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Brain-Computer Interface (BCI) technology enables users to operate external

devices without physical movement. Electroencephalography (EEG) based

BCI systems are being actively studied due to their high temporal resolution,

convenient usage, and portability. However, fewer studies have been

conducted to investigate the impact of high spatial resolution of EEG on

decoding precise body motions, such as finger movements, which are

essential in activities of daily living. Low spatial sensor resolution, as found

in common EEG systems, can be improved by omitting the conventional

standard of EEG electrode distribution (the international 10–20 system) and

ordinary mounting structures (e.g., flexible caps). In this study, we used

newly proposed flexible electrode grids attached directly to the scalp, which

provided ultra-high-density EEG (uHD EEG). We explored the performance of

the novel system by decoding individual finger movements using a total of

256 channels distributed over the contralateral sensorimotor cortex. Dense

distribution and small-sized electrodes result in an inter-electrode distance

of 8.6 mm (uHD EEG), while that of conventional EEG is 60 to 65 mm on

average. Five healthy subjects participated in the experiment, performed single

finger extensions according to a visual cue, and received avatar feedback.

This study exploits mu (8–12 Hz) and beta (13–25 Hz) band power features

for classification and topography plots. 3D ERD/S activation plots for each

frequency band were generated using the MNI-152 template head. A linear

support vector machine (SVM) was used for pairwise finger classification. The

topography plots showed regular and focal post-cue activation, especially in

subjects with optimal signal quality. The average classification accuracy over

subjects was 64.8 (6.3)%, with the middle versus ring finger resulting in the
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highest average accuracy of 70.6 (9.4)%. Further studies are required using the

uHD EEG system with real-time feedback and motor imagery tasks to enhance

classification performance and establish the basis for BCI finger movement

control of external devices.

KEYWORDS

BCI, EEG, high-density EEG, ultra-high-density EEG, machine learning, finger
decoding, motor execution

1 Introduction

Brain-Computer Interface (BCI) technology employs brain
activity and the underlying neural information to control
external equipment such as computers, wheelchairs, and
prostheses without needing to physically move body parts
(Belkacem et al., 2020). This technology can help people
suffering from severe motor disabilities to communicate with
the outside world and indirectly restore motor function
(Wolpaw et al., 2002). The applications for complete or
partially paralyzed patients, such as stroke patients (e.g.,
Hemiplegia), have been widely investigated for decades
(Harkema et al., 2011; Bundy et al., 2017; Guger et al.,
2017; Bai et al., 2020; Sebastián-Romagosa et al., 2020;
Bhatia et al., 2021).

Rehabilitating motor functions of the hand, especially
fingers, is essential for improving activities of daily living (ADLs)
for people who experience upper limb motor impairment.
Finger movements are required to manipulate tools, grab and
move objects, and make signs, which are functions repeatedly
used and indispensable (Landsmeer, 1962; Jones and Lederman,
2006; Mawase et al., 2020). Therefore, to better understand
and rehabilitate the finger-related motor cortex, a considerable
amount of research has been conducted (Kubánek et al., 2009;
Acharya et al., 2010; Yanagisawa et al., 2011; Flamary and
Rakotomamonjy, 2012; Liang and Bougrain, 2012; Hotson et al.,
2016). For example, Acharya et al. (2010) and Kubánek et al.
(2009) observed a focused brain activation region during hand
grasp and thumb flexion, respectively. Hotson et al. (2016) and
Gruenwald et al. (2019) classified individual finger tapping with
accuracies above 95% using high-density electrocorticography
(ECoG) grids.

These results are outstanding but cannot be generalized
because most studies used invasive methods such as
ECoG to acquire brain activity. Since ECoG acquires
electroencephalographic signals directly from the cerebral
cortex, it provides high spatio-temporal resolution and signal-
to-noise ratio (SNR), producing excellent results in detecting
single finger movements. However, invasive methods require
clinical surgery to place the subdural electrode grids directly on
the surface of the cortex.

This limitation demands using non-invasive methods,
such as electroencephalography (EEG). EEG acquires
electrophysiological signals from the scalp. Since EEG does not
require clinical surgery and offers a high temporal resolution
with low price and high portability, it is the most widely used
among various brain signal acquisition methods (Mason et al.,
2007). Moreover, these characteristics empower EEG-based BCI
systems to be used as real-time closed-loop applications, the
final goal of BCI application systems.

However, EEG systems have several limitations. It has
low spatial resolution caused by common EEG electrodes’
large layout and size and its susceptibility to artifacts
that often originate from movement and electromyographic
(EMG) activity (Al-Fahoum and Al-Fraihat, 2014). Due to its
limitations, the current state-of-the-art EEG systems only allow
the distinction of gross movements. For example, research was
done to discriminate hand grasp and release (Lange et al., 2016),
right and left-hand movements (Pfurtscheller et al., 1997),
upper-limb movements (Ofner et al., 2017), and lower-limb
movements (Mejia Tobar et al., 2018).

Decoding more precise movements, such as individual
finger movements, is highly challenging for conventional EEG
systems. Quandt et al. (2012), Stankevich et al. (2016), and
Bera et al. (2019) decoded individual finger movements using
frequency bands under 40 Hz. They resulted in an average
classification accuracy of 60, 50, and 43%, where the chance level
was 33, 25, and 25%, respectively. Liao et al. (2014) classified
finger pairs and reached 59 and 77% accuracy using the mu
frequency band (8–12 Hz) and broadband features, respectively.

