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INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS 
IN THE CASE OF ALL-OR-NONE RESPONSES 

OLLI S. MIETTINEN 

Departments of Epidemiology and Biostatistics, Harvard School of Public Health, and 
Cardiology Division, Department of Medicine, Children's Hospital Medical Center, 

Boston, Massachusetts, U. S. A. 

SUMMARY 

The one-to-one individual matching principle of the matched pairs design is generalized 
to R-to-one individual matching in the case of all-or-none responses and fixed sample size 
procedures. A test is given; its asymptotic power function is derived; the selection of the 
matching ratio (R) is considered in relation to the unit costs in the two comparison groups; 
and finally, procedures for sample size determination are described. 

1. INTRODUCTION 

Matching is a common feature in the design of nonexperimental studies 
concerned with the evaluation of causal propositions (such as hypotheses on 
disease etiology). Its main purpose typically is the attainment of validity for 
the inferences, but it has implications for design efficiency as well. 

As nonexperimental studies with matched comparison series are frequently 
quite expensive, it is important to understand the properties of matching designs 
so as to be able to make the best use of them. The matched pairs design in the 
case of all-or-none responses and fixed sample size has recently been studied 
rather extensively (Worcester [1964], Billewicz [1964, 1965], Miettinen [1966, 
1968a, b], Bennett [1967], Chase [1968]). The present paper deals with the ex- 
tension of this design to the case where the number of control subjects obtained 
for each propositus is not necessarily one but some general number R. We will 
use the term 'R-to-one individual matching design.' This generalization and an 
intelligent choice of R are important whenever several control subjects can be 
obtained at a unit cost substantially lower than that of the propositi. 

2. BASIC CONCEPTS, TERMINOLOGY, AND NOTATION 

In a study with R-to-one individual matching one obtains J sets of 1 + R 
subjects. Of each of these (1 + R)-tuples, one unit belongs to one and R units to 
the other of the two comparison groups. The first group, consisting of J sub- 
jects (propositi), is here termed Series 1, and the latter group, with RJ subjects 
(controls) is called Series 2. 

The matching is based on some matching variate M (which need not be uni- 
dimensional). The jth (1 + R)-tuple shows some realization mi for M, and this 
implies a realization (p,i, p2,) = [p,(mi), p2(mj)] for the random pair (P1 , P2) 
of underlying response probabilities, the numerals in the subscripts referring 
to Series 1 and Series 2, respectively. 
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340 BIOMETRICS, JUNE 1969 

Each subject is characterized by a code value of either 0 or 1 for a (dichot- 
omous) response variate Y. Thus, in the jth matched group a realization (y,i1 
Y2jI, *... * Y2j) is obtained for the random response vector (Yl, , y2i * 
Y2;iR) - 

3. THE MODEL, THE HYPOTHESES, AND THE TEST 

The model under which the results are derived in the present work is com- 
pletely analogous to that considered by Miettinen [1966; 1968a, b] in the special 
case of the matched pairs design. It consists of the assumptions that 

(1) the distribution of M is independently identical for all the J sample 
positions, and that 

(2) conditionally on the realizations {mi} for M the observation (response) 
variates corresponding to the (1 + R)J units are independent within as 
well as among the J sample positions. 

To state this model in another way, it is assumed that 

(1) the J vectors (Y1i, i , * , Y2Y) are independently and identically 
distributed, and that 

(2) Y1, * Y2iI Y2YR are mutually independent conditionally on (P1, P2) 
= (Pli,P2;,j= 1,P2 , J. 

As before (Miettinen [1968a, b]), the object of statistical inference is taken 
to be 

a = 01 - 02, 

where Oi = E(YJ) = EM[E(Yi I M)] = EM[pi(M)] = E(PJ), i = 1, 2, and the 
expectation is taken with respect to the distribution of the matching variate in 
the source population of the propositi. The null hypothesis is taken as 

Ho: a = 0, 

and the alternatives considered are a < 0, a > 0 and a 7 0. 
Information in terms of a two-by-two table of frequencies is sufficient for 

each matched group. For the jth group the table is a realization for 

Series 1 Series 2 Total 

1 X1; X2; xi 
y 

0 1-X1, R-X2j 1 + R-X; 

Total 1 R 1 + R 

where X1; = Yli and X2j = ak Y2ik . 
In terms of the above hypotheses the interest lies in the contrast 

E (RX, -X2) 
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INDIVIDUAL MATCHING WITH MULITIPLE CONTROLS 341 

On the null hypothesis its expectation is zero. Conditionally on {Xi } its variance 
is 

var [ (RXjj - X23) I {Xi}] = var [(1 + R)Xj - Xi Xj 
i i 

E(1 + R)2 X 1 + R-X, 

- E Xj(1 + R-XX). 

