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Abstract—In this paper, we propose a new spatio-temporal gait representation,

called Gait Energy Image (GEI), to characterize human walking properties for

individual recognition by gait. To address the problem of the lack of training

templates, we also propose a novel approach for human recognition by combining

statistical gait features from real and synthetic templates. We directly compute the

real templates from training silhouette sequences, while we generate the synthetic

templates from training sequences by simulating silhouette distortion. We use a

statistical approach for learning effective features from real and synthetic

templates. We compare the proposed GEI-based gait recognition approach with

other gait recognition approaches on USF HumanID Database. Experimental

results show that the proposed GEI is an effective and efficient gait representation

for individual recognition, and the proposed approach achieves highly competitive

performance with respect to the published gait recognition approaches.

Index Terms—Gait recognition, real and synthetic templates, distortion analysis,

feature fusion, performance evaluation, video.
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1 INTRODUCTION

CURRENT image-based individual human recognition methods,
such as fingerprints, face, or iris biometric modalities, generally
require a cooperative subject, views from certain aspects, and
physical contact or close proximity. These methods cannot reliably
recognize noncooperating individuals at a distance in the real world
under changing environmental conditions. Gait, which concerns
recognizing individuals by the way they walk, is a relatively new
biometricwithout these disadvantages.However, gait also has some
limitations: it can be affected by clothing, shoes, or environmental
context. Moreover, special physical conditions such as injury can
also change a person’s walking style. The large gait variation of the
same person under different conditions (intentionally or uninten-
tionally) reduces the discriminating power of gait as a biometric and
it may not be as unique as fingerprint or iris, but the inherent gait
characteristic of an individual [1] still makes it irreplaceable and
useful in visual surveillance.

2 RELATED WORK AND OUR CONTRIBUTION

In recent years, various techniques have been proposed for human
recognition by gait. These techniques can be divided asmodel-based
and model-free approaches. In this paper, we focus on model-free
approaches that do not recover a structural model of humanmotion.
Little and Boyd [2] describe the shape of the human motion with
scale-independent features frommoments of the dense optical flow,
and recognize individuals by phase vectors estimated from the
feature sequences. Sundaresan et al. [3] proposed a hidden Markov
models (HMMs) based framework for individual recognition by
gait. Huang et al. [4] extend the template matching method to gait
recognition by combining transformation based on canonical
analysis and eigenspace transformation for feature selection. Sarkar
et al. [5] directly measure the similarity between the gallery
sequence and the probe sequence by computing the correlation of

corresponding time-normalized frame pairs. Collins et al. [6] first
extract key frames from a sequence and then the similarity between
two sequences is computed using the normalized correlation.

In comparison with state-of-the-art, the contribution of this
paper are:

. New gait representation—We propose a new spatio-temporal
gait representation, called Gait Energy Image (GEI), for
individual recognition [7]. Unlike other gait representations
[4], [8] which consider gait as a sequence of templates, GEI
represents human motion in a single image while preser-
ving temporal information. In comparison to the gait
representation by binary silhouette sequence, GEI not only
saves storage space and computation time, but it is also less
sensitive to silhouette noise in individual frames.

. Synthetic templates—To address the problem of lack of
gallery gait data, we propose a simple but novel approach
to generate synthetic GEI templates through silhouette
distortion analysis. The synthetic GEI templates so-
obtained are relatively insensitive to lower silhouette part
distortion and small silhouette scale changes.

. Feature fusion—Individual recognition is performed by
combining statistical gait features from real and synthetic
templates [9]. The fused features not only characterize
human walking properties under similar environmental
conditions, but also predict gait properties under other
conditions.

. Experimental Results—The proposed approach is tested on
USF HumanID database silhouette version 1.7 and 2.1. We
have provided the recognition performance based on real
gait templates, synthetic gait templates, and fusion of real
and synthetic templates, as well as the comparison with
state-of-the-art published results.

3 GAIT ENERGY IMAGE (GEI) REPRESENTATION

In this paper, we only consider individual recognition by activity-

specific human motion, i.e., regular human walking, which is used

in most current approaches of individual recognition by gait.

