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Abstract  25 

Understanding how microbial diversity influences ecosystem properties is of paramount 26 

importance. Cellular traits – which determine responses to the abiotic and biotic environment - 27 

may help us rigorously link them. However, our capacity to measure traits in natural communities 28 

has thus far been limited. Here we compared the predictive power of trait richness (trait space 29 

coverage), evenness (regularity in trait distribution) and divergence (prevalence of extreme 30 

phenotypes) derived from individual-based measurements with two species-level metrics 31 

(taxonomic richness and evenness) when modelling the productivity of natural phytoplankton 32 

communities. Using phytoplankton data obtained from 28 lakes sampled at different spatial and 33 

temporal scales, we found that the diversity in individual-level morpho-physiological traits 34 

strongly improved our ability to predict community resource-use and biomass yield. Trait 35 

evenness - the regularity in distribution of individual cells/colonies within the trait space - was 36 

the strongest predictor, exhibiting a robust negative relationship across scales. Our study suggests 37 

that quantifying individual microbial phenotypes in trait space may help us understand how to 38 

link physiology to ecosystem-scale processes. Elucidating the mechanisms scaling individual-39 

level trait variation to microbial community dynamics could there improve our ability to forecast 40 

changes in ecosystem properties across environmental gradients.  41 
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List of abbreviations: TD = trait diversity; TOP = trait onion peeling index of trait richness 42 

(Fontana et al., 2016); TED = trait even distribution index of trait evenness (Fontana et al., 43 

2016); FDis = functional dispersion index of trait divergence (Laliberté and Legendre, 2010); 44 

SFC = scanning flow-cytometry; TP = total phosphorus; PAR = photosynthetic active radiation; 45 

FWS = light forward scattering; SWS = light sideward scattering; RUE = resource use efficiency 46 

(sensu Ptacnik et al., 2008), calculated here as [biomass / TP].  47 
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Introduction 48 

Functional traits can help illuminate the relationship between biodiversity and ecosystem 49 

processes (e.g. Norberg et al., 2001; Norberg, 2004; Hillebrand and Matthiessen, 2009; Reiss et 50 

al., 2009). Most research in this area has thus far largely focused on taxonomic or phylogenetic 51 

richness as measures of biodiversity (see reviews by Cardinale et al., 2011 and Krause et al., 52 

2014). However, the importance of relative species densities for ecological processes has been 53 

neglected (Mulder et al., 2004; Hillebrand et al., 2008; Zhang et al., 2012),as well as the 54 

functional redundancy or diversity of organisms (including intraspecific variation) that may 55 

partially decouple the number of species from the functions supported by a community (Chase 56 

and Leibold, 2003). 57 

Traits, which are often analysed in terms of species mean values, may be better defined as the 58 

features of individual organisms’ phenotypes that determine fitness and life history (McGill et al. 59 

2006 ;Violle et al., 2007). They influence ecological interactions and dynamics (e.g. Bolnick et 60 

al., 2011; de Bello et al., 2011; Violle et al., 2012) and have important consequences for 61 

population demography and ecosystem processes (Norberg, 2004; McGill et al., 2006; Cadotte et 62 

al., 2011). Empirical evidence for the importance of individual trait variation for ecosystem 63 

properties is still lacking, despite the fact that intraspecific trait variance contributes significantly 64 

to plant community functional responses to environmental change (Siefert and Ritchie, 2016; 65 

Volf et al., 2016). The importance of intraspecific variation for explaining community properties 66 

has mostly been explored theoretically in ecology (Bolnick et al., 2011; Albert et al., 2012; 67 

Violle et al., 2012; De Laender et al., 2014; Barabás and D’Andrea, 2016; Hart et al., 2016). We 68 

expect that, for example, changes in trait diversity (TD) should reflect natural selection 69 

mechanisms, which affect processes at all scales of community and ecosystem organization 70 
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(Matthews et al., 2011). Additionally, competition for resources, predation, environmental 71 

change and rates of mutation and plasticity will all affect individual phenotypes and consequently 72 

TD within and between taxa, which will in turn influence population demography, community 73 

dynamics and ecosystem properties (Norberg et al., 2001). The link between individual-level TD 74 

and large-scale processes is underexplored in real communities, particularly in microorganisms 75 

