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2 

Variation between and within individuals in life history traits is ubiquitous in natural 1 

populations. When affecting fitness-related traits such as survival or reproduction, individual 2 

heterogeneity plays a key role in population dynamics and life history evolution. However, it 3 

is only recently that properly accounting for individual heterogeneity when studying 4 

population dynamics of free-ranging populations has been made possible through the 5 

development of appropriate statistical models. We aim here to review case studies of 6 

individual heterogeneity in the context of capture-recapture models for the estimation of 7 

population size and demographic parameters with imperfect detection. First, we define what 8 

individual heterogeneity means and clarify the terminology used in the literature. Second, we 9 

review the literature and illustrate why individual heterogeneity is used in capture-recapture 10 

studies by focusing on the detection of life-history trade-offs, including senescence. Third, we 11 

explain how to model individual heterogeneity in capture-recapture models and provide the 12 

code to fit these models (https://github.com/oliviergimenez/indhet_in_CRmodels). The 13 

distinction is made between situations in which heterogeneity is actually measured and 14 

situations in which part of the heterogeneity remains unobserved. Regarding the latter, we 15 

outline recent developments of random-effect models and finite-mixture models. Finally, we 16 

discuss several avenues for future research. 17 

 18 

Key words: actuarial senescence; Arnason-Schwarz model; Cormack-Jolly-Seber model; 19 

frailty; hidden Markov models; individual covariates; life-history trade-offs; mark-recapture 20 

models; mixed models; mixture models; multievent models; multistate models; random-effect 21 

models; survival estimation. 22 
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 2 

Introduction 3 

Individual variation is at the core of the evolution of traits by the means of natural 4 

selection and exists within any population of living organisms. Individual variation occurs in 5 

virtually all traits, including fitness components such as reproduction and survival (Clutton-6 

Brock 1988, Newton 1989). However, the amount of individual variation in a given trait in a 7 

given population varies a lot both within and across species. Between-individual differences 8 

in phenotypic attributes such as age (Caughley 1966, Emlen 1970), sex (Short and Balaban 9 

1994), body mass (Sauer and Slade 1987), or personality (Dingemanse and Dochtermann 10 

2013), in genotype (Coulson et al. 2011), in habitat use or habitat selection such as home 11 

range size or quality (Mcloughlin et al. 2007), or in prey selection (Estes et al. 2003) have all 12 

been reported to affect most life history traits. More recently, both current and early-life 13 

environmental conditions encountered by individuals throughout their lives have been shown 14 

to generate individual differences in life history traits (Douhard et al. 2014, Berger et al. 15 

2015).  16 

The potential role of individual heterogeneity in terms of population ecology has been 17 

pointed out more than 30 years ago (Lomnicki 1978, Johnson et al. 1986) and repeatedly 18 

reported since (Bolnick et al. 2011, Kendall et al. 2011). Thanks to the increasing availability 19 

of high quality data collected during long-term individual monitoring of vertebrate 20 

populations (Clutton-Brock and Sheldon 2010), assessing the magnitude of individual 21 

heterogeneity, identifying its origin, and quantifying its consequences has become a specific 22 

objective in many population studies.  23 
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From these studies (reviewed in Table 1), we can envisage three broad patterns of 1 

individual heterogeneity when considering a set of life-history traits, e.g. demographic 2 

parameters, independently of any methodological approach used to model these demographic 3 

tactics.  4 

 5 

[Table 1 around here] 6 

 7 

We will retain Stearns (1976)’s definition of a tactic, “a set of co-adapted 8 

[demographic] traits designed, by natural selection, to solve particular ecological problems”. 9 

In the simplest case, individual heterogeneity corresponds to the random variation observed 10 

independently in each of the traits. In that case, there is no covariation between demographic 11 

traits and no life history tactic can emerge. Life history tactics can appear in response to 12 

marked differences between individuals in terms of constraints (of genetic, developmental, or 13 

environmental origin). The axis of demographic variation will thus involve a low-high 14 

continuum of performance opposing individuals weakly constrained that will perform 15 

extremely well in terms of both survival and reproduction, to individuals subjected to high 16 

constraints (sometimes called "runt", Koenig et al. 1995) that will perform extremely poorly. 17 

Individual heterogeneity in that case will lead the axis of demographic variation to correspond 18 

to a low-high continuum of individual fitness, and is often designated as a continuum of 19 

individual quality (Wilson and Nussey 2010). Alternatively, individual heterogeneity can be 20 

associated with a set of different life history tactics so that each tactic is characterized by the 21 

same mean individual fitness. For instance, some individuals will allocate a lot of energy to 22 

reproduction and pay a cost in terms of decreased survival, whereas others will allocate a lot 23 

to avoid mortality risks and pay a cost in terms of reduced reproduction, leading to the 24 
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negative co-variation between survival and reproduction expected from the allocation 1 

principle (Cody 1966) to show up. 2 

Owing to the multiplicity of factors that shape individual heterogeneity, it is 3 

impossible to account for the total amount of individual heterogeneity by measuring even a 4 

large set of traits.. For a given trait, we can distinguish a measured individual heterogeneity 5 

using for instance phenotypic attributes such as age, sex, and size from an unmeasured 6 

individual heterogeneity that includes all the remaining variation for given age, sex and size 7 

(Plard et al. 2015). Until recently, this unmeasured individual heterogeneity was most often 8 

neglected. Assessing unmeasured individual heterogeneity is especially tricky when studying 9 

survival (or mortality) because this trait simply corresponds to a state shift for a given 10 

individual. Thus, an individual dying at 5 years of age will have survived over the first five 11 

years in a row and then will have died at 5 years, leaving the standard mixed model approach 12 

generally used for assessing individual heterogeneity in most traits (van de Pol and Verhulst 13 

2006, van de Pol and Wright 2009) not directly applicable. However, CR models do provide a 14 

general and flexible framework for estimating and modeling both population size and 15 

demographic parameters (including survival, dispersal and recruitment) in the face of 16 

imperfect detection that is inherent to populations in the wild (Gimenez et al. 2008). These 17 

methods rely on the longitudinal monitoring of individuals that are marked (or identifiable) 18 

ideally at birth, and then encountered (i.e. recaptured or seen) on subsequent occasions. The 19 

first CR methods that dealt with individual heterogeneity were developed with the aim to get 20 

unbiased estimates of population size in presence of differential individual responses to 21 

trapping (Otis et al. 1978). The context has changed in recent years, and CR studies now often 22 

focus on the process of individual heterogeneity per se to assess the diversity of life history 23 
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trajectories within populations, to test for the existence of different life history tactics within 1 

populations, or to assess the differential susceptibility of individuals to environmental insults. 2 

Here we aim at providing a review of individual heterogeneity in the context of CR 3 

studies. We first define what we mean by individual heterogeneity by examining the landmark 4 

papers on the subject and clarifying the terminology with regards to more recent uses of the 5 

concept. Then we review the literature and illustrate why individual heterogeneity is used in 6 

CR studies by focusing on the detection of life-history trade-offs, including senescence. In a 7 

third section, we explain how to model individual heterogeneity in CR models. The 8 

distinction is made between situations in which heterogeneity can be explicitly handled by 9 

using states (e.g. breeding or disease states) or individual (time-varying or not) covariates 10 

(e.g. age or phenotype) and situations in which part of the heterogeneity remains unobserved. 11 

Regarding the latter, we outline recent developments of random-effect models and finite-12 

mixture models. Lastly, we discuss several avenues for future research. 13 

 14 

What is individual heterogeneity?  15 

History and definitions 16 

In CR modeling, consideration of heterogeneity between individuals of a population in 17 

demographic parameters (e.g. survival or probability of successful reproduction) has a long 18 

history: ”For predictive or modeling purposes, [...], heterogeneity can lead to seriously 19 

misleading conclusions, particularly if the product of two or more parameters is involved, and 20 

heterogeneity affects both of them” (Johnson et al. 1986). Early work emphasized the 21 

distinction between situations where members of populations differ with respect to some 22 

measurable attribute (e.g. sex, age), and situations where “heterogeneity is not clearly 23 

identified with a measurable variable” (Johnson et al. 1986). In the latter situation, developing 24 
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methods that account for heterogeneity between individuals to estimate demographic 1 

parameters is more difficult. Early efforts toward this end echo their contemporary studies of 2 

heterogeneity in mortality risk and of aging in human demography (Vaupel et al. 1979, 3 

Manton et al. 1981, Hougaard 1984): “Unrecognized heterogeneity can lead to biased 4 

inferences, especially in time or age effects in cohort studies” (Johnson et al. 1986). In 5 

ecology, one of the earliest studies that investigated the consequences of unmeasured (and 6 

sometimes impossible to measure) variation between individuals on survival probability 7 

concerned the estimation of nest success probability using longitudinal data from nest activity 8 

(Green 1977, Johnson 1979): a nest that becomes inactive before chicks hatched is considered 9 

“dead’. The authors of early papers on CR modeling were aware of the contribution of human 10 

demographers to the development of models taking heterogeneity between individuals into 11 

account to estimate changes in mortality risk throughout life (e.g. papers cited in Johnson et 12 

al. 1986 included e.g. Keyfitz and Littman 1979, Vaupel et al. 1979 and Manton et al. 1981).  13 

According to Johnson et al. (1986), “the impact of such heterogeneity has been recognized 14 

only occasionally in animal ecology, possibly because it is difficult to deal with, and it is 15 

often relatively unimportant in many estimation problems.”  16 

Unobserved heterogeneity can be handled using models including a continuous or 17 

discrete distribution of parameter values (recapture, breeding or detection probability). Early 18 

work by human demographers has pioneered the use of continuous distributions of mortality 19 

risks (e.g. Vaupel et al. 1979). In survival models, continuous distributions for individual 20 

heterogeneity translate the idea that individuals are characterized by a unique value of 21 