Thus, the test statistic in the case of large J can be taken as 

T = [E (RX1j - X2i)]/[ Xj(1 + R - Xi)]', (3.1) 
i i 

and its value referred to tables of the standard normal distribution. (The Cen- 
tral Limit Theorem for unequally distributed variates applies here by the Linde- 
berg criterion.) If a continuity correction were to be applied to this statistic, 
it would mean reducing the absolute value of the numerator by (1 + R). 

The square of the above test statistic can be thought of as representing 
one degree of freedom in the chi square statistic which Cochran [1950] gave 
for comparing proportions among several individually matched series, each 
represented by one unit at each of the observed levels of the matching variate. 
Moreover, it is a special case of the method which Mantel and Haenszel [1959] 
suggested for accumulating information from a number of hypergeometric 
experiments. 

The results of Birch [1964] on the properties of the Mantel-Haenszel test im- 
ply that the statistic in (3.1) is optimal if Pj(1 - P2)/(1 - P1)P2 is constant. 

It may be noted that the Mantel-Haenszel test applies also in the case 
where R varies among the matched groups. Alternative analyses for that case 
were considered by Cox [1966]. 

The exact test corresponding to (3.1) is considered in sections 4.1 and 8. 

4. THE TWO-TO-ONE INDIVIDUAL MATCHING DESIGN 

4.1. The test 
The two-to-one individual matching design merits special attention among 

the R-to-one matching designs with R > 1. It is to be regarded as the most 
frequently applicable alternative for the commonly used matched pairs design 
in the category of individual matching designs with a fixed matching ratio. 
Also, as the simplest nonsymmetrical R-to-one matching design it serves well 
the purpose of introducing the principles of the general asymmetrical case. 

In the case of two-to-one individual matching, the test statistic (3.1) takes 
the form 

T = (2X -X3)] X2 [zE X(3 - Xi)] (4.1) 

A useful alternative expression for this statistic may be obtained by con- 

This content downloaded from 132.216.239.61 on Wed, 18 Feb 2015 09:50:20 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


342 BIOMETRICS, JUNE 1969 

sidering the multinomial distribution of the response vector (X1, , X2i). There 
are six possible realizations, and their random frequencies are here denoted as 
follows: 

x2 
2 1 0 Total 

1 Z12 Zll ZIO 
x1 

0 ZJ2 Z(O1 ZOO 

Total J 

In terms of this layout and notation, the statistic in (4.1) may be recast in the 
form 

T = [2Zio - Zol + Z1l - 2ZO2]/[2(Z1o + Zol + Z1l + Z02)]1. (4.2) 

The square of this latter statistic, with possible continuity correction of 3/2, is 
completely analogous to the McNemar [19471 statistic for the matched pairs 
design. 

The above multinomnial formulation also permits ready construction of an 
exact test. Regarding { X} as fixed in (3.1) and (4.1) implies that the sums 
Z,0 + Z0i = S1 (say) and Z1l + Z02 = -2 (say) are taken to be fixed in (4.2), 
and that ZAo and Z1l have independent binomial distributions whose parameters 
under the null hypothesis are (Si , -) and (S2 , 2), respectively. The correspond- 
ing joint probability function, Pr (Z0o z1O Zll = Zll I S1 = sl , S2 = S2), iS 

1:0)3 () (11)3 () 

This permits the computation of the p-value for hypothesis testing. E.g., with 
a > 0 as H1 , p = Pr (Zl0 + Zl 2 zio + z11 = v), i.e., 

(si 2 (" 1 )8 2) 
8 - 2 )>' . 1k, 

4.2. The asymptotic unconditional power function 
From the above exact test it is apparent that any assessment of power at 

the conclusion of a study with two-to-one individual matching would best be 
made conditionally on S1 and S2 . That conditional power function involves 
nuisance parameters (see Birch [1964]) whose evaluation in practice would tend 
to be quite problematic. However, in the present context we are concerned 
with design problems (cf. sections 4.3, 5.2, and 7) and they call for the uncondi- 
tional power function. It is seen below that this function can be approximated 
in terms of rather simple expressions. 

One approach to the asymptotic unconditional power function, II(a), is that 
of taking 

II(6) = EsH(6 I S), 
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INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS 343 

where S = S1 + S2,i.e., 

S = ZIO + Zo1 + Zll + Z02 

It is shown in Proofs 1 and 2 of Appendix A that, for the statistic in (4.2), 

E(T I S) = (2S)'a/(0p + 2142) 

and 

var (T I S) -[(i + O2)(2if -_ 2h2) - 282]/( + 2) 

where 

= E(P1 + P2- 2P1P2) = 01 + 02 - 20102 - 2 cov (P1 , P2) (4.4) 

and 

'P2 = E(P2 + P2 - 2P2P2) = 202(1 - 02) - 2 var (P2). (4.5) 

Therefore, for a one-sided test, 

11( i S) = P+ !1 62)(2q - (2S) -2 6] (4.6) 

where b denotes the distribution function of a standard normal variate, and ua 
is the 100(1 - a) percentile of the standard normal distribution. 