(Gsell et al., 2013; Ackermann, 2015; Schreiber et al., 2016). 76 

Individual-level traits in microbial assemblages have become easier to measure due to recent 77 

technological developments (Shade et al., 2009; Pomati et al., 2011; Fontana et al., 2014; Krause 78 

et al., 2014). Indices that quantify community TD using individual-level data (thereby integrating 79 

inter- and intraspecific trait variation) have also been recently tested and developed (Fontana et 80 

al., 2016). Hereafter, we refer to them as ‘individual-level TD indices’ because, despite 81 

quantifying community properties, they are calculated using traits measured on individual 82 

organisms. These indices jointly describe the three independent components of TD (richness, 83 

evenness and divergence, respectively): the trait onion peeling (TOP; Fontana et al., 2016) index 84 

is the sum of all successive convex hulls’ areas touching the individuals of a community in 85 

multidimensional trait space, the trait even distribution (TED; Fontana et al., 2016) index is the 86 

regularity in the distribution of individuals when compared to a perfectly even reference 87 

distribution, and the functional dispersion index (FDis; Laliberté and Legendre, 2010) is the mean 88 

distance of individuals to the centroid of trait distribution. The TOP index has been successfully 89 

applied to high-throughput individual-level data to study the role of phenotypic variation over 90 

time in the adaptation of microbial populations to environmental perturbations (Krismer et al., 91 

2016). It reflects changes in the trait space coverage, which may happen as a consequence of 92 

environmental filtering both within and at the edges of trait distribution. TED is related to the 93 

reciprocal distances between neighbor individuals in the trait space and is likely to reflect biotic 94 
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interactions (Fontana et al., 2016). FDis distinguishes communities where individuals are closer 95 

to the centroid of the multidimensional trait distribution from communities where extreme 96 

phenotypes are found (Fontana et al., 2016). 97 

In this study we focus on natural phytoplankton communities, whose diversity and dynamics are 98 

tightly linked to large-scale biogeochemical processes. These microorganisms form the basis of 99 

aquatic food webs and are responsible for almost 50% of total global primary production (Field et 100 

al., 1998). The TD metrics described above have allowed us to explore the relative strength of 101 

individual-level trait variation and taxonomic diversity metrics (species richness and evenness), 102 

as predictors of important ecosystem properties - phytoplankton community biomass and 103 

resource use efficiency. 104 

We studied these ecosystem properties in 28 lakes from two European regions (Switzerland and 105 

Danube Delta, Romania), sampled at different temporal and spatial scales (Table S1). We related 106 

these properties to the TD and taxonomic diversity metrics, while accounting for variation in 107 

water chemistry and physics. This heterogeneity across sites allowed us to sample environmental 108 

responses in terms of individual-level TD change or turnover of species, and their effects on 109 

community properties. We used microscopy for classification of algal species and scanning flow-110 

cytometry (SFC) to estimate total biovolume (hereafter biomass) and morphological and 111 

physiological traits measured on individual cells/colonies (Table 1, more details in 112 

Supplementary Table S2). We tested all combinations of species richness, evenness, TOP, TED 113 

and FDis using linear mixed-effects model averaging to quantify and compare their predictive 114 

ability on biomass and resource-use efficiency, while controlling for environmental variables. 115 

We expected that the inclusion of individual-level TD would improve the variance explained by 116 

statistical models predicting phytoplankton productivity. In our SFC data, we cannot distinguish 117 
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between inter- and intraspecific trait variation because we are unable to classify cells into species 118 

groups. Therefore, our assessment of the importance of intraspecific trait variation is only 119 

indirect: if interspecific trait variation is more important in influencing ecosystem properties, 120 

models including TD indices should not improve on those that incorporate species richness and 121 

evenness. However, if intraspecific trait variation plays an important role, standard biodiversity 122 

metrics will be poorer predictors of ecosystem properties than TD indices.  123 
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Materials and methods 124 

Phytoplankton communities at three study sites 125 

To test relationships between biodiversity indices and ecosystem properties, we used monitoring 126 

data from three different lake systems, covering a wide range of temporal and spatial scales. Lake 127 

Greifensee, Lake Zurich and Danube Delta (with 26 lakes), in this order, represent a gradient of 128 

increasing sampling time span (3 months, 7 months, 2 years), decreasing sampling frequency 129 

(weekly, monthly, seasonally) and increasing spatial scale (6 depths from 1m to 8.5m, 11 depths 130 

from 0m to 40m, 26 lakes in a geographical region). All datasets include microscopy data 131 