3.1 Motivation

Regular human walking can be considered as cyclic motion where
human motion repeats at a stable frequency. While some gait
recognition approaches [4] extract features from the correlation of all
the frames in a walking sequence without considering their order,
other approaches extract features from each frame and compose a
feature sequence for the human walking sequence [2], [5], [6].
During the recognition procedure, these approaches either match
the statistics collected from the feature sequence, or match the
features between the corresponding pairs of frames in two
sequences that are time-normalized with respect to their cycle
lengths. The fundamental assumptionsmadehere are: 1) the order of
poses in humanwalking cycles is the same, i.e., limbsmove forward
and backward in a similar way among normal people, and
2) differences exist in the phase of poses in a walking cycle, the
extend of limbs, and the shape of the torso, etc. Under these
assumptions, it is possible to represent the spatio-temporal
information in a single 2D gait template instead of an ordered
image sequence.

3.2 Representation Construction

We assume that silhouettes have been extracted from original
human walking sequences. A silhouette preprocessing procedure
[5] is then applied on the extracted silhouette sequences. It includes
size normalization (proportionally resizing each silhouette image so
that all silhouettes have the same height) and horizontal alignment
(centering the upper half silhouette part with respect to its
horizontal centroid). In a preprocessed silhouette sequence, the
time series signal of lower half silhouette size from each frame
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indicates the gait frequency and phase information. We estimate the
gait frequency and phase by maximum entropy spectrum estima-
tion [2] from the time series signal.

Given the preprocessed binary gait silhouette images Btðx; yÞ at

time t in a sequence, the gray-level gait energy image (GEI) is

defined as follows:

Gðx; yÞ ¼
1

N

X

N

t¼1

Btðx; yÞ; ð1Þ

where N is the number of frames in the complete cycle(s) of a
silhouette sequence, t is the frame number in the sequence (moment
of time), and x and y are values in the 2D image coordinate. Fig. 1
shows the sample silhouette images in a gait cycle from two people
and the rightmost image is the correspondingGEI.As expected, GEI
reflects major shapes of silhouettes and their changes over the gait
cycle. We refer to it as gait energy image because: 1) each silhouette
image is the space-normalized energy image of human walking at
this moment, 2) GEI is the time-normalized accumulative energy
image of humanwalking in the complete cycle(s), and 3) a pixel with
higher intensity value in GEI means that human walking occurs
more frequently at this position (i.e., with higher energy).

Bobick and Davis [8] propose motion-energy image (MEI) and
motion-history image (MHI) for humanmovement type representa-
tion and recognition. Both MEI and MHI are vector-images where
the vector value at each pixel is a function of themotion properties at
this location in an image sequence. As compared to MEI and MHI,
GEI targets specific normal human walking representation and we
use GEI as the gait template for individual recognition.

3.3 Representation Justification

In comparison with the gait representation by binary silhouette
sequence, GEI representation saves both storage space and
computation time for recognition and is less sensitive to
silhouette noise in individual frames. Consider a noisy silhouette
image Btðx; yÞ that is formed by the addition of noise �tðx; yÞ
to an original silhouette image ftðx; yÞ, that is, Btðx; yÞ ¼
ftðx; yÞ þ �tðx; yÞ, where we assume that at every pair of
coordinates ðx; yÞ the noise at different moments t is uncorre-
lated and identically distributed. Under these constraints, we
further assume that �tðx; yÞ satisfies the following distribution:

�tðx; yÞ ¼

�1tðx; yÞ : Pf�tðx; yÞ ¼ �1g ¼ p;
Pf�tðx; yÞ ¼ 0g ¼ 1� p; if ftðx; yÞ ¼ 1

�2tðx; yÞ : Pf�tðx; yÞ ¼ 1g ¼ p;
Pf�tðx; yÞ ¼ 0g ¼ 1� p; if ftðx; yÞ ¼ 0:

8

>

>

<

>

>

:

ð2Þ

We have

Ef�tðx; yÞg ¼
�p; if ftðx; yÞ ¼ 1

p; if ftðx; yÞ ¼ 0

�

ð3Þ

and

�2�tðx;yÞ ¼ �2�1tðx;yÞ ¼ �2�2tðx;yÞ ¼ pð1� pÞ: ð4Þ

Given a walking cycle with N frames where ftðx; yÞ ¼ 1 at a

pixel ðx; yÞ only in M frames, we have

Gðx; yÞ ¼
1

N

X

N

t¼1

Btðx; yÞ

¼
1

N

X

N

t¼1

ftðx; yÞ þ
1

N

X

N

t¼1

�tðx; yÞ ¼
M

N
þ ���ðx; yÞ:

ð5Þ

Therefore, the noise in GEI is

���ðx; yÞ ¼
1

N

X

N

t¼1

�tðx; yÞ ¼
1

N

X

M

t¼1

�1tðx; yÞ þ
X

N

t¼Mþ1

�2tðx; yÞ

" #

: ð6Þ

We have

Ef���ðx; yÞg ¼
1

N

X

M

t¼1

Ef�1tðx; yÞg þ
X

N

t¼Mþ1

Ef�2tðx; yÞg

" #

¼
1

N
½Mð�pÞ þ ðN �MÞp� ¼

N � 2M

N
p

ð7Þ

and

�2���ðx;yÞ ¼ Ef½���ðx; yÞ � Ef���ðx; yÞg�2g

¼
1

N2
E

(

�

X

M

t¼1

�1tðx; yÞ � Ef�1tðx; yÞg½ �

þ
X

N

t¼Mþ1

½�2tðx; yÞ � Ef�2tðx; yÞg�

�2
)

¼
1

N2
M�2�1tðx;yÞ þ ðN �MÞ�2�2tðx;yÞ

h i

¼
1

N
�2�tðx;yÞ:

Therefore, the mean of the noise in GEI varies between �p and p

depending onM while its variability (�2���ðx;yÞ) decreases. IfM ¼ N at

ðx; yÞ (all ftðx; yÞ ¼ 1), Ef���ðx; yÞg becomes �p; if M ¼ 0 at ðx; yÞ (all

ftðx; yÞ ¼ 0),Ef���ðx; yÞg becomes p. At the location ðx; yÞ, themean of

the noise in GEI is the same as that in the individual silhouette

image, but the noise variance reduces so that the probability of

outliers is reduced. IfM varies between 0 andN at ðx; yÞ,Ef���ðx; yÞg

also varies between p and �p. Therefore, both the mean and the

variance of the noise in GEI are reduced compared to the individual

silhouette image at these locations. At the extreme, the noise in GEI

has zero mean and reduced variance where M ¼ N=2. As a result,

GEI is less sensitive to silhouette noise in individual frames.
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Fig. 1. Examples of normalized and aligned silhouette frames in different human walking sequences. The rightmost image in each row is the corresponding gait energy
image (GEI).



4 HUMAN RECOGNITION USING GEI TEMPLATES

In this section, we describe the proposed statistical feature fusion
approach for gait-based human recognition. In the training
procedure, each gallery silhouette sequence is divided into cycles
by frequency and phase estimation. Real gait templates are then
computed from each cycle and distorted to generate synthetic gait
templates. Next, we perform a component and discriminant
analysis procedure on real and synthetic gait templates, respec-
tively. As a result, real and synthetic transformation matrices and
real features and synthetic features that form feature databases are
obtained. In the recognition procedure, each probe silhouette
sequence is processed to generate real and synthetic gait templates.
These templates are then transformed by real and synthetic
transformation matrices to obtain real and synthetic features,
respectively. Probe features are compared with gallery features in
the database, and a feature fusion strategy is applied to combine
real and synthetic features at the decision level to improve
recognition performance. The system diagram is shown in Fig. 2.

4.1 Real and Synthetic Gait Templates

The number of training sequences for each person is limited (one
or several) in real surveillance applications. This makes it difficult
to recognize individuals under various other conditions not
exhibited in the data. To solve this problem, one solution is to
directly measure the similarity between the gallery (training) and
probe (testing) templates. However, direct template matching is
sensitive to silhouette distortions such as scale and displacement
changes. Statistical feature learning may extract inherent proper-
ties of training templates from an individual and, therefore, it will
be less sensitive to such silhouette distortion. However, with gait
templates obtained under similar conditions, the learned features
may overfit the training data. Therefore, to overcome these
problems, we generate two sets of gait templates—real templates
and synthetic templates.