We assume a higher spatial resolution can improve
the performance of EEG on precise tasks. Since denser
electrodes can increase the spatial resolution, the amount
and density of EEG electrodes have historically been steadily
increasing. The first standard placement of EEG electrodes
was proposed by Jasper (1958) with the definition of the
10–20 electrode system using 21 electrode locations over
the whole scalp (see Figure 1A, dark gray circles). In
1985, the extended version of the 10–20 system, the 10–
10 system, was proposed using 74 electrode locations (see
Figure 1A, light gray circles), which is currently accepted as
the standard by the American Electroencephalographic Society
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FIGURE 1

(A) Comparison of the 10–20, 10–10, extended 10–10, and ultra-high-density electroencephalography (uHD EEG) systems–black circles with
labels illustrate the 10–20 system; gray filled circles with electrode names show the positions of the original 10–10 system; gray non-filled
circles indicate the extended positions of the 10–10 system; the entirety of the small black circles show the 1,024 uHD EEG system. The
green-colored area indicates the electrode positions used in this study (256 electrodes out of 1,024 electrodes). (B) 3D model of the human
scalp with the marked electrode positions. Cz is pointed out with an arrow. Each sphere corresponds to a single electrode, where black-colored
electrodes indicate the region of interest for the classification.

(Chatrian et al., 1985; Sharbrough, 1991). Based on the 10–10
system, another extended version, the extended 10–10 system,
was proposed using 128 electrodes [(Oostenveld and Praamstra,
2001); see Figure 1A, gray non-filled circles]. Several high-
density EEG systems are available commercially, primarily using
from 160 to 256 channels. However, some devices contain
electrodes placed on the cheeks and neck that record less
motor-related brain activity. Therefore, more electrodes do not
necessarily result in high motor classification performance.

Can’t the number of electrodes further increase? Yes, but
only by breaking the convention that the electrode position
should follow the international 10–20 system. Several studies
have demonstrated that narrowing down the inter-electrode
distance under 2 cm–commonly and widely used inter-
electrode distance–is beneficial since it provides additional
neural information (Freeman et al., 2003; Odabaee et al., 2013;
Petrov et al., 2014; Robinson et al., 2017). For this reason, some
recent studies explored denser electrode layouts in visual and
auditory contexts (Robinson et al., 2017; Chamanzar et al., 2021;
Narayanan et al., 2021). Here, we define a novel array formatted
dense electrode layout (see small black circles in Figure 1A)
as ultra-high-density EEG (uHD EEG). Theoretically, 1,024

electrodes can be placed over the whole scalp following the
electrode size and position of this layout.

In order to achieve high SNR, active and wet electrodes
are preferred over passive and dry electrodes. Active and
wet electrodes use pre-amplifiers to amplify the acquired
signal and conductive gel to bridge the scalp and electrodes
(Mathewson et al., 2017). However, if the uHD EEG system
consists of wet electrodes and is placed with a cap or a similar
stretchable structure, as is the case for conventional EEG, the
conductive gel of adjacent electrodes may touch due to its
proximity (Rashid et al., 2020). This problem can be solved
by changing the attachment method from a cap type to a
medical adhesive. The conductive gel can be separated into holes
using medical adhesives that have resections at each electrode
site, consequently providing consistent low impedance and
electrode separation.

In this study, we used a newly proposed uHD EEG,
g.Pangolin (g.tec Medical Engineering GmbH, Schiedlberg, UA,
Austria), and explored the performance by decoding individual
finger movements of one hand. To the best of our knowledge,
no experimental study using such uHD EEG in motor tasks
has been reported (while visual and auditory tasks have been
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explored). The electrode grids were directly attached to the
scalp using medical adhesives. Five subjects participated in
the experiment and extended individual fingers according to
a visual cue. Collected data were preprocessed, and features
were extracted for the mu (8–12 Hz) and beta (13–25 Hz)
frequency bands. In order to assess the performance of the
system, topography plots were generated for the band power
features, and a linear support vector machine (SVM) classifier
was used for pairwise finger classification.

2 Materials and methods

2.1 Subjects

Five healthy subjects [S1–S5, one female and four males,
age: 28 (7) years in mean (SD)] participated in the experiment.
Subjects S2–S5 were right-handed, whereas subject S1 was left-
handed. The participants did not receive any prior training
regarding this experiment. The study was approved by the
Institutional Review Board of Korea Advanced Institute
of Science and Technology (KH2018-127). All participants
gave written consent forms about recruitment prior to
data collection.

2.2 Experimental protocol

Prior to the experiments, the subjects’ heads were shaved
and cleaned with medical alcohol to attach uHD EEG grids
directly to the scalp. As in Figures 2A,B, subjects sat on a
comfortable armchair with their dominant hand placed on
the table and their palm facing down. Figure 2C shows the
experimental protocol, with the whole experiment consisting
of 10 sequential runs. Each run lasted roughly 5 min, and
the subject could take a break between runs. A single run
started with a 30 s baseline period, followed by alternating
rest and extension periods. During the rest period, the left
picture of Figure 2D was shown on the monitor, and the
subject could relax, swallow, or blink their eyes. The rest
period lasted randomly between 3 and 4 s to prevent the
subjects from adapting to the protocol. During the 5 s extension
(i.e., task) period, the subject extended the finger according
to the instruction cue and maintained it without moving any
other part of their body. The instruction cue reflected a hand
for which a single finger was colored and displayed in the
monitor’s top-center (see Figure 2D right picture, middle finger
extension). All fingers were pseudo-randomly cued five times
in each run, resulting in 25 finger extensions per run. The
hand avatar provided ideal (i.e., non-online feedback) visual
feedback by imitating the finger rest and extension movements
(see Figure 2D). Thus, the visual feedback can be thought of as
an instruction that subjects should follow.

2.3 Ultra-high-density
electroencephalography system

Brain activity was measured using a novel uHD EEG system.
The g.Pangolin system can be considered uHD due to its spatial
resolution. A single electrode grid consists of 16 electrode points
with a diameter of 5.9 mm and a center-to-center spacing
of 8.6 mm. In this study, 16 electrode grids (256 electrodes)
were attached over the contralateral sensorimotor cortex of
the subject’s scalp (see Figure 1A, the green-colored area).
Instead of using the 1,024 electrodes, only using electrodes
over the contralateral sensorimotor cortex would improve
the performance of motor control when channel selection
algorithms or feature weights are used together (Arvaneh et al.,
2011; López-Larraz et al., 2014). Figure 1B shows the electrode
position on the subject’s scalp. The black-colored electrodes
(158 electrodes) reflect the region of interest (ROI), while gray-
colored electrodes were excluded from the classification step
for this motor movement task. We removed the most anterior,
posterior, central, and temporal electrodes to reduce the number
of features during classification while retaining electrodes over
the subjects’ sensorimotor hand area.

