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The global covid-19 pandemic puts great pressure on medical resources worldwide and

leads healthcare professionals to question which individuals are in imminent need of care.

With appropriate data of each patient, hospitals can heuristically predict whether or not a

patient requires immediate care. We adopted a deep learning model to predict fatality of

individuals tested positive given the patient’s underlying health conditions, age, sex, and

other factors. As the allocation of resources toward a vulnerable patient could mean the

difference between life and death, a fatality prediction model serves as a valuable tool to

healthcare workers in prioritizing resources and hospital space. The models adopted

were evaluated and refined using the metrics of accuracy, specificity, and sensitivity.

After data preprocessing and training, our model is able to predict whether a covid-19

confirmed patient is likely to be dead or not, given their information and disposition.

The metrics between the different models are compared. Results indicate that the deep

learning model outperforms other machine learning models to solve this rare event

prediction problem.
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INTRODUCTION

The Coronavirus (SARS-CoV-2 virus) has caused detrimental effects since its inception in late 2019.
In the months since, the virus has progressed to become a widespread global pandemic. Over two
hundred countries (tracked by Worldometer1) have been plagued by the virus, leading to almost a
total of 530,000 deaths worldwide, as of July 5th, 2020 (1). Not only has this virus gravely affected
individuals who have contracted the infection, but also healthcare employees and even patients with
illnesses unrelated to COVID-19.

Due to the severity that some COVID-19 cases progress to, hospitalization is required, and
these cases may progress to ICU admission. This inflicts enormous stress on healthcare workers
as hospitals are working at full capacity and at times lack of sufficient equipment. The occurrence
of hospitals frequently reaching high or full capacity is becoming an overwhelming and alarming
issue, as noted by the CDC’s COVID-19 Module Data Dashboard (2). This results in extensive
physician burnout (3) which can be detrimental to physician-patient interaction.

1“Coronavirus Cases:” Worldometer. Available online at: www.worldometers.info/coronavirus/?utm_campaign$=
$homeAdvegas1.

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2020.587937
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2020.587937&domain=pdf&date_stamp=2020-09-30
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cyang3@gmu.edu
https://doi.org/10.3389/fpubh.2020.587937
https://www.frontiersin.org/articles/10.3389/fpubh.2020.587937/full
www.worldometers.info/coronavirus/?utm_campaign$=$homeAdvegas1
www.worldometers.info/coronavirus/?utm_campaign$=$homeAdvegas1


Li et al. COVID-19 Fatality Prediction

This stress can be alleviated with a more succinct
understanding of which individuals are at an increased risk
of fatality caused by COVID-19. Therefore, it would be beneficial
to identify patients who merit priority and order treatment
accordingly to these high-risk cases. Priority treatment would
be given to patients who have a high likelihood of a fatal
outcome, given their present state when tested positive for the
virus. The limited resources housed by hospitals can be more
appropriately allocated and there would be a decrease in the
number of hospitalized patients under the care of overworked
hospital employees.

Deaths that are caused directly by COVID-19 infection are not
the only ones that should be discussed. There is an abundance of
evidence suggesting intrahospital transmission of the virus. This
transmission has occurred to both hospital patients, who may
already be immunocompromised, and staff working tirelessly
to save lives. Gold et al. noted more than 5,000 cases of this
type of transmission occurring between May 14 and June 21 (4).
With an increased number of COVID-19 patients admitted to a
hospital, there is a higher probability of COVID-19 becoming
a nosocomial disease for some inpatients. Moreover, patients
with chronic or acute illnesses may have had to delay or cancel
their hospital treatment appointments, due to hospitals reaching
their capacity (5). As a result, their non-covid disease may have
progressed to a severe point, or even death. With increased
consideration taken into account when admitting patients, the
persistence of these avoidable deaths will decrease.

However, it is difficult to predict the high fatality risk of a
patient who should be admitted to a hospital with high priority
since there are a myriad of different factors that contribute to
an individual’s infection progression once they test positive for
covid-19. All of these metrics may be diverse, leading physicians
to a disruptive confusion as to which factors to rely on, especially
when each patient is unique. Complete knowledge into how
this virus manifests itself in the body is lacking. Each case of
COVID-19 contains distinct epidemiological features that have
the power to dictate the progression of the disease and whether
the outcome will result in death. There is a vital need to be
able to identify these factors in order to prioritize care to those
who are at greatest risk and prevent future death with this
increased and proactive care. A single algorithm, like the one
produced in this study, that combines all of an individual’s
dispositions to make a prediction would therefore be useful.
This solution to improve and prioritize hospitalization with our
fatality prediction approach will be able to alleviate the burden of
hospitals reaching capacity, reduce medical worker burnout, and
minimize the unintentional spread of the virus. Furthermore, the
ability to identify and prioritize serious cases which may result in
death might be life-saving for critical patients. All of these factors
will benefit the COVID-19 infected individual, the healthcare
employees, and hospital inpatients.