A first approximation to 11(a) may now be obtained by evaluating II(8 I S) 
at S = E(S) JE[Pi(I - P2)2 + (1 - P1)2P2(1 - P2) + P12P2(1 - P2) + 
(1 -P)P2] = J(VI + 42'2). Thus, for a one-sided test, 

-FUa(IP + 124/2) + [2J(t' + .2'J2)] 1 (.7 

11(a) b [NI + 112 )(2'1 - 21 /2) - 284 .(7 

From the definitions of 'P and 'P2 in (4.4) and (4.5), it is apparent that in the 
vicinity of the null state one may take 'P 'P2 . Thus, in the assessment of 
local power, (4.7) may be further approximated as 

11() [U + 2(J8//3)- talI. (4.8) 
('P2 - 88 2/9)1.(48 

An alternative approach may be based on finding the parameters of 
the asymptotic normal distribution of T. Using the above conditional results 
we obtain 

E(T) = Es(T S) - 2E(SI)8/(4P + 21V2)3 

and 

var (T) 

= Es[var (T I S)] + var [E(T I S)] 
E(4' + ?2 IN)(22 - -12) 282]/[' 2 + CV2)2 + [215/(o + . A1)]2 var (Si) 

(VI + 12) (2 VI - ) 2 2[12 - var (&-W) }]/['P + IP2)2 
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344 BIOMETRICS, JUNE 1969 

It follows that the asymptotically exact unconditional power function for the 
case of a one-sided test is 

11(8) = -UM(/' + 21I'2) + 2iE(S) 1 1 (9 
L={G' + 1 12)(241 - 1412) - 2 2[1 -var (Si)]} ] ( 

A first-order approximation to this function is obtained by replacing E(SI) 
and var (SI) by their first-order approximations from Taylor series expansions 
about E(S): 

E(SI) [J(GP + ht2)]I and var (Si) = 1(1- 2+'12) 

Thus, 

II(6) - [{{ (+ + 'U)(2'+ _12'2) + [2J(G + 12)] 11 ja ] (4.10) 
(lk+ 42)(241- 1 

412) - 
2 8(3 + J/ + 14/'2)/2}1 

The further approximation corresponding to t -t2 iS 

II1(8) - [Up 2 _ 52(2 + 2 )/3]) 1 (4.11) 

The numerical evaluations in Appendix C indicate that the approximations 
from this latter approach, (4.10) and (4.11), are more accurate than (4.7) and 
(4.8), respectively. 

Second-order approximations are given in Appendix B and evaluated in 
Appendix C. They afford only slight refinements of the above first-order ap- 
proximations. 

Regarding the case of a two-sided alternative hypothesis, each of the additive 
power contributions from the two tails may be evaluated by using II(a), with 
U ,a in place of ua , and with - I6 in place of I8j for the lower tail contribution. 

4.3. Sample size determination 
The sample size which, with a level of significance, yields the power 1- 

against 8 is, from (4.7), 

J {U.(VI + Wt2) + U9[(Vt + t'V2)(2t' - 21/2) - 282]I}2/2( + 2 2)8. 

The corresponding approximation from (4.8) is 

J 
3[ual' 

+ ug(42 _ 
81p8/9)2]/41,2. 

The alternative first-order approximation to the power function, (4.10), 
yields 

J {Ua.(VI + 2 12) + U4[(VI + 2-V2)(2 2 - 2 

- 82(3 + V/ + 2 V12)/2]4 } /2 ( + 21 2) 82. 

The approximation to this expression from (4.11) is 

J 3{u ' + u1[2 82(2 + iP)/3]i}2/4052* 

The second-order approximations to the asymptotic power function (see 
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INDIVIDUAL MATCHING WITH MULTIIPLE CONTROLS 345 

Appendix B) are not readily applicable to sample size determination. 
As to the case of a two-sided alternative hypothesis, a and ,B are usually 

small enough so that all the power is derived essentially from one of its two com- 
ponents, and in such situations the above sample-size formulas apply upon sub- 
stituting u4a for ua, . 

.5. THE GENERAL CASE 

5.1. The asymptotic unconditional power function 

In section 4.2 as well as in earlier work on the matched pairs design (Miettinen 
[1968a, b]) results for unconditional power were derived through results on the 
conditional distribution of T. In the general case of R: 1 individual matching 
designs this approach does not seem to be readily applicable (cf. Miettinen 
[1968b]). Therefore, in the present context a result for the unconditional power 
will be derived without the intermediary of the conditional distribution of T. 
Due to the nature of the approach, the immediate result applies well only when 
81 is small relative to At. 

For a derivation of the result for local unconditional power, it is coinvenient 
to write the test statistic (3.1) as 

T = UJ/VJ, 

where 

U.,= J- ? (RX1; - X2,) and V., J-1 X,(1 + R-Xi)]. 

