
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Xiao W, Xu S, Oude-Elberink S, Vosselman G. Individual tree crown modelling 

and change detection from airborne lidar data. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing 2016 

DOI: http://dx.doi.org/10.1109/JSTARS.2016.2541780 

Copyright: 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

Date deposited:   

18/05/2016 

  

http://eprint.ncl.ac.uk/
javascript:ViewPublication(224416);
javascript:ViewPublication(224416);
http://dx.doi.org/10.1109/JSTARS.2016.2541780


JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Individual tree crown modelling and change

detection from airborne lidar data
Wen Xiao, Sudan Xu, Sander Oude Elberink, and George Vosselman

Abstract—Lidar (light detection and ranging) provides a
promising way of detecting changes of trees in 3D because
laser beams can penetrate through the foliage and therefore
provide full coverage of trees. The aim is to detect changes
in trees in urban areas using multi-temporal airborne lidar
point clouds. Three datasets covering a part of Rotterdam, the
Netherlands, have been classified into several classes including
trees. A connected components algorithm is applied first to
cluster the tree points. However, closely located and intersected
trees are clustered together as multi-tree components. A tree
shaped model-based continuously adaptive mean shift (CamShift)
algorithm is implemented to further segment these components
into individual trees. Then, the tree parameters are derived in
two independent methods: a point-based method using the convex
hull; and a model-based method which fits a tree shaped model
to the lidar points. At last changes are detected by comparing
the parameters of corresponding tree models which are matched
by a tree-to-tree matching algorithm using overlapping bounding
boxes and point-to-point distances. The results are visualized and
statistically analysed. The CamShift using a tree model kernel
yields high segmentation accuracies. The model-based change
detection is consistent with the point-based method according
to the small differences between the parameters of single trees.
The highlight is that it is more robust to data noise and to the
segmentation of multi-tree components compared to the point-
based method. The detected changes show the potential of the
method to monitor the growth of urban trees.

Index Terms—change detection, urban tree, 3D modelling,
airborne lidar, point cloud

I. INTRODUCTION

C
HANGE detection has become a major application of

remote sensing techniques which provide viable data of

repetitive coverages at short intervals and of consistent quality.

Especially, changes in vegetation covered areas are of great

interest because they are crucial for ecosystem monitoring

where digital change detection methods are widely used [1].

Vegetation in urban areas is a vital part of our living con-

ditions. The location, density, coverage, and connectivity of

trees are important factors for urban planning. Since trees are

growing over time, the changes of trees should be constantly

estimated and monitored.

As a relatively new remote sensing technology, airborne

lidar (also referred to as airborne laser scanning) provides a

promising way of change detection of trees in 3D because

the laser beam can penetrate through the foliage reaching the

lower crown and even the trunk. Hence it has a full coverage
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of trees with accurate 3D coordinates. Using high density

point clouds, the changes in both coverage and height can be

detected [2]. Vegetation changes in forestry at plot level, such

as biomass or average height, have been studied [3]. Lidar

data processing, e.g. feature extraction [4], classification [5],

has been discussed extensively and vegetation have normally

been taken into consideration.

In lidar data, vegetation is represented by irregularly dis-

tributed points. High vegetation has been detected in urban

areas using airborne lidar data [6]. Parameters of individual

trees are generated directly from the point clouds. Yu et

al. [7] developed an approach for extracting individual tree

attributes, i.e. height, diameter at breast height (DBH) and

stem volume. They also detected harvested trees and forest

growth using airborne lidar data [8]. The estimation of height

growth was accomplished by individual tree delineation and a

tree to tree matching algorithm. Individual tree height growth

was also detected [3]. Three change detection methods, i.e.

differentiation between digital surface models (DSMs) and

canopy height models (CHMs), canopy profile comparison and

analysis of height histograms, were presented.

In addition, 3D tree modelling in lidar data has becomes

a popular topic. Models used in traditional remote sensing

techniques and computer science are commonly utilized on

lidar data. A fixed shape model or individual tree-wise models

are applied in both mobile laser scanning (MLS) and airborne

laser scanning (ALS) data. Rutzinger et al. [9] utilized four

different crown shapes with different diameters at three height

levels using 2D enclosing circles. Then trees were modelled

by an open source framework OpenAlea. Wang et al. [10]

analysed the vertical canopy structure of forest and also mod-

elled trees in 3D. A voxel based method for individual trees

delineation was implemented at different height levels. Then

tree crowns were modelled and several crown parameters, e.g.

tree height, crown height, crown diameter and volume are

derived. Vosselman [11] detected trees in airborne lidar data by

computing the local maxima with a detection rate of 97%. The

tree crown was modelled using a fixed shape whose diameter

was adaptive to the height of the local maximum. Instead of

regression models, a “wrapped surface reconstruction” method

was also proposed [12]. Tree parameters, e.g. tree height,

crown diameter, crown base and volume were derived by

the wrapped surfaces. And the results were validated by

comparison with total station surveyed field measurements.