It is imperative to be able to predict which individuals tested
positive for COVID-19 should be hospitalized for immediate
care. This study aims to create a prediction model to be able to
correctly identify patients who are at an increased risk of death,
following a COVID-19 diagnosis. Utilizing informed decisions
with our predictor, alongside medical expertise from medical

professionals at the scene, physicians can determine with greater
certainty which individuals should receive hospitalization.

MATERIALS AND METHODS

Data Source
In this study, two publicly available epidemiological datasets
were obtained, processed, and used for analysis. To monitor
and anticipate spread of virus during the COVID-19 outbreak,
a real-time database of individual-level epidemiological data
is collected and published on GitHub (https://github.com/
beoutbreakprepared/nCoV2019) (6). The dataset is supplied
from an open working group repository to promote and enable
the sharing of public health data to advance the field of public
health. It incorporates data from a number of different sources to
provide individual-level data instead of aggregate data provided
by most data repositories.

Each case in the database represents an individual tested
positive for COVID-19, gathered from different sources. This
dataset originally contains 2,310,111 cases. To protect the privacy
of patients, each case is deindividualized and anonymized. The
cases are labeled with an “ID” noted in the dataset, which is
only used to keep track of cases and has no relation to the
actual individual. This file contains the variables including ID,
age, sex, city, province, country, latitude, longitude, date onset,
date admission, date confirmation, etc. Each variable is described
below and this dataset will be referred to throughout the paper as
the GitHub dataset.

ID—unique label for each deindividualized case
Age—age at time of positive covid-19 test
Sex—sex of the case
City—geographic location of case
Province—first administrative division where the case
is reported
Latitude—latitude where case is reported
Longitude—longitude where case is reported
Date onset symptoms—date when the case began exhibiting
symptoms, if symptomatic
Date admission—date when the case is reported to have
been hospitalized
Date confirmation—date when the case is reported to have
been tested positive for COVID-19, by a rt-PCR test
Symptoms—symptoms recorded for the case
Lives in Wuhan—“yes” if case is resident of Wuhan, “no” if
case is not resident of Wuhan
Travel history—travel dates to and from Wuhan that were
recorded for the case
Reported market exposure—“yes” if market exposure was
recorded, “no” if it was not
Additional information—extra information that is
informative about the case
Chronic disease binary-−0 entered for a case without
chronic disease, 1 entered for a case with chronic disease
Chronic disease—listed specific chronic disease per case
Source—URL of origin of information for each case
Outcome—“died” or “discharged” from hospital
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Date of death or discharge—date of death or discharge that
was reported

A smaller dataset that contains additional and extensive detailed
information on the predisposition of the patient was then
used. This dataset was obtained from https://datarepository.
wolframcloud.com/resources/Patient-Medical-Data-for-Novel-
Coronavirus-COVID-19. It includes patient medical data for
those tested positive for coronavirus that was made to be
computable. Here, a larger ratio of records contain specific
symptoms and chronic diseases of applicable cases are included
in a detailed account, compared to the previous GitHub dataset.
As of June 30, this dataset contained 217,192 cases. This dataset
will be referred to throughout the paper as the Wolfram data set.
Wolfram data set includes variables as below:

Age—age of case at time of positive covid-19 test result
Sex—reported gender of case
Date of onset symptoms—initial date of reported symptoms
Symptoms—specific symptoms exhibited by case
Travel history—travel locations of case
Chronic diseases—specific chronic diseases of case
Date of discharge or death—recorded date of death or
discharge of patient
City—city of residence for positive case
Administrative division—City, country for positive case
test administration
Country—country of residence for case
GeoPosition—geographical location of case
DateOfAdmissionHospital—Date case was admitted to
hospital, if applicable
DateOfConfirmation—Date case was confirmed to be
positive for covid-19
LivesInWuhan—“True” if individual lives in Wuhan
TravelHistoryDates—Dates of travel history for the case,
if applicable
TravelHistoryLocation—If applicable, lists location infected
individual traveled
ReportedMarketExposure—Reported as “Missing,” “True,”
or “False”
ReportedMarketExposureComment—Details where public
market exposure to the virus occurred for the case
ChronicDiseaseQ—“True” if individual has chronic disease,
“False” if no
SequenceAvailable—“True” is available
DischargedQ—if individual was discharged from hospital
DeathQ—if outcome was death for individual
DateOfDeath—date of death in DD.MM.YYYY format if
individual died
DateOfDischarge—date of discharge in DD.MM.YYYY
format if individual was discharged from hospital

There is a tradeoff between the quality of these two datasets and
by using them both, we hoped to reconcile this circumstance.
The GitHub based dataset used was advantageous due to its large
size. Unfortunately, it lacked precise information on the specific
symptoms and chronic diseases each case faced. The Wolfram
dataset was beneficial due to its multiple attributes that include

specific symptoms and chronic diseases. Both datasets were used
separately to train the machine learningmodels in order to reflect
the prediction capability of datasets of different qualities.