‘mortality risk’ (or its complement, survival probability). In human demography, ‘frailty’ is 22 

traditionally used in time-to-event models, where the event of interest is death (data consist in 23 

the duration of time until death occurs). Generally, data from wild animals are longitudinal 24 
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data (i.e. either they include information on whether individuals are alive or dead at each 1 

sampling occasion, or they include information on whether individuals are contacted alive at 2 

each sampling occasion, and sometimes on whether individuals are reported as dead). The 3 

idea that populations are composed of individuals that are more or less likely to experience an 4 

event (i.e., they differ in their probability of experiencing an event) is common to several 5 

areas of research. According to Wienke (2003), “Frailty corresponds to the notions of liability 6 

or susceptibility in different settings (Falconer, 1967). In the 1960’s and 1970’s, investigators 7 

developed parallel ideas in different areas of research and designed analytical methods to 8 

account for continuous distributions of “risks” in populations. In quantitative genetics, 9 

Falconer (1967) analyzed disease incidence data and assumed a continuous distribution of 10 

risks of developing the disease: “All the causes, both genetic and environmental, that make 11 

individuals more or less likely to develop a disease, can be combined in a single measure that 12 

is called ‘liability’. The liabilities of individuals in a population form a continuous variable”. 13 

In econometrics, investigators developed duration models for employment data including 14 

unobserved heterogeneity (Chamberlain 1979), where  “The heterogeneity is in individual 15 

specific differences in separation  rates”  (i.e., the fraction of employed workers who lose jobs 16 

per time interval, see also Heckman and Borjas 1980). Heckman and Willis (1977) focused on 17 

beta-logistic models for binary data of female labor participation and assumed a random effect 18 

for unobserved individual heterogeneity in participation probability: “It is reasonable to 19 

suppose that many of the unobserved variables remain reasonably constant over time but vary 20 

considerably among women”. Obviously, the 1960’s and 1970’s stimulated the development 21 

of analytical approaches designed to handle situations where investigators acknowledge that 22 

they do not know all the relevant variables affecting individuals’ response, or where they 23 

cannot measure all of them.  24 
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Clearly, the issue raised in early CR studies is that the assumption of homogeneity of 1 

populations can lead to flawed inferences about identified parameters such as survival 2 

probability or population size (Carothers 1973). In situations where survival probability varies 3 

with age, this issue has sometimes been called a Simpson’s paradox in statistics, or an 4 

”ecological fallacy” (Kramer 1983), and has been illustrated by Cohen (1986) as follows: 5 

“The crude death rate of population A may be less than that of country B even if every age-6 

specific death rate of country A is greater than each corresponding one of country B”. If 7 

populations are stratified according to variables that have not been considered yet, inequality 8 

of rates can be reversed, and any demographic parameter can be involved. Papers by Green 9 

(1977), Johnson (1979), Johnson et al. (1986) and the very influential paper by Vaupel and 10 

Yashin (1985) have all used analogous examples of situations with two groups to explain the 11 

consequences of unrecognized heterogeneity on inferences about mortality in ecology and 12 

human demography, respectively.  13 

In the context of closed populations (i.e. assuming a population with no immigration, 14 

no emigration, no recruitment and no mortality), data are collected several times during the 15 

period when assumptions characterizing closed populations hold. CR models are restricted to 16 

the estimation of population size and can account for individual heterogeneity in the 17 

probability of being detected (e.g. Burnham and Overton 1979, Pollock 1980, Pollock et al. 18 

1990, Link 2004, Pledger 2005, Farcomeni and Tardella 2010). In such a situation, 19 

“Individuals with high detection probabilities would tend to appear in the encountered sample 20 

in greater proportion than they occur in the population” (White and Cooch 2017). In CR 21 

models, the probability of detection can be assumed to vary between individuals in relation to, 22 

e.g. sex or age-related behavioral differences and more recently to space (Efford 2004, 23 

Borchers 2012). In some studies, populations are not assumed to be composed of clusters (e.g. 24 

sex, age-classes) with different detection probabilities, but each individual is ”assumed to 25 
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have its own unique capture probability which remains constant over all the sampling times” 1 

(Pollock 1980, Pollock et al. 1990). In CR studies where heterogeneity in the probability of 2 

detecting an individual cannot be identified using measured variables, investigators can 3 

assume that there is a distribution of individual detection probabilities and use models with 4 

individual random effects (White and Cooch 2017). In such situations, early approaches have 5 

used Jackknife estimators (Burnham and Overton 1979) or point estimators (Chao 1987). 6 

Mixture models have also been used more recently in such situations (e.g. Norris and Pollock 7 

1996, Pledger 2000, Morgan and Ridout 2008), where populations are assumed to be 8 

composed of several hidden groups with different detection probabilities. 9 

In the context of open populations (i.e. allowing immigration and emigration and/or 10 

recruitment and mortality to occur), models are used to estimate a variety of demographic 11 

parameters (e.g. survival rates, transition probabilities between reproductive states in 12 

successive years, populations size). Early papers (Cormack 1964, Jolly 1965, Seber 1965) 13 

have assumed homogeneous populations. Stratification according to age-classes (Manly and 14 

Parr 1968, Pollock 1981) and groups (Lebreton et al. 1992) was one of the first attempts to 15 

accommodate variation between individuals in survival probability. Arnason (1972, 1973), 16 

Schwarz et al. (1993), Hestbeck et al. (1991), and Nichols et al. (1994) laid the ground for 17 

models accounting for the fact that individuals might not belong to the same cluster during 18 

their entire life (Lebreton and Pradel 2002), but might move between states (e.g. locations, 19 

breeding states) in a stochastic manner (as opposed to movement between age-classes in a 20 

deterministic manner).  21 

Naturally, early papers drew the same distinction as for closed populations between 22 

situations where individuals differ with respect to some measurable attribute (e.g. sex, age) 23 

and situations where “heterogeneity is not clearly identified with a measurable variable” 24 

(Pollock 1980, Johnson et al. 1986). Because open-population models can be used to estimate 25 
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population size, early work also focused on the consequences of heterogeneity in detection 1 

probability on population size estimation (Carothers 1973). Just as for detection probability, 2 

two approaches have been used to account for unobserved sources of heterogeneity in 3 

survival probability in CR studies (Johnson et al. 1986): finite mixture models (Pledger et al. 4 

2003) and random effects models (Royle 2008, Gimenez and Choquet 2010). Early studies 5 

that have assumed a continuous distribution of survival probability have also highlighted the 6 

methodological difficulties encountered in the 1990’s (Rexstad and Anderson 1992, Burnham 7 

and Rexstad 1993). In random effects models, individual heterogeneity refers to permanent 8 

differences between individuals in demographic parameters (e.g. Royle 2008, Gimenez and 9 

Choquet 2010). This definition matches exactly the concept of unobserved individual frailty 10 

proposed by Vaupel et al. (1979) where frailty designates the risk of a given individual (that is 11 

constant throughout its lifespan) to die at a given age relative to the average risk of all 12 

individuals in the population to die at this age. Up to now, most CR studies that have used 13 

mixture models for survival probability have also considered that individuals do not change 14 

cluster during their life (e.g. Fay et al. 2016), but CR models can now accommodate situations 15 

where they do (e.g. see Cubaynes et al. 2010 for an application to detection probability). .  16 

Historically dominating views of what ‘heterogeneity’ means in CR modeling 17 

depended on the class of models used. For example, ‘heterogeneity’ models in early papers 18 

focusing on closed populations referred to models where “each animal has its own unique 19 

capture probability” (Pollock 1980). Conversely, for open population models, early work on 20 

‘heterogeneity’ considered any degree of stratification of populations, from discrete groups, 21 

or age-structured populations, to a distinct survival probability for each individual (Johnson et 22 

al. 1986). However, ‘individual heterogeneity’ has rapidly been reserved for “variation in 23 

survival probabilities among individuals after taking into account variability due to age, sex, 24 

or time” (Rexstad and Anderson 1992).  25 
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Individual heterogeneity in contemporary CR studies 1 

Demographic parameters are the target parameters to estimate in CR models (Lebreton et al. 2 

1992, 2009). Other parameters such as detection probability are required to estimate 3 

demographic parameters from CR models; detection probability is relevant to sampling in 4 

wild populations, but is not a demographic parameter. However, the impact of individual 5 

heterogeneity on every type of parameter has consequences on demographic parameter 6 

estimation. CR models allow the estimation of all types of parameters.  7 

To address individual heterogeneity in demographic parameters, the survival process 8 

(alive vs. dead), or the reproductive process (e.g. breeder vs. non-breeder or success vs. 9 

failure) is treated as a random variable. Individual heterogeneity measures differences 10 

between individuals in model parameters. Today, a broad range of approaches is used to 11 

account for individual heterogeneity in CR studies. Individual heterogeneity is understood as 12 

any source of variation between individuals in demographic parameters that cannot be 13 

accounted for by temporal or spatial heterogeneity alone, with a particular focus on the fate of 14 

individuals, their early development conditions, their ontogeny, or their past allocation to 15 

reproduction as experienced breeders. Advances in statistical methods over the past 40 years 16 

have progressively enlarged the scope of models accounting for ‘individual heterogeneity’. In 17 

CR studies, the sample scheme involves attempting to detect individuals on a discrete time 18 

basis. Contrary to continuous-time models used in human demography (Allison 1982), this 19 

specific feature must have eased the development of models in the CR arena.  20 

Different levels of heterogeneity lead to different perceptions of ‘heterogeneity’, but 21 

the current view of ‘individual heterogeneity‘ incorporates a large range of biologically 22 

relevant situations. At the lowest level individuals have their own unique demographic value 23 

(Marzolin et al. 2011; see Table 1), as in the frailty context (Vaupel et al. 1979), with a 24 

possible variation during life (e.g. Enki et al. 2014). At a broader level, heterogeneity can 25 
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correspond to differences in demographic parameters between identifiable categories of 1 

individuals (e.g. identifiable groups; Drummond et al.2011), or between hidden classes or 2 

states (Péron et al. 2010, Pradel 2005, Johnson et al. 2016). Once included in the study, 3 

individuals can belong to the same cluster permanently (e.g. sex, hidden class; Péron et al. 4 

2010) or temporarily (e.g. age, body condition, breeding state; Nichols et al. 1994, Pradel 5 

2009, Johnson et al. 2016).  What ‘heterogeneity’ covers in CR models inherently depends on 6 

model specification. In all cases, populations are considered as being heterogeneous. 7 