The electrode grids were attached sequentially in the
downward direction laterally of the head, starting with the first
electrode grid at the Cz position. Since the electrode grid is
diamond-shaped and attached to share each other’s side, the
sensor locations were pre-defined only with the starting point
and the direction. The ground electrode from the uHD EEG
system was placed on the left mastoid for all experiments.

Figures 2A,B show the system setup and data acquisition
procedure for the conducted experiments. The electrode grid
was attached to the skin using medical adhesives that insulated
the electrode sites. The resection in the adhesive was filled with
conductive paste, Elefix (Nihon Kohden Corporation, Japan),
to ensure optimal skin contact and low impedance at the
electrode-skin junction. For better signal quality and higher
SNR, a pre-amplifier is used. Through this stage, the raw EEG
recorded from the scalp is amplified with a gain of 10. An
interface box connects the high-resolution electrode grids with
the pre-amplifier and the biosignal amplifier. The pre-amplifier
is connected to the interface box using a micro-HDMI to HDMI
cable. The connection to the g.HIamp is established with a 65-
pin interconnect cable with LEMO connectors to transmit 64
channels and Ground (GND). The interface box allows 256
channels to be recorded with the g.HIamp biosignal amplifier
using 4 LEMO cables.

Data acquisition and paradigm presentation were
performed with g.HIsys Professional (g.tec Medical
Engineering GmbH, Schiedlberg, UA, Austria) running
under MATLAB/Simulink (The MathWorks, Inc., Natick, MA,
USA). Both the visual cue and avatar were presented using
Unity (Unity Technologies, San Francisco, CA, USA). The
signals were recorded with a sampling frequency of 600 Hz, and
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FIGURE 2

(A,B) Illustration and picture of overall system setup. The ultra-high-density electroencephalography (EEG) system is placed over the
contralateral sensorimotor cortex of the subject’s scalp and connected via pre-amplifiers and HDMI cables to an interface box. Further, the
256-channel amplifier g.HIamp (g.tec Medical Engineering GmbH, Schiedlberg, UA, Austria) is connected through USB to the acquisition
computer. A camera recorded the whole experiment. (C) The subject extended one of the five fingers and rested according to the experimental
paradigm. A single run consisted of 25 trials with five trials per finger. 10 runs were conducted for each subject. (D) According to the paradigm,
the monitor showed instruction cues and the hands of an avatar. The instruction was provided at the top center of the monitor with the colored
finger the subject should extend. The right picture shows an example of when the middle finger should be extended. During the rest period, no
finger was colored, and the hand was grayed out as shown in the left picture. As ideal visual feedback, the hand avatar simultaneously
performed the finger extension as the subject should do.

the cue information was synchronously recorded with the EEG
data in real-time.

2.4 Data processing

The EEG processing pipeline consisted of Preprocessing,
Feature Extraction, Epoching, Topography plots, and
Classification of the data and was implemented in MATLAB
(see Figure 3). MATLAB commands are provided to improve
reproducibility and are formatted in italic. The EEG processing
pipeline is quasi causal (except for the bad channel identification
and moving average), deterministic and computation cost was
kept low as the pipeline is intended to be used in real-
time and online BCI experiments. Note that both bad

channel identification and moving average could however be
implemented in a causal manner. The recorded EEG is unlikely
to be affected by ocular (e.g., eye movements and eye blink) and
movement artifacts as the electrodes did not cover the frontal
lobe, and subjects only moved their fingers during the tasks.

2.4.1 Preprocessing
The raw EEG recordings were first down-sampled from

600 to 200 Hz (resample) and notch-filtered at 60 Hz and its
harmonics using a notch-filter cascade. 4th-order Butterworth
filters were utilized, using butter to calculate filter coefficients
and apply the filter coefficients to the signal. Next, bad channels
and runs were identified based on EEG data during the task
period. Note that this step only provides the identified channels
and runs but leaves the previously notch-filtered EEG data
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FIGURE 3

Electroencephalography (EEG) processing pipeline consisting of preprocessing, feature extraction, epoching, topography plots, and
classification. “Identification of Bad Channels and Runs” returns only the information which channel(s) and run(s) are bad (dashed arrow) while
leaving the EEG data (solid arrows) unchanged. The data were visualized after each processing step for an example dataset with the dashed line
indicating the start of the first trial. nch, nf, and nt are the number of channels, fingers, and trials, respectively.

unchanged (see Figure 3). First, data were common average
referenced and filtered using a band-pass filter from 8 to 25 Hz.
Second, for each channel, the mean power was computed
by subtracting their respective mean, calculating the power
by the squaring of each time sample, and calculating the
mean power over time. Third, the mean channel powers were
log-transformed to improve Gaussianity and z-transformed.
Finally, channels with a z-score greater than 6 were considered
bad, and runs in which more than 10% of channels are
bad were removed. Furthermore, a disjunction was applied
to bad channels over the remaining runs (i.e., if a channel
is considered bad in one run, it is considered bad in all
runs). Bad channels found using this procedure were removed
from the notch-filtered EEG data, which were finally common
average referenced.