In this paper, we aim to develop a highly automated method

for accurate individual tree geometry extraction and then

change detection in urban areas using airborne lidar data.

Tree changes can be affected by many factors other than real
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growth, e.g. seasonal effect, scanning angle/perspective, point

density, etc. Some of them are very difficult to be calculated

directly. However, we believe with accurate tree models, the

other factors can be modelled provided that there are enough

data series. Here, we focus on the accurate geometric changes.

A system composed of a series of algorithms to detect the

changes of trees is proposed. Based on our preliminary work

[13], in which multi-tree components are treated as single

objects and not modelled, a mean shift based segmentation

is investigated to further segment these components so that

individual tree changes, including height changes, can be

detected. Another contribution is that the model-based pa-

rameter derivation is proved to be better than a point-based

method for recovering the overlapped part that has been cut

off during segmentation. The whole system is introduced in

Section II. A flowchart is firstly depicted, then each step is

described in detail. Datasets are presented in the beginning

of Section III. Then experimental results are visualized and

statistically analysed. Discussions based on the analysis are

followed. Conclusions are drawn in the last section.

II. METHOD

Point clouds are processed by a sequence of algorithms.

They are assumed to be classified already so that tree points are

taken as the input to the system. First of all, they are clustered

by the connected components algorithm, and then further

segmented by the continuously adaptive mean shift (CamShift)

[14]. Crowns are extracted by removing the trunk points and

the points inside the crowns using the 3D alpha shapes, which

will also reduce the data size. Then two independent methods,

point-based (Convex hull) and model-based (Pollock model),

are implemented to derive tree crown parameters which are

then used for comparison. Corresponding trees are matched

by the overlapping of bounding boxes and point-to-point

distances. In the end, visual inspection, comparison of different

methods and generic knowledge are proposed to assess the

modelling and change detection results. The flowchart of the

method is depicted as Figure 1.

A. Tree Delineation

Typically, after classification points are labelled as certain

classes but not yet as objects, meaning object ID has not

been identified. So points belonging to the same tree need to

be clustered. Moreover, commission and omission errors are

inevitable during classification. One can expect many non-tree

points classified as trees, especially in the general classification

case, i.e. not a tree exclusive classification. Thus the detected

trees need to be segmented and refined.

1) Connected Components: The connected components al-

gorithm is firstly implemented to cluster the points of a tree.

Points within a certain distance, e.g. 2 m, in 3D are connected

as one component. The attributes of components are used to

distinguish tree components from others. In general, most of

the misclassified components are small fragments. Therefore

the components features can be used to differentiate trees

from fragments. Some geometric features are extracted, e.g.

component size (number of points), height span (the distance
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Fig. 1: Flowchart of the full system.

from the lowest point to the highest point). minimum height of

a component. Besides, normal distribution of the components

is used to remove fragments of regular shapes. In addition to

the geometric attributes, spectral information, e.g. reflectance,

intensity and true color are also used since, for example, the

reflectance of trees is different from other objects such as

building roofs.

2) Mean-shift segmentation: The connected components

algorithm is rather simple and it will cluster attached or over-

lapped trees as one single component, meaning a component

can contain multiple trees. One change detection strategy is to

treat these multi-tree components as compound objects, then

changes are detected directly from these compound objects

as in our preliminary work [13]. However, the disadvantage

of this strategy is that the derived parameters are not accurate

enough since the parameters of a compound object do not nec-

essarily correspond to these from each individual tree. Some

space between the connected trees is inevitably included into

the compound tree parameter derivation using a point-based

method. Thus, in this paper, the compound tree components

are further segmented into individual trees.

Individual tree segmentation methods are summarized from

2001 to 2012 by [15], in which local maxima, region growing,

watershed, and normalized cut are mostly used. We have

tested the local maxima method in our preliminary work.

It is able to differentiate single-tree components from multi-

tree components, however, it is not really able to detect the

exact number of trees in a multi-tree component. A further

step is needed to assign each point to its corresponding local
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maximum. Region growing is adopted by [15], but first it

needs precise tree detection as seeds. Trees are detected by

thresholding the intensity of points to extract tree trunks, which

have higher intensity. Then other points are assigned to each

tree by region growing. This method depends heavily on the

detection of tree trunks which may fail when there are not

many trunk points, especially in leaf-on seasons. Papers using

watershed have converted lidar points to crown height images,

e.g. CHM. Reported accuracy are not high, from 64% to 73%

[15]. Normalized cut needs the number of clusters as input, so

that it is limited by the number detection accuracy. Mean shift

has not been included in the summary, however it has been

proven to work well for multi-layered forest trees [16], [17].