From a biological viewpoint, individual heterogeneity in life history traits is often 8 

considered to include two components.  9 

(i) Cases in which differences between individuals are shaped early in life and are 10 

permanent during the course of the life correspond to a fixed heterogeneity. In such 11 

cases, individual heterogeneity can be accounted for by using measurable 12 

covariates a priori assumed to capture much of the individual heterogeneity (e.g. 13 

rank of offspring in birds’ clutch, Drummond et al. 2011 or body mass at the end of 14 

the maternal care period in large mammals, Hamel et al. 2009). Whether 15 

measurable individual features are translated into differences in estimates of 16 

demographic parameters, and with which method, is part of the statistical exercise. 17 

When measurable variables are missing, or insufficient to account satisfactorily for 18 

heterogeneity (Hougaard 1991), investigators can assume a discrete or continuous 19 

distribution of demographic parameters (Royle 2008, Péron et al. 2010). In 20 

agreement with the concept of frailty, investigators assume that there are 21 

differences in demographic parameters between individuals that cannot be 22 

associated with measurable covariates and use latent variables to quantify them 23 
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(e.g. Hougaard 1995, Yashin et al. 2008, Cam et al. 2013, Hamel et al. 2014, Cam 1 

et al. 2016). 2 

(ii) However, not all individual heterogeneity is fixed. Individual differences in a given 3 

trait at a given time are subjected not only to the influence of early-life conditions, 4 

but also to current conditions both at that time and between early life and that time. 5 

As above, in some situations, observable variables are available to account for 6 

variation in individuals’ demographic parameters throughout their life (e.g. age: 7 

Pollock 1981; group: Lebreton et al. 1992; state: Nichols et al. 1994). However, 8 

when such observable variables are missing or inefficient at capturing most 9 

individual heterogeneity (Hougaard 1991), unobserved, latent traits changing over 10 

life can be used. Such cases correspond to ‘dynamic frailty’ (Pennell and Dunson 11 

2006, Duffie et al. 2009, Chambert et al. 2013Cam et al. 2004).   12 

Irrespective of the component shaping individual heterogeneity in a given population, the 13 

total amount of individual heterogeneity in that population is not constant and varies over 14 

time. Thus, Lomnicki (1978) pointed out that asymmetric responses of individuals to 15 

increased competition that occur in presence of harsh environmental conditions (Lomnicki 16 

developed his argument in the context of density-dependence but the same pattern is expected 17 

whatever the cause of resource limitation) lead individual heterogeneity within a population to 18 

increase. 19 

 20 

Why individual heterogeneity in a CR context? 21 

 

Individual heterogeneity seen as a nuisance  
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Because analyzing most CR datasets requires using models that include detection 1 

probability, the existence of individual heterogeneity in this parameter has stimulated a large 2 

number of works in the early CR literature (e.g. Otis et al. 1978). As Eberhardt (1969) pointed 3 

out, “various sets of data indicate that the equal-probability-of capture assumption is not 4 

fulfilled.” Unequal detection rates may lead to biases in abundance estimate, estimated 5 

survival probability or population growth in the context of open populations (e.g. Carothers 6 

1973, Schwarz 2001). Heterogeneity in detection probability is still receiving attention in 7 

contemporary studies (Crespin et al. 2008, Cubaynes et al. 2010, Pradel et al. 2010, Marescot 8 

et al. 2011, Oliver et al. 2011, Fletcher et al. 2012, Abadi et al. 2013, White and Cooch 2016), 9 

and new methods are being developed to address heterogeneity, such as multievent models 10 

(Pradel 2009). 11 

 12 

Individual heterogeneity as a biological process 

Methodological developments of CR models have considerably increased the 13 

relevance of CR studies to address questions not only in ecology, but also in evolution. A key 14 

feature of this development is the increased ability of CR models to account for variation 15 

between individuals in demographic parameters as well as detection probability at the scale 16 

assumed to be relevant in the studied context. This scale can be the individual, rather than 17 

permanent groups (e.g. sex), or temporary aggregates of individuals (e.g. reproductive states). 18 

The development of evolutionary biology as a powerful conceptual and methodological 19 

framework for biological disciplines (e.g. Dobzhansky 1973) has brought a new perspective 20 

on individual heterogeneity. In CR studies, instead of being addressed because of potential 21 

biases in estimates of abundance, survival probability or population growth rate (e.g. Crespin 22 

et al. 2008, Cubaynes et al. 2010, Pradel et al. 2010, Oliver et al. 2011, Abadi et al. 2013), 23 
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individual heterogeneity has become the focus of studies because of its biological relevance. 1 

For evolutionary biologists, the individual level can be relevant to address natural selection if 2 

heritable variation is expressed at this level (Chambert et al. 2014). In addition, variation 3 

between individuals in demographic parameters is relevant to population ecology and 4 

dynamics, whether it concerns traits that are heritable, or not, and whether it can be accounted 5 

for using observed variables, or not (e.g. Kendall and Fox 2002). Indeed, both population 6 

extinction risk and viability depend on the degree and structure of individual heterogeneity in 7 

survival probability and reproductive parameters (Conner and White 1999, Stover et al. 8 

2012).  9 

Starting from classes of models where demographic parameters varied with time (Jolly 10 

1965), groups of individuals, or age, the development of software programs to build multistate 11 

models (Arnason 1972, 1973) in the 1990’s has considerably increased the attractiveness of 12 

CR models. These models indeed allow biologists to address questions about a large range of 13 

factors structuring a population, which determine individual sequences of states between 14 

which individuals move in a stochastic manner (Nichols et al. 1994, Nichols and Kendall 15 

1995). These models triggered studies of life histories using CR models (e.g. Cam et al. 1998, 16 

Hadley et al. 2007). Another class of approaches, multievent models (Pradel 2005), has also 17 

helped biologists address questions about the influence of ‘state’ on demographic parameters 18 

(Sanz-Aguilar et al. 2011). Indeed, one of the difficulties in CR studies is that ‘state’ may not 19 

be observed with certainty, or even not be observed at all (Desprez et al. 2013). Moreover, the 20 

development of user-friendly software to build models with individual covariates has also 21 

stimulated work in evolutionary ecology using CR data (e.g. Gimenez et al. 2009). The 22 

question of time-specific individual covariates with missing values is still a current issue 23 

(Bonner and Schwarz 2006). The ability of CR models to accommodate variation between 24 

individuals in demographic parameters raises the issue of methods of inference about model 25 
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parameters in CR studies (e.g. Pledger and Schwarz 2002, Royle 2008, Gimenez and Choquet 1 

2010). This issue is tightly linked to the level of stratification of populations, or of 2 

aggregation of observations (Cooch et al. 2002). As emphasized by Nichols (2002): “If we 3 

view an individual organism’s fate or behavior at any point in space and time as a unique 4 

event not capable of informing us about the likelihood of the event for other individuals or 5 

points in space and time, then generalization and prediction become impossible”. To allow 6 

formal statistical inferences about variation in demographic parameters and detection 7 

probability in populations, CR models rely on assumptions, notably regarding unobserved 8 

heterogeneity (e.g. a distribution of random effects; Royle 2008, or a mixture model; Péron et 9 

al. 2010, Marescot et al. 2011).  10 

 11 

Assessing senescence in the wild: an increasingly popular focus of CR studies 12 

The process of senescence, which can be interpreted in the context of the allocation principle 13 

as the trade-off opposing performance during early life and performance in late life (Baudisch 14 

and Vaupel 2012, Lemaître et al. 2015), has been the focus of a large number of empirical 15 

studies during the last decade (see Nussey et al. 2013 for a review). As imperfect detection of 16 

individuals is the rule in free-ranging populations (Gimenez et al. 2008), CR has become the 17 

gold standard to measure reliably actuarial senescence in the wild (e.g. Loison et al. 1999, 18 

Bouwhuis et al. 2012). The question of level of inference has recently emerged as a critical 19 

point in CR studies of senescence (Péron et al. 2010, Marzolin et al. 2011). Based on early 20 

work by human demographers addressing heterogeneity in mortality risk (e.g. Vaupel et al. 21 

1979, ecologists have often used the concept of frailty. However, Vaupel and Yashin (1985) 22 

considered the case of a heterogeneous population with two classes of individuals, frail and 23 

robust ones. As time passes and individuals age, there is a disjunction between the variation 24 
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of the mean survival probability (i.e., when pooling frail and robust individuals) with age, and 1 

the variation in survival probability with age within each group (Figures 1, 2). Ignoring 2 

heterogeneity in mortality risk may lead to flawed inferences about aging rate (Vaupel and 3 

Yashin 1985, Zens and Peart 2003), a phenomenon documented in wild animals using CR 4 

models (Nussey et al. 2008, Péron et al. 2016). This phenomenon has long been 5 

acknowledged in wildlife studies for life stages other than senescence (e.g. nest mortality; 6 

Green 1977 and Johnson et al.1986, and Burnham and Rexstad 1993 in the context of CR 7 

studies). The consequences of ignoring individual heterogeneity in survival probability have 8 

also been investigated in CR studies using special datasets with perfect detection of 9 

individuals (e.g. Cam et al. 2002a, 2013, Wintrebert et al. 2005, Fox et al. 2006, Aubry et al. 10 

2011, Knape et al. 2011).  11 

The requirement of accounting for heterogeneity in survival studies was raised by 12 

human demographers very early (which distribution to use to account for individual 13 

heterogeneity in mortality risk, Manton et al. 1986) and has become a key topic in ecology. 14 

Some demographers argued that observable criteria might not account for individual 15 

heterogeneity in a satisfactory manner, and developed mixed models or mixture models for 16 

time to event data (Kannisto 1991, Abbring and Van Den Berg 2007). The debate about the 17 

appropriate distribution to consider is also taking place in ecology (e.g. Gimenez et al. 2010, 18 