2.4.2 Feature extraction and epoching
The features extracted are band power features for the

mu and beta bands, as these frequency bands are associated
with motor functions (Miller et al., 2010; Cheyne, 2013). The
EEG data were band-pass filtered for the respective frequency
band, and the power was calculated by squaring each time
sample. Then the power was estimated in non-overlapping
0.25 s segments by averaging the power samples and applying
a centered moving average with a 0.75 s window length.
A centered moving average was used instead of a causal

moving average in order to make the interpretation of results
easier, as the latter would introduce time delays. Again, band
power features were log-transformed to improve Gaussianity
because non-log-transformed band power features are Chi-
squared distributed. Finally, a power shift compensation was
applied, subtracting the mean band power over the last 25 s.
This is important as the band power of any channel can
have slow drifts over time which will bias the classifier (see
Supplementary material–Supplementary Figure 2 and also
investigated by Benwell et al. (2019). A window length of
25 s was chosen as it comprises multiple trials while still
staying responsive. Specifically, choosing the window length too
short would lead to removing task-related information. Finally,
the band power features were epoched using 0.5 s pre-and
7 s post-cue.

High-gamma activity (70–170 Hz) was also investigated
(see Supplementary material–Supplementary Figure 1 and
Supplementary Tables 1, 2) as these features showed positive
results in classifying individual finger movements (Liao et al.,
2014). However, we did not find high-gamma activity to
have any added value for visualization of activity patterns or
classification.

2.4.3 Topography plots
A 3D model of the MNI-152 template brain (Montreal

Neurological Institute, Canada) was employed for visualization
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of the activation plots generalized over all subjects. 16 uHD EEG
electrode grids were placed on the MNI-152 head using a custom
montage creator software (g.tec Medical Engineering GmbH,
Schiedlberg, UA, Austria). The resulting montage contained 256
electrodes located on the left hemisphere.

All subjects except subject S1 are right-handed. Therefore,
the left hemisphere was selected for plotting the topographies
over all subjects. In the case of subject S1, the sensor locations are
redistributed by multiplying the x-axis coordinates by−1, which
results in the same electrode layout mirrored on the sagittal
plane having consistent plots.

The relative change in band power, commonly known
as event-related desynchronization/synchronization [ERD/S;
Pfurtscheller and Lopes da Silva (1999)], was calculated as:

ERDS [n] = log
(
p [n]

)
−

1
|SREF|

∑
k∈SREF

log
(
p
[
k
])

where p are the band power features and SREF contains the
time-discrete band power features within the reference period
ranging from 0.5 to 0 s before the cue. While this may seem like
a short reference period, note that a centered moving average
was used in the feature extraction (see Figure 3). Therefore, each
band power sample is related to the previous two-band power
samples. Finally, mu and beta ERD/S during the average trial
were illustrated in the topographies and reflect changes in dB.

Heatmaps based on ERD/S activation were generated
according to Kubanek and Schalk (2015). For each electrode,
the surface vertices closer than the Euclidean distance to
the adjacent electrode were determined. An activation value
was assigned to each vertex by convolving the activation
of each electrode with a linear decay kernel. The kernel
was chosen to reach zero at the Euclidean distance to the
closest electrode. Finally, the activation values assigned to
each vertex were summed up, and the vertices were colored
accordingly. Bad channels identified during the preprocessing
(see sections “2.4.1” and “2.4.2”) are excluded from the heatmap
interpolation. Depending on the number of bad channels, the
process of channel removal can result in irregular heatmaps with
vacant sensor locations.

Spatial ERD/S dynamics were explored to investigate the
spatial capabilities of the uHD EEG system. Focal activation
plots from each finger extensions were created using the
electrodes with the greatest ERD. Electrodes with the greatest
ERD were selected by thresholding the mean ERD/S during
seconds 1–2 post cue of the average trial. The threshold was set
at the 2.5th percentile of all electrodes for the respective finger
extension. In other words, electrodes which show greater ERD
than 97.5% of all electrodes were selected. This selection results
in∼6 electrodes per finger extension.

Time-frequency maps were generated to investigate the
temporal ERD/S dynamics. First, the power was estimated using
the short-time Fourier transform (spectrogram) from 8 to 30 Hz
at 1 Hz steps employing a 1 s Hamming window with 0.95 s

overlap, resulting in a sampling frequency of 20 Hz. Second, the
power samples were log-transformed and epoched using 1 s pre-
and 7 s post-cue. ERD/S was computed with reference period
1 to 0 s before the cue. Finally, the ERD/S of the average trial
was interpolated by a factor of 10 in time and frequency (ndgrid,
griddedInterpolant) to improve image quality.

2.4.4 Classification
Classification models were employed to investigate if

the extracted band power features have predictive power.
Specifically, band power features during the task period (i.e., 0
to 5 s) for electrodes contained in the ROI were classified at
each time step. Each subject’s finger movements were pairwise
classified using a linear SVM, resulting in 5(5–1)/2 = 10 two-
class classification problems. The reasons for choosing a simple
linear SVM (fitcsvm) are two-fold. It was chosen instead of more
complex models as it is suitable for online BCI experiments
due to its relatively short training times (Lotte et al., 2007,
2018; Rashid et al., 2020). Secondly, it is not vulnerable to
numerical instabilities when the number of features exceeds
the number of training data points (i.e., instances, trials,
observations), compared to a linear discriminant analysis (LDA)
which would need strong regularization. Similarly, common
spatial patterns (CSP) and filter bank CSP (FBCSP) were not
used as the optimal size and position of the CSP window
would need to be optimized for using a cross-validation (CV)
procedure. Furthermore, due to the high number of electrodes
regularized CSP (rCSP) is likely necessary, adding additional
optimization parameters (Lu et al., 2009; Lotte and Guan,
2011). Nonetheless, we are not implying that the approach
chosen in this study is necessarily superior to CSP based
approaches.

For the SVM, the kernel scale of a linear kernel was
automatically selected by MATLAB using a heuristic approach,
features were standardized and a box constraint of 1 was used.
This box constraint is used for regularization and helps to
prevent overfitting. Notably, the results reported here are based
on SVM models without hyperparameter optimization to keep
training times to a minimum. While not reported here, results
obtained using hyperparameter optimization of kernel scale and
box constraint were similar, which is in line with findings by
Probst et al. (2019).