Inspired by [16], mean shift for urban tree segmentation is

explored. Specifically, mean shift with a tree-shaped 3D kernel

and continuously adaptive size (bandwidth) is investigated.
a) Mean shift: Mean shift is a nonparametric mode-

seeking algorithm proposed by [18]. It has been widely used

for clustering such as image segmentation in feature space

[19], [20]. In our case, the algorithm is directly applied to

lidar point X ∈ R
d (d means dimension). Each point of Xi

(i = 1,...,n, where n is the number of points) contributes to

the probability density function regarding the distance to the

point X with kernel K(X) and the radius h of the region of

interest. The multivariate kernel density estimator is

fh,K(X) =
1

nhd

n
∑

i=1

K(
X − Xi

h
) (1)

in which h is normally called the bandwidth, K is defined as

a radially symmetric kernel satisfying K(X) = ck,dk(‖X‖2),
where ck,d is a normalization constant assuring K(X) add

up to 1, and k is the kernel profile, determining the kernel

shape. The modes of the density function are located at the

zeros of the gradient function ∇fh,K(X) = 0. Assuming the

derivative of the kernel profile k exists, given g(x) = −k
′

(x)
and corresponding kernel G(X) = cg,dg(‖X‖2), the gradient

of the density estimator is

∇fh,K(X)

=
2ck,d
nhd+2

n
∑

i=1

(Xi − X)g(‖
X − Xi

h
‖2)

=
2ck,d
nhd+2

n
∑

i=1

g(‖
X − Xi

h
‖2)









n
∑

i=1

Xig(‖
X − Xi

h
‖2)

n
∑

i=1

g(‖
X − Xi

h
‖2)

− X









(2)

The first term is proportional to the kernel G density estimator

fh,G(X) and the second term is the mean shift vector

mh,G(X) =

n
∑

i=1

Xig(‖
X − Xi

h
‖2)

n
∑

i=1

g(‖
X − Xi

h
‖2)

− X (3)

which is the difference between the kernel G weighted mean

and the kernel center X. More detailed explanations can be

found in [20]. In higher dimension space, the kernel can be

weighted in different directions, e.g. in 3D, vertical weight and

horizontal weight can be independent [16].

Fig. 2: Parametric crown model proposed by Pollock [21].

b) Continuously adaptive mean shift: Classical 2D mean

shift searches for the mode in a circular kernel, i.e. the location

with the highest point density in our case. It works well

for specific cases, with carefully tuning of the bandwidth.

However, this bandwidth is most probably not suitable for

other multi-tree components. It means that the bandwidth

should be adaptable to each component, or even to each tree.

In 3D, points are mostly evenly distributed, still higher

density may be found on top of crowns. Thus points are

weighted by height in favour of the mean moving upwards to

the crown local maximum. As aforementioned, the bandwidth

should be adaptable to each component. Assuming that higher

trees have wider crowns, the bandwidth can be adaptive to

the tree height. Note that there may be many trees of different

heights in one component. The bandwidth should be adaptable

to the height of each tree so that it can be used for not only

one particular component but all the single-tree and multi-

tree components in the data. Hence, the idea of continuously

adaptive mean shift (CamShift) is adopted, in which case, the

bandwidth h is chosen to be adaptable to the absolute height

z of the kernel center X for each iteration during shifting

(ht = zt/c, c is a general constant explaining the ratio between

the crown size and tree height, t refers to the iteration number).

For example, if a mean starts from the bottom of a component,

the bandwidth will be small. Due to the higher weight in the

upper part of the kernel, it will move upwards to the top, then

the bandwidth will become bigger.

c) Tree crown model: Typically, a mode is searched in a

single value controlled sphere in 3D. Alternatively, to better fit

to the tree crown, the parametric tree crown model proposed

by Pollock [21] is adopted as the mean shift kernel.

P (X) =
zn

an
+

√

(x2 + y2)n

bn
= 1 (4)

where X = (x, y, z) w.r.t the crown center, a is the radius of

the intersection of the model surface with the z axis, b is the

radius of the crown circle in xy plane, and n is a positive real

number that determines the shape of the crown surface. When

n = 2 the model is an ellipsoid, and as n decreases to 1 the

model becomes a cone (Figure 2).

Vertically, the kernel is weighted by the relative height
z−zmin

zmax−zmin

, and horizontally by a Gaussian function
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Fig. 3: Tree crown extraction.

e−λ‖X−Xi‖
2

, then the kernel profile g is defined as

g(X) =

{

z−zmin

zmax−zmin

e−λ‖X−Xi‖
2

if P (X) ≤ 1

0 otherwise
(5)

Now, the Pollock model-based CamShift is used to segment

tree components into individual trees. Next tree crowns are

extracted for modelling.