Péron et al. 2010, 2016). However, in CR studies, biologists use discrete data (e.g. mixed 19 

binomial models for survival), which may lead to fewer issues with parameter identifiability 20 

and assumptions than hazard models with frailty (Wienke 2010). Moreover, to some extent, 21 

the idea of addressing heterogeneity using a distribution of latent demographic traits is 22 

coherent with approaches to quantify variation in populations that are familiar to evolutionary 23 

biologists, namely, variances in traits in quantitative genetics (Lynch and Walsh 1998, 24 
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Chambert et al. 2013, 2014). Recently capture-recapture animal models (CRAM) have been 1 

developed to estimate heritability of demographic parameters (Papaïx et al. 2010). 2 

 3 

Detection of trade-offs between life history traits 4 

Trade-offs are one of the cornerstones of the theory of life histories (Roff 1992). They are 5 

based on the principle of allocation (Cody 1966) and express the idea that individuals possess 6 

a limited amount of energy and have thereby to share energy among various functions so that 7 

individuals allocating a lot of energy into current reproduction cannot allocate as much into 8 

survival or future reproduction (Roff 1992). However, empirical analyses have often failed to 9 

detect trade-offs in the wild because of individual heterogeneity in resource acquisition. van 10 

Noordwijk & de Jong (1986) indeed demonstrated that positive associations between current 11 

reproduction and future survival or reproduction occur when individual heterogeneity in 12 

resource acquisition is greater than individual heterogeneity in resource allocation. The 13 

development of multistate models has attracted evolutionary biologists to study trade-offs 14 

within the CR arena (Cam et al. 1998, Yoccoz et al. 2002). Individuals are assumed to make 15 

allocation decisions according to their own state (McNamara and Houston 1996). 16 

Consequently, any unobserved feature of ‘state’ may explain why trade-offs are not detected. 17 

Experimental approaches may help unveil trade-offs (Reznick 1985), but may also go against 18 

heterogeneity (e.g. Festa-Bianchet et al. 1998, Yoccoz et al. 2002). At the extreme, each 19 

individual can be assumed to be in a unique ‘state’ that cannot be measured, and trade-offs 20 

might not be detected. Some observational CR studies have provided evidence of trade-offs 21 

after identifying traits that reliably described changes in individual state (e.g. social rank, 22 

mass, etc., Hamel et al. 2009), by taking advantage of unfavorable conditions (e.g. Descamps 23 

et al. 2009) or by distinguishing direct from indirect effects (Cubaynes et al. 2012a). The 24 
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development of hierarchical CR models with individual heterogeneity has allowed 1 

investigators to assume a distribution of latent life history traits in populations (Royle 2008, 2 

Gimenez and Choquet 2010). In particular, Buoro et al. (2010, 2011) have been successful at 3 

detecting trade-offs using this type of approach.  4 

 5 

 How to infer individual heterogeneity in CR models 6 

 7 

In this section, we provide details about the CR models used in the case studies reviewed 8 

above. Specifically, we focus on multistate, random-effect and finite-mixture CR models 9 

possibly including individual covariates because these are currently the most commonly used 10 

tools to incorporate individual heterogeneity and deal with detectability less than one. We 11 

focus on survival and open populations in the following tutorial, but the methods are 12 

applicable to other CR model parameters (e.g. Matechou et al. 2016), including the detection 13 

probability, and in other contexts such as closed populations. For the sake of illustration, we 14 

simulate data in R that we analyze i) in a frequentist framework using maximum likelihood 15 

methods with program MARK (White and Burnham 1999) called from R using the package 16 

RMark (Laake 2013; alternatively, see the R package marked by Laake et al. 2013) and E-17 

SURGE (Choquet et al. 2009) and ii) in a Bayesian framework using Markov chain Monte 18 

Carlo methods with program JAGS (Plummer 2003) called from R using the package R2Jags. 19 

Below we present results from the frequentist approach only. The code to simulate data and fit 20 

CR models is available in the Supplementary materials and from GitHub 21 

(https://github.com/oliviergimenez/indhet_in_CRmodels).  22 

 23 

Measured individual heterogeneity: individual covariates and multistate CR models 24 
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 1 

Individual covariates 2 

We start with a simple example of an individual i with the encounter history hi = 101 where 3 

‘1’ is for detected and ‘0’ for non-detected. Here, individual i was detected on the first 4 

sampling occasion, then missed and eventually detected again on the last sampling occasion. 5 

We consider the Cormack-Jolly-Seber model for open populations and assume that neither 6 

survival probability φ  between two sampling occasions nor detection probability p at a 7 

sampling occasion vary between individuals. Then, the contribution of individual i to the 8 

model likelihood is: 9 

Pr hi( ) = φ 1− p( )φ p  (1) 

 Now let us assume that we are able to measure individual heterogeneity under the 10 

form of an individual covariate, say xi, which takes a specific value for individual i (Pollock 11 

2002). We assume the covariate to characterize the individual throughout the CR study (i.e., it 12 

is not a time-varying covariate, see below). Then, individual variation in the survival 13 

probability (or the detection probability) can be partly explained by this covariate through:  14 

logit φi( ) = β0 + β1xi
 (2) 

where φi  is the survival probability for individual i, logit u( ) = log
u

1− u

⎛

⎝
⎜

⎞

⎠
⎟ is the logit function 15 

and is used here as a constraint to make sure that survival is estimated between 0 and 1, and 16 

the β’s are regression coefficients to be estimated (e.g. North & Morgan 1979). Assuming 17 

now a model with individual-specific survival, Eqn (1) becomes: 18 

Pr hi( ) = φi 1− p( )φi p  (3) 
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We do not estimate survival for each individual, but instead the regression coefficients β’s in 1 

Eqn (2) by first using the reciprocal logit function logit-1
v( ) =

exp v( )
1+ exp v( )

=
1

1+ exp −v( )  in Eqn 2 

(2) and plugging in the result in Eqn (3): 3 

Pr hi( ) =
1

1+ exp − β0 + β1xi( )⎡⎣ ⎤⎦
1− p( )

1

1+ exp − β0 + β1xi( )⎡⎣ ⎤⎦
p (4) 

The covariate xi may be continuous such as body mass or discrete such as sex. If the covariate 4 

is discrete, it is usually referred to as a group in the CR literature (Lebreton et al. 1992). 5 

So far, we have assumed that this covariate does not vary over time, in other words 6 

that an individual i has the same value xi of the covariate whatever the sampling occasion (i.e. 7 

matching with the concept of frailty sensu stricto). When dealing with time-varying 8 

individual covariates, which matches the concept of dynamic frailty (for unobserved 9 

heterogeneity), we then need to distinguish between discrete and continuous covariates. 10 

 11 

Discrete time-varying individual covariates and multistate CR models 12 

Discrete time-varying individual covariates are referred to as states in the CR literature (e.g. 13 

breeder/non-breeder or infected/non-infected), and are analyzed with so-called multistate CR 14 

models (Schwarz et al. 1993, Lebreton et al. 2009). Let us assume that we measure a time-15 

varying individual covariate with two levels, A and B, and that individual i has now the 16 

encounter history hi = A0B with obvious interpretation. Two things might have happened on 17 

the second sampling occasion at which the individual was not detected: either it stayed in 18 

state A or it made a transition to state B. The transition event immediately calls for the 19 

introduction of additional parameters, namely the transition probability ψ AB
 from state A to 20 

state B and ψ BA

 from state B to state A. The probability of staying in state A (or B) is 21 

obtained as the complementary probability ψ AA =1−ψ AB  (or ψ BB =1−ψ BA ). The two events 22 
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‘being alive in state A’ and ‘being alive in state B’ at the second sampling occasion cannot 1 

occur together: these are mutually exclusive. As a result, the contribution of individual i to the 2 

model likelihood has two components depending on the actual underlying encounter history 3 

AAB or ABB: 4 

Pr hi( ) = φA 1−ψ AB( ) 1− p( )φAψ AB
p +φAψ

AB
1− p( )φB 1−ψ BA( ) p  (5) 

Note that p does not depend on state for simplicity, but this does not need to be the case. An 5 

example of the use of multistate CR models to detect life-history trade-offs in the presence of 6 

individual heterogeneity is provided in Table 2. 7 

 8 

[Table 2 around here] 9 

 10 

Continuous time-varying individual covariates 11 

Continuous time-varying individual covariates are difficult to deal with. Ideally, we have: 12 

Pr hi( ) = φi1 1− p( )φi2 p  (6) 

with 13 

logit φit( ) = β0 + β1xit
 (7) 

where φit  is the survival probability for individual i between sampling occasions t and t + 1 14 

and xit is the value of the covariate for individual i at occasion t. However, this only 15 

corresponds to the 'ideal' situation because when an individual is not detected at a particular 16 

sampling occasion, then the value of the covariate is generally unknown, which makes it 17 

impossible to form Eqn (7). A first possibility is to omit individuals with missing values or to 18 

replace the missing values by, for example, the mean of all covariate values observed for an 19 

individual. These ad-hoc approaches result in a loss of information and bias in parameter 20 

estimates and should be avoided (Kendall et al. 2003, Lee et al. 2016). A more formal 21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/120683doi: bioRxiv preprint 

https://doi.org/10.1101/120683
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

approach consists in imputing missing covariate values from an underlying distribution that is 1 

used to model the change in covariate values over time, typically a first-order Markov process 2 

such as a random walk (Bonner & Schwarz 2006, Langrock & King 2013; see also 3 

Worthington, King & Buckland 2015). A second possibility involves the discretization of the 4 

covariate in two or more levels so that multistate CR models can be used (Nichols et al. 5 

1992). Lastly, inference can be based on a conditional likelihood approach using only the 6 

observed covariate values – the so-called trinomial approach (Catchpole et al. 2010). Several 7 

studies have compared the statistical performances of these methods (Bonner et al. 2010, 8 

Langrock and King 2013) and found that imputation methods were sensitive to the covariate 9 

model and that all methods were sensitive to the detection probability and the number of 10 

missing values. In practice, discretizing the continuous covariate and using multistate CR 11 

models is a pragmatic approach that can easily be implemented in existing software packages. 12 

 13 

Unmeasured individual heterogeneity: random-effect and finite-mixture CR models 14 

  15 

If for some reason, heterogeneity cannot be measured, or there is a reason to believe that 16 

individual covariates do not capture the relevant variation, it can yet be incorporated using 17 

two approaches.  18 

 19 

Random-effect CR models 20 

The usual random-effect approach has been adapted to CR models (Coull and Agresti 1999, 21 