An n-times of k-fold CV framework was used to estimate the
predictive power of the band power features, with n and k both
being 10. In other words, all trials of all runs (i.e., recordings)
were used in a 10-fold CV, which was performed 10 times
leadings to different CV assignments in each of the 10 iterations
and thus a more reliable estimation of the performance. The
random seed (rng) was set to the respective iteration (i.e.,
1 to 10) to make cross-folds, and thus results reproducible.
10-fold CV was used instead of a leave-one-out CV, because
the latter provides unstable and biased model performance
estimates (Varoquaux et al., 2017). Ten-times of 10-fold CV
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were used as 10 iterations already provide reliable estimates of
model performance (Bouckaert and Frank, 2004). The model
performance was defined as the mean classification accuracy
over these 10 iterations, at the time point with highest mean
classification accuracy. Note that one may also perform a leave-
one-run-out CV in which one trains the model using all but
one run and then uses the remaining run as the test data.
The model performances obtained using this framework are
slightly better than the ones obtained using 10-times of 10-
fold CV and can be found in the Supplementary material (see
Supplementary Table 3).

Empirical P-values were calculated to quantify the chance
of the observed model performance being obtained by chance.
These P-values were obtained using a permutation testing
approach in which the dependence between the features and
the target variable (i.e., class) is broken (i.e., null model).
In these null models, the target variable is permuted (i.e.,
shuffled), and then the 10-times of 10-fold CV is carried
out to estimate the null model performance. This was done
100 times, resulting in 100 model performances obtained
under the null hypothesis of independence of features and the
target variable. As these null model performances are normally
distributed, a normal distribution was fitted to these data, and
the P-value for obtaining a performance measure as extreme
or more extreme than the observed one was computed. This
approach results in similar P-values as the approach used
by Ojala and Garriga (2009). They calculated the fraction of
null models with equal or greater model performance than
the observed one, except that P-values smaller than 0.0099
can be obtained.

Empirical P-values were calculated for the time
point which showed the greatest classification accuracy
in the observed model and for each of the 10
classification problems and the respective subject.
Model performance was considered to be better than
the chance for P < 0.05. The P-values computed and
reported were corrected for multiplicity (i.e., multiple
hypothesis testing) per subject using the Benjamini-
Hochberg [i.e., false discovery rate (FDR)] procedure
(Benjamini and Hochberg, 1995).

In order to investigate if the additional electrodes introduced
by the uHD EEG system increase classification accuracy,
electrode subsets reflecting the 10–10 and extended 10–10
system were selected. The electrode subsets were generated
by selecting individual uHD electrodes which best fit the
respective 10–10 and extended 10–10 system positions (see
Figure 1A and Supplementary Figure 3). For these two
electrode subsets the band power features were computed
(see sections “2.4.1” and “2.4.2”) and their predictive power
was estimated. Finally, the 50 model performances (5 subjects
with their 10 pairwise classifications) for the uHD, 10–10
and extended 10–10 system were compared using a two-tailed
Wilcoxon signed-rank test.

2.4.5 Correlation between neighboring
electrodes

A correlation analysis was performed to investigate to which
extent neighboring electrodes provide identical information in
the case of uHD EEG system, as well as the electrode subsets
reflecting the 10–10 and extended 10–10 system. For all, but
electrodes at the edge of the montage, neighboring electrodes
were identified as the four-nearest neighbors according to their
center-to-center Euclidean distance (see Figures 1A, 2A). Edge
electrodes only served as neighbors as they are not enclosed by
four-nearest neighbors. Note that only unique electrode pairs
were allowed (e.g., electrode ei is electrode e′js nearest neighbor
and vice versa, resulting in one unique electrode pair). EEG
data provided by the preprocessing step (see Figure 3) were
band pass filtered between 1 and 30 Hz to contain the frequency
components typically used in EEG experiments. Finally, the
center-to-center Euclidean distance, Pearson’s linear correlation
coefficient and coefficient of determination (R2) were calculated
for the neighboring electrodes. A frequency band specific
analysis can be found in Supplementary Tables 6, 7 in the
Supplementary material.

3 Results

Figure 4 shows the remaining channels and runs after
the preprocessing step. Data quality was good, with just five
channels removed for subjects S1, S2, and S5. For subjects S3 and
S4, 23 and 24 channels were removed. For subject S3, two runs
were rejected, whereas none were rejected for the other subjects
(S1, S2, S4, and S5).

3.1 Topography plots

Event-related desynchronization/synchronization (ERD/S)
activation is shown in Figures 5, 6. Every single electrode of the
total 256 electrode locations was used to plot the corresponding
activation value and interpolated on the scalp of the 3D head
model to generate the heatmaps. Bad channels (see Figure 4)
were set to 0 for heatmap interpolation.

For Figure 5, the time point selected to plot the ERD/S
activation was chosen individually for each subject with either
1.0 s (S1 and S4) or 1.5 s (S2, S3, and S5) post-cue. Finally,
the average activity from all trials of the selected time point
was plotted for each finger and subject, respectively. For subject
S1, we found a clear spot around C3 for the thumb, index,
and middle finger extension covering ∼30 electrodes. The
activation was smaller for the ring and little finger movements.
Subject S2 showed a focal activation spot for all fingers,
whereas sparse activation was observed for subjects S3 and
S4. Subject S5 had a clear spot for the thumb, index, middle,
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FIGURE 4

Number of channels and runs used for each subject. Other channels and runs were excluded because of artifacts in the data. Black dots indicate
good channels. Red dots indicate channels that were rejected.

FIGURE 5

Topography event-related desynchronization/synchronization (ERD/S) plots calculated using the beta frequency band (13–25 Hz) for individual
finger movements (rows) from the respective subjects (columns). The selected time point for the calculation is noted in brackets adjoining the
subject name. The range of ERD/S was individually set per subject, which is indicated by the range of the color bar on the bottom of each
subject’s column and reflects dB.

and ring finger, whereas the little finger showed less activation
(see Figure 5).