The real gait templates for an individual are directly computed
from each cycle of the silhouette sequence of this individual. Let
fRig, i ¼ 1; . . . ; nR, be the real GEI template set of the individual,
where nR is the number of completes cycles in the silhouette
sequence. Fig. 3 shows an example of the real GEI template set from
a long gait sequence of an individual. Note the similarity of template
appearance in the presence of noise.

Although real gait templates provide cues for individual
recognition, all the templates from the same sequence are obtained

under the “same” physical conditions. If the conditions change, the
learned features may not work well for recognition. Various
conditions affect the silhouette appearance from the same person:
walking surface, shoe, clothing, etc. The common silhouette
distortion in the lower part of the silhouette occurs under most
conditions. This kind of distortion includes shadows, missing body
parts, and sequential silhouette scale changes. For example,
silhouettes on the grass surface may miss the bottom part of feet,
while silhouettes on the concrete surface may contain strong
shadows. In these cases, silhouette size normalization errors occur,
and silhouettes so-obtained may have different scales with respect
to silhouettes on other surfaces. Therefore, we generate a series of
synthetic gait templates (see Fig. 5) that are less sensitive to the
distortion in the lower silhouette and small silhouette scale
changes. Note that a moving object detection approach can also
provide information about the material type on which a person is
walking [10].

Let R0 ¼
1
nR

PnR

i¼1 Ri be the fundamental GEI template computed
from nR cycles of a given silhouette sequence (the leftmost image
in Fig. 5). Assume that k bottom rows of R0 are missed due to some
kind of environmental conditions. According to the silhouette
preprocessing procedure in Section 3.2, the remaining part needs
to be proportionally resized to fit to the original height. In the same
way, we can generate a series of new synthetic GEI templates
corresponding to different lower body part distortion.

Synthetic gait templates are computed from R0 of a given
silhouette sequence by following a distortion model based on
anthropometric data [11]. The length from the bottom of bare foot
to the ankle above the sole is approximately 1=24 of the stature.
Considering the height of heelpiece and shadow, we select 2=24 of
the silhouette height from the bottom of an original GEI template
and the associated width as an estimate of the allowable distortion
for all original training GEI templates. For all original testing GEI
templates, we use 3=24 of the silhouette height for distortion. We
allow larger distortion for testing templates since we want to allow
larger distortion in unknown situations. The pseudocode for
generating synthetic GEI templates is shown in Fig. 4.

The synthetic templates (fSig, i ¼ 1; . . . ; nS shown in Fig. 5)
expanded from the same R0 have similar global shape properties
but different bottom parts and different scales. Therefore, they can
be effectively used for individual recognition in the presence of
silhouette scale changes and lower silhouette distortion encoun-
tered in the real-world applications.

318 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 2, FEBRUARY 2006

Fig. 2. System diagram of human recognition using the proposed statistical feature fusion approach.

Fig. 3. An example of real gait template set generated from a long silhouette sequence of an individual.



In order to find effective features, we use a statistical feature
extraction method to learn gait features from real and synthetic
templates. Features learned from real templates characterize
human walking properties provided in training sequences and
features learned from synthetic templates simulate gait properties
under other real-world conditions that incur distortion in the lower
(feet) part of the silhouette.

4.2 Learning Gait Features by Component and
Discriminant Analysis

Once we obtain a series of training GEI templates (real or
synthetic) for each individual, the problem of their excessive
dimensionality occurs. There are two classical linear approaches
for finding transformations for dimensionality reduction—Princi-
pal Component Analysis (PCA) and Multiple Discriminant
Analysis (MDA) that have been effectively used in face recognition
[12]. PCA seeks a projection that best represents the data in the
least-square sense, while MDA seeks a projection that best
separates the data in the least-square sense. Huang et al. [4]
combine PCA and MDA to achieve the best data representation
and the best class separability simultaneously. In this paper, the
learning procedure follows this combination approach.

Given n d-dimensional training GEI templates fx1;x2; . . . ;xng,
PCA minimizes the function

Jd0 ¼
X

n

k¼1

mþ
X

d0

i¼1

akiei

 !