The expectation of U.T is 
Jr 

E(UJ) = J-E (RO - R02) =R16, 

and by Proof 3 of Appendix A, var (U,) = R2(l - 62) _ 'R(R - 1)>2 It 
follows that if J -* o and a -* 0 in such a manner that Jl8 remains fixed, then 
the distribution function FJ(u) of U, tends to 

F(u) [R2( 62)211 L[R(t' - 8)- R(R - 1)4'12]1- 
On the other hand, the sequence V, converges stochastically to the constant 
[(R + 1)E(X) - E(X2)]I, and by Proof 4 of Appendix A this limit equals 
I'R% + 2(R -1)V2]3 

From the above results it follows-e.g., by Theorem 20.6, Cram6r [1946]- 
that as J --+ o and a -O0 in such a manner that Nib remains fixed, Pr (Uj/Vj < 
ua) = Pr (T < ua) tends to 

bU [4, + 1 R - 1) V/2]' - (RJ)'6 
The cop roia 62) t 12(Rc- 1) nc2]- 

The corresponlding approximation to the asymptotic unconditional power func- 
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346 BIOMETRICS, JUNE 19f9 

tion for a one-sided test is 

11(8) 0{-u~E~t' ? 2(R - 1)- 21 ? (RJ)l 1 (5.1) 
[R(/- 82) - R _-41 

As this result was derived in a manner which is adequate for small I16 only, 
it is interesting and pertinent to compare it to earlier results without such limita- 
tion for the cases of 1:1 and 2:1 individual matching design. For this purpose it 
is expedient to rewrite (5.1) as II(a) -= 

1 -ua[\6 +2(R- 1)J2] ?{RJ[B,t + ? (R - 1>^62]}2 181 
VI[ + 2 (R -1) V2] [RVI- (- 1412 - R[V + 12(R-1)2 622 

If in this result the latter term in the denominator, -R[RI + ? (R- 1)-2] 2, 
is replaced by -R82, it gives exactly the earlier first-order approximation 
(4.7) as well as its equivalent for the matched pairs design (cf. Miettinen 
[1968a, b]). This modification is, as was to be expected, immaterial with small 
81, but for relatively large values of 161 it may be important. 

Making the above modification in (5.2) yields 

11(^) r[Ua[1 2 + 2(R - 1> RJ21 ? {iJ[D + ? (R - 1>J2]11 (53) 
L{[VI + 3(R -1) 2][RV - 2(R - 1)121 -R2 

It was seen above that this formula applies well in the cases of R = 1 and R = 2' 
without the limitation that I16 be small. One may surmise that this is the case 
also for larger R, particularly for practical purposes, as the frequency with which 
a particular R : 1 individual matching design is optimal decreases sharply with 
increasing R so that designs with, say, R > 4 are of very little interest. 

In the vicinity of the null state one may again set Vt it2 , and the result 
in (5.3) becomes 

11I(8) _ ,[ Ua(1 ? R) ? [2R (1 + R)J] 811 (5.4) L [(1 ?~j? R2ifr2 - i(54 
But setting A VI,,2 presupposes also that 181 is small relative to At, so that it is 
reasonable for some purposes to make the further simplification of deleting the 
latter term in the denominator. This yields 

H1(8) -{I-ua + [2RJ/(1 + R)i/4 VI 1}. (5.5) 

5.2. Selection of the design constants 

Suppose again that the desired degree of information is specified in terms of 
the level a of the test, whether the test is to be one-sided or two-sided, and the 
power level 1 - f to be attained against some alternative 8. The design problem 
then is to choose the constants R and J in such a manner that this information 
is obtained at a minimum cost. 

Only the simple (and useful) cost model is considered where 

Co = 'set-up' cost, 
C= = unit cost in Series 1, and 
C5 = unit cost in Series 2, 

This content downloaded from 132.216.239.61 on Wed, 18 Feb 2015 09:50:20 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS 347 

so that the total cost of the study is 

C = Co + (cl + RC2)J. (5.6) 

The first problem is to choose R in such a way that C is minimized for the 
particular combination of a, , and the parameters. From (5.3), 

J {Ua[lt+ ?2L(R- 1)>b211 

+ u[Rf~- - 22-(R t-a2/(R + 2(R -1)2)]1}2/Ra2. (5.7) 

Substituting this expression for J in (5.6) permits a trial-and-error solution for 
the integer value of R which minimizes C for the case of a one-sided alternative. 

The above approach to the selection of R has the drawback that the solution 
depends on the nuisance parameters, and typically good estimates of them are 
not available in the planning stage of the study. These problems are avoided by 
using the somewhat less accurate power function in (5.5). The corresponding 
expression for the total cost (5.6) is 

C -Co + (cl + Rc2)(1 + R)VI(ua + ug)2/2Rft2, (5.8) 

and this cost function is minimized by taking 

R = (Cl/C2)1 (5.9) 

R is, of course, an integer, and in practice one could, thus, choose that matching 
ratio which best corresponds to the square root of the inverse of the unit cost 
ratio. In case of ambivalence, the integer value of R which minimizes C in 
(5.8) may be obtained by trial-and-error minimization of (Rf+ C1/c2) (1 + R)/tR. 