(phytoplankton classification, enumeration and biomass calculation) obtained using the Utermöhl 132 

method (Utermöhl, 1931), as well as phytoplankton morphological and physiological traits 133 

acquired by SFC, in addition to physical and chemical water parameters. Supplementary Table S1 134 

summarizes the characteristics of the three lake systems. 135 

In lake Greifensee (Switzerland), monitoring data were collected from a single location at the 136 

North end of the lake by an automated system that integrates physical, chemical (Idronaut, 137 

Brugherio, Italy, www.idronaut.it) and biological analyses (Pomati et al., 2011). From the 31st of 138 

July to the 24th of October 2014, SFC measurements were collected every four hours from 139 

samples collected at six different depths (1, 2.5, 4, 5.5, 7 and 8.5 m). Additional chemical 140 

analyses and microscopy measurements (to obtain species diversity metrics) were performed on 141 

water samples collected manually at the same location, depths and time (average time interval 142 

between successive samples = 58.3 h, standard deviation = 67.7 h). Total phosphorus (TP) and 143 

total nitrogen (TN) were measured using DIN Standards (German Institute for Standardization). 144 

The sample size is 207 (36 time points x 6 depths, with some missing data points due to technical 145 
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problems). To examine the influences of limiting resources on TED, we used a multiple linear 146 

regression (N = 195) with photosynthetic active radiation (PAR, from high-frequency profiles), 147 

TP (both log-transformed) and their interaction as explanatory variables. 148 

In lake Zurich (Switzerland), monitoring data were collected from a single location in the centre 149 

of the lake by the Zurich drinking water company (WVZ), which also performed microscopy and 150 

chemical analyses as described in Pomati et al. (2012). Water was sampled at eleven different 151 

depths (0, 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 30 and 40 m) from the 6th of May to the 2nd of 152 

December 2009, with a time interval of one month. The same water samples were analysed with 153 

SFC. The sample size is 82 (8 months x 11 depths, with some missing data points due to 154 

technical problems). 155 

Monitoring data were collected from 26 shallow lakes of the Danube Delta (Romania). These 156 

lakes form a complex system in a region of hundreds of km2 (Supplementary Table S1). From a 157 

single location in each lake, an integrated sample over the water column was collected in spring, 158 

summer and autumn of two following years (May, July and September 2013; May, July and 159 

October 2014). The same water samples were used for microscopy and chemical analyses, as 160 

well as SFC measurements. TP and TN were measured using standard colorimetric methods 161 

(Tartari and Mosello, 1997). The sample size is 136 (6 months x 26 lakes, with some missing 162 

data points due to technical problems). 163 

SFC measurements 164 

The scanning flow-cytometer Cytobuoy (Woerden, The Netherlands, www.cytobuoy.com) was 165 

used for counting and characterising phytoplankton single cells and colonies (e.g. Dubelaar et al., 166 

2004; Pomati et al., 2013; Fontana et al., 2014). The present instrument contains two laser beams 167 
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(coherent solid-state sapphire, wavelengths 488 nm and 635 nm), but the samples from lake 168 

Zurich were measured with a previous version of the instrument containing only one laser 169 

(wavelength 488 nm). Light, both from forward scattering (FWS) and sideward scattering (SWS), 170 

provides information on particle morphology. The fluorescence emitted by photosynthetic 171 

pigments was measured by three different detectors referred to as red (668–734 nm range; 172 

FL.Red from the 488 nm laser and FL.2.Red from the 635 nm laser), orange (601–668 nm range; 173 

FL.Orange) and yellow (536–601 nm range; FL.Yellow). Cytobuoy measurements provide time-174 

resolved pulse signals, from which many descriptors of morphology, internal structure and 175 

fluorescence profile of each particle were extracted. More details on the instrument can be found 176 

elsewhere (Dubelaar et al., 2004; Pomati et al., 2011; Pomati et al., 2013; Fontana et al., 2014).  177 

Individual-level TD indices 178 

For all phytoplankton samples, we calculated the TD indices describing the three components of 179 

TD defined in Mason et al. (2005): richness, evenness and divergence. We quantified these three 180 

TD components using distinct indices: TOP, TED and FDis, respectively (Laliberté and 181 