Figure 6 shows the topography plots obtained from the
ERD/S calculation using the mu and beta frequency band
features from subject S2 in the time window from 0.5 s pre-
cue to 7 s post-cue. A total of 16 subplots are generated with
0.5 s time steps for each frequency band. The mu ERD occurs
from 0.5 to 2.5 s and is followed by an ERS from 3.5 to 5 s.
The beta ERD occurs from 0.5 to 5.0 s and terminates with
an ERS from 6 to 7 s.

Figure 7 shows spatiotemporal ERD/S dynamics of subject
S2. The bubble plot shows the ERD/S for all finger extensions
(see Figure 7A). As the ∼30 selected electrodes showed overlap
across fingers a one vs. all approach was employed, resulting
in 18 electrodes being color-coded according to the finger with
the greatest ERD. The radius of the bubbles reflects the ERD
magnitude. In order to superimpose the overlapping fingers,
the bubbles were replaced by hand schematics representing
whether the electrode exceeds the threshold (see Figure 7B).
Figure 7C shows the temporal ERD/S dynamics for all finger
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FIGURE 6

Topography event-related desynchronization/synchronization (ERD/S) plots and time courses of accuracy from subject S2. The subject received
the instruction to extend a single finger at cue (0 s), performed the extension, and maintained it until 5 s post-cue. The topography plots were
generated using the mu (8–12 Hz) and beta (13–25 Hz) frequency bands with all finger trials averaged. Values reflect dB. The accuracy time
courses were obtained using linear support vector machine (SVM) for mu and beta band power features in mean and SD. The classification
accuracy reaches a maximum of about 80% at 1.5 s. Accuracymean is the classification accuracy, whereas Accuracy1 and Accuracy2 are the
accuracies of the respective classes. The most significant accuracy graph was shown here and compared with topography plots.

extensions. The time-frequency maps reflect the ERD/S for the
electrode which showed the greatest ERD (i.e., within the top
2.5% greatest ERD across all electrodes) from all five finger
extensions.

3.2 Classification

Table 1 shows the maximum classification accuracies
obtained using the linear SVM model and mu and beta band
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FIGURE 7

(A) Event-related desynchronization/synchronization (ERD/S) bubble plot for all finger movements of subject S2 based on beta (13–25 Hz)
frequency band features. Each finger represents a color: thumb (red), index (orange), middle (green), ring (turquoise), and little (blue). The
bubbles are scaled according to the mean ERD/S calculated from 1 to 2 s post cue for the average trial in dB. For each finger the ∼6 channels
with the greatest ERD were selected (see section “2.4.3” for details). For each electrode position, bubbles were color-coded according to the
finger with the greatest ERD. The radius of the bubbles reflects the ERD magnitudes. (B) Bubbles from panel (A) were replaced with hand
schematics. Fingers of each schematic were colored if the electrode was part of the subset which showed the greatest ERD of the respective
finger. For electrode No. 125 (see arrow) this was the case for all fingers. (C) Time-frequency maps showing the average trial for electrode No.
125 and all finger extensions from subject S2.

power features. All classification pairs for subject S1 performed
above chance (P < 0.05). For subjects S2, S3, and S4, 80% of
the classification pairs performed above chance level. Finally,
for subject S5, 70% of the classification pairs performed above
chance level. The highest classification accuracy for subject
S1 was 85.4% for middle vs. ring finger. Subject S2 reached
79.2% for index vs. ring finger. Subject S3 achieved 65.0% for
thumb vs. middle. Subject S4 reached 71.5% for middle vs.
ring, and subject S5 had 66.2% for thumb vs. ring. Finger
pairs which include the ring finger generally showed greater
classification accuracies than the others. Tasks classifying middle
vs. ring finger performed the best overall at 70.6 (9.4)%
in mean (SD).

The classification accuracy decreased significantly when
using the 10–10 and extended 10–10 system electrode
subsets compared to the uHD EEG system (P < 0.0001,

respectively). Detailed classification results are provided in the
Supplementary material, where Supplementary Table 4 shows
the results using the 10–10 system subset, and Supplementary
Table 5 shows the model performance using the extended 10–10
system. Specifically, using the 10–10 and extended 10–10 system
electrode subsets resulted in a classification accuracy decrease of
6.9 [4.6; 10.0]% and 5.9 [0.6; 9.7]% in median [IQR], respectively
over all subjects and pairwise classifications.

3.3 Correlation between neighboring
electrodes

Table 2 shows the Euclidean distance, Pearson’s linear
correlation coefficient and R2 value for neighboring electrodes
in median [IQR] for the 10–10, extended 10–10 and uHD
EEG system, respectively. The median correlation between
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TABLE 1 Model performance (classification accuracy) obtained using a linear support vector machine (SVM) in a 10-times of 10-fold CV framework
for mu (8–12 Hz) and beta (13–25 Hz) band power features.

Classification S1 S2 S3 S4 S5 mean (SD)
mean (SD) P mean (SD) P mean (SD) P mean (SD) P mean (SD) P

Thumb vs. Index 62.5 (3.3) 0.016 65.4 (2.6) 0.003 67.4 (2.3) 0.016 58.0 (3.4) 0.081 63.0 (3.4) 0.048 63.3 (3.5)

Thumb vs. Middle 65.4 (2.2) 0.008 58.4 (3.5) 0.062 69.4 (2.2) 0.016 65.1 (1.4) 0.013 61.8 (2.3) 0.048 64.0 (4.1)

Thumb vs. Ring 82.1 (1.3) <0.001 68.1 (1.8) 0.003 67.9 (3.6) 0.016 64.5 (2.0) 0.013 66.2 (2.3) 0.030 69.8 (7.1)

Thumb vs. Little 66.9 (1.1) 0.002 62.0 (1.7) 0.039 62.2 (3.3) 0.046 60.2 (2.6) 0.048 57.6 (2.3) 0.126 61.8 (3.4)