Methodology
Data Processing
The GitHub data was preprocessed to keep the variables age,
sex, latitude, longitude, symptoms, chronic disease, outcome,
and travel history. Other variables included in the original
dataset that were removed for analysis consisted of additional
written information relating to the case and its report. Much
of this was left empty and did not pertain to the information
valuable to predicting death. Symptoms and chronic diseases are
converted to a binary variable, indicating a patient has COVID-
19 symptom/chronic disease or not. A new column was created,
titled “combined symptoms.” If the individual had at least one
symptom of any kind, there was a 1. The same is true for
chronic diseases. The binary converter was utilized due to the
lack of specific information regarding the symptoms and chronic
diseases each case possessed. Data was limited to merely knowing
if an individual harbored symptoms and/or chronic diseases, but
not which ones. Outcome was either “death” as a 1 or “alive” as a 0
in the new “death” column. The GitHub data originally had over
3 million records. Cases with missing data were removed from
the set and 28,958 cases were left. There were 530 deaths in the
data after pre-processing, indicating a 1.83% death rate.

The Wolfram dataset included specific information on the
clinical history of some patients and the symptoms exhibited.
Unlike the Github dataset where we merely used the variables
of “presence of symptoms” and “history of chronic illnesses”
for analysis, we were able to specify and categorize the
symptoms and comorbidities included. This is advantageous
as it allows for detailed information to be geared toward
unique individuals and cases with differing medical histories
and symptoms present. Missing values were removed from
the dataset and the final dataset resulted in 1,448 records
with 123 deaths cases, indicating a 8.5% death rate. Symptoms
and chronic diseases were then grouped into categories. We
found 114 unique symptoms listed in the original dataset,
which were divided into the following categories: “respiratory,”
“weakness/pain,” “fever,” “high fever,” “gastrointestinal,” “nausea,”
“cardiac,” “kidney,” and “asymptomatic,” and “other.” High
fever was noted if the fever temperature recorded is above
39 degrees Celsius. Forty-seven unique chronic diseases were
categorized into “diabetes,” “neuro,” “hypertension,” “cancer,”
“ortho,” “respiratory,” “cardiac,” “gastrointestinal,” “kidney,”
“blood,” “prostate,” “thyroid,” and “none.” If a patient exhibited
a symptom or chronic disease, a 1 was inputted in the
corresponding column. This dataset was filtered to create one
that only includes these unique symptoms and chronic diseases,
age, gender, and death. Age was put into age ranges of intervals
of 10 years from 0 to 99 years old.

For both datasets (Table 1), data was split into train,
validation, and test groups. Thirty percent of the data was
included in the test group. From the remaining data, 70% was
assigned as the training data and 30% was included as the
validation data. Once the data was properly separated, machine
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TABLE 1 | Comparison of the attributes included in the two filtered datasets.

Attribute Description G W Attribute Description G W

ID ID issued to each deindividualized

case in the dataset

✓ ✓ High fever 0—individual did not have a high fever

(>39*C)

1—individual had a high fever

✓

Age range Age range individual’s age falls into

during time of positive COVID-19 test

✓ ✓ Kidney S 0—individual did not display kidney

related symptoms

1—individual displayed kidney

related symptoms

✓

Gender Reported gender of individual ✓ ✓ Asymptomatic 0—individual is displaying symptoms

1—individual does not show

an symptoms

✓

Latitude Latitude where case is reported ✓ Diabetes 0—individual does not have diabetes

1—individual does have diabetes

✓

Longitude Longitude where case is reported ✓ Neuro 0—individual does not have

neurological chronic disease.

1—individual does have neurological

chronic disease

✓

Symptoms 0—individual displayed no signs of

symptoms

1—individual displayed signs

of symptoms

✓ No chronic Disease 0—individual has chronic disease

history

1—individual has no history of

chronic disease

✓

Chronic Disease 0—individual had no reported chronic

disease history

1—individual had history of

chronic disease

✓ ✓ Hypertension 0—individual does not have

hypertension

1—individual does have hypertension

✓

Outcome 0—alive

1—dead

✓ ✓ Cancer 0—individual does not have cancer

1—individual does have cancer

✓

Respiratory S 0—individual did not display

respiratory symptoms

1—individual displayed

respiratory symptoms

✓ Orthopedic CD 0—individual does not have

orthopedic related chronic disease

1—individual does have orthopedic

related chronic disease

✓

weakness/pain 0—individual had no weakness or

pain

1—individual felt weakness or pain

✓ Respiratory related CD 0—individual does not have

respiratory related chronic disease

1—individual does have respiratory

related chronic disease

✓

Low fever 0—individual did not have a low fever

(<39*C)