� xk

�

�

�

�

�

�

�

�

�

�

2

; ð8Þ

where d0 < d, m ¼ 1
n

Pn
k¼1 xk, and fe1; e2; . . . ; ed0g are a set of

orthogonal unit vectors. Jd0 is minimized when e1, e2; . . . ; and ed0

are the d0 eigenvectors of the scatter matrix S ¼
Pn

i¼1ðxi �
mÞðxi �mÞT having the largest eigenvalues. The d0-dimensional

feature vector yk is obtained from the xk as follows:

yk ¼ Mpcaxk ¼ ½a1; . . . ; ad0 �
T ¼ ½e1; . . . ; ed0 �

T
xk; k ¼ 1; . . . ; n: ð9Þ

Suppose that the n d0-dimensional principal component vectors
fy1;y2; . . . ;yng belong to c classes. MDA seeks a transformation

matrix W that maximizes the ratio of the between-class scatter
matrix SB to the within-class scatter matrix SW :

JðWÞ ¼
j ~SSBj

j ~SSW j
¼

jWTSBW j

jWTSWW j
: ð10Þ

The within-class scatter matrix SW is defined as SW ¼
Pc

i¼1 Si,

where Si ¼
P

y2Di
ðy�miÞðy�miÞ

T and mi ¼
1
ni

P

y2Di
y, where

Di is the training template set that belongs to the ith class and ni is

the number of templates in Di. The between-class scatter SB is

defined as SB ¼
Pc

i¼1 niðmi �mÞðmi �mÞT , where m ¼ 1
n

P

y2D y.

JðWÞ is maximized when the columns of W are the generalized

eigenvectors that correspond to the largest eigenvalues in

SBwi ¼ �iSWwi: ð11Þ

There are no more than c� 1 nonzero eigenvalues and the
corresponding eigenvectors v1; . . . ;vc�1 form a transformation
matrix. The ðc� 1Þ-dimensional feature vector zk is obtained from
the d0-dimensional principal component vector yk:

zk ¼ Mmdayk ¼ ½v1; . . . ;vc�1�
T
yk; k ¼ 1; . . . ; n: ð12Þ

For each training gait template, its gait feature vector is
obtained as follows:

zk ¼ MmdaMpcaxk ¼ Txk; k ¼ 1; . . . ; n: ð13Þ

The obtained feature vectors represent the n templates for
individual recognition.

4.3 Individual Recognition

We train the real gait templates and synthetic gait templates
separately for feature extraction. Let frg be the set of real feature
vectors extracted from real training gait templates, and Tr be the
corresponding real transformation matrix. Similarly, let fsg be the
set of synthetic feature vectors extracted from synthetic training gait
templates, and Ts is the synthetic transformation matrix. The class
centers for frg and fsg are mri ¼

1
ni

P

r2Ri
r and msi ¼

1
mi

P

s2Si
s,
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Fig. 4. Pseudocode for generating synthetic GEI templates.

Fig. 5. Procedure of generating synthetic GEI templates from an original template. The leftmost template is the original template, and the other templates are generated

by gradually cutting the bottom portion (templates in the first row) and fitting it to the original template size (templates in the second row). Synthetic templates in the

second row are used as the synthetically generated gait templates.



where i ¼ 1; . . . ; c, c is the number of classes (individuals) in the

database, Ri is the set of real feature vectors belonging to the

ith class, Si is the set of synthetic feature vectors belonging to the

ith class, ni is the number of feature vectors in Ri, and mi is the

number of feature vectors in Si. Assuming that feature vectors in

each class are Gaussian distributedwith the same covariancematrix

� ¼ �2I, Bayesian classifier becomes minimum Euclidean distance

classifier that is used for individual recognition.
Given a probe gait silhouette sequence P , we follow the

procedure in Section 4.1 to generate real gait templates fRjg, j ¼

1; . . . ; nR and synthetic gait templates fSjg, j ¼ 1; . . . ; nS . The

corresponding real and synthetic feature vector sets are obtained

as follows:

fR̂RPg : r̂rj ¼ TrRj; j ¼ 1; . . . ; nR and

fŜSPg : ŝsj ¼ TsSj; j ¼ 1; . . . ; nS :
ð14Þ

For the classifier based on real gait templates, we define

DðR̂RP ;RiÞ ¼
1

nR

X

nR

j¼1

jĵrrj �mrijj; i ¼ 1; . . . ; c: ð15Þ

We assign P 2 !k if

DðR̂RP ;RkÞ ¼ min
c

i¼1
DðR̂RP ;RiÞ: ð16Þ

For the classifier based on synthetic gait templates, we define

DðŜSP ;SiÞ ¼ min
nS

j¼1
jĵssj �msijj; i ¼ 1; . . . ; c: ð17Þ

We assign P 2 !k if

DðŜSP ;SkÞ ¼ min
c

i¼1
DðŜSP ;SiÞ: ð18Þ

For the fused classifier, we define

DðfR̂RP ; ŜSPg; fRi;SigÞ ¼

cðc� 1ÞDðR̂RP ;RiÞ

2
P

c

i¼1

P

c

j¼1;j6¼i

DðRi;RjÞ
þ

cðc� 1ÞDðŜSP ;SiÞ

2
P

c

i¼1

P

c

j¼1;j6¼i

DðSi;SjÞ
; i ¼ 1; . . . ; c; ð19Þ

where 2
Pc

i¼1

Pc
j¼1;j 6¼i DðRi;RjÞ=cðc� 1Þ is the average distance

between real feature vectors of every two classes in the database

which is used to normalize DðR̂RP ;RiÞ and 2
Pc

i¼1

Pc
j¼1;j 6¼i

DðSi;SjÞ=cðc� 1Þ has the similarmeaning for the synthetic features.

We assign P 2 !k if

DðfR̂RP ; ŜSPg; fRk;SkgÞ ¼ min
c

i¼1
DðfR̂RP ; ŜSP g; fRi;SigÞ: ð20Þ

5 EXPERIMENTAL RESULTS

5.1 Data and Parameters

Our experiments are carried out on the USFHumanID gait database
[5]. This database consists of persons walking in elliptical paths in
front of the camera. For each person, there are up to five covariates:
viewpoints (left/right), two different shoe types, surface types
(grass/concrete), carrying conditions (with/without a briefcase),
and time and clothing. Twelve experiments are designed for
individual recognition as shown in Table 1. The gallery set contains
122 sequences/individuals. Individuals are unique in the gallery
and each probe set and there are no common sequences between the
gallery set and any of the probe sets. Also, all the probe sets are
distinct. The real GEIs (R0 as mentioned in Section 4.1) of three
individuals in the gallery set and their corresponding sequences in
probe sets A-L are shown in Fig. 6.

Sarkar et al. [5] propose a baseline approach to extract
human silhouette and recognize an individual in this database.
For comparison, they provide extracted silhouette data which
can be found at http://marathon.csee.usf.edu/GaitBaseline/.
Our experiments begin with these extracted binary silhouette
data. Silhouette data of version 1.7 (extracted from the
parameterized algorithm) contains the gallery set (71 se-
quences/individuals) and probe set A-G only, while silhouette
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TABLE 1
Twelve Experiments Designed for Individual Recognition in USF HumanID Database

(Legends: V-View, H-Shoe, S-Surface, B-Briefcase, T-Time, and C-Clothing)

Fig. 6. GEI examples in USF HumanID database.



data of version 2.1 (extracted from the parameter-free algorithm)
contains the gallery set (122 sequences/individuals) and all
probe sets. The results on data from version 1.7 and 2.1 are
shown in Tables 2 and 3, respectively.

There are two parameters in our proposed approach: the size of
distortion area for generating synthetic templates and the number
of principal components d0 in (8). The former parameter has been
discussed in Section 4.1. The latter parameter d0 is chosen to
facilitate the solution of (11). If d0 < c, where c is the number of
classes, or d0 is too large (some elements in principal component
vectors are too small), the SW matrix becomes uninvertable. We
choose d0 ¼ 2c in our approach.

5.2 Performance Evaluation

The experimental results as well as comparison with other
approaches of individual recognition by gait are shown in Tables 2
and3. In these tables, rank1performancemeans thepercentageof the
correct subjects appearing in the first place of the retrieved rank list
and rank5 means the percentage of the correct subjects appearing in
any of the first five places of the retrieved rank list. The performance
in these tables is the recognition rate under these two definitions.