Legendre, 2010; Fontana et al., 2016). These TD indices fulfil theoretical requirements that make 182 

them suitable for application to individual-based measurements, when every organism constitutes 183 

a unique combination of traits and therefore influences the TD (Fontana et al., 2014). Thus, in the 184 

present study we did not identify neither taxonomic nor functional groups in the SFC data, and 185 

we calculated TD metrics without classifying particles (single cells represent the fundamental 186 

unit in this study). These multivariate indices were calculated using seven Cytobuoy-derived 187 

traits, selected on the basis of their ecological and physiological relevance for phytoplankton 188 

(Table 1), and to avoid trait multicollinearity: length (maximum value between length by SWS 189 

and length by FWS), average FWS, average FL.Red, average FL2.Red, average FL.Yellow, fill 190 
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factor FL.Red, ratio between average SWS and average FWS. Thanks to this a priori selection of 191 

traits, there was no need for dimensionality reduction. In all datasets the absolute value of pair-192 

wise Pearson’s correlation coefficients between the selected traits were below 0.7, which we 193 

chose as the maximal acceptable limit to reduce collinearity issues (Dormann et al., 2013). 194 

Before calculating TD indices, the selected traits were standardized (mean = 0; standard deviation 195 

= 1) so that each trait has equal weight (Petchey and Gaston, 2006). This was necessary because 196 

the selected traits have different units and vary in value by orders of magnitude. Details about the 197 

interpretation of the selected traits and their ecological relevance are reported in Supplementary 198 

Table S2. These seven traits provide information on phytoplankton three-dimensional structure, 199 

fluorescence properties, cell/colony size and distribution of pigments and other structures within 200 

cells (Pomati et al., 2013). Although they do not cover all relevant dimensions of traits space in 201 

phytoplankton (e.g. life history, nutrient uptake kinetics and mixotrophy), these traits relate to 202 

photosynthesis, resource acquisition (surface to volume ratio), reproduction and predator 203 

avoidance (Litchman and Klausmeier, 2008; Pomati et al., 2013; Table 1). 204 

Species-level biodiversity metrics 205 

We calculated species richness (number of species) and Pielou’s evenness using microscopic 206 

counts of the phytoplankton community in each sample. Effort was made to standardize the 207 

counting method and taxonomic identification (at the species level) across all datasets. The same 208 

sample preparation method was used (Utermöhl, 1931) and taxonomists exchanged knowledge 209 

and information. Pielou’s evenness was calculated based on the biovolume of each species 210 

present, derived by multiplying the abundance data from microscopy by the best available 211 

estimate of species-specific biovolume. 212 
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Biomass calculation 213 

Biomass was defined as the sum of the biovolumes of all phytoplankton cells or colonies in the 214 

samples, divided by the sample volume analysed. The biovolume of each single particle was 215 

estimated assuming an ellipsoid shape with the formula [Biovolume2 = 0.0017 * FWS.Total - 216 

0.013] (Foladori et al., 2008; Pomati and Nizzetto, 2013). It is important to note that total FWS 217 

was derived by SFC, but it is not one of the traits included in the calculation of the TD indices 218 

(see above). 219 

Model selection and averaging 220 

We formulated linear mixed-effects models to explain variation in ecosystem properties. We 221 

included all possible combinations of five explanatory variables as fixed effects: species richness, 222 

Pielou’s evenness and the three metrics of individual-level TD (TOP, TED and FDis). TD 223 

estimates are not independent from taxonomy-based biodiversity measures. However, we found 224 

these two groups of predictors to be only weakly correlated (a maximum Pearson’s r of 0.50 225 

across all datasets, between TED and Pielou’s evenness in lake Zurich). In addition, we 226 

accounted for temporal and spatial autocorrelation in abiotic (physics and chemistry) and biotic 227 

environmental variables (e.g. grazers and parasites). First, we included the date of sampling as a 228 

fixed effect, with a quadratic term. In the case of lake Greifensee (high temporal sampling 229 

frequency), the exact time of sampling and the date were combined in a single variable. Second, 230 

random intercepts were also included in all models to account for spatial ecosystem 231 

heterogeneity: depth of sampling for lakes Greifensee and Zurich, and lake identity for the 232 

shallow Danube Delta lakes. This approach resulted in a list of 32 models for each dataset. The 233 
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variance inflation factors (VIFs) of all variables of interest were lower than 4 in all models, 234 