With R selected, the corresponding J for the case of a one-sided test is speci- 
fied by (5.7). This formula has the obvious drawback that it involves two nui- 
sance parameters, VI and 4'2 . However, in the vicinity of the null state, with 
I51 small relative to 4, it is appropriate to use the power expressions in (5.4) and 
(5.5). They yield 

J {u<[(1 + R)A] 2 + up[(1 + R)I - 4Rf2/(1 + R) VI]} 2/2fta2 (5.10) 

(1 + R)VI(u, + up)2/2Rf2. 

6. EVALUATION OF THE NUISANCE PARAMETERS 

It is seen from the power functions in (5.1) and (5.3) that with R = 1 there 
is only one nuisance parameter, VI. Moreover, it was concluded on the basis of 
the definitions in (4.4) and (4.5) that in the vicinity of the null state one may 
take 412 = 4' and thereby have a single nuisance parameter even when R > 1. 

The evaluation of 4' has been discussed in the context of the matched pairs 
design (Miettinen [1968a, b]), where it has the interpretation of being the prob- 
ability that a pair will show discordant responses. It is usually reasonable to 
assume that cov (P1 , P2) > 0. The corresponding range of 4' is 

151 ? 4' ? 01 + 02 - 201021 
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348 BIOMETRICS, JUNE 1969 

and in a priori evaluation it would generally be advisable to choose a value which 
is relatively close to the above upper bound. Furthermore, the maximum like- 
lihood estimate of Ak based on matched pairs data has been shown (Miettinen 
[1968a]) to be 

= [Z1o + Zo0 + a(Z1o -ZoJ)]2J 

+ {[Z10 + Zol + a(Zlo - Z0)]2/4J2 b-Zlo -Zol (Z1l + Zoo)]/J}, 

(6.1) 

where Zf0 is the frequency of pairs with Y, = f and Y2i g 
If data from an R:1 individual matching design with R > 1 are at hand, the 

estimate of V/ may be taken as 
R 

Q = E Ak/R (6.2) 

where Ak iS computed according to (6.1), taking Zf0 as the frequency of matched 
groups with Y = f and Y2ik = g. 

The definition of 12 in (4.5) may be put to the form 12 = E[P2(1 - P2)]. 
Thus, it is the probability that a pair of control subjects within the same matched 
group show discordant responses. Its estimate, therefore, may be taken as the 
proportion of such pairs, i.e., 

J IR IR 

p2 = E i E (Y2ik - Y2jk) 2/R(R - 1)J. (6.3) 
ij1 k-1 k'=1 

7. THE CHOICE BETWEEN R-TO-ONE INDIVIDUAL MATCHING 
DESIGNS AND THE USE OF TWO INDEPENDENT SERIES 

If matching is not needed for validity (comparability of the two series), it is 
pertinent to know under what conditions individual matching with the optimal 
fixed matching ratio would be indicated from the efficiency point of view. In 
the case of retrospective (case history) studies matching tends to decrease 
efficiency (cf. Miettinen [1968c]) and therefore the present discussion relates 
only to prospective (cohort) designs and experiments. 

The answer depends on the cost model. As an example, consider the common 
nonexperimental situation where a set of propositi is obtained at a unit cost c, 
which does not depend on whether or not the control series is matched. Suppose 
also that the cost model in (5.6) is adequate for the matching designs. Then, 
by (5.9) and (5.10) the cost of the optimal R:1 individual matching design with 
a one-sided alternative hypothesis is approximately 

C C0 + (ci + c2iI (ua + un)2/2a2. 

The corresponding result for the case of two independent series may be taken 
as 

(e' 00c + [4l ? (cl)]2it"(u., + u,0)2/262, 
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INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS 349 

where 

= 01 + 02 - 20102 

and cl is the unit cost of controls when no matching is attempted. 
In terms of the above cost model and notation, matching is justified by an 

efficiency gain if C < C', i.e., if 

(+/A') < [1 + (c2,/cJ)'/[1 + (C21CJ1)i] 

It is to be understood here that in the unmatched case the allocation ratio R' 
can be essentially any positive rational number and its optimal value can, thus, 
well be approximated by (cl/cl)l. On the other hand, however, substitution of 
(Cl/c2)1 for the optimal value of R in the derivation of the above results may 
not be very accurate because R is an integer. 

8. EXAMPLE OF APPLICATION 

Trichopoulos et al. [1969] tested the hypothesis that induced abortions in- 
crease the risk of ectopic implantation in subsequent pregnancies. Utilizing the 
case history (retrospective) approach, 18 propositi with ectopic pregnancy 
following at least one earlier pregnancy were identified in a large series collected 
for a breast cancer study. For each propositus, four control subjects were drawn 
from the rest of the available series, matching for order of pregnancy, age, and 
husband's education. E.g., for a woman whose third pregnancy was ectopic and 
occurred in the age interval of 30-34 years, and whose husband had between one 
and seven years of education, the control subjects had to have their third preg- 
nancy in that same age interval in addition to the requirement that the husband 
have 1-7 years of education. The history of induced abortions terminating any 
of the preceding pregnancies was recorded for the propositi and the controls. 
The essential data are given in Table 1. 