1—individual had a low fever

✓ Cardiac related CD 0—individual does not have cardiac

related chronic disease

1—individual does have cardiac

related chronic disease

✓

Gastrointestinal S 0—individual did not display

gastrointestinal symptoms

1—individual displayed

gastrointestinal symptoms

✓ Kidney related CD 0—individual does not have kidney

related chronic disease

1—individual does have kidney

related chronic disease

✓

Other symptoms 0—individual did not display other

1—individual displayed

other symptoms

✓ Blood related CD 0—individual does not have blood

related chronic disease

1—individual does have blood related

chronic disease

✓

Nausea 0—individual did not experience

nausea

1—individual experienced nausea

✓ Prostate related CD 0—individual does not have prostate

related chronic disease

1—individual does have prostate

related chronic disease

✓

Cardiac S 0—individual did not display cardiac

related symptoms

1—individual displayed cardiac

related symptoms

✓ Thyroid related CD 0—individual does not have thyroid

related chronic disease

1—individual does have thyroid

related chronic disease

✓

learning models discussed below were applied to do prediction,
and the validity and prediction power of these algorithms were
assessed with various metrics.

Autoencoder for Rare Event Detection
Typically, an autoencoder is a neural network that learns
representative codes from input andmaps these codes back to the
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input (7). This model is generally used to encode input variables
and output a compressed version of that input. It consists of
two main parts: the encoder and the decoder (Figure 1). The
encoder is the part that learns about the deep features of input
data. The decoder relies on learnt features to recreate the original
data provided. There are three layers to the autoencoder model
used: input, output, and hidden. In our research, the input layer
of the network is a vector recording patient information. Hidden
layers in the encoder learn a small vector representing input
data. The decoder then maps hidden layers to a vector with the
same dimension as the original input vector. The goal of training
an autoencoder is to minimize the mean square error between
the input vector and the reconstructed output vector, while also
avoiding overfitting the data.

With the capability of learning representative features for
input dataset and reconstructing data from extracted features, the
autoencoder model can offer a solution for anomaly detection
when it is trained on normal dataset (8). During the training
process, the model ingests a series of normal data and learns
latent common features of all normal dataset. When the
trained model encodes and decodes an anomaly dataset, the
reconstruction error is usually large since the model only learns
how to reconstruct normal data. This means that an input data
can be considered as an anomaly when the model reconstructs it
with a high reconstruction error if the model is pre-trained with
normal data. Similarly, the autoencoder can serve as a rare event
prediction solution, in which the autoencoder is initially trained
on majority events related data, the data that is considered to
be normal.

Our study relied on the latent function of autoencoders,
anomaly detection, to create a model that would predict
fatality upon one’s COVID-19 diagnosis. Death from COVID-19
constitutes an anomaly because of how infrequently it occurs in
our dataset. The autoencoder has been transformed from a data
compression algorithm, to a rare event prediction model with the

ability to distinguish between life and death. In other words, the
original classification problem in our study was transformed into
an anomaly detection problem.

As shown in Figure 2, the preprocessed data was split into
train, validation, and test groups. For training the autoencoder
model, a subset of data in the train group was used that
solely contained non-death cases. The data was transformed
to fit a standardized Gaussian curve before being input
into the autoencoder model. The autoencoder model learns
representative features of alive patients from their demographic
information, symptoms, and chronic disease illnesses. After
an autoencoder model was trained on individuals who tested
positive for COVID-19 and survived in the train dataset, a
series of reconstruction errors was populated by applying the
trained model on validation data with different thresholds. The
reconstruction error which performed best at differentiating
the living and dead patients was selected as the threshold to
determine a death prediction for a patient. Different thresholds
were tested to find which would allow for the most optimal
trade-off between recall and precision. Classification followed
suit, where high construction errors were noted as a rare event.
In this study, this would pertain to death.

Evaluation
For each of the datasets we used, the Github dataset and
the Wolfram dataset, an autoencoder model was trained to
predict fatality in the test dataset. For comparison, the train
data set was also trained with logistic regression, random forest,
support vector machine (SVM), SVM one class models, isolation
forest, and local outlier factor. Logistic regression, SVM, and
Random forest are three widely used classification methods. A
logistic regression model predicts the probability of a categorical
dependent variable occurring. The SVM model seeks to find the
hyperplane that has a maximal distance between two classes.
Random forest is a tree-based learning algorithm which utilizes

FIGURE 1 | The network structure of an autoencoder.
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FIGURE 2 | The workflow of fatality prediction.

decision trees rising from the training subset which are selected
randomly to solve a classification problem. The One-class SVM
algorithm is usually adopted for Novelty Detection, determining
whether or not a new data record is similar to the training set,
which only contains “normal” data. Both isolation forest model
and local outlier factor model are outlier detection algorithms;
the former works by explicitly isolating points that deviate in the
dataset and the latter uses the density surrounding data points to
determine whether or not they are outliers.

In order to detect which model has the best predictive power,
these models were evaluated with multiple metrics, including
accuracy, specificity, sensitivity and the area under the curve
(AUC) score.