Royle 2008, Gimenez and Choquet 2010). We write: 22 

logit φi( ) = β0 +εi
 (8) 

where the εi ’s are normally distributed with mean 0 and variance σ 2

 to be estimated, which 23 

is to be plugged in Eqn (3) using the reciprocal logit function. To fit this random-effect 24 
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model, one can adopt a Bayesian (Royle 2008) or a Frequentist approach (Gimenez and 1 

Choquet). More complex structures in the random effects can be considered (heritability: 2 

Papaïx et al. 2010a; nested effects: Choquet et al. 2013). An example of the use of random-3 

effect CR models to detect senescence in the presence of individual heterogeneity is provided 4 

in Figure 1. 5 

 6 

[Figure 1 around here] 7 

 8 

Finite-mixture CR models 9 

Another avenue to handle with unobserved individual heterogeneity is to use finite-mixture 10 

models (Pledger et al. 2003, 2010, Pledger 2005, Pledger and Phillpot 2008). These models 11 

assume that individuals can be categorized into a finite number of heterogeneity classes 12 

(hidden states). More explicitly, an individual may be alive in class C1 or class C2. Then,  13 

Pr hi( ) = π  φ C1 1− p( )φ C1  p + 1− π( )φC2 1− p( )φ C2  p  (9) 

where π  (resp. 1− π ) denotes the proportion of newly marked individuals in class C1 (resp. 14 

C2). Transition between classes can be considered (Pradel 2009; see below). An example of 15 

the use of finite-mixture CR models to detect senescence in the presence of individual 16 

heterogeneity is provided in Figure 2.  17 

 18 

[Figure 2 around here] 19 

 20 

Hidden-Markov modeling framework 21 

 22 

CR models can be fruitfully expressed as state-space models in which the biological process 23 

(survival for example) is explicitly distinguished from the observation process (detection) 24 
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(Gimenez et al. 2007, 2012, Royle 2008, King 2012). In particular, multistate CR models 1 

incorporating uncertainty in state assignment – multievent CR models – have been formulated 2 

as hidden-Markov models (HMM; Zucchini et al. 2016) by Pradel (2005; review in Gimenez 3 

et al. 2012), a particular case of state-space models in which the states are Markovian (i.e. the 4 

next state depends only on the current state and not on the sequence of states that occurred 5 

before). An advantage of the HMM formulation of CR models is that it provides high 6 

flexibility in the way individual heterogeneity is modeled. For example, the HMM 7 

formulation of finite-mixture CR models can easily be extended to consider transitions 8 

between classes of heterogeneity (Pradel 2009, Cubaynes et al. 2010). Let us define the states 9 

alive in class 1 (‘C1’), alive in class 2 (‘C2’) and dead (‘D’). The individuals can go 10 

undetected (‘0’) or detected (‘1’). Initially, the state of an individual is driven by the vector of 11 

initial state probabilities: 12 

Π = π 1− π 0⎡
⎣

⎤
⎦ 13 

where the states C1, C2 and D are in columns in that order. Then the observation process at 14 

first capture applies through: 15 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

01

10

10

1B

 16 

where the states are in rows and the observations (or events) are in columns (0 and 1 in that 17 

order). Now that the fate of individuals at first capture occasions is modeled, the survival and 18 

observation processes occur successively at the subsequent occasions. The survival process is 19 

governed by:  20 

Φ =

φ C1 0 1−φC1

0 φC2 1−φ C2

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/120683doi: bioRxiv preprint 

https://doi.org/10.1101/120683
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

where the states at t are in rows and the states in t + 1 are in columns. Individuals can be 1 

allowed to move from one heterogeneity class to the other through transition probabilities ψ  2 

by multiplying the survival matrix by a transition matrix: 3 

Φ =

φ C1 0 1−φC1

0 φ C2 1−φ C2

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1−ψC1→C2 ψC1→C2 0

ψC2→C1 1−ψC2→C1 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. 4 

The observation process at occasion t is modeled using:  5 

B2 =

1− p p

1− p p

1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 6 

where states are in rows and observations in columns. The probability in Eqn (9) can be 7 

written as the product of the matrices above (Pradel 2005). 8 

 9 

Is individual heterogeneity statistically relevant? 10 

 11 

Testing the statistical relevance of individual heterogeneity can be done in two ways. First, 12 

the quality of fit of models with heterogeneity to CR data can be assessed using goodness-of-13 

fit tests. An ad-hoc procedure was proposed in the context of finite-mixture models by 14 

considering specific combinations of components of the goodness-of-fit test for homogeneous 15 

models (Péron et al. 2010). A more formal approach is being developed (Jeyam, McCrea, 16 

Pradel, unpublished results) based on methods used in behavioral sciences. Second, models 17 

with and without heterogeneity can be compared using hypothesis testing or model selection. 18 

For multistate models, model selection using the Akaike Information Criterion (AIC; 19 
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Burnham & Anderson 2002) is usually favored as illustrated in Table 2. In the Bayesian 1 

context, several methods have been used and we refer to review papers for guidelines (O’Hara 2 

and Sillanpää 2009, Tenan et al. 2014, Hooten et al. 2015). In random-effect models, the 3 

question boils down to testing whether the variance of the random effect is zero, which can be 4 

addressed using likelihood ratio tests (Gimenez and Choquet 2010) but may be difficult to do 5 

in a model selection framework (Bolker et al. 2009). We refer to O’Hara & Sillanpää (2009) 6 

for Bayesian methods (see also Royle 2008, Chambert et al. 2014). In finite-mixture models, 7 

standard tools from the model selection framework, namely the AIC, can be used (Cubaynes 8 

et al. 2012b), although it may fail in the context of detecting senescence (Supplementary 9 

Material A in Péron et al. 2016). In a Bayesian context, the Deviance Information Criterion 10 

(DIC; Spiegelhalter et al. 2014) is known to perform poorly on mixture models, and the 11 

Watanabe-Akaike information criteria (wAIC; Gelman et al. 2014) holds promise in this 12 

context, although it is yet to be used with CR models. 13 

 14 

Discussion and research perspectives  15 

 16 

Random effects vs. mixture? In studies based on CR models built in the context of closed or 17 

open population CR models, as well as in human demography, there is currently a debate 18 

about the distribution to consider to account for individual heterogeneity in demographic 19 

parameters (Yashin et al. 2001, Péron et al. 2010). This debate sometimes focuses on the 20 

biological justification of continuous distributions vs. mixture models (e.g. Péron et al. 2010). 21 

The debate also focuses on alternatives to distributions that might be unrealistic or inadequate 22 

(Péron et al. 2010). This question is not specific to CR modeling (Hamel et al. 2016). Clusters 23 

of individuals sharing values of latent traits can be identified using mixture models. Recently, 24 
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Hamel et al. (2016) addressed the question of the identification of reproductive and growth 1 

tactics in long-lived mammals using mixture models. They also used simulations and showed 2 

that in many cases the number of clusters can be chosen using an information theoretic or a 3 

bootstrap approach. Alternatively, infinite mixture models could be developed for CR data 4 

(Rasmussen 2000, Ohlssen et al. 2007, Raman et al. 2010), where the number of clusters is a 5 

priori very large, but the number of clusters including at least one individual is estimated and 6 

can range from 1 to a large number; the latter situation leads to a distribution of demographic 7 

parameters that approaches a continuous one (Ohlssen et al. 2007). Rather than comparing 8 

models that vary in complexity using for instance an information criterion, Bayesian 9 

nonparametric approaches fit a single model that can adapt its complexity to the data 10 

(Gershman & Blei 2012; see Ford, Patterson & Bravington 2015 and Manrique-Vallier 2016 11 

for applications to CR models). Moreover, the question of how to account for heterogeneous 12 

detection probability in CR models designed to estimate population size has a very long 13 

history (e.g. Carothers 1973, Link 2003, Ghosh and Norris 2005). Carothers (1973) 14 

investigated the consequences of violations of the assumption of equal detection probability 15 

on estimates from the Jolly-Seber model. He concluded that “any distribution is, from the 16 

point of view of investigating bias, as good as any other with the same [mean detection 17 

probability] and [coefficient of variation], and it is therefore justifiable to select a distribution 18 

on the grounds of computational convenience alone”. The number of classes might be itself of 19 

interest, but in the framework of closed populations, there is no straightforward means of 20 

determining the number of components of a mixture model for detection probability (Link 21 

2003), and it is strongly advised against trying to interpret the mixture parameters (Shirley 22 

Pledger, pers. comm.).  23 

 24 
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Change in latent values of demographic parameters over lifetime. In standard models for 1 

longitudinal data with individual heterogeneity, an independent subject-specific random effect 2 

is assumed to be constant over time for each subject (Vaupel & Missov 2014), which matches 3 

early versions of the concept of frailty (Vaupel et al. 1979). Generally, in CR studies using 4 

mixture models, each individual is also assumed to be a member of a latent class when it 5 

enters the study, and it does not change class. Mortality risk or breeding success at time 0 6 

(when the individual enters the study) is assumed to be perfectly correlated with the risk later 7 

in life (Wienke 2010). However, this assumption does not necessarily hold, and models 8 

accommodating changes in individual latent vital rates may offer an interesting basis to test 9 

biological hypotheses. An alternative approach allowing individuals to experience (reversible) 10 

changes in latent vital rates could be based on the ontogenetic view of individual differences 11 

(Senner et al. 2015). This can be achieved with ‘dynamic frailty’ models (Manda and Meyer 12 

2005, Putter and Van Houwelingen 2014), hidden Markov models (Johnson et al. 2016), 13 

Latent Class transition models or mixture models, in which individuals can change latent class 14 

over time (e.g. Kaplan 2008). Hidden Markov models are now commonly used in CR studies, 15 

but specific applications to change in latent demographic parameters are still rare (Pradel 16 

2005, Cubaynes et al. 2010). 17 

 18 

Initial conditions. An overlooked issue in CR studies using multistate models is the issue of 19 