For testing whether the frequency of positive histories of induced abortion 
is significantly higher among the propositi, let us first apply the statistic in 
(3.1). In the numerator, the quantity E, RX,i = REi X1i is four times the 
number of '+' signs in the propositus column of Table 1, while ; X,i is the 
total number of controls with a positive history. Thus, E (RX1i - X2j) = 
4(12) - 16 = 32. As to the sum in the denominator of T, the contribution from 
each of the five matched groups with all histories negative is zero, as for these 
Xi = 0; there are four matched groups with one subject giving a positive history, 
and their total contribution to the sum is 4(1) (1 + 4 - 1) = 16; etc. The value 
of the denominator is thus readily seen to be (64)1 = 8. The resulting value 
for T is 32/8 = 4.0, and this corresponds to the one-sided p-value of 0.00003. 
Applying a continuity correction, the absolute value of the numerator is reduced 
by 2(1 + R) = 2.5, and the result becomes T = 3.7 with p = 0.00011. 

An exact test analogous to that in section 4.1 is also easy to apply here. 
Among the four matched groups with Xi = 1 there were three with Xi = 1. 

The binomial probability for this under the null hypothesis is 4 1 4 
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TABLE 1 
PREVIOUS HISTORY OF INDUCED ABORTION IN PROPOSITI WITH ECTOPIC PREGNANCY 

AND MATCHED CONTROLS. TRICHOPOULOS et al. 

il'istoiry of induced abortion 

Control number 
Index Propos- _ __ 

iiurnbl-lloer itiis 1 2 3 4 

_ + 

2 + _ + -_ 

+ 

+ 6 + - - _ _ 

tS- I - - - - 

J + ) + - - + 
10 + I-- + _ _ 

II +- I - + + _ 
.12-- -- 

13 + +- + + + 
14 -+- _ _ + - 

:15. + _ _ + 
1 6 ! 4- + _ 

17 _ _ _ _ 
18 + + - - + 

Similarly for other values of Xi *Thus, the null probability of the observed 
outcome conditionally on the Xi's is 

[(4)(5) j)](5)() (53) ][(3)()() ] = 2533 

There are two other equally extreme outcomes (each with a total of 11 'successes' 
in the three binomials) and one more extreme outcome (with a total of 12 
'successes'). Their probabilities, together with the one shown above, add up 
to the one-sided p-value of 0.00009. As this falls between the two values 
derived from the asymptotic test, the size of the series seems to be sufficient 
for the application of large-sample procedures with reasonably accurate results. 

One might next wish to estimate the sensitivity of this study. E.g., it might 
be asked what power it could have been expected to have against the alternative 
where the frequency of positive histories of induced abortions among women with 
ectopic pregnancy is 20 percentage points higher than among 'comparable' 
women without ectopic pregnancy (8 = 0.2), using a one-sided test at the 5% 
level of significance. The first problem here is to estimate the nuisance param- 
eters. Using (6.1) and the data for the propositi and the first set of controls 
in Table 1, the first estimate of A1 becomes 
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= [8 + 1 + 0.2(8 - 1)]/2(18) 

+ {[8 + 1 + 0.2(8 - 1)]2/4(18)2 - 0.2[8 - 1 - 0.2(9)]/18}i 

= 0.44914. 

The estimates obtainable by using the second, third, and fourth sets of controls 
are 0.33333, 0.33333, and 0.40000, respectively. Thus, upon averaging as in 
(6.2), the 'best' estimate of q/ becomes 

= = 0.37895. 

As to the estimation of V12 according to (6.3), the contributions to the numerator 
from those matched groups where one control has positive history is 6, while 
those with two '+' signs contribute 8. Quite immediately, therefore, 

'P2 = 60/216 = 0.27778. 

Applying the above t and f2, together with ua = 1.645 and R = 4, to (5.3) 
yields the power estimate 

1fI(0.2) 4 (0.242) = 0.60. 

(The formula for local power, (5.1), gives here 17(0.2) -1I(0.237) = 0.59, and 
the close agreement with the above result indicates rather wide applicability for 
this formula clespite the theoretical limitation to the vicinity of the null state.) 