3) Tree crown extraction: To model the tree crown, the

start point of the lower crown has to be determined. Due to the

penetrability of trees, some have many points on the trunks but

others do not. This inconsistency will affect the process of tree

modelling, which needs a standard definition of the crown. So

it is necessary to remove the points on the trunks before crown

modelling. A simple crown truncating method is proposed.

For each tree component, it is partitioned vertically into slices

with a certain height starting from the bottom. Together with

the previous slice below, a 2D bounding box of each slice is

computed. If the hypotenuse of the bounding box is smaller

than a predefined threshold (e.g. 2 m), the points within the

slice are considered as trunk points. The bounding box will

keep moving upwards until the hypotenuse is greater than the

threshold. In the end, a reference height will be obtained.

Points above the height are assigned to the crown (Figure 3).

B. Tree Parameter Derivation

The Pollock model is a crown surface model, whereas the

lidar data have many points inside the crowns. So the interior

crown points are firstly filtered out.

1) Alpha Shapes: The alpha shape algorithm is famous for

shape reconstruction from a dense unorganized set of points.

Indeed, an alpha shape is a linear approximation of the original

shape [22]. The definition of alpha shapes is based on an

underlying triangulation. As for 2D alpha shapes, circles with

a certain radius (α) approach the data points until they touch

points on the edges of the triangles. As shown in Figure 4, the

edges touched with circles describe an approximate shape of

the original points. For 3D alpha shapes [23], a triangulation is

calculated first, and then spheres, instead of circles in 2D, will

pass through the triangles. So the triangles that are touching

spheres will represent the original shape of the data points. The

points belonging to the vertices of the triangles are sufficient

to describe the shape of a tree, so the points inside the alpha

shape are eliminated and the data size (number of points) is

reduced significantly.

Fig. 4: 2D alpha shape algorithm.

The optimized α value is defined as the smallest value

such that the complex, i.e. reconstructed shape model, has

one solid component. Hence each tree has its own optimal α
value. However, for certain tree component, a bigger α value

is necessary because the optimized α valued sphere can go

inside the crown, i.e. the alpha shape is over detailed. In this

case, the volume of the alpha shapes is actually smaller than

the real crown volume. Furthermore, if the α values of the

same tree from two epoch datasets are quite different from

each other, the change detection result will also be affected.

To avoid these problems, a consistent and big enough α value

(e.g. 10 m [9]) is set for all tree components. If the α value is

positive infinity (α → ∞), an alpha shape is actually a convex

hull. The areas and volumes of tree components are derived

by convex hulls for comparison.

2) 3D tree modeling: The convex hull is a point-based

parameter derivation method which has both advantages and

disadvantages. A point-based method is straight forward,

simple to process but sensitive to noise and outliers. On

the contrary, model-based method is more robust. These two

methods can be compared so as to assess the parameter

derivation results. In this paper, tree crowns are modelled by

the Pollock crown model, and the results are compared with

those from point-based methods. One advantage of the Pollock

model [21] is that the crown shape can be adjusted by the

parameter n (Equation 4) from an ellipsoid to a cone.

a) Adjusted Pollock model: In reality, a tree crown base,

i.e. 2D crown outer boundary, is hardly of any regular shape.

The original model treats it as a perfect circle, whereas an

ellipse approximates more to a tree crown and it also shows

the orientation. Thus the model crown base is adjusted to an

ellipse which becomes anisotropic. The rotation in xy plane

is needed together with the center shifting as follows:
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x = (X −X0)cosβ − (Y − Y0)sinβ
y = (X −X0)sinβ + (Y − Y0)cosβ
z = Z − Z0

zn

cn
+

√

(
x2

a2
+

y2

b2
)n = 1

(6)

in which, a and b are the two semi-axes of the crown base

ellipse, c is the semi-axis in z direction, n is still the real

number that determines the crown shape, (X0, Y0, Z0) are

the coordinates of the crown center in the global coordinate

system, and β is the rotation angle.

b) Crown fitting: The adjusted Pollock model-to-crown

points fitting is implemented using the nonlinear least square

fitting in three steps: (i) 2D crown base fitting, (ii) upper crown

fitting, and (iii) lower crown fitting (Figure 5).

To precisely model a tree crown, it is divided into upper

crown and lower crown because they are of different shapes.

Then it is crucial to find the position of the crown center,

especially the height, which will determine the crown division.