Accuracy
Accuracy presents how many predictions the model has gotten
correct. For this project, this would equate to the number of
correctly predicted deaths and survivals over the total predictions
made by the model. Unfortunately, since our data is highly
imbalanced, accuracy is not a reliable metric. Our dataset
contains a large amount of survival cases, causing a skew in
that our models would predict “alive” a lot more often than
“death,” which leads to a high accuracy regardless if the “death”
predictions are accurate, since there are so few. It is the fraction
of correct predictions:

Accuracy =

True Positive + True Negative

True Positive + False Negative + False Positive + TrueÑegative

Specificity
Specificity is the rate of true negatives. It measures the proportion
of true negatives that the model accurately predicts as negative.
In this study, a true negative would be a prediction of “no death,”
when the individual did not die. Specificity is less important of a
metric than sensitivity, in our study, because it is more important
to identify those individuals who have a greater likelihood of
death, rather those who do not. Therefore, in order to ensure that
we do not forget to account for any individual who can potentially
encounter death, we can risk having some false positives of
individuals who will receive care regardless if their prediction of
death is accurate or not. It is measured by:

Specificity =
True Negative

False Positive + TrueÑegative

Sensitivity
Sensitivity is the rate of true positives. It measures the proportion
of true positives that the model predicts accurately as positive.
A model with high sensitivity when dealing with an outcome
of fatality is ideal. For this study, a true positive would be a
prediction of death that is accurate. It is calculated by:

Sensitivity =
True Positive

True Positive + FalseÑegative

AUC
AUC stands for “area under the curve.” In order to detect which
model had the best predictive power, we calculated their AUC
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value. The curve being referred to is the ROC curve, which
contains the sensitivity metric on the y-axis and specificity on the
x-axis. Since there is always a trade off between these twometrics,
an ROC curve best displays their interaction in the model used. A
curve which depicts a model that has a high value for both will be
close to a 90◦ angle. An AUC value for a desired curve like this is
1, the maximum. An ROC curve that is no better than a random
guess will be a line with a slope of one and have an AUC of 0.5.

RESULTS

Results on the Github Dataset
A comparison of the different models using the GitHub database
is shown in Figure 3. All the models shown resulted in specificity
and accuracy values above 0.9. Logistic regression, SVM, and
random forest all have sensitivities below 0.4. Autoencoder
scores above a sensitivity value of 0.4, leading it to have the
best sensitivity. AUC scores, which are dependent on both the
sensitivity and specificity of the models, are highest for the
autoencoder model. The AUC scores for the remaining three
models are almost identical, due to their similar specificities and
lower sensitivities. The overall best results were obtained from the
autoencoder model. The low metric values are results of the very
few instances where health related attributes are included in the
Github dataset, leading to a generalized analysis.

Results on the Wolfram Dataset
For the Wolfram dataset, a correlation matrix depicts the
relationships between all variables analyzed in our models. The
correlation matrix is shown in Figure 4. A deeper red color
indicates a more positive linear correlation and a deeper green
color indicates a more negative linear correlation between the

FIGURE 3 | A comparison of the different models using the GitHub data.

two variables in question. It can be seen that the square at
the intersection between “no chronic diseases” and “death”
represents the strongest negative correlation. The matrix displays
a strong correlation between fatality and COVID-19 patients with
chronic diseases.

To train an anomaly detection model on theWolfram dataset,
the autoencoder model learned high-level features from all
survival cases from the train data set, and all cases in the
validation dataset aid the selection of a threshold to differentiate
survival and death cases. Figure 5A is a plot of the various
precision, recall, and F1 scores across different thresholds when
predicting fatality on the validation dataset using the trained
autoencoder model. The plot supported determining which
threshold would be an optimal choice. It was decided, upon
examining this plot, that a threshold of 2.5 could be used for
our dataset. Figure 5B graphs the reconstruction error of all
cases in the validation dataset at the chosen threshold. The dots
above the threshold line show the true positives and false positive
prediction cases. Orange dots represent death outcome and blue
dots represent survival outcome. Only orange dots appear above
the threshold line, signaling that there are only true positives
present above the threshold.

When calculating the results of the autoencoder model using
our selected threshold value, 36 out of 37 deaths in the test
dataset were correctly predicted by the model, resulting in a 97%
sensitivity rate. Lastly, the metrics across the various models for
the Wolfram dataset were compared, which can be visualized
in Figure 6. As shown in the figure, autoencoder is the optimal
model as its results are highest in every metric depicted. There
is vast improvement in these models when fed the Wolfram data
vs. the GitHub data because the wolfram dataset contains detailed
health related information. One-class SVM, isolation forest, local
outlier factor, and autoencoder account for anomalies in the
data, leading to their high sensitivity values. However, there is a
tradeoff between one-class SVM’s high AUC and sensitivity with
its lower accuracy and specificity.

DISCUSSION

Related Works
Machine Learning in Studying COVID-19
Machine learning has found its niche in the medical field.
With the emergence of new medical data constantly created,
these algorithms can serve as classification for the purpose of
diagnosing a slew of diseases. One particular instance of this was
done by researchers at Harvard Medical School (9). Using data
from a cancer registry, they were able to make a super learner
prediction function to classify the current stage of lung cancer
progression in a patient.

