion of the post-movement activity detected in 

postcentral gyrus was no doubt the result of afferent cutaneous and proprioceptive 

information. However, it is possible that a subset of the pre-movement activity in this region 
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was the result of an “efference copy” sent from premotor and associated motor planning 

cortices [32], [50], [51]. These results are similar to a human ECoG study that showed pre-

movement signals in sensory areas that were led by signals in task-related areas in premotor 

cortices [52]. This movement-related activation, observed in both pre- and postcentral 

cortex, has been noted in paralyzed subjects [37]–[39]. Furthermore, postcentral activity was 

recently used to provide control over a three dimensional brain-machine interface to a 

paralyzed subject [43].

Further advancements in ours and other systems are necessary before BMIs will be able to 

meet the clinical needs of SCI patients. Although we were able to demonstrate immediate 

robust online control of individual fingers, future users will need more accurate systems 

before they can perform the ADLs necessary for full autonomy. However, while the raw 

decoding accuracy found in this study would not meet the performance requirements of a 

functionally useful prosthetic device, cortical adaptation has been shown to increase BMI 

performance over time [53]–[55]. This would likely improve results for patients that can 

work with the BMI system longer than the brief testing session performed in this study. 

Additionally, decoding from more comprehensive coverage of precentral areas would likely 

further improve system robustness [1], [9]. Finally, other avenues of research may also 

create more functionally useful BMIs. Incorporating intelligent robotics into neural-only 

BMIs may allow users to perform a wide variety of tasks [41], [56]. By using environmental 

sensors to inform the system of which fingers the user likely wants to flex, the system could 

incorporate prior knowledge of grasp trajectories to accomplish advanced tasks in the 

presence of noisy cortical control signals.

5. Conclusions

We demonstrated the ability of a patient implanted with high density ECoG over 

sensorimotor areas to asynchronously control individual finger movements intuitively in an 

online BMI, without the need for online training sessions. Offline analysis showed a large 

amount of the decoding accuracy in our coverage area was derived from postcentral gyrus. 

While our online control was likely highly influenced by sensory feedback, we found that 

the signals in somatosensory areas showed significant activation before movement onset, 

which might still occur in patients lacking afferent somatosensory inputs. Furthermore, 

decoding accuracy over the course of the movement mirrored the separability of hand 

positions—the more the CyberGlove recordings became identifiable as a specific finger 

movement, the more the finger movement could be decoded from the preceding window of 

neural data. Our findings support previous studies suggesting an efference copy activating 

somatosensory cortex [32], [50], [51]. Here we demonstrated that this information can be 

used to control individual fingers in an able-bodied subject. Future studies will need to 

determine whether the same or similar signals can be used in paralyzed patient populations, 

but recent work has demonstrated promising results showing sensorimotor activation in 

deafferented patients [37]–[39], [43].

We have demonstrated, for the first time, online control of all five individual fingers of a 

robotic prosthetic hand independently and hope that insights from this study can one day be 

applied to paralyzed patient populations to enable them to perform dexterous ADLs.
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Figure 1. 
Flow diagram of the online BMI processing. Signals are rereferenced, high gamma is 

extracted and smoothed, and then a hierarchical classifier is used to determine if/which 

fingers should be moved.
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Figure 2. 
Electrodes used for online BMI. Starred electrodes were selected for online BMI control. 

Sulci are accentuated in the inset for improved visibility, with the central sulcus highlighted 

in green. Post-hoc analysis showed the electrodes with gold stars contributed the most to 

decoding accuracy on the training set. Light blue electrodes showed significant activation 

during vibrotactile stimulation, and red electrodes were active during the motor task. The 

electrodes that were not available for the offline analysis are filled black. Purple outlines the 

interhemispheric fissure and red outlines the previously resected superior frontal gyrus.
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Figure 3. 
Classification accuracies over time for movement and finger classification. Classifications 

were aggregated in 250 ms time bins, and accuracies were averaged across trials. The black 

dashed line depicts the average proportion of predictions that a window contained movement 

(i.e., versus rest). The solid black vertical line depicts movement onset.
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Figure 4. 
Confusion matrices for finger classifications. The left column of matrices shows results for 

all five fingers, the right column shows results with pinky and ring fingers combined. The 

top row depicts the confusion matrices at the onset of the peak movement classification time, 

middle shows the average over the 1.5 seconds of peak movement detection time, and the 

bottom is any time within seven seconds of cue onset.
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Figure 5. 
Average normalized MPL finger position of all five fingers during online BMI control (left), 

and with ring and pinky commands aggregated (orange, right). Solid lines depict the average 

position of the cued finger as a proportion of maximum flexion, where 1 corresponds to fully 

flexed and 0 corresponds to fully extended. The corresponding dashed lines show the 

average position of all the other fingers during the cued finger’s trials.
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Figure 6. 
Spectral activation during offline index finger tapping (top) and passive index finger 

vibration (bottom) for the two BMI electrodes that contributed most to performance with the 

training data. For finger tapping (top row) the solid black line marks the onset (t=0) of any 

hand movement detected by the CyberGlove. The red curve is the average trace of the index 

finger sensors on the CyberGlove. For finger vibration (bottom row), the black line marks 

onset of the vibratory stimulus. Activation significantly exceeded baseline levels 160 ms and 

48 ms before movement onset during the motor task (top row), and 48 ms after the onset of 

vibrotactile stimulation (bottom row).
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Figure 7. 
Electrodes most consistently selected during the ten folds of cross-validation for the offline 

motor and sensory task classifications. Green denotes the central sulcus with the left side of 

every image being anterior and right being posterior. Cross-validated regularization was 

performed on the training data during classification at every time step. Size of the red circle 

corresponds to the frequency with which electrodes were selected during regularization. The 

first pane shows the electrodes selected for the movement task in a 352 ms decoding window 

ending 80 ms after movement onset (t=80 in Figure 8), yielding 65% accuracy. The middle 

pane is for the same window ending at 512 ms, yielding 87% accuracy. The right pane is for 

vibratory stimulation, with the 352 ms window ending at 400 ms after vibration onset, and 

an accuracy of 96.8%.
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Figure 8. 
Finger classification accuracy over time using CyberGlove and ECoG recordings during the 

motor task, and ECoG during vibrotactile stimulation. Motor task recordings are aligned to 

the onset of any movement by the subject’s hand (solid line), and vibrotactile stimulation is 

aligned to onset of the vibratory motor (solid line). The red, green, and blue dashed lines 

denote when decoding accuracy exceeded chance levels using motor task high gamma, 

vibrotactile stimulation high gamma, and motor task CyberGlove data. All decoding is 

causal, i.e. classification accuracy at time t is dependent only on samples collected at time t 

and earlier. Shading represents the 95% confidence interval of the mean.
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Table 1

Experimental Overview

Experiment Purpose

Vibrotactile Stimulation Control for sensory feedback

Finger Tapping Two sessions: one to provide training data for our
decoder, and one as an independent dataset for
offline analysis

Online BMI Testing Online test of the decoder built on finger tapping data
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