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Individual Tree Parameters Estimation for Chinese

Fir (Cunninghamia lanceolate (Lamb.) Hook)

Plantations of South China Using UAV Oblique

Photography: Possibilities and Challenges
Tian Yin, Jian Zeng, Xiaoli Zhang , Member, IEEE, and Xuemei Zhou

Abstract—Chinese fir (Cunninghamia lanceolate (Lamb.) Hook)
individual tree parameters extraction is important for scientific
forest management. However, high-precision parameters extrac-
tion by field investigation or spaceborne optical remote sensing
is difficult when the forest is dense and the terrain is complex.
This article proposes a framework for extracting individual tree
parameters by combining low-cost and high-efficiency unmanned
aerial vehicle-based oblique photogrammetry with manned air-
borne light detection and ranging data and explores the influence
of spatial resolution on the accuracy of parameter extraction. The
variable window filtering (VWF) was used to detect an individual
tree. The marker-controlled watershed segmentation (MCWS) and
seed region growing algorithms were used to delineate the crown.
The individual tree detection using VWF based on 1 m resolution
achieves precision of 80%. For the crown delineation, it is more ac-
curate based on the 0.25 m resolution using MCWS algorithm with
the detection accuracy of 65%. The results show that the proposed
framework can effectively detect the tree and delineate the crown
under complex terrain conditions and the optimal resolution for
different parameter extraction is determined, which has important
guiding significance to determine the flight parameters and reduce
unnecessary data processing.

Index Terms—Chinese fir plantation, individual tree, oblique
photogrammetry, parameter extraction.

I. INTRODUCTION

C
HINESE fir (Cunninghamia lanceolate (Lamb.) Hook) is

an excellent native timber species distributed throughout

the subtropical region of China [1]. With the characteristics
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of rapid growth and excellent material quality, Chinese fir

meets human needs for timber, fuel, and other forest products.

The increasing demand for timber for economic development

and national investment in artificial afforestation has led to a

gradual increase in the area of Chinese fir plantations [1], [2],

and Chinese fir has become one of the main tree species in the

complex southern plantations. Currently, the area of Chinese

fir forests is 9.215 ×107 hm2, accounting for 28.54% of the

national planted forest area [3].

Sustainable forest management of plantations requires a

timely and accurate understanding of the large-scale forest

growth in order to make corresponding operational decisions

[4]. Detailed individual tree parameters, such as tree number,

tree height, and crown area, are not only necessary informa-

tion for monitoring regeneration, quantitatively analyzing forest

structure and dynamic changes, and assessing forest loss [5] but

also important for the management of Chinese fir plantations.

However, many Chinese fir plantations have a large planting

area, and the terrain and undergrowth are complex, therefore it is

difficult to conduct time-consuming and laborious field investi-

gations [4]. In addition, some Chinese fir forests are interplanted

with different tree species, which makes it extremely difficult

to measure individual tree parameters. Therefore, determining

an effective technique for precisely surveying the plantation

resources and quickly obtaining the 3-D spatial information is

important for accurate monitoring and scientific management of

forest resources.

Remote sensing technology has been increasingly used to

assess forest resources directly or indirectly in recent decades

[6], [7]. It can complement existing ground technologies [8] and

provide more representative features of the forest space under

investigation using a more efficient method. Small light-weight

drones, such as unmanned aerial vehicles (UAVs), are flexible,

easy to operate, and moderately priced [9], [10]. UAV oblique

photogrammetry and light detection and ranging (LiDAR) tech-

nologies have developed rapidly [11]. UAV oblique photogram-

metry and LiDAR technologies provide high spatial and tem-

poral resolution data and are considered a potential means for

observing forest areas and conducting large-scale analyses of

forest systems [4], [12], [13]. LiDAR is an active remote sensing

method [14]. Laser beams can penetrate the vegetation canopy
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to obtain 3-D point clouds containing forest canopy and terrain

information [15]. However, acquiring high-precision LiDAR

data is expensive, especially when collecting data repeatedly in

large areas. In recent years, with the development of computer vi-

sion technology, UAV oblique photogrammetry has become the

main means of 3-D reality modeling and information extraction

[4], [16]. However, in contrast to LiDAR, optical imaging tech-

nology cannot penetrate the canopy, so it has poor ability to pro-

vide vertical structure and terrain information [17]. Therefore,

several studies have emphasized that the accurate generation

of structural information from oblique photogrammetry images

requires using digital terrain models (DTMs) from external

sources [18]–[21]. Furthermore, oblique photogrammetry has

barely been used for 3-D reconstruction in forestry surveys than

buildings, because it is more difficult to model forest scenes and

accurately extract the parameters by conventional algorithms,

especially in complex terrain and dense canopy stands.

High spatial resolution is one of the advantages of UAV

oblique photogrammetry, so a lot of publications using very high

resolution UAV images on experimentation and data analysis

are available. Ota et al. [20] used UAV images with 0.07 m

resolution to generate a canopy height model for tropical forests

and estimate the aboveground biomass of vegetation. Jing et al.