Index vs. Middle 63.2 (4.4) 0.013 56.5 (4.0) 0.170 60.6 (2.0) 0.046 65.6 (1.5) 0.013 55.1 (2.2) 0.213 60.2 (4.4)

Index vs. Ring 78.8 (1.9) <0.001 79.2 (1.9) <0.001 59.6 (2.9) 0.084 63.9 (2.1) 0.013 61.3 (1.9) 0.048 68.6 (9.7)

Index vs. Little 67.1 (2.9) 0.004 62.5 (2.5) 0.010 56.5 (3.1) 0.217 66.0 (3.2) 0.009 56.8 (2.3) 0.126 61.8 (5.0)

Middle vs. Ring 85.4 (1.2) <0.001 71.4 (2.9) <0.001 62.0 (2.8) 0.049 71.5 (1.6) 0.002 62.8 (2.3) 0.048 70.6 (9.4)

Middle vs. Little 66.6 (2.9) 0.003 61.8 (2.4) 0.038 63.9 (2.6) 0.036 60.2 (2.3) 0.060 60.7 (2.3) 0.048 62.6 (2.6)

Ring vs. Little 68.8 (1.8) 0.001 68.1 (1.9) 0.003 67.0 (2.9) 0.016 61.6 (3.4) 0.048 60.5 (2.4) 0.048 65.2 (3.9)

mean (SD) 70.7 (8.2) 65.3 (6.7) 63.7 (4.2) 63.7 (3.9) 60.6 (3.3) 64.8 (6.3)

Accuracies are reported in percent and as mean (SD). Each subject’s P-values are corrected for multiplicity using the Benjamini-Hochberg procedure. The highest accuracies for each
subject are bold. Significant P-values (P <0.05) are bold.

neighboring electrodes increases with their median Euclidean
distance decreasing.

4 Discussion

4.1 Topography plots

We could clearly show that the better spatial resolution
of the uHD EEG system compared to standard EEG systems
allows a more detailed understanding of temporal and spatial
dynamics. The superimposed plot for all five fingers allows a
detailed investigation of the 18 sensor locations with highest
activation for all finger movements in subject S2 (see Figure 7).
This activation area was approx. five times six columns wide,
which resulted in 45 mm times 54 mm coverage surface. In
standard EEG recordings, only two to four electrodes would
overlay this area.

Electrocorticography (ECoG) electrode grids typically have
a center-to-center distance of 10 mm, which is even larger
than the uHD EEG system with 8.6 mm. However, the big

TABLE 2 Euclidean distance, Pearson’s linear correlation coefficient
(r) and coefficient of determination (R2) for neighboring electrodes for
the 10–10, extended 10–10 and ultra-high-density
electroencephalography (uHD EEG) system.

EEG
system

Euclidean
distance (mm)

r R2

Median [IQR] Median [IQR] Median [IQR]

10–10 35.4 [30.9; 38.0] 0.43 [0.14; 0.61] 0.18 [0.04; 0.37]

Ext. 10–10 23.6 [17.6; 25.2] 0.57 [0.37; 0.72] 0.32 [0.14; 0.51]

uHD 8.6 [8.5; 8.7] 0.66 [0.52; 0.79] 0.44 [0.27; 0.62]

Metrices are reported in median [IQR].

advantage of ECoG remains–the possibility to capture high
gamma or even ultra-high gamma frequencies, which is difficult
with uHD EEG due to skin, bones, and fluids attenuating the
signal captured on the scalp.

The electrodes seen in Figure 7A represent a focal spot
overlaying the sensorimotor cortex (Ejaz et al., 2015). Across
the five fingers, overlap in electrodes which showed the greatest
beta ERD can be observed. This is in line with fMRI studies
which reported overlapping areas throughout the primary
motor cortex (M1) hand region (Sanes et al., 1995; Schieber,
1999; Ejaz et al., 2015) which are likely due to co-existence of
somatotopic- and action maps (Graziano and Aflalo, 2007;
Huber et al., 2020). Note that this is not the case for primary
somatosensory cortex (S1) which has more distinct somatotopic
organization (Schweisfurth et al., 2014; Huber et al., 2020;
O’Neill et al., 2020). However, as the subjects’ exact central
sulcus location is unknown in this work we could not determine
which electrodes are located over M1 or S1. Furthermore the
current work focused on the low-frequency bands (mu and
beta), whereas for cortical mapping high frequency components
are used [e.g., Kapeller et al. (2018)].

For both the time-frequency maps and the heatmap
topographies (see Figures 6, 7) one can observe
desynchronization with movement on- and offset. In fact,
this phenomenon was discovered for all subjects and is
consistent with findings in literature (Cassim et al., 2000;
Sun et al., 2016). The observed ERD increases at the end of
sustained movements, which may be associated with the cortical
preparation before movement termination. ECoG studies also
report similar increases in high-gamma activity for movement
onset and termination (Flint et al., 2016). The decrease in ERD
around 3–4 s post-cue matches the findings of Cassim et al.
(2000) that mu and beta power return to baseline values in
sustained movements, which may be associated with requiring
less muscular activity and concentration (Bernard et al., 2002;
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Cramer et al., 2002). Indeed, this could explain why ERD is
much more sustained (around 3–4 s post-cue) for the ring
finger, as a controlled ringer finger extension requires more
effort and concentration. Finally, post-movement beta rebounds
(PMBR) can be observed for both heatmap topographies and
time-frequency maps after movement termination at roughly
6.5 s. While PMBR is a well-known phenomenon, its function(s)
is still not fully understood [see Hervault et al. (2021) for a
recent investigation].