We propose to first extract the crown base boundary in 2D

by the convex hull. Points on the convex hull are the extreme

outer points hence are assumed to be the crown base points, by

which the crown center height Z0 can be determined, and then

the crown base parameters (a, b) are estimated by fitting an

ellipse. Next, the upper and lower crowns are fitted separately,

where crown height c and shape n are determined. Because the

upper crown normally has more points and is bigger than the

lower crown, the crown base is fixed using the upper crown

so that the whole model has a continuous smooth surface. The

whole procedure is detailed as follows:

1) the 2D centre (X0, Y0) and rotation angle β are firstly

initialized using principal component analysis, and the

points are then translated to the local coordinate system;

2) a convex hull is generated, and the crown center height

Z0 is computed as the average height of the points on

the convex hull;

3) the crown base ellipse is fitted with the points on the

convex hull in 2D, so the crown base shape (a, b) are

initialized;

4) points above Z0 (upper crown) are modelled by

nonlinear least square fitting, where crown shape

(a, b, cupper, nupper) and position (X0, Y0) are fitted;

5) points below Z0 (lower crown) are modelled in the

same way, but crown base (X0, Y0, a, b) are treated as

constant, and only clower and nlower are fitted.

After the 3D model fitting, the height of the tree is the

crown center height plus the upper crown height Z0 + cupper.

The crown area is the area of the fitted ellipse πab, and the

volume is the sum of the upper and lower crown volumes.

C. Model-based Change Detection

After deriving the parameters of the trees in each dataset, the

corresponding trees are identified based on the locations since

all the data are georeferenced in the same world coordinate

system.

The tree-to-tree matching is accomplished by calculating

the overlaps of bounding boxes and point-to-point distances.

Fig. 5: Adjusted Pollock model fitting: 2D crown base fitting

(top), upper crown fitting (bottom left), lower crown fitting

(bottom right).

First of all, for each component in dataset 1, a bounding box

(BBox) is derived. Then the overlapping BBox in dataset 2

is searched. One of the overlapped BBoxes must contain the

other’s center. To further check whether these two BBoxes

are the corresponding components, the distances from points

in dataset 1 to points in dataset 2 are calculated. If the

number of distances that are smaller than 1m is greater than

a certain percentage (50% based on experimental tests) of the

smaller size of the two components, they are considered as

corresponding trees. It happens that several components in

one dataset correspond to one component in another due to

under or over segmentation. So the number of nearby points is

compared with the smaller one between the two components.

The two corresponding components are given the same label

in both dataset. Trees appearing and disappearing, i.e. trees

without correspondence, are also detected.

Three parameters are extracted to analyse the changes:

height growth, area growth and volume growth. The growth

rate is the difference between the compared two data over the

value of the earlier one, i.e. percentage of growth over time.

As explained above, the corresponding relation between the

components in two datasets may be many-to-one. In this case,

the parameters of the multiple components are added up and

then compared with the corresponding component.
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III. EXPERIMENTS AND ANALYSIS

A. Study Site and Data Preparation

Three datasets were acquired on behalf of the municipality

of Rotterdam, the Netherlands. Two of them were in 2008

(March and November), named 0803 and 0811, and the third

one in April 2010 (named 1004). They are all under the Dutch

RD coordinate system. Point density of the data in March of

2008 is around 10 to 15 pts/m2 (points per square meter),

while the other two are about 30 to 50 pts/m2. A part of

the small island (Noordereiland) along the river in Rotterdam

(Figure 6) is selected as the study area since there are plenty

of trees which vary in both size and shape. The dominant tree

genera on the test site are Acer, commonly known as Maple,

and Castanea.

Fig. 6: Study area in Rotterdam, (left) Lidar points (vegetation:

green), (right) Google Map satellite image.

The datasets have been classified into several predefined

classes in which vegetation is one of them (green in Figure 6)

using the method proposed by [5]. The overall accuracy of

the classification is as high as 97.0%, while the accuracy of

vegetation is 90.1% [5]. Both commission and omission errors

are observed in the classification results. By visual inspection,

several kinds of commission errors can be recognized in

the dataset. Small segments such as walls, roofs of complex

shape on buildings as well as cars, poles and even some

ground points are classified as vegetation. On the other hand,

some vegetation points are classified as other classes such as

buildings and ground. Typically, the omission errors are either

a few misclassified points which are a minority with regard

to the amount of points of a tree hence will hardly affect the

parameter derivation result, or small trees of few points which

will result in the disappearance or appearance of trees. These

non-geometric changes have to be verified by the end-user.

The classified vegetation, which includes both bushes and

trees, and other false positives, is refined after clustering using

connected components (Section II-A1) by filtering components

features. The recall (R), precision (P) and F-score (F) are

used to evaluate the results. Numbers of components before

and after refinement are also presented in Table I. There are

still non-tree components in the refined results. Since this is

a part of the classification problem whereas we focus on tree

change detection, to evaluate the feasibility of our method,

trees are manually selected for experiments. In practice, the

precise locations and even the trees of interest can be specified

by the end users using a existing database.

TABLE I: Number of components before and after refinement,

and recall (R), precision (P) and F-score (F).