indicating that multicollinearity was not a problem. 235 

We calculated marginal R2 values (Nakagawa and Schielzeth 2013) to estimate the proportion of 236 

variance explained by the fixed effects alone in each model. Models with delta AICc < 7 were 237 

defined as the strongest set of models (Burnham and Anderson, 2002; Richards, 2005). These 238 

were subsequently used for model averaging to minimize the dependence of the regression 239 

coefficients on single models and to assess overall predictive power. Model selection and 240 

averaging were performed using the MuMIn R-package (R-Core-Team, 2013). 241 

Additional analyses 242 

We also performed all the above analyses using resource use efficiency (RUE, sensu Ptacnik et 243 

al., 2008) as ecosystem property instead of biomass, which allowed us to study the predictive 244 

power of biodiversity metrics on the ability of a community to take up limiting resources. We 245 

defined RUE as the amount of standing phytoplankton biomass per unit of limiting resource 246 

present (Ptacnik et al., 2008). We used phytoplankton total biovolume (calculated with SFC data) 247 

as a proxy for biomass and TP as the main limiting resource in temperate lakes (Ptacnik et al., 248 

2008), which in turn is a proxy for potential system productivity. Therefore, RUE was calculated 249 

as [biomass / TP]. 250 

Additionally, we ran a full set of analyses including in all models the number of particles 251 

measured by SFC as a fixed effect, in order to account for variation in biomass or RUE caused by 252 

SFC sample size. 253 

To examine the influence of phytoplankton limiting resources on TED, we used high-resolution 254 

data from lake Greifensee including TD, PAR (from high-frequency profiles) and TP, the key 255 
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limiting factors for algal growth in freshwater environments (Ptacnik et al., 2008). We performed 256 

a multiple linear regression analysis with PAR, TP and their interaction as explanatory variables.257 



16 
 

Results 258 

The best models retained for model averaging explained more than 60% of the variance in 259 

phytoplankton biomass, with a large proportion contributed by the biodiversity metrics (Fig. 1, 260 

Table 2). Temporal structure in the data contributed variable amounts depending on the lake 261 

system (Table 2). Note that marginal R2 values represent the variance explained by the fixed 262 

effects alone, and therefore do not include the variance attributable to spatial autocorrelation 263 

(random factor). Models containing individual-level TD metrics improved predictions of 264 

microbial biomass and RUE. Our results show a consistent negative correlation between TED 265 

and community biomass across datasets. The other components of TD (richness and divergence), 266 

after correcting for the number of cells/colonies, had a non-significant effect on ecosystem 267 

properties (see Supplementary Information), except TOP in the lake Greifensee data where it had, 268 

however, a weaker effect than TED (Supplementary Figures S2-S3). 269 

Species richness was not a significant predictor of biomass. A positive relationship in the Danube 270 

Delta lakes disappeared when the models accounted for the number of individuals measured by 271 

SFC (see Supplementary Information), suggesting a sampling effect.  272 

The different lake systems showed some idiosyncratic patterns, but the main results were 273 

consistent. In lake Greifensee, TED was the strongest predictor of biomass, while TOP was the 274 

second (Table 2, Figure 1a). Species richness, Pielou’s evenness and FDis were non-significant 275 

predictors of biomass (Figure 1a). In Lake Zurich, Pielou’s evenness was the strongest predictor 276 

of biomass, while TED was the second (Table 2, Figure 1b). Species richness, TOP and FDis 277 

were non-significant predictors of biomass (Figure 1b). In the Danube Delta lakes, TOP was the 278 

strongest predictor of biomass, while TED and species richness were the second and third, 279 
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respectively (Table 2, Figure 1c). Pielou’s evenness and FDis were non-significant predictors of 280 

biomass (Figure 1c).  281 

Identical analyses using RUE instead of biomass as the ecosystem property of interest yielded 282 

almost identical patterns as those presented in Figure 1 (see Supplementary Information). 283 

Including in all models the number of individuals measured by SFC as a fixed effect, in order to 284 

correct for potential biases associated with the fact that some biodiversity metrics, especially 285 

TOP (Fontana et al., 2016), are increasing functions of sampled abundance, also did not change 286 

the results (see Supplementary Information). These additional steps had the effect of reducing the 287 

predictive strength of species richness and TOP, when analysing both biomass and RUE in the 288 