This first study was done with real finger movements
without real-time feedback. Such non-feedback experiments
prove the system’s feasibility to be used for the intended use,
finger movement detection in this case. Studies from Guger,
Pfurtscheller, and many others have shown that feedback change
brain patterns and make them much more stable (Guger et al.,
2000; Pfurtscheller, 2001; Miller et al., 2010). Therefore, our
next studies will include feedback. The disadvantage of real
movement studies is that brain activation terminates quickly as
soon as no movement is performed. On the other hand, if motor
imagery is used, subjects are able to activate the brain much
longer (Gruenwald et al., 2017).

In some subjects, more bad channels had to be excluded
from further processing. This happened because the adhesive
did not fixate the grids strongly enough. In future experiments,
a stronger adhesive will be used to ensure that more channels
show good signals. This will also ensure that fewer trials
will show artifacts.

4.2 Classification

We could show that single fingers can be discriminated with
the uHD EEG system. Peak accuracy ranged from 85.4(S1),
79.2(S2), 69.4(S3), 71.5(S4) to 66.2(S5). Mean accuracies of
70.7(S1), 65.3(S2), 63.7(S3), 63.7(S4), and 60.6(S5) are in the
range of other motor movement studies without feedback
(Quandt et al., 2012; Bera et al., 2019). The difference is that now
we are classifying single fingers, not left/right motor imagery. As
stated in section “1,” the possibility of distinguishing between
finger movements was sufficiently shown by ECoG studies
(Kubánek et al., 2009; Hotson et al., 2016; Gruenwald et al.,
2019) but few for EEG with limited performance (Liao et al.,
2014; Stankevich et al., 2016; Bera et al., 2019). Essential to push
the classification accuracy much further is to include feedback
which will be done in the subsequent study.

The observation that finger pairs that include the ring
finger have greater classification accuracy than others could
be due to the ring finger extension requiring more effort
than the other finger extensions. Reasonably, one may expect
thumb vs. little finger classification accuracy to be the best
as the somatotopic distance between the two fingers is large
according to fMRI (e.g., Berlot et al., 2019) and ECoG studies
(e.g., Miller et al., 2012). In contrast, we observed lower

performance for this finger pair with a classification accuracy
of 61.8 (3.4)% across subjects. However, this phenomenon may
be explained by the fact that blood oxygenation level-dependent
(BOLD) imaging or high-gamma activity is typically used
for somatotopic investigations. Importantly, BOLD and high-
gamma activity are related (Logothetis et al., 2001; Mukamel
et al., 2005; Niessing et al., 2005; Engell et al., 2012) and
have better somatotopic characteristics than low-frequency (i.e.,
mu and beta) band power (Miller et al., 2007, 2012). This
may explain that somatotopic distance between fingers did not
positively impact the observed classification accuracies.

The obtained classification accuracies [64.8 (6.3)% on
average] can only be indirectly compared to Bera et al.
(2019) and Liao et al. (2014). While as they also performed
pairwise classification of finger movements, they used different
features and classification models. Specifically, Bera et al. (2019)
conducted finger extension tasks including thumb, index, and
middle fingers but used CSPs, LDA and Extra Trees Classifiers
for classification, achieving an overall average accuracy of 60.3%
with two preceding training days. Liao et al. (2014) conducted
two repetitive finger flexions and extensions tasks during 2 s.
They used a SVM with a radial basis kernel function and
achieved an average classification accuracy of 58.6 and 57.7%
using mu and beta band power features, respectively. Note that
since the exact experimental protocol (e.g., finger movements,
number of trials) and analysis procedures are different, the
results should not be directly compared.

Classification models based on the uHD EEG system
outperformed models based on electrode subsets reflecting
the 10–10 and extended 10–10 system by roughly 6 and 7%
classification accuracy on median over all subjects and pairwise
classifications.

4.3 Correlation between neighboring
electrodes

Unsurprisingly, the correlation between neighboring
electrodes increases with decreasing Euclidean distance (see
Table 2). However, the observed correlations for the uHD EEG
system are still far from perfect correlations. Furthermore, the
relationship between Euclidean distance and correlation is not
linear, which can be shown using the R2 value. In the current
context, R2 quantifies the percentage of variance explained
for one electrode given its neighboring electrode and is thus
a measure of similarity. Specifically, when comparing the
extended 10–10 and uHD EEG system the Euclidean distance
roughly decreases by a factor of 2.7, while the amount of
similarity between neighboring electrodes increases by 12%
on median. Importantly, this increase in similarity is less than
going from 10–10 to extended 10–10 system for which a median
increase of 14% can be observed and in this case Euclidean
distance only decreases by a factor of 1.5. Notably, the amount
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of unexplained variance (1-R2) is still 56% on median for
neighboring electrodes for the uHD EEG system.

4.4 Limitations and outlook

In this study pairwise finger classification (i.e., binary
classification) was performed instead of multiclass classification,
where all five fingers are classified at once. The latter approach
would allow for online (i.e., real-time) feedback provided by
the hand avatar, which likely increases subjects’ engagement
and classification accuracy. However, for a multiclass classifier
to work reasonably well, pairwise classifications would need
to reach high classification accuracies (e.g., > 85%). Achieving
higher classification accuracies is likely possible as different
features, feature/electrode selection methods and machine
learning models can be employed. Indeed, methods such as
Riemannian spatial patterns (Larzabal et al., 2021) may also be
applied to gain insights in which electrodes are most important
for decoding individual finger movements.

Topography ERD/S plots benefit from the uHD EEG
technology, as seen in this study. Michel and Brunet (2019)
stated that source reconstruction profits from high-density
EEG technologies. The larger number of electrode points and
the higher spatial density provide the necessary information.
Therefore, the domain of source localization with procedures
such as Low-Resolution Brain Electromagnetic Tomography
Analysis (LORETA) could take advantage of the higher
spatial resolution and electrode numbers. However, source
reconstruction methods were not explored in the current work
but should be explored in future work.

Adopting spatial mapping of the central sulcus using fMRI
scans could provide important neuroanatomical information
for the exact allocation of the electrode positions. Thus, more
detailed assignment of acquired signals to the real spatial
positions of the electrodes themselves can be done.
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