It is of interest to consider here the sensitivity gain from the utilization of 
multiple controls, instead of just one, for each of the 18 available propositi. 
With R 1 and other specifications as in the above, the formula in (5.3) yields 
WU(0.2) 1I(-0.314) = 0.38 substantially less than the above 0.60 for R = 4. 
On the other hand, R = 10 corresponds to II(0.2) - (0.386) = 0.65, so that 
with increasing R the returns are rapidly diminishing. 
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APPARIEMENT INDIVIDUEL A DES TEMOINS MULTIPLES DANS LE CAS 
DES REPONSES EN TOUT-OU-RIEN 

RESUME 

Le principe d'appariement individuel, 'un A un,' des plans A couples de sujets appari6s 
est g6n6ralis6 a l'appariement de 'R sujets a un' dans le cas de reponses en tout-ou-rien et de 
procedures A taille de l'6chantillon fixee. Un test est etabli; sa fonction de puissance asymp- 
totique 6galement; le choix du rapport R d'appariement est etudie en relation avec les cotLts 
unitaires dans les deux groupes A comparer et finalemenit les procedures pour de'terminer la 
taille de l'echantillon sont decritas. 
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APPENDIX A 
PROOFS 

Proof 1 

Letting Xf = Pr (X1 = f, X2 = g) we have 

E(T I S = s) - (2s)-Is(2X1o - Xol + X1 - 2X02)/(X10 + 01 + Xl + X02) 

= (2s)-IsE[2P(l- P2)2 -(1 - P1)2P2(1 - P2) 

+ P12P2(1 - P2) -2(1- P 2P]/E[P(1-P2) 
+ (1 - P1)2P2(l -P2) + P12P2(1 - P2) + (1 -P1)P2] 

-(2s)-IsE[2(P1 - P2)]/E[(P, + P2 2P1P2) + (P2 P2)] 
-(2s) 61/(4 + '202)- 
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Proof 2 

With X's defined as in Proof 1, writing X10 + X01 + Xll + X02 = and realiz- 
ing that conditionally on S = s the Z's are frequencies in a multinomial dis- 
tribution (s, X10/A, Xoi/u, X11/41 X02/A), we may write 

var (T I S = s) 

= (2s) 'sr2[4xo10(1- X10) + 01(j- Xol) + X11( - X11) + 4X02(04 - X02) 

+ 4X10X01 - 4X10X11 + 8X10Xo2 + 2X0\/1X - 4X01X02 + 4X11X02] 

= (2 ){,[M + 3(X10 + X02)] - (2X10 - X01 + X11 - 2X02)2} 

= (2A 2>1{,2 + 3,E[P(1 - P2)2 + (1-P1)P]-[2E(Pj(1 - 2)2) 

- E((1 - P1)2P2(1 - P2)) + E(P12P2(1 - P2)) - 2E((1 -P1)P2)]} 

= (2,u ) {,u + 3,AE[(Pl + P2 - 2P1P2) - (P2 -P2)]- [2E(P1 -P2)]2 

= (22)1{,2 + 3A(VI - 12 2)] - 4 62} 

= [(i/' + IVtI2) (2 -12 212) - 22]/( 1 + 2 2). 

Proof 3 

By the independence assumptions of the model, 

var (UJ) = - 1 [R2 var (Xli) + var (X2j) - 2R cov (X,j X2,)] 

= J1 J {R2[E(var (X1 I P1)) + var (E(X1 I P1))] 

+ E[var (X2 I P2)] + var [E(X2 I P2)] 

- 2R[E(cov (Xi , X2 I P1 , P2)) + cov (E(Xl P1), E(X2 IP2))] 
= -R2 {E[Pl(1 - PF)] + var (P1)} 

+ RE[P2(1 - P2)] + R2 var (P2) - 2R2[0 + COV (PF , P2)] 

=I2[01 + 02 - 20602 - 2 cov (Pl , P2) - 02 _ 02 + 201021 

- R(R - 1)[02 - 2 - var (P2)] 

= RI2( - 2) - !-R(R-12 

Proof 4 

[(R + 1)E(X) -E(X2)] 

- {(R + 1)E(Xl + X2) - [E(X1 + X2)]2 - var (Xi + X2)}k 

- {(R + 1)(01 + R62) - (6, + 02) 2 

-E[var (Xi + X2 P1 F P2)] -var [E(Xl + X2 I P1 I P2)]}I 
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= {(R + 1)(01 + R02) (01 + R602)2 

- E[Pl(l - P1) + RP2(1 - P2)] - var (P1 + RP2)}* 

-[(1 + 1)(01 + R2) -(01 + R02)2 - 61 + 02 + var (P1) 

-!RV12 - var (Pl) - R var (P2) - 2R cov (P1, P2)], 

- {R[01 + 2 - 20102 -2 cov (P1 , P2)] + RI[62- 02 - var (P2)] -2 

= (Rik + 1R2IP2 -2R 2) 

RI[V + !(R -1) 2]1 

APPENDIX B 

SECOND ORDER APPROXIMATIONS TO THE ASYMPTOTIC UNCONDITIONAL POWER FUNCTION OF THE 

2:1 INDIVIDUAL MATCHING DESIGN 

As in the matched pairs design (see Miettinen, 1968a, b), various second- 
order approximations to the asymptotic unconditional power function can be 
derived. Utilizing the relation 11(6) = E-11(6 I S) and expanding II(8 J S) in 
a Taylor series about E(S) = J(V + /k2) gives the second-order approximation 

I S J( + 1 2)] + 2 var (S) dS2( S)I =(+ D 
The corresponding explicit expression for the case of a one-sided alternative is 
obtained by using the power result in (4.6) and carrying out the algebra. The 
result, a refinement of (4.7), is 

11(8) 4(y) - (y)(l - if -2 ~4'2){[(GI + 12'2)(2VI - 1 f2) - 262] 

*[262/J(Q+ + 22) + 2y/( + 2)(2q/ - 12 2) - 262], (B.1) 
where sp denotes the density function of the standard normal distribution and y 
is the argument of 1 in (4.7). 