Data before after R% P% F%

0803 1451 306 93 86 89.4

0811 1169 229 97 97 97

1004 2118 275 98 93 95.4

B. Single tree delineation

The multi-tree components are further segmented by mean

shift. Figure 7 shows the 2D segmentation result. The 8-tree

component is correctly segmented by the 2D kernel with a

proper bandwidth h = 2.6. However, this bandwidth value is

specific to this particular component, meaning it is not suitable

for other components. With more tree components (18 trees in

total), the algorithm over-segments the other tree components,

resulting in 24 trees. This is the reason that we propose to

segment trees in 3D and adapt the bandwidth to each tree.

Fig. 7: 2D mean shift segmentation. Left: a 8-tree component

correctly segmented with bandwidth h = 2.6; right: 18 trees

including the 8-tree component using the same bandwidth,

over segmented to 24 trees.

The bandwidth is continuously adaptive to the kernel height

(ht = zt/c), and is only determined by the constant c. The

Pollock model kernel shape is governed by the horizontal

circle radius a, vertical z axis parameter b and shape parameter

n. To have a kernel shape that fits a general shape of a tree,

n is set as the middle value 1.5, b is set as two times as a. In

this case, there is only one tunable parameter a, which is the

bandwidth. As illustrated in Figure 8, both data are correctly

segmented using the same bandwidth.

(a) (b)

Fig. 8: 3D mean shift segmentation. Left: a 8-tree component

correctly segmented with bandwidth ht = zt/3.2; right: 18

trees including the 8-tree component correctly segmented with

the same bandwidth.
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Now, trees of different heights have different kernel band-

width, still, the exact bandwidth size is determined by c.
Ideally, the same c value is expected to be suitable for all trees.

To figure out its sensitivity, more trees are experimented with

different constant values. As shown in Table II, datasets of

different numbers of trees are correctly segmented by various

c values. In some cases, c can vary from 3.0 to 3.4, but in

others, the value range is more limited. A mutual value (3.2)

suitable to all datasets is found.

TABLE II: Continuously adaptive mean shift tree segmenta-

tion.

Constant c 6 trees 8 trees 12 trees 18 trees 21 trees 24 trees

3.0 6 8 14 17 21 24

3.1 6 8 14 17 21 24

3.2 6 8 14 18 21 24

3.3 6 8 14 18 21 25

3.4 6 8 14 18 21 25

(a) 6 trees (b) 12 trees

(c) 21 trees (d) 24 trees

Fig. 9: More 3D mean shift segmentation examples with dif-

ferent number of trees using the same bandwidth ht = zt/3.2.

More segmentation results are depicted in Figure 9. Note

that trees are correctly segmented regardless of their diverse

sizes and shapes. Two missed segmentations are observed in

Figure 9b, in which two trees are over segmented (also shown

in Table II). One tree is incomplete due to misclassification.

The other one has an extremely flat crown as shown in

Figure 10. The segmentation results of all the three datasets

using both connected components (CC) and CamShift are

illustrated in Table III, which suggests that the CamShift

significantly improves the segmentation with very high overall

accuracies.

After segmentation, each tree crown is extracted by remov-

ing the trunk points, and the 3D alpha shape algorithm is

implemented to filter out the points inside the crown. Figure 11

shows the extracted crowns.

Fig. 10: Incorrect tree segmentation example: over segmented.

TABLE III: Segmentation results using connected components

(CC)(number of components) and CamShift, including number

of components, under-segmentation, over-segmentation, per-

centage of multi-tree components and overall accuracy.

Data CC CamShift Under Over Multi-tree% Accuracy%

0803 141 194 0 2 38.1 99.0

0811 153 230 6 2 46.5 96.5

1004 168 234 4 2 40.6 97.4

Fig. 11: Tree crown extraction and interior points filtering.

C. Tree Models and Derived Parameters

After tree modelling, height, area, and volume parameters

are extracted from models for later change detection. As

described in Section II-B2, the height is the crown base height

plus the upper crown height, the area is the ellipse area of

the crown base, and the volume is the sum of the lower

and upper crown volumes. Figure 12 shows the modelling

results of different trees. To evaluate the parameters, they are

compared with those derived from a point-based method. Area

and volume parameters are extracted by the convex hull.

Fig. 12: 3D tree models.

Multi-tree components are further segmented into individual

trees, i.e. they are partitioned through the middle of their

intersections. So these segmented trees are incomplete (still

referred to as multi-tree components to distinguish from the

single-tree components). In this case, point-based methods,

e.g. convex hull, will not be able to recover the part that

has been cut off. However, model-based methods are assumed

to be, to some extend, robust to this situation. For heavily

intersected trees, point-based parameters are supposed to be

smaller than the model-based ones.
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Fig. 13: Area comparison between Pollock model and convex

hull for single-tree (a) and multi-tree components (b).