We perform experiments using 1) real features (obtained GEI

without distortion), 2) synthetic features, and 3) fused features

according to rules in (16), (18), and (20), respectively. Table 2

compares the recognition performance of USF baseline algorithm [5]

and our proposed approach. It can be seen that the rank1

performance of proposed real feature classifier is better than or

equivalent to thatofbaseline algorithmonall experiments. The rank5

performance of real feature classifier is better than that of thebaseline

algorithm onmost experiments but slightly worse on D. This shows

the inherent representational power of GEI and demonstrates that

matching features learned from real gait templates achieve better

recognition performance than direct matching between individual

silhouette frame pairs in the baseline algorithm.
The performance of proposed synthetic feature classifier is

significantly better than that of real feature classifier on experiments

D-G and K-L. Probe sets in D-G have the common difference of

walking surface with respect to the gallery set and probe sets in K-L

have the commondifference of timewith respect to the gallery set. In

these probe sets, there is silhouette distortion in the lower body part

compared with silhouettes in the gallery set. As expected, the

experimental results show that the proposed synthetic feature

classifier is insensitive to this kind of distortion compared with the

real feature classifier. However, the proposed synthetic feature

classifier sacrifices the performance on experiments H-J where

probe sets contain people who are carrying briefcases (as compared

to the gallery set). The distortions as a result of briefcase occur

beyond the selected distortion area in this paper.
The fused feature classifier achieves better performance than

individual real feature classifier and synthetic feature classifier in

most experiments, and achieves significantly better performance

(both rank1 and rank5) than the baseline algorithm in all

experiments. This shows that the fusion approach is effective

and takes the advantage of merits in individual features.

Although the proposed fusion approach achieves significantly

better results than the baseline algorithm, its performance is still

not satisfactory in the presence of large silhouette distortion such

as probe sets K and L. Examining the columns K and L in Fig. 6,

note that K and L are quite different from the gallery in time, shoe
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TABLE 2
Comparison of Recognition Performance on Silhouette Sequence Version 2.1

(Legends: baseline—direct frame shape matching [5]; real—proposed real gait feature classifier only; synthetic—proposed synthetic gait feature classifier only;
fusion—proposed gait feature fusion.)

TABLE 3
Comparison of Recognition Performance Using Different Approaches on Silhouette Sequence Version 1.7

(Legends: USF—direct frame shape matching [5]; CMU—key frame shape matching [6]; UMD—HMM framework [3]; real—proposed real gait feature classifier only;
sync—proposed synthetic gait feature classifier only; fusion—proposed gait feature fusion.)



and clothing, and time and surface, respectively. This requires a
more complex model and analysis for distortion in these cases.

Table 3 compares the recognition performance of different
published approaches on silhouette version 1.7. The rank1 and
rank5 performance of real feature classifier is better than other
approaches inA, C (rank1 only), E, andG, and slightlyworse in B, D,
and F. The rank1 and rank5 performance of synthetic feature
classifier is better than other approaches in almost all the
experiments but slightly worse than UMD HMM approach in A
and B. The proposed fusion approach takes advantage of real and
synthetic features and, therefore, achieves better performance (both
rank1 and rank5) than other approaches in all the experiments.

6 CONCLUSIONS

In this paper, we propose a new spatio-temporal gait representation,
called the Gait Energy Image (GEI), for individual recognition by
gait. Unlike other gait representations which consider gait as a
sequence of templates (poses), GEI represents human motion
sequence in a single image while preserving temporal information.
To overcome the limitation of training templates, we propose a
simple model for simulating distortion in synthetic templates and a
statistical gait feature fusion approach for human recognition by
gait. Experimental results show that 1) GEI is an effective and
efficient gait representation and 2) the proposed recognition
approach achieves highly competitive performance with respect to
the published major gait recognition approaches.

This paper presents a systematic and comprehensive gait
recognition approach, which can work just as fine as other
complex published techniques in terms of effectiveness of
performance while providing all the advantages associated with
the computational efficiency for real-world applications. Therefore,
we believe that our technique will have an impact on practical
applications.
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