‘initial conditions’. Before estimating the parameters of a model accounting for a stochastic 20 

process with dependence between consecutive states (e.g. breeding states), one has to think 21 

about how the process was ”initialized”. Studies of reproduction necessarily start recording 22 

breeding outcomes at the first breeding event (recruitment, or first observed breeding 23 

attempt). More generally, studies modeling reproductive outcomes from recruitment onwards 24 

(e.g. Cam et al. 1998, Yoccoz et al. 2002) assume that the start of the process generating the 25 
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observed reproductive states coincides with the start of reproductive life for each individual 1 

(Wooldridge 2005). Nevertheless, the process governing the first breeding outcome can be the 2 

same as the process generating the subsequent observations in the individual lifetime 3 

trajectory (Skrondal and Rabe-hesketh 2014). Such a process can include unobserved 4 

determinants of breeding outcome. In dynamic models of reproduction incorporating the 5 

effect of past breeding outcome at time t on the probability of breeding successfully at time 6 

t+1 (e.g. multistate CR models), the outcome of the first reproductive attempt (at time t) is not 7 

considered as the realization of a random process, because there is no reproduction at time t-1. 8 

Nevertheless, failure to incorporate unobserved factors governing breeding success 9 

probability at recruitment can translate into overestimation of transition probabilities between 10 

subsequent reproductive states (Heckman 1981, Prowse 2012). This is particularly 11 

problematic in studies of changes in reproductive costs throughout the lifetime (e.g. Sanz-12 

Aguilar et al. 2008), or of experience-specific variation in breeding outcome (e.g. Nevoux et 13 

al. 2007). Interestingly, Sanz-Aguilar et al. (2008) have interpreted evidence of higher 14 

reproductive costs of reproduction at recruitment as a consequence of within-cohort mortality 15 

selection, with frailer individuals incurring higher reproductive costs than robust ones. The 16 

initial conditions problem can be overcome using a joint modeling approach of the processes 17 

governing reproductive success at recruitment and subsequent breeding occasions (Skrondal 18 

and Rabe-hesketh 2014). If CR data are available from the pre-breeding period, then 19 

unobserved and observed determinants of breeding state can be considered simultaneously 20 

(e.g. Fay et al. 2016b).  21 

 22 

Inference about individual heterogeneity. Two papers have revived interest in unobserved 23 

heterogeneity in demographic parameters in CR studies (Steiner et al. 2010, Orzack et al. 24 
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2011). More specifically, these papers have drawn attention to the approaches used to 1 

discriminate between hypotheses about sources of variation in CR histories. In CR studies, an 2 

influential book by Burnham and Anderson (2002) has promoted the use of multimodel 3 

inference such as information criteria to address non-mutually exclusive biological 4 

hypotheses about the processes governing mortality, or the arrangement of reproductive states 5 

over lifetime trajectories of animals. For example, models accounting for state-dependence in 6 

survival or reproduction can be considered (multistate or multievent models; e.g. Sanz-7 

Aguilar et al. 2008), models accounting for unobserved heterogeneity in these demographic 8 

parameters too (e.g. Royle 2008, Marzolin et al. 2011), as well as models accounting for both 9 

sources of variation in survival and reproduction (e.g. Fay et al. 2016a). This contrasts with 10 

approaches based on a single model (namely, state-dependence) and evaluation of the degree 11 

of consistency of observed individual CR histories with metrics summarizing key features of 12 

histories simulated using parameters estimated with the model in question (Steiner et al. 2010, 13 

Orzack et al. 2011). 14 

By definition, variation in individual trajectories simulated using parameters estimated 15 

with multistate CR models is not caused by fixed, unobserved heterogeneity between 16 

individuals in their demographic parameters (Tuljapurkar et al. 2009, Steiner and Tuljapurkar 17 

2012). The variation in arrangements of states in simulated data stems from the realization of 18 

random variables governed by probabilities; the resulting pattern is called ‘dynamic 19 

heterogeneity’ (Tuljapurkar et al. 2009), or ‘individual stochasticity’ (Caswell 2009). Several 20 

papers have provided evidence that there is a good match between observed and simulated 21 

features of individual histories (Steiner et al. 2010, Orzack et al. 2011, Steiner and 22 

Tuljapurkar 2012). These studies suggest that stochastic demographic processes have been 23 

overlooked in life history studies, and that latent, unobserved heterogeneity in demographic 24 

parameters might have been overstated in studies of longitudinal data from animals, whether 25 
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detection probability is lower than one or not (Cam et al. 2002a, 2013, Steiner et al. 2010, 1 

Orzack et al. 2011). From a conceptual viewpoint, these studies attempt to caution biologists 2 

against over-interpreting amounts of unobserved individual heterogeneity in demographic 3 

parameters (“biologists commonly argue that large differences in fitness components are 4 

likely adaptive, resulting from and driving evolution by natural selection” Steiner & 5 

Tuljapurkar 2012, Cam et al. 2016). However, they have moved away from one of the 6 

dominating statistical inference approaches in the CR area, namely multimodel inference and 7 

information criteria (Burnham and Anderson 2002). Current research is addressing the 8 

question of whether simulations based on multistate CR models or simply models with state-9 

dependence used for longitudinal data analysis allow discriminating between alternative 10 

hypotheses about the processes generating variability in individual histories (Plard et al. 2012, 11 

Bonnet and Postma 2016, Cam et al. 2016). 12 

Importantly, proponents of dynamic heterogeneity have overlooked notes of caution 13 

from other areas of research also using multistate models for inferences about longitudinal 14 

data concerning possible biases in estimates of ‘state-dependence’ (e.g. Heckman 1981, 15 

Ahmad 2014). A key issue in discriminating between processes generating variation in 16 

individual histories is that a Markov process (i.e. the basis of multistate models) and 17 

unobserved individual heterogeneity (for instance a random effect model, Royle 2008) can 18 

create similar patterns in arrangements of states along individual trajectories (Ahmad 2014, 19 

Authier et al. 2017). This issue has stimulated a large body of work in econometrics 20 

(Heckman 1981, Ahmad 2014, Skrondal and Rabe-hesketh 2014, Andriopoulou and 21 

Tsakloglou 2015). The hypothesis of a ‘communicating vessels’ phenomenon between 22 

sources of variation in CR histories should be considered in wild animal populations, as in 23 

econometrics studies (Ahmad 2014, Plum and Ayllón 2015, Cam et al. 2016). Interestingly, 24 
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several CR studies have hypothesized that their results obtained using multistate models 1 

partly reflect heterogeneity between individuals in baseline breeding and survival probability 2 

(Cam et al. 1998), or phenotypic within-cohort mortality selection (i.e., the change in the 3 

composition of a heterogeneous cohort including individuals with different baseline survival 4 

probabilities; Cam et al. 2002a, Barbraud and Weimerskirch 2004, Nevoux et al. 2007, Sanz-5 

Aguilar et al. 2008). That is, they have hypothesized that their result may be caused by 6 

unobserved individual heterogeneity, a question now being addressed in studies of senescence 7 

(Péron et al. 2010, 2016). This suggests that CR models with both a Markovian structure (for 8 

observable, partially observable, or unobservable states) and unobserved individual 9 

heterogeneity might perform well with some datasets from wild animal populations (Fay et al. 10 

2016a, b).  11 

 12 

Conclusion 13 

Our review, although not exhaustive, demonstrates that the tremendous advances in CR 14 

modeling accomplished over the past 40 years provide investigators with a reliable way to 15 

address multiple facets of the process of individual heterogeneity in demographic parameters. 16 

Pioneer works by quantitative wildlife biologists focused on individual heterogeneity in 17 

recapture or survival probability to avoid biased estimates of population size. The emergence 18 

of more general questions such as cause-specific sources of mortality in game- and non-game 19 

species (Johnson et al 1986, Koons et al. 2014) and the need for accurate assessment of the 20 

impact of global change on the demography of structured populations (Gullett et al. 2014) 21 

have triggered collaborations between biologists and statisticians to make efficient use of 22 

data, robust inferences about demographic parameters, and achieve an increasing degree of 23 

realism in both the sampling and ecological processes handled by CR models. As emphasized 24 
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by Conroy (2009), the nature of questions that can be addressed nowadays has been greatly 1 

expanded to include evolutionary ecology, whose cornerstone is variation in demographic 2 

parameters between individuals both within and between populations. The relevance of 3 

dealing with individual heterogeneity to study eco-evolutionary processes has placed the topic 4 

of individual heterogeneity at the core of many empirical investigations using CR data (Table 5 

1). Provided appropriate sampling design and sufficient data are available, the flexibility of 6 

modern CR models now allows assessing reliably the role of individual heterogeneity in 7 

ecology and evolutionary processes in the wild. 8 
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Table 1: Case studies
1
 reporting an analysis of individual heterogeneity in demographic 1 

parameters (i.e. survival and reproductive traits) within a CR context. The table lists the 2 

reference, the studied species, the main outcome as explicitly stated in the paper, and how 3 

individual heterogeneity was assessed. Individual heterogeneity corresponded either to the 4 

total amount of heterogeneity ("a priori" cases) or to heterogeneity measured using some 5 

metrics ("a posteriori" cases). In these latter cases, the metrics used are provided. 6 

 7 

Authors Studied species Main finding Metric of individual 

heterogeneity 

Guéry et al. 

2017 

Common eider 

Somateria 

mollissima 

"Survival of the two migrating 

arctic populations was impacted 

directly by changes in the NAO, 

whereas the subarctic resident 

population was affected by the 

NAO with time lags of 2– 3 years. 

Moreover, we found evidence for 

intra-population heterogeneity in 

the survival response to the winter 

NAO in the Canadian eider 

population, where individuals 

migrate to distinct wintering 

areas" 

A priori:  

Two classes of 

heterogeneity (finite 

mixture models) 

Péron et al. 

2016 

Birds (5 species) 

and Mammals (4 

species) 

"Individual heterogeneity in 

survival was higher in species 

with short-generation time (< 3 

years) than in species with long 

generation time (> 4 years)" 

A priori:  

Two classes of 

heterogeneity (finite 

mixture models) 

and 

Continuous 

distribution of 

heterogeneity 

Kennamer 

et al. 2016 

Wood Duck 

Aix sponsa 

"Strong positive relationship 

between survival and the number 

of successful nests" 

A posteriori:  

Early incubation 

body mass 
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"Body mass was not a good proxy 

of quality" 

Fay et al. 