Another second-order approximation is obtained by applying second-order 
approximations to E(S") and var (SI) in (4.9). S has a binomial distribution 
with parameters J and VVI- + 2 &2 . Thus, writing SI = f(S), the second- 
order approximation to E(S ) from a Taylor series expansion about E(S) = 

Jj/* is 
E(S') f(JVI*) + - var (S)f"(JVI*) 

V(J q*)2 + 12_J,*(1 - )[1/4(J *p 
- [(8J + 1)i+* - 1]/8(Ji'*)1. 

Similarly, 
var (S2) _ [ff(Jf*)]2 var (S)- [f"(JVIf) var (S)]2/4 

+ f'(J,jf*)ff"(Jif *)E(S-J f*)3 + [f"(4J /4*)].E(S- 4 
Substituting E(S - JV*)I - J,*(1 - ,*)(1 - 2i6*) and E(S - J/*)4 = 
3J2/**(1 - *)l + J*(1 - 41*)[1 - 6j/*(1 - 0*)] (cf. Kendall and Stuart 
[1963] pp. 58-9) and carrying out the algebra yields var (Si) - (1 - *) { (8J + 
7)*- 3 + [1 - 6G*(1 - 0*)]/2Jj1*J/32Jj1*. Applying these results to (4.9) 
one obtains, for a one-sided test, 
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-uFu4* + {[(8J + l1);* - 1]/4(2JV*} ) l - (B.2) L - *(2--2 ;2) 262 + 2(l -2 
) 

_[(8J + 7)i* - 3 + (1 - 6VI* + 6 *2)12J*]/32JR*l_ 

Finally, following Patnaik [1948] one may use Beard's [1947] approximate 
product-integration with the further approximation of setting E(S -j*)3 = 
E(S - Jj*)5 = 0. Patnaik's result, as adapted to the present problem, is 

H(3) -= 6H(3 I Sj) + 2H(3 8 2) + 6H(3 I S3), (B.3) 

where, with a one-sided alternative, II(8 *) is the conditional power function in 
(4.6), si J*- [3J,*(l - s2 = JJ*, andS3 = J/* + [3JzP*(1 - 

The various approximations to the asymptotic unconditional power function 
are compared numerically in Appendix C. 

APPENDIX C 

COMPARISON OF APPROXIMATIONS TO TIIE ASYMPTOTIC UNCONDITIONAL POWER 

FUNCTION OF THE 2:1 INDIVIDUAL MATCHING DESIGN 

Param- Design 
eters constants* Power approximations 

P = 2J (4.7) (4.10) (B.1) (B.2) (B.3) 

.10 .20 .05 85.47 .800 .794 .789 .792 .792 

.10 .20 .05 115.52 .900 .894 .891 .893 .893 

.10 .20 .05 143.73 .950 .946 .943 .945 .945 

.10 .40 .05 181.96 .800 .799 .798 .799 .799 

.10 .40 .05 250.61 .900 .899 .898 .899 .899 

.10 .40 .05 315.58 .950 .949 .949 .949 .949 

.05 .20 .05 363.91 .800 .799 .798 .798 .798 

.05 .20 .05 501.23 .900 .899 .898 .899 .899 

.05 .20 .05 631.16 .950 .949 .949 .949 .949 

.05 .40 .05 738.41 .800 .800 .800 .800 .800 

.05 .40 .05 1021.40 .900 .900 .900 .900 .900 

.05 .40 .05 1289.63 .950 .950 .950 .950 .950 

.10 .20 .10 61.44 .800 .794 .789 .791 .791 

.10 .20 .10 87.25 .900 .894 .890 .893 .893 

.10 .20 .10 111.97 .950 .946 .943 .945 .945 

.10 .40 .10 132.23 .800 .799 .798 .799 .799 

.10 .40 .10 191.57 .900 .899 .898 .899 .899 

.10 .40 .10 248.84 .950 .949 .949 .949 .949 

.05 .20 .10 264.46 .800 .799 .798 .798 .798 

.05 .20 .1 0 383.14 .900 .899 .898 .898 .898 

.05 .20 .10 497.69 .950 .949 .949 .949 .949 

.05 .40 .10 537.96 .800 .800 .799 .800 .800 

.05 .40 .10 782.86 .900 .900 .900 .900 .900 

.05 .40 .10 1019.63 .950 .950 .950 .950 .950 

* The values of J were chosen to yield preselected power values when the simplest ap- 
proximate power function, (4.7), is used. 

Received April 1968, R?evised December 1968 
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