Machine learning algorithms have been a prominent force
in studying COVID-19. One piece of information researchers
are sure about is the fact that it is beneficial to diagnose a
COVID-19 infection earlier than later. Since it is primarily a
respiratory infection, a study (10) looked at CT scans for COVID-
19 classification. Using an SVM model, they were able to find
features of these images that are specific to COVID-19 infections
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FIGURE 4 | A correlation matrix of the variables used in the analysis of the Wolfram database.

FIGURE 5 | (A) Is used to gather a threshold for the autoencoder model. (B) The reconstruction error at the chosen threshold of 2.5 on validation dataset.

in order to classify the disease. This method achieved a 98%
accuracy score at classification.

Transitioning from diagnosing COVID-19, some studies
focused on identifying regional death patterns relating to the

pandemic. One specific study predicted short term (7 days)
fatality at the county level (11). In the study, they collected 23
different datasets, ranging from overall country level deaths to
hospital data, and used five different predictors to determine
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FIGURE 6 | A comparison of the resulting metrics of 7 models used in the

Wolfram dataset.

COVID-19 death count for county wide visualizations. These
predicted models can be used to determine which hospitals
should be prioritized to receive supply and how limited
resources should be distributed nationwide. Attempting to study
factors outside of an individual’s control, a study looked at
temperature (12) and COVID-19 death patterns in different
areas, aiding hospitals in deciphering disease patterns. However,
with the minor association between death and temperature, more
variables should be included into the fatality risk model.

Currently, many studies are emerging that utilize machine
learning algorithms to predict the death risk of a patient
who has tested positive for COVID-19. Most of these studies
have access to hospital medical records of the patients and
analyze all corresponding information including demographic,
symptoms, comorbidities, lab results, medical images. One
such study utilized five machine learning approaches (logistic
regression, partial least squares regression, elastic net, random
forest, and bagged flexible discriminant analysis) to determine
which factors are most associated with an individual’s prognosis
(13). These factors were combined to create a mortality risk
score to estimate the mortality risk for 183 individual patients.
Age, high-sensitivity C-reactive protein level, lymphocyte count,
and d-dimer level of COVID-19 patients at admission are the
factors concluded to be associated with increased mortality
risk in the study. Another similar study attempted to create
a clinical score to identify patients who had an increased risk
of serious disease progression (14). Medical chart information
of admitted patients were collected and variables correlated
to critical illness with p < 0.02 selected to create an online
calculator for the likelihood (with 95% CIs) that a hospitalized
patient with COVID-19 will develop critical illness. Logistic

regression and separately LASSO regression were used to
determine 10 variables that served as a significant predictor
of a severe and critical COVID-19 infection. Nemati et al.
analyze survival characteristics of a group of 1,182 patients to
test different variables of a patient and their overall survival to
aid public health officials in their decisions regarding COVID-
19 outbreaks (15). They discovered that gender and age were
the two largest contributing factors to fatality, e.g., men had
a higher fatality rate than women, agreeing with an original
sample found in China early on (16). They also had looked for
correlations underlying a patient’s discharge time under COVID-
19. By evaluating discharge times of individual patients with
different machine learning methods, the researchers found that
the gradient boosting survival analysis model was superior to
other methods.

These individual level fatality studies are limited in predicting
hospitalization due to their efforts to identify severe risk in
patients after they are already admitted to a hospital. Most
of the variables found to have a correlation with COVID-19
related deaths requiring intensive care is based on inpatient
hospital lab results. These patients are already in the hospital,
taking up capacity and resources. However, if fatality prediction
can be developed that relies primarily on outside information,
this could prove beneficial in allowing full hospitals to make
informed and rational decisions on who to admit when the
disease is not currently life threatening (e.g., when the patient is
only experiencing minor symptoms). This will alleviate physician
stress, reduce risk of virus spreading throughout the hospital,
and conserve hospital resources. The proposed study will focus
on the individual level detailing of the fatality risk based on
their unique demographics, symptoms, and comorbidities using
machine learning methods.

Rare Event Prediction
The mortality rate for COVID-19 is a difficult calculation due
to the number of people who may be infected but show no
symptoms, and therefore proceed undetected, and the lag time
between infection and death. Following extensive discussion
from epidemiologists and scientists, the current consensus is that
the fatality rate ranges between 0.5 and 1% (17). However, this
percentage is dependent upon location, patient demographics,
and physician experience in treating COVID-19. In a machine
learning perspective, this rate constitutes a death event as a
rare event.