Danube Delta lakes (Supplementary Figures S2c and S3c). TED was however the strongest 289 

predictor of ecosystem properties (Supplementary Figures S2d and S3d) under all analytical 290 

conditions. 291 

A multiple linear regression to test the influence of the main limiting resources on TED revealed 292 

a negative, significant effect of PAR and TP (p = 0.03 and p < 0.001, respectively; R2 = 0.25). 293 

TED was highest under limitation by both light and nutrients, with a marginal effect (p = 0.07) of 294 

their interaction (Figure 2).  295 



18 
 

Discussion 296 

This study demonstrates that individual-level trait metrics may help link biodiversity in natural 297 

microbial communities to essential ecosystem properties. In particular, we found that TED 298 

(regularity in the distribution of individual phenotypes in trait space) was the most important 299 

predictor of community productivity. Previous studies have explored the correlation between TD 300 

measures and ecosystem properties in macro and microorganisms, but trait evenness has rarely 301 

emerged as being important (Tilman et al., 1997; Mouillot et al., 2011; Bílá et al., 2014). Gagic 302 

et al. (2015) found contrasting effects of trait evenness, while Santos et al. (2014) showed a 303 

negative correlation between trait evenness and phytoplankton productivity, consistent with our 304 

results. These differences are probably due to the fact that the tested relationships are dependent 305 

on environmental heterogeneity (Norberg et al., 2001; Hodapp et al., 2016). It has to be noted, 306 

however, that the concept of trait evenness used in previous studies is radically different from the 307 

one employed here, where regularities in trait distances among individuals represent the unit of 308 

measure. Previous studies calculated TD using species-level data, disregarding the individual-309 

level trait differences that we find to be the most important predictors. 310 

Individual-level trait evenness, as characterised by TED, is also conceptually different from 311 

species evenness, since, by measuring the distances of individual organisms in multidimensional 312 

trait space, it does not include any information about relative abundances (Supplementary Figure 313 

S4; Fontana et al., 2016). To understand the negative correlation between TED and community 314 

biomass in our data, it is necessary to refer to environmental effects on both, although they 315 

cannot be fully disentangled given the correlative nature of our analyses. Our interpretation of the 316 

negative relationship between TED and total biomass is that resource scarcity indirectly affected 317 

both in opposite ways - decreasing total community biomass and increasing TED (Figure 2). The 318 
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pattern that we observed may be explained by plasticity or selection for particular phenotypic 319 

characters under conditions of resource limitation. This may induce individual microbes to be 320 

more evenly spaced in a multidimensional landscape defined by their functional traits (thereby 321 

minimising the overlap of “individual niches”). Our analyses confirmed that low levels of both 322 

light and nutrients maximized TED values in microbial communities (Figure 2).  323 

We believe that resource limitation constrained the total productivity of the phytoplankton 324 

communities in our study, inducing individual phenotypes to spread more evenly along trait axes 325 

(to better exploit available resources), leading to the negative correlation between TED and 326 

community biomass. This interpretation does not contradict the expected outcomes of 327 

competition under resource limitation, which leads to the dominance (at the population level) of 328 

the species with the highest affinity for resources (Tilman, 1982). Variation in TED signals 329 

individual organisms converging around certain trait combinations (low TED) or spreading more 330 

regularly among trait space (Fig. S4); this happens as a consequence of co-occurring 331 

physiological and ecological processes. While both acclimation and competitive dominance could 332 

explain the above patterns, the fact that individual-level TD dominates the predictive power of 333 

our statistical models relative to species-based metrics (considered here as proxies of trait change 334 

due to taxa turnover) suggests that variation in TED may be explainable mainly by physiological 335 

responses at the single-cell level or genetic variation within species. 336 

Light limitation can induce changes in the distribution of individual phytoplankton fluorescence 337 

traits because both the absolute and relative intracellular abundance of different pigments can be 338 

regulated, thereby changing absorbance across the light spectrum. This has been previously 339 

shown in the cyanobacterium Tolypothrix tenuis, in which algal cells regulated the relative 340 

amounts of different pigments to fill gaps in the prevailing light spectrum that were not already 341 
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exploited by competitors (Stomp et al., 2004). And in plant communities, intraspecific trait 342 

variability is influenced by light acquisition traits of neighbour individuals (Le Bagousse-Pinguet 343 

et al., 2015). These studies showed that a complementary effect caused by the differential use of 344 

light is not always a consequence of increased taxa richness (as in Striebel et al. 2009a; Striebel 345 

et al. 2009b), but is in principle possible at the intraspecific level. Light represents a spectrum of 346 

wavelengths, being a potentially infinite set of resources that can be exploited by photosynthetic 347 

organisms able to regulate pigment composition (Stomp et al., 2007a; Stomp et al., 2007b; Stomp 348 

et al., 2008). 349 

The relationship between TP and TED is more difficult to interpret since many phytoplankton 350 

traits might be involved in optimising phosphorus uptake rate and use (Litchman and Klausmeier, 351 