To verify this assumption, the area and volume parameters

derived from the two methods are compared. Parameters of

single-tree and multi-tree components are compared sepa-

rately. Figure 13 illustrates the linear correlation y = Ax
between the area parameters derived from the two methods. In

both single-tree and multi-tree cases, the parameters are well

correlated, whilst Pollock model values are slightly greater

(A < 1). It is clear that in the multi-tree case, Amulti
area = 0.875

is notably smaller than Asingle
area = 0.913, meaning in general

the point-based areas are smaller than model-based ones to

a greater degree compared to the single-tree case. The same

comparison is conducted for volume parameters. This time the

convex hull parameters are greater than Pollock models (A >
1). But still, the slope of the single-tree case Asingle

volume = 1.133
is greater than Amulti

volume = 1.124 of the multi-tree case.

Besides, the difference between the two results w.r.t the

Pollock model method, i.e. (Pollock model - Convex hull)/

Pollock model, is computed. The standard deviation of the

difference of area for single-tree case σsingle
area = 4.74%,

whereas for multi-tree case σmulti
area = 5.68%. And the standard

deviation of the difference of volume for single-tree case

σsingle
volume = 7.82%, whereas σmulti

volume = 8.79%. This means

that the parameters from the two methods are less consistent

in the multi-tree case, which can be caused by the fact that

the degree of intersection varies, i.e. trees can be slightly or

heavily intersected in multi-tree components.

To further verify the modelling results, different strips of

the 0803 data are used. The time difference is small enough

to be ignored, meaning trees are not supposed to be changed.

However, the scanning perspectives are different and the

point density may vary due to different strip flying speeds.

Figure 14 depicts the example of trees from different strips. It

is observable that same trees have different point distributions.

Table IV shows the differences of height, area and volume in

percentage w.r.t one of the compared strips. The differences

are small. However if the detected tree changes are also small,

these differences have to be taken into consideration, meaning

the changes may just be the inconsistency of tree models

affected by scanning perspective and point density.

(a) Strip 1

(b) Strip 2

Fig. 14: Example of trees from different strips.

TABLE IV: Model parameter comparison of the same trees

from different strips. Differences in % w.r.t strip1.

Compared Data
Height % Area % Volume %

mean σ mean σ mean σ

strip1 vs. strip2 0.06 2.19 -1.22 7.75 -2.55 8.53

D. Detected Changes and Analysis

The extracted parameters are then assigned back to each

component, and corresponding components are matched. In

the case of many-to-one matching, area and volume param-

eters are added up among the merged components, and the

maximum height is taken as the overall height.

Figure 15 depicts the change detection results of data 0803

compared with data 0811. Height, area, volume growth rates

w.r.t to the former data are presented. In general, most of

the trees increase in height, area and volume. Similar sized

trees have similar growth rates and smaller trees have generally

greater growth rates. The histogram of each growth rate is

illustrated in Figure 16. With few exceptions, most trees have

positive growth rates. The majority of height growth rate lies

between 0 to 5%, and the area growth rate ranges from 0 to

100%, while the volume growth rate varies from 0 to almost

200%, excluding some outliers that have much higher rates.

Earlier epoch datasets are compared with later epochs, i.e.

data 0803 vs. 0811, 0803 vs. 1004, 0811 vs. 1004. Table V
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Fig. 15: Change detection results of data 0803 compared to data 0811.
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Fig. 16: Growth rate histogram of data 0803 compared to data 0811.

TABLE V: Change detection results, including the mean and

standard deviation of height, area, and volume growth rate,

among the three datasets.

Compared Data
Height % Area % Volume %

mean σ mean σ mean σ

0803 vs. 0811 3.23 2.83 37.84 35.92 72.25 50.82

0803 vs. 1004 2.60 3.20 24.11 24.21 43.34 42.98

0811 vs. 1004 -0.50 3.68 -6.85 26.61 -12.97 33.11

shows the mean and standard deviation of the height, area,

and volume growth rates among the three datasets.

According to the change detection results, height growth

rate is much smaller than area and volume growth rates. And

volume growth rate is the highest among the three, which

is reasonable because volume growth accounts for changes

in three dimensions. Note that the growth rates of data 0803

compared to data 1004 are even smaller than those compared

with data 0811, which is five months earlier. This is also

reflected by the results of the third comparison, 0811 vs. 1004,

in which the growth rates are negative, meaning the trees are

getting smaller. One plausible explanation is that those trees

are pruned during these five months since it is normal that

urban trees are pruned by the local municipality on a regular

basis. However a more likely reason is that the point densities

on trees of those two data differ significantly, since the former

is still in leaf-on season whereas the later is in leaf-off season.

Different seasons can have a big impact on the point density

therefore the derived parameters [24], [25]. So no concrete

conclusion can be drawn from this part. Still data 0803 and

1004 are both in leaf-off season, so even without ground truth

comparison, the change results reveal the growing trend. More

data are needed for further investigation. Note that the detected

changes are significantly higher than the differences of models

of the same trees from different strips.