Rare events are events that occur infrequently, such as
major earthquakes, hurricanes, floods, asteroid impacts, forest
fires, financial market crashes, epidemic disease spread. “Rare
events are often interesting events” (18) since these events can
have extensive effects that have the potential to rupture the
equilibrium of systems such as the stock market and society in
general. Rare event detection/prediction would be beneficial for
the community to be able to better prepare for events which
occur at low frequency, but lead to huge loss. However, rare event
detection/prediction is a difficult task because the occurrence of
a rare event is usually <5% of all events, comprising a small
percentage of data. In most instances dealing with rare events,
insufficient data is gathered for a thorough analysis.
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Researchers are becoming increasingly interested in using
machine learning methods to detect/predict rare events
using classification models or anomaly detection models. For
classification models, a majority of machine learning models
assume that the dataset is balanced and make predictions based
upon those assumptions. A significant issue with rare events
classification is that accuracy is not a reliable metric to evaluate
the model because the desired event occurs too infrequently. A
very high accuracy can be achieved when all events are classified
as non-rare events. In medical fields, Luca et al. used a model
based on Extreme Value Theory (EVT) to predict epileptic
seizures for people using electroencephalogram (EEG) devices
(19). They focused on hypermotor seizures that are located in
the tails of a normal, standardized curve for normal movement
behavior. The percent of epileptic movements per patient has a
mean of 2%. This rarity of events does not allow for sufficient
training data and results in an imbalanced dataset. It was noted
that the datasets with the greatest amount of rare events have
the EVT model result in higher sensitivity than the standard
SVM machine learning model. Additionally, Sarker et al. used
data from social media and search engines to predict and
monitor adverse drug reactions (ADR) (20). They find the use
of social media in monitoring ADRs are increasing as methods
are becoming increasingly accurate and the detection time is
significantly lower compared to traditional detection methods.
Conner et al. similarly uses a Twitter corpus of symptom-related
Tweets to detect and predict ADRs (21). By using keywords,
they eliminate many irrelevant Tweets and categorically find
tweets that strictly relate to the discussion of a drug and its
symptoms. This study was furthered improved in the detection
of adverse effects from vaccines (22). Using Multi-instance
Domain Adaptation (MIDA) model on Twitter data, they were
able to identify symptoms and align them with formal reports of
symptoms to identify adverse effects in the use of a vaccine. Yates
and Goharian also attempted to detect expected and unexpected
ADRs by mining drug review sites for symptoms contained
in the Unified Medical Language System (UMLS) (23). These
methods could be applied across the world, as (24) shows that
the same methods work in Spanish. His team scanned Twitter,
Facebook, and Spanish medical forums using symptom related
keywords and were able to detect symptoms.

Deep learning, overall, utilizes multiple layers neuronal
networks to withdraw higher level features from the simpler
input, emerging as an innovative way to improve the
performance of data-driven applications recently. Many
researchers have begun to use deep learning to solve rare event
detection and prediction issues. A previous study used deep
learning methods to predict the rapid intensification of a tropical
cyclone (TC), a rare event in natural disasters, using a plethora
of factors that contribute to a TC’s intensity (25). This can
prove critical in saving lives from disastrous situations. A study
compared traditional machine learning models to recurrent
neural network (RNN) to predict early signs of heart failure and
delay one’s progression to receiving that diagnosis (26). This
was complicated in the past with classical machine learning
models because of the intricacy of electronic health records
and all of the information involved to make these predictions.
This paper conveys the revolutionary pathway being carved

out by deep learning methods in medicine. Not only can deep
learning solve the issue of rare event detections, but it can also be
applied to more discrete problems that medical researchers face.
Wang et al. (27) was able to identify potential adversarial effects
through a multi-instance logistic regression model (MILR) by
scanning Tweets and using VAERS information. Wang et al. (22)
also uses deep learning with sSSM and nSSM models to classify
the discussion of symptoms within tweets that relate to the flu.
Symptoms such as arm pain and headaches could be identified
in tweets related to the flu accurately under their model. In our
research, we will use deep learning methods to do the fatality
prediction and compare their performance with traditional
machine learning methods.

Findings of Our Study
A series of machine learning models were compared to validate
which one worked best in this scenario of death prediction.
Two different datasets were used: one that specified symptoms
and comorbidities and one that generalized across them. Fatality
related to COVID-19 is caused by a multitude of different,
confounding factors. Therefore, introducing a model that can
predict whether an individual’s diagnosis of COVID-19 is likely
to be fatal will serve as a reliable and advantageous tool. Every
case of COVID-19 is unique, and this predictor model accounts
for the significant features present in a COVID-19 diagnosis and
relies on information that does not require any hospitalization.
It focuses on demographic information, symptoms, and patient
chronic disease illness. Therefore, it can be used to make a fatality
prediction prior to hospitalization of the infected individual.
This will provide guidance for employees at hospitals that are
reaching or at capacity to make educated decisions upon whether
or not to admit a patient. Cases of COVID-19 continue to
rapidly rise at alarming rates, reported by CNN (28), and it is
projected that the virus will persist for a continued amount of
time. It is crucial that patients who are at an increased risk,
where death is imminent, receive care in hospitals to prevent
this outcome.