2008; Table 1). In this context, cell size represents a key trait, which reflects different nutrient 352 

acquisition strategies by determining surface to volume ratio (Litchman and Klausmeier, 2008). 353 

The fact that patterns observed for RUE are very similar to those of biomass (see Supplementary 354 

Information) suggests, however, that the TP-TED relationship might be less important than the 355 

PAR-TED relationship. If the relationship between ecosystem properties and TED was driven by 356 

limiting TP, then it would have disappeared when biomass was corrected for TP (that is, 357 

considering RUE), which was not the case. 358 

In our data, species richness, which represents the most commonly used metric in studies 359 

correlating biodiversity with ecosystem properties (Cardinale et al., 2011), did not show a strong 360 

relationship with biomass. Interestingly, species richness showed no clear correlation with TD 361 

metrics across our datasets (maximum absolute value of Pearson’s r was 0.40). Our results seem 362 

to contradict previous studies (e.g. Hector et al., 1999; Cardinale et al., 2011) and the common 363 

assumption of a positive correlation between species richness and primary production. However, 364 
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non-significant as well as negative correlations have been already reported previously (Cardinale 365 

et al., 2011). One possible reason for the lack of importance of species richness in our study is 366 

that we focused on natural communities shaped by natural selection gradients, whereas studies 367 

correlating biodiversity with ecosystem properties typically deal with communities assembled 368 

randomly from a species pool (Hooper et al., 2005; Krause et al., 2014). Natural communities are 369 

the result of assembly processes over abiotic and biotic gradients and their species composition 370 

reflects the adaptation to a specific environment. In this context, phenotypic composition might 371 

play a more important role compared to the number of species present. However, Ptacnik et al. 372 

(2008) found a significant positive relationship between genus richness and RUE in natural algal 373 

communities. These authors investigated a very large spatial (almost continental) and temporal 374 

scale (over several years), whereas our largest scale is regional (Danube Delta) with a generally 375 

shorter temporal frequency. This suggests that the scale of analysis might also be important when 376 

considering the relative importance of biodiversity metrics in explaining ecosystem processes 377 

(Farnsworth, 1998; Cadotte et al., 2011; Chalmandrier et al., 2017). 378 

The importance of species evenness for ecosystem properties has been intensively tested in the 379 

last few years using experimental, observational and modelling approaches, with partially 380 

contradictory results (positive effect of evenness through niche partitioning vs. dominance of 381 

high productive species). Most studies have focussed on grassland and forest communities (e.g. 382 

Mulder et al., 2004; Zhang et al., 2012; Orwin et al., 2014; Dooley et al., 2015), but some 383 

microbial communities have also been investigated (Filstrup et al., 2014; Powell et al., 2015). In 384 

this study, species evenness emerged as important only in lake Zurich (Figure 1), where it was 385 

the strongest predictor of biomass. This result likely reflects the specific characteristics of this 386 

lake’s phytoplankton community: in the last few decades, the ecosystem has been dominated by a 387 

single cyanobacterial species (Planktothrix rubescens) that accounts for approximately 40% of 388 
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the total annual phytoplankton biomass (Posch et al., 2012). Variation in species evenness is 389 

principally driven by growth of this cyanobacterium, which causes fluctuations in community 390 

biomass (blooms). This is consistent with patterns observed in many other lakes (Filstrup et al., 391 

2014). 392 

Ecosystem processes depend upon guilds of interacting organisms and their aggregated responses 393 

to their immediate environment. Theoretically, individual-level trait variation is important to 394 

maintain ecosystem processes only in a spatially or temporally heterogeneous environment 395 

(under constant environmental conditions the fittest phenotype would eventually prevail) 396 

(Norberg et al., 2001; Norberg, 2004; Hodapp et al., 2016). The importance of individual-level 397 