2016a 

Wandering 

albatross 

Diomedea 

exulans 

"Age at first reproduction is 

negatively related to both 

reproductive performance and 

adult survival" 

A priori:  

Two classes of 

heterogeneity (finite 

mixture models) 

Garnier et 

al. 2016 

Alpine ibex 

Capra ibex 

"Adverse environmental 

conditions, such as disease 

outbreaks, may lead to survival 

costs of reproduction in long-

lived species" 

A priori:  

Two classes of 

heterogeneity (finite 

mixture models) 

Hileman et 

al. 2015 

Milksnake 

Lampropeltis 

trinagulum 

"estimate adult survival 

(0.72±0.16) and abundance (N = 

85±35.2)" 

A posteriori: 

Observed maximum 

detection frequency 

Link and 

Hesed 2015 

Red-backed 

Salamander 

Plethodon 

cinereus 

"Female P. cinereus mature 

earlier and grow more quickly 

than males" 

A priori: Continuous 

distribution of 

heterogeneity 

Hartson et 

al. 2015 

Steelhead Trout 

Oncorhynchus 

mykiss 

"Negative relationship between 

density and specific growth rate 

over a wide range of densities, but 

reductions in survival only at the 

highest densities" 

A posteriori:  

Body length 

Hua et al. 

2015 

Cumberlandian 

Combshell 

Epioblasma 

brevidens 

"The overall mean detection 

probability and survival rate of 

released individuals reached 97.8 

to 98.4% and 99.7 to 99.9% (per 

month)" 

A priori:  

Continuous 

distribution of 

heterogeneity 

Chambert 

et al. 2015 

Weddell Seal 

Leptonychotes 

weddellii 

"The probability of being absent 

from colonies was higher (1) in 

years when the extent of local sea 

ice was larger, (2) for the 

youngest and oldest individuals, 

and (3) for females with less 

reproductive experience" 

A priori:  

Continuous 

distribution of 

heterogeneity 
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Pirotta et al. 

2015 

Bottlenose 

Dolphin 

Tursiops 

troncatus 

"There were marked inter-

individual differences in the 

predicted amount of time dolphins 

spent in the presence of boats, and 

individuals tended to be 

consistently over- orunderexposed 

across summers" 

A priori:  

Continuous 

distribution of 

heterogeneity 

Stoelting et 

al. 2015 

California Spotted 

Owl 

Strix occidentalis 

occidentalis 

"Breeding reduced the likelihood 

of reproducing in the subsequent 

year by 16% to 38%, but had no 

influence on subsequent survival" 

A priori:  

Continuous 

distribution of 

heterogeneity 

Souchay et 

al. 2014 

Greater Snow 

Goose 

Chen 

caerulescens 

atlantica 

"Cost of reproduction on breeding 

propensity in the next year, but 

once females decide to breed, 

nesting success is likely driven by 

individual quality" 

A posteriori: 

Previous breeding 

status 

Koons et al. 

2014 

Wild Boar 

Sus scrofa and 

Lesser Snow 

Goose 

Chen 

caerulescens 

caerulescens 

"Senescence can be severe for 

natural causes of mortality in the 

wild, while being largely non-

existent for anthropogenic causes" 

A posteriori:  

Cause-specific 

mortality 

Horswill et 

al. 2014 

Macaroni Penguin 

Eudyptes 

chrysolophus 

"Survival of macaroni penguins is 

driven by a combination of 

individual quality, top-down 

predation pressure and bottom-up 

environmental forces" 

A posteriori:  

Body mass 

Lindberg et 

al. 2013 

Pacific Black 

Brant 

Branta bernicla 

nigricans 

"Annual survival of individuals 

marked as goslings was 

heterogeneous among individuals 

and year specific […]. Adult 

survival (0.85±0.004) was 

homogeneous and higher than 

survival of both groups of 

juveniles. The annual recruitment 

probability was heterogeneous for 

A priori:  

Two classes of 

heterogeneity 
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brant >1-year-old" 

Chambert 

et al. 2013 

Weddell Seal 

Leptonychotes 

weddellii 

"Existence of a latent individual 

heterogeneity in the population, 

with robust individuals expected 

to produce twice as many pups as 

'frail' individuals" 

A priori:  

Continuous 

distribution of 

heterogeneity 

Barbraud et 

al. 2013 

Wandering 

Albatross 

Diomedea 

exulans 

"Strong evidence for 

heterogeneity in survival with one 

group of individuals having a 

5.2% lower annual survival 

probability than another group" 

A priori:  

Two classes of 

heterogeneity 

Blomberg 

et al. 2013 

Greater Sage 

Grouse 

Centrocercus 

urophasianus 

 

"Evidence for heterogeneity 

among females with respect to 

reproductive success; compared 

with unsuccessful females, 

females that raised a brood 

successfully in year t were more 

than twice as likely to be 

successful in year t+1" 

A posteriori: 

Previous breeding 

status 

Morano et 

al. 2013 

North American 

Elk 

Cervus elaphus 

"No difference in survival 

probabilities between pregnant 

and nonpregnant individuals or as 

a function of recruiting an 

offspring […and] negative effect 

of recruiting an offspring in the 

current year on becoming 

pregnant the following year" 

A posteriori: 

Lactation status and 

body condition 

Pradel et al. 

2012 

Greater Flamingo 

Phoenicopterus 

roseus 

"Breeding probability varied 

within three levels of experience. 

[… and] With random effects, the 

advantage of experience was 

unequivocal only after age 9 

while in young having > 1 

experience was penalizing" 

A priori:  

Continuous 

distribution of 

heterogeneity 

and 

A posteriori: 

Experience 

Reichert et 

al. 2012 

Florida Snail Kite 

Rostrhamus 

"experience is an important factor 

determining whether or not 

individuals attempt to breed 

A posteriori: 

Experience 
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sociabilis 

plumbeus 

during harsh environmental 

conditions" 

Robert et 

al. 2012 

Monteiro's Storm 

Petrel 

Oceanodroma 

monteiroi 

"reproductive costs act on 

individuals of intermediate quality 

and are mediated by 

environmental harshness" 

A posteriori: 

successful vs. 

unsuccessful 

breeders 

Hernandez-

Matias et 

al. 2011 

Bonelli's eagle 

Aquila fasciata 

"4-year-old and older successful 

breeders were more likely to 

breed the following year than 

failed adult breeders (0.869 vs. 

0.582), suggesting that the cost of 

reproduction is small in 

comparison with the variation in 

quality among individuals or their 

territories " 

A posteriori: 

successful vs. 

unsuccessful 

breeders 

Briggs et al. 

2011 

Swainson’s 

hawks 

Buteo swainsoni 

"Adult survival was inversely 

correlated with average 

reproductive output, with 

individuals producing >2 

offspring having decreased 

survival [… and] reproduction in 

any year was positively correlated 

with survival" 

A posteriori: 

Average annual nest 

productivity 

Lee 2011 Northern elephant 

seals  

Mirounga 

angustirostris 

"Primiparous breeders did not 

suffer more than experienced 

breeders during years of 

environmental stress. [… and] 

Lower variances in survival of 

multiparous breeders suggest that 

primiparous adults constitute a 

more heterogeneous portion of the 

population" 

A posteriori: 

inexperienced vs. 

experienced breeders 

Moyes et 

al. 2011 

Red deer 

Cervus elaphus 

"The probability 

of reproducing unsuccessfully 

after a successful year is 

relatively low and varies very 

little, but is highest in young 

individuals with low PARE. 

A posteriori: 

Proportional age-

specific reproductive 

effort (PARE) 
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[…and] Reproduction costs 

increase with declining PARE" 

Marzolin et 

al. 2011 

Dipper 

Cinclus cinclus 

"Strong evidence for actuarial 

senescence with an onset of 

senescence estimated at about 2.3 

years" 

A priori:  

Continuous 

distribution of 

heterogeneity 

Buoro et al. 

2010 

Atlantic salmon 

Salmo salar 

"Cost of reproduction on survival 

for fish staying in freshwater and 

a survival advantage associated 

with the "decision" to migrate" 

A priori:  

Continuous 

distribution of 

heterogeneity 

Kovach et 

al. 2010 

Intertidal snail 

Nucella lima 

"Survival estimates from the best-

fit model were different between 

habitat types" 

A posteriori: 

Microhabitat use, 

individual color and 

length 

Reid et al. 

2010 

Red-billed 

choughs 

Pyrrhocorax 

pyrrhocorax 

"The negative correlation between 

offspring survival and maternal 

lifespan was strongest when 

environmental conditions meant 

that offspring survival was low 

across the population" 

A posteriori: 

Longevity 

Maniscalco 

et al. 2010 

Steller sea lion 

Eumetopias 

jubatus 

"Females which gave birth had a 

higher probability of surviving 

and giving birth in the following 

year compared to females that did 

not give birth"  

A posteriori: 

Give birth vs. do not 

give birth 

Millon et 

al. 2010 

Tawny owl  

Strix aluco 

"Females who postponed 

reproduction to breed for the first 

time at age 3 during an Increase 

phase, produced more recruits, 

even when accounting for birds 

that may have died before 

reproduction. No such effects 

were detected for males" 

A posteriori: 

Age at first breeding 

Lescroël et 

al. 2009 

Adélie penguin 

Pygoscelis 

adeliae 

"Adult survival ranged from 64-

79%, with BQI accounting for 

91% of variability in the entire 

study population, but only 17% in 

A posteriori: 

Breeding quality 
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experienced breeders" (BQI) 

Bonenfant 

et al. 2009 

Bighorn sheep 

Ovis canadensis 

"In all age classes, natural 

survival was either weakly related 

to (lambs, adult rams) or 

positively associated (yearling 

rams) with early horn growth" 

A posteriori: 

Early horn growth 

Sedinger et 

al. 2008 

Black brent geese  

Branta bernicla 

nigricans 

"Individuals with a higher 

probability of breeding in one 

year also had a higher probability 

of breeding the next year" 

A posteriori: 

Bred in the previous 

years vs. did not 

Pistorius et 

al. 2008 

Southern elephant 

seal 

Mirounga leonina 

"Mean postbreeding (pelagic 

phase between breeding and 

molting, about 62 days) survival 

of primiparous females was 0.830 

compared to 0.912 for more-

experienced females" 

A posteriori: 

Reproductive 

experience 

Weladji et 

al. 2008 

Reindeer 

Rangifer tarandus 

"Successful breeders had higher 

survival and subsequent 

reproductive success than 

experienced non-breeders and 

unsuccessful breeders, 

independently of the age at 

primiparity. [… and] Successful 

females at early primiparity 

remained successful throughout 

their life" 

A posteriori: 

Age at primiparity 

Le Bohec et 

al. 2007 

King penguin 

Aptenodytes 

patagonicus 

"Failed breeders in year t have a 

lower probability to reproduce 

successfully in year t + 1 than 

non-breeders in year t [… and] 

successful breeders showed 

higher survival probability" 

A posteriori: 

successful vs. 

unsuccessful 

breeders 

Zheng et al. 