The GitHub dataset was largely generalized; it did not include
specifics on symptoms or chronic diseases that individuals
harvested. Moreover, death made up a very small percentage
of the cases in our dataset. The results of different machine
learning models indicated that the autoencoder, a deep learning
model, produced the best prediction results. However, no model
produced a sensitivity metric above 0.5, showing limitations of
the model. The sensitivity metric is the most important as we
want to minimize the number of false positives in order to avoid
missing a patient who is in danger of a death outcome.

The Wolfram dataset incorporated specific symptoms and
chronic diseases that plagued the individuals in the data. This
allows for models based on this data to be a better fit and cater
to the unique characteristics of the individuals who have the
virus. Similarly, the autoencoder proved to have the most optimal
results upon comparison with all of its metrics being the highest.

COVID-19 has an average fatality rate between 0.5 and 1%
(17). Although this is a high fatality rate for a virus, death is
still considered as a rare event for machine learning algorithms
to learn. Autoencoder serves as the best prediction model for
COVID-19 death in our experiments when it converts the
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prediction problem to an anomaly detection problem. The results
demonstrate that it will serve as themost representativemodel for
physicians to be able to make an educated decision as to whether
or not to admit a patient to a hospital and decide how extensive
treatment should be a valuable tool in making decisions for the
best course of action of care. However, it should not be the only
resource used to make this decision. The healthcare worker will
also take into account additional knowledge on the patient and
use their best judgement, along with the information provided by
the model.

The correlation matrix produced by the Wolfram dataset
provides insight into which factors are most notable in their
association with a patient’s fatality. There is a high correlation
between death and having a chronic disease. This is displayed
by the result that having no chronic disease history and
death occurring share a strong negative correlation based on
the matrix. More specifically, if the individual has a chronic
disease of hypertension or diabetes, they have a higher chance
of death than other comorbidities in the study. Turning our
attention toward symptoms, gastrointestinal, kidney related, and
respiratory symptoms are shown to be positively correlated with
death. Cardiac related symptoms seem to be the symptoms, out
of the ones studied here, that are most correlated with COVID-
19 death (29). The r value between having cardiac symptoms
and death occurring is between 0.5 and 0.75, displaying a
moderate positive correlation. The CDC similarly reports that
individuals who have underlying chronic diseases report greater
chances of hospitalization and death (30). This information
shows that individuals who have chronic diseases should take
greater precaution toward both reducing their risk of contracting
the disease and receiving care if infected. Interestingly, having
a low fever (below <39◦C) has a weak negative correlation
with death. This agrees with current data knowledge that states
a low fever is a common symptom for a mild COVID-19
case (31).

Limitations
There are limitations embedded in this study. Themost profound
limitation is the lack of abundant quality data used to train
the models created. The Wolfram dataset used to train the
prediction model only consisted of 1,448 cases in a centralized
area. The larger GitHub dataset used contained an increased
number of datapoints, but with less specific information on
each case, limiting the potential prediction capability of models.
We were limited by our access to data and relied solely
on datasets that were publicly available, yet still based on
medical records. Our study and models would improve with
direct access to electronic health records, or larger datasets
based on them, that contain extensive and detailed accounts
of individual COVID-19 cases. Since COVID-19 fatality rates
are heterogeneous depending on the region, indicated by the
Center for Evidence Based Medicine, additional studies with
more representative data would be beneficial. Additionally,
the study did not take into account whether patients had
received hospital care for COVID-19 treatment prior to their
final outcome.

CONCLUSION AND FUTURE WORK

A deep learning model was developed to predict the
fatality outcome of an individual who tested positive
for COVID-19. In this instance, death is dictated as a
rare event and requires a model that accounts for this.
Autoencoder proved to be the optimal method to serve
as a death prediction model. Additionally, the correlation
matrix revealed individuals were at greatest risk of fatality
from COVID-19 if they showed respiratory or cardiac
based symptoms and were previously diagnosed with a
chronic disease.

The model solely predicted death relating to a COVID-
19 diagnosis and will be able to provide some guidance to
physicians who need to make a decision as to whether or
not to admit a person who has tested positive for COVID-
19. However, this virus is still capable of having a profound
impact on quality of life on infected individuals. In the future,
a model should be created that not only predicts death, but
also can predict the severity of the progression of the disease.
This will prompt individuals to expeditiously seek care, which
will prevent the debilitating future dispositions that the disease
might induce on the infected individual. This can prevent a large
number of people admitted to the ICU if they were to seek
care beforehand. Moreover, with increased testing availability
in regions, the number of people testing positive for COVID-
19 is known for a given region. By incorporating demographic
information, health habit (physical excise), or psychology factors,
occupation, symptoms and chronic disease of the confirmed
case, predictions can be made for the number of required
hospitalizations in a given area with the trained model. If this
information is combined with the current availability of medical
resources deficiencies information (32) in a given area, then
proper preparation can be obtained for the amount of medical
resources required.
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