TD in our analyses suggests that 1) there is significant environmental heterogeneity in the studied 398 

aquatic ecosystems, which may lead to the emergence and maintenance of trait diversity 399 

(Ackermann, 2015; Stark et al., 2017), and 2) this heterogeneity (characterised by our TD 400 

indices) is important to understand and predict ecosystem processes. Since TD can characterise 401 

phenotypic variation among individual organisms, aggregating physiological (plastic) responses 402 

of phenotypes, evolution of populations and ecological turnover of species, it has been long 403 

hypothesised to perform better than species-level metrics in explaining ecosystem properties 404 

(Norberg et al., 2001; Petchey and Gaston, 2006; Fontana et al., 2014; Fontana et al., 2016). 405 

Despite variation between systems, including TD metrics in statistical or mechanistic models 406 

explaining phytoplankton productivity may allow us to improve our predictive power over a 407 

range of environmental gradients. The relationship between trait evenness and both environment 408 

and ecosystem properties deserves further investigation, both theoretical and empirical. 409 

Experimental work can help disentangle the mechanisms (physiology/evolution) that determine 410 

variation in the regularity of algal phenotypes in trait space, its dependency on environmental 411 

conditions and its importance for ecological interactions.  412 
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Figure legends 609 

Figure 1 Effect sizes of biodiversity metrics on biomass. TED is the strongest predictor of 610 

biomass among the five biodiversity metrics. Values are standardized model-averaged regression 611 

coefficients with 95% confidence intervals, derived from models accounting for temporal and 612 

spatial heterogeneity. 613 

Figure 2 Relationship between phytoplankton limiting resources and TED. Individual-level trait 614 

evenness (TED) increases with decrease in photosynthetic active radiation and total phosphorus 615 

in lake Greifensee (N = 195). The grey surface represents the fitted linear model relating TED to 616 

log(PAR), log(TP) and their interaction. 617 

 618 
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(a) Lake Greifensee (b) Lake Zurich

(c) Danube Delta lakes (d) Meta-analysis
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Table 1 Ecological relevance of the measured phytoplankton traits. List of the seven traits used for 

calculating trait diversity indices (Litchman and Klausmeier, 2008; Pomati et al., 2013). 

Measure  Ecological importance 

   
Length of the particle  Reproduction, resource 

acquisition, predator 
avoidance 

Frontal shape of the particle  Resource acquisition 

Fluorescence of chlorophyll-a  Resource acquisition 

Fluorescence of phycoerythrin*  Resource acquisition 

Fluorescence of accessory and decaying pigments  Resource acquisition 

Evenness in the distribution of pigments within cell/colony  Resource acquisition 

Cell rugosity / internal structure / gas vescicles / thylacoids  Resource acquisition, 
predator avoidance 

* For Lake Zurich data (only 1 laser), this measure is missing. 

 



 

Table 2 Summary of the results with biomass as response variable. The estimates of the five 

explanatory variables (with 95% confidence intervals) represent standardized model-averaged 

regression coefficients. Values in bold are significant at the p<0.05 level. 

  
Greifensee  
(N=207) 

Lake Zurich  
(N=82) 

Danube delta lakes  
(N=136) 

    

Number of models used for 
model averaging (out of 32) 

8 8 4 

Sum of weights 98.8% 99.5% >99.9% 

Species richness estimate  
[95% CI] 

0.008 
[-0.033, 0.048] 

 0.004  
[-0.097, 0.104] 

 0.345  
[0.193, 0.497] 

Pielou's evenness estimate  
[95% CI] 

0.001 
[-0.023, 0.024] 

 -0.559  
[-0.744, -0.374] 

 0.006  
[-0.068, 0.080] 

TOP estimate  
[95% CI] 

0.073 
[0.029, 0.117] 

 0.070  
[-0.131, 0.271] 

 0.556  
[0.382, 0.730] 

TED estimate  
[95% CI] 

-0.590 
[-0.658, -0.521] 

 -0.437  
[-0.691, -0.184] 

 -0.430  
[-0.581, -0.278] 

FDis estimate  
[95% CI] 

-0.006 
[-0.039, 0.027] 

 0.043  
[-0.137, 0.223] 

 -0.085  
[-0.260, 0.091] 

Mean R2 (null model*) 0.65 (0.02) 0.63 (0.24) 0.65 (0.17) 

* accounting for temporal and spatial heterogeneity. 
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