IV. DISCUSSIONS

The appearance and disappearance of trees can also be

detected by our method. However, it does not necessarily

mean that trees are planted or cut off. Empirical evidence
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suggest that they are mostly caused by omission errors during

the classification step. Thus these two categories of changes

are not studied in this paper. In the classification refinement

step, by observing the number of components before and after

refinement, it is clear that there is a remarkable improvement.

The only factor is the geometric and spectral features at

object/component level. These features can be integrated into a

tree-oriented classification, in which case this refinement step

can be trivial.

In our preliminary work [13], multi-tree components were

treated as compound trees and only point-based method was

used for parameter derivation. The Pollock crown model was

not used since a compound tree does not hold an original

crown shape. Tree height changes were not detected. Since

point-based methods will inevitably include a part of the

empty space between connected trees. The detected changes

are inaccurate. So in this paper, the multi-tree components

are further segmented by the CamShift using Pollock model

as the kernel. The advantage is that there is only one tun-

able parameter, i.e. the kernel bandwidth, which is rather

independent from different tree shapes and sizes. The same

bandwidth has been used for all the three datasets, resulting

in really high accuracies. Compared with other segmentation

methods mentioned in [15], this crown shaped kernel will

guarantee that the segmented components have at least the

same, if not greater, size as the kernel, which inherently avoids

trees being segmented into over small components. Still, the

kernel is only adaptive to the height not to the shape. Thus,

if the tree crown shapes vary significantly in the dataset, a

single bandwidth may not be suitable. The CamShift using

tree shaped kernel works well for segmentation at tree level.

But it can be observed that some points on the edges between

two trees are sometimes miss-segmented. This is because the

kernel mean is randomly initialized, and all the points that

been visited by the kernel will be clustered into the same

segment. So the points between trees maybe visited by the

neighbour tree. This can be tackled by running the kernel on

each point instead of random initialization. However, it will

take much longer time as tested, especially for big components

with many trees.

The adjusted Pollock model enhances the 3D tree modelling

by adding one more degree of freedom to the crown base,

which is more realistic. Apart from the compared parameters,

other information, e.g. accurate crown 3D position, lower

crown start point, can also be extracted from the model. In gen-

eral, the model-based method delivers more robust information

than point-based methods since it is barely affected by outliers.

More importantly, the latter can not recover the overlapped

part that has been cut off from trees in multi-tree components

since it is strictly restricted by the points, whereas the proposed

model is expected to have a better recovery. This is proved by

treating the correlation of single-tree component parameters

between these two methods as standard, and showing that

the point-based parameters are getting smaller w.r.t model-

based ones from multi-tree components. However, the absolute

accuracy of the model reconstruction of the missing part is not

evaluated.

Considering the errors of pre-processing and modelling,

every tree correspondence will be slightly different even if no

change has happened. The inconsistency of tree parameters

from different strips is significantly lower than the detected

average changes in terms of both mean and standard deviation.

Still very small changes should be taken care of since they

might not be real changes. Based on visual inspection, trees

of similar sizes have similar behaviours of changes, especially

for those located at the same areas. Moreover, the change rates

of small trees are generally greater than bigger trees. In reality,

smaller trees grow faster. Nevertheless, ground truth is needed

to verify the absolute values of the changes.

V. CONCLUSION

A model-based change detection system is presented to

potentially monitor the growth of urban trees. The proposed

Pollock model-based CamShift successfully segmented con-

nected components into individual trees with high overall

accuracy. The 3D alpha shapes algorithm significantly reduces

the data sizes and more importantly extracts the points on

the outer boundary of the crowns, so that the remaining

points can be directly used for 3D tree modelling and other

point-based parameter derivation methods. The Pollock model

introduces the crown shape parameter n so that every single

tree has its own crown shape. The separation of upper crown

fitting and lower crown fitting is innovative. The derived

parameters have high linear correlation with convex hull which

is based directly on the points. The standard deviations of the

parameter differences for single-tree components between the

Pollock model and convex hull are very small, suggesting the

consistency between the Pollock model-based and point-based

methods. Also the differences of models of the same trees

from different strips are small. The advantage of model-based

parameter derivation is its robustness against noise and tree

incompleteness due to segmentation. Moreover the tree models

can be used for visualization purposes. The proposed system

provides a guideline for change detection of trees in multi-

temporal airborne lidar point clouds. The growths of trees

are successfully detected. Furthermore the system is highly

automatic.

Future work will focus on the influence of other factors of

tree changes, e.g. seasonal effect, wind effect, and multiple

sources. The fusion with other types of data can be helpful

to improve the performance of the system. Imageries obtained

simultaneously with the point clouds are useful to identify the

commission and omission errors at tree level. Mobile mapping

system (MMS) is capable of capturing the details of both trunk

and lower crown of trees. So the fusion of mobile and airborne

lidar data will improve the modelling of trees hence facilitate

the change detection.
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