2007 

Glanville fritillary 

butterfly 

Melitaea cinxia 

"We found that mortality rate 

increased with age, that mortality 

rate was much higher during the 

day than during the night, and that 

the life span of females 

originating from newly 

established populations was 

shorter than the life span of 

A priori:  

Continuous 

distribution of 

heterogeneity 
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females from old populations" 

Hadley et 

al. 2007 

Weddell seal 

Leptonychotes 

weddellii 

"Presence of reproductive costs to 

survival (mean annual survival 

probability was 0.91 for breeders 

vs. 0.94 for nonbreeders) [… and] 

Reproductive costs to subsequent 

reproductive probabilities were 

also present for first-time breeders 

(mean probability of breeding the 

next year was 31.3% lower for 

first-time breeders than for 

experienced breeders)" 

A posteriori: 

Breeding experience 

Beauplet et 

al. 2006 

Subantarctic fur 

seal 

Arctocephalus 

tropicalis 

"Survival was lower for non-

breeders than for breeders, among 

both prime-aged (0.938 vs 0.982) 

and older (0.676 vs 0.855) 

females [… and] non-breeders 

exhibited higher probabilities of 

being non-breeders the following 

year than did breeders (0.555 vs 

0.414)" 

A posteriori: 

Breeders vs. non-

breeders 

Blums et al. 

2005 

Tufted duck 

Aythya fuligula 

Common pochard 

Aythya ferina 

Northern shoveler 

Anas clypeata 

"For all three species, females that 

tended to nest earlier than the 

norm exhibited the highest 

survival rates, but very early 

nesters experienced reduced 

survival and late nesters showed 

even lower survival. For 

shovelers, females in average 

body condition showed the 

highest survival, with lower 

survival rates exhibited by both 

heavy and light birds. For 

common pochard and tufted duck, 

the highest survival rates were 

associated with birds of slightly 

above-average condition, with 

somewhat lower survival for very 

heavy birds and much lower 

survival for birds in relatively 

A posteriori: 

Relative body 

condition and 

relative time of 

nesting 
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poor condition" 

Barbraud et 

al. 2005 

Blue petrel 

Halobaena 

caerulea 

"Survival of first-time breeders 

was lower than that of 

inexperienced nonbreeders […]. 

Survival of inexperienced 

individuals (both breeders and 

nonbreeders), but not of 

experienced ones, was negatively 

affected by poor environmental 

oceanographic conditions [… 

and] Survival and the probability 

of breeding in the next year for 

experienced birds were higher for 

breeders than for nonbreeders" 

A posteriori: 

Breeding experience 

Wintrebert 

et al. 2005 

Kittiwake 

Rissa tridactyla 

"Survival is positively correlated 

with breeding indicating that birds 

with greater inclination to breed 

also had higher survival" 

A priori: 

Continuous 

distribution of 

heterogeneity 

Roulin et 

al. 2003 

Tawny owls 

Strix aluco 

"The proportion of all breeding 

females that were reddish-brown 

was greater in years when the 

breeding density was lower [… 

and] greyish females bred less 

often than reddish-brown females, 

although their survival probability 

was similar" 

A posteriori: 

Colour 

polymorphism 

Reid et al. 

2003 

Red-billed 

choughs 

Pyrrhocorax 

pyrrhocorax 

"Females that ultimately reached 

the greatest ages had laid small 

clutches and fledged few 

offspring during their first few 

breeding attempts. Females that 

were more productive when they 

were young had relatively shorter 

lives" 

A priori: 

Lifespan 

Cam et al. 

2003 

Kittiwake 

Rissa tridactyla 

"Individuals with shorter rearing 

periods had lower local survival 

during the first winter [… and] 

The length of the rearing period 

had long-term consequences on 

reproductive performance [… 

A posteriori: 

Rank and length of 

the rearing period 
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and] negative influence of rank on 

survival before recruitment and 

recruitment probability" 

Cam et al. 

2002a 

Kittiwake 

Rissa tridactyla 

"Birds that were more likely to 

survive were also more likely to 

breed, given that they survived" 

A priori: 

Continuous 

distribution of 

heterogeneity 

Cam et al. 

2002b 

Kittiwake 

Rissa tridactyla 

"Squatters have a higher survival 

and recruitment probability, and a 

higher probability of breeding 

successfully in the first breeding 

attempt in all age-classes where 

this category is represented" 

A posteriori: 

Squatters vs. non-

squatters 

Cam and 

Monnat 

2000a 

Kittiwake 

Rissa tridactyla 

"The influence of age on survival 

and future breeding probability is 

not the same in nonbreeders and 

breeders" 

A posteriori: 

Yearly reproductive 

state 

Cam and 

Monnat 

2000b 

Kittiwake 

Rissa tridactyla 

"First-time breeders have a lower 

probability of success, a lower 

survival and a lower probability 

of breeding in the next year than 

experienced breeders [… and] 

neither experienced nor 

inexperienced breeders have a 

lower survival or a lower 

probability of breeding in the 

following year than birds that 

skipped a breeding opportunity. 

[… and] When age and breeding 

success are controlled for, there is 

no evidence of an influence of 

experience on survival or future 

breeding probability" 

A posteriori: 

Breeding experience 

and breeding status 

1
 The literature survey was performed in ISI Web of Knowledge by looking for references corresponding to the 1 

following "Topic" keywords: ((("individual variability" OR "individual heterogeneity" OR "individual quality") 2 
AND ("capture-recapture" OR "mark-recapture" OR "capture-mark-recapture"))). A total of 162 references were 3 
recovered. We read all summaries and only selected case studies looking for individual heterogeneity in 4 
demographic parameters estimated from CR models. 5 

 6 
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Table 2. Detection of a trade-off between reproduction and survival using multistate 1 

capture-recapture models after individual heterogeneity is accounted for. We simulated 2 

multistate capture-recapture data with two states, non-breeding (NB) and breeding (B). To 3 

mimic individual heterogeneity, we considered robust individuals with survival  4 

and  and frail individuals with survival  and , the only difference 5 

being in the survival of frail breeders that is much lower than that of robust breeders. For each 6 

group, we simulated the fate of 100 newly marked individuals in each year of a 6-year 7 

experiment. We report parameter estimates from two multistate models in which i) we 8 

ignored individual heterogeneity (column ‘Ignoring individual heterogeneity) and ii) we 9 

explicitly incorporated an individual covariate to handle this source of heterogeneity (column 10 

‘Incorporating individual heterogeneity’). The parameters we used to simulate the data are 11 

given in the column ‘Truth’. We refer to the Appendix for more details. The cost of breeding 12 

on survival is detected only in frail individuals after accounting for individual 13 

heterogeneity through quality ( ). 14 

Parameter 
Ignoring  

Individual heterogeneity 

Incorporating  

individual heterogeneity 
Truth  

Survival of frail non-

breeders 
0.69 [0.67; 0.72] 0.70 [0.66; 0.73] 0.7  

Survival of frail breeders 0.70 [0.68; 0.72] 0.58 [0.55; 0.61] 0.6 

Survival of robust non-

breeders 
0.69 [0.67; 0.72] 0.69 [0.65; 0.72] 0.7 
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Survival of robust breeders 0.70 [0.68; 0.72] 0.80 [0.77; 0.82] 0.8 

Transition from non-

breeding to breeding 
0.78 [0.75; 0.80] 0.78 [0.75; 0.80] 0.8 

Transition from breeding to 

non-breeding 
0.31 [0.29; 0.33] 0.31 [0.28; 0.33] 0.3 

Detection 0.90 [0.88; 0.91] 0.90 [0.88; 0.91] 0.9 

 1 

2 
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 1 

Figure 1. Senescence is masked when individual heterogeneity is not accounted for: 2 

random-effect capture-recapture model. We simulated the fate of 500 individuals (in grey) 3 

from a single cohort with survival decreasing as they age over a 20-year study. We also added 4 

a frailty for each individual  where . We used 5 

,  and . We considered the same detection probability  for all 6 

individuals. We report the age-specific survival patterns from two models in which i) we 7 

ignored individual heterogeneity (in blue) and ii) we incorporated an individual random effect 8 

to handle with this source of heterogeneity (in green), both to be compared to the actual trend 9 

that we used to simulate the data (in red). Clearly, ignoring individual heterogeneity obscures 10 

senescence in survival. We refer to the Appendix for more details. 11 

 12 

Figure 2. Senescence is masked when individual heterogeneity is not accounted for: 13 

finite-mixture capture-recapture model. We simulated the fate of 1000 individuals from a 14 

single cohort that were split into a group of robust individuals in proportion  with constant 15 

high survival  and a group of frail individuals with survival  that aged over the 20 years 16 

of the study according to the relationship . We used , 17 

,  and . We considered the same detection probability  18 

for all individuals. We report the age-specific survival patterns from two models in which i) 19 

we ignored individual heterogeneity (in blue) and ii) we used mixture models with two hidden 20 

classes of individuals to handle with heterogeneity (in green), both to be compared to the 21 

actual trend that we used to simulate the data (in grey). Clearly, ignoring individual 22 

heterogeneity obscures senescence in survival. We refer to the Appendix for more details.  23 
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