[22] indicated that UAV images with 0.011 m resolution can be

used to extract aquatic plant growth parameters in wetlands,

and the best inversion model of above–bottom biomass was

determined. Melin et al. [23] detected forest canopy cover by

combining UAV images with 0.25 m resolution and a digital

surface model (DSM) with 1 m resolution. These studies indi-

cated that spatial resolution is especially important for accurate

parameter extraction. However, high spatial resolution is likely

to cause data redundancy and reduce data processing efficiency.

For UAV digital aerial photogrammetry, the spatial resolution

of the image is inversely proportional to the flight height,

which determines the data volume and acquisition efficiency.

Furthermore, in mountainous areas or areas where the terrain is

highly variable, the altitude is restricted by the terrain. Is there

a positive correlation between spatial resolution and parameter

extraction accuracy? Even if this assumption is true, the high

cost of data acquisition, the difficulty in mountainous areas,

and the time required for large data processing are still critical

issues. Therefore, when we use UAV data as the data source,

the appropriate spatial resolution is important for determining

flight parameters and reducing unnecessary processing in the

data analysis process.

In this research, the UAV is equipped with an oblique pho-

togrammetric camera to obtain images of the plantations at

different angles in southern China, and manned airborne LiDAR

point cloud data were used to extract the DTM. By combining

these two types of data, we explore different technologies for

reconstructing 3-D forest scenes and effective methods for ex-

tracting individual tree parameters under the complex terrain

and high-density canopies of Chinese fir plantations, and we

explore the effects of spatial resolution on accuracy. In this

article, we provide solutions for data collection and information

extraction using oblique photogrammetry technology to survey

and dynamically monitor the Chinese fir plantations.

II. MATERIALS

A. Study Area

The study area is located in the Jiepai branch farm

(108°20′57′′–108°21′54′′E, 22°57′08′′–22°58′41′′N), Gaofeng

state-owned forest farm in Nanning City, Guangxi Province,

China (see Fig. 1), with elevation ranges from 145 to 230 m

and surface slopes up to 16°. The farm is in the subtropical

humid monsoon climate zone with annual average temperature

and precipitation of 21.6 °C and 1300.6 mm, respectively. The

red soil layer is approximately 55 cm, which is suitable for the

growth of Chinese fir. The total vegetation coverage is 70%, and

the forest cover is dominated by artificial forests, including Chi-

nese fir (Cunninghamia lanceolate (Lamb.) Hook), yew (Taxus

chinensis), huacai (Manglietiastrum sinicum), eucalyptus (Eu-

calyptus robusta Smith), and red vertebrae (dygoxyllum). There

are also approximately 37 species of shrubs and 22 species of

undergrowth herbs. The terrain of the study area is complex,

and the canopy density is high. Thus, it is very challenging to

accurately extract the individual tree parameters.

B. Data Collection

1) UAV-Based Images: UAV-based images were collected

in January 2018. Data collection consisted of two subtasks:

aerial flights and ground control point placement. The images

were taken with an electric multirotor UAV iHida iFly D6 [see

Fig. 2(a)] equipped with an iCam Q2 oblique photogrammetric

camera [see Fig. 2(b)] under windless, and sunny conditions.

The iCam Q2 integrates an ortho and a side-view camera. The

UAV had its own positioning system, the flight altitude is 200

m, which was determined by the image resolution. The course

overlap was not less than 80%, and the side overlap was not

less than 70%. Double lens oblique camera acquires the five

faces images of target by swinging back and forth. The image

acquisition steps are shown in Fig. 2(c), (d), and (e). First,

the ortho camera acquired an image vertically 90°, and the

side-view camera tilted 45° captured an image to the left [see

Fig. 2(c)]. Then, the ortho camera was tilted 45° facing forward

to acquire an image, and the side-view camera was not used

[see Fig. 2(d)]. Finally, the ortho camera was tilted 45° facing

backward to capture an image, and the side-view camera tilted

45° acquired an image to the right [see Fig. 2(e)]. Finally, four

oblique and one vertical image were obtained (see Fig. 3). One

flight including six routes was carried out, a total of 353 scenes

of effective digital aerial images were obtained. The detailed

lens and flight parameters are listed in Table I.

A real-time kinematic (RTK) global positioning system (GPS)

was installed on the ground to record the position data of

the control points. The UAV platform was equipped with a

postdifferential postprocessing kinematic (PPK) GPS to record

the approximate position data of the exposure point. The self-

made control point targets were evenly placed in unobstructed,

noticeable, and open areas to ensure that the control points

could be clearly imaged at different shooting angles. The 3-D

coordinates of all ground control points used for aerial trian-

gulation (AT) were measured by a Tianbao differential GPS.
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Fig. 1. Study area and the five field plot locations (CGCS2000/ 3° Gauss–Kruger CM 108E). (a) Location of Gaofeng Forest Farm, marked by the red circle.
(b) Location of the study area, marked by the red rectangle. (c) Orthophoto of the study area, where the yellow rectangles show the boundaries of the five test sites.

Fig. 2. Experimental drone and camera operation diagram. (a) Unmanned
aerial vehicle (UAV) and (b) camera used in this study. (c)–(e) image acquisition
steps. (1) ortho camera. (2) side-view camera.

The horizontal and vertical accuracy is ±0.05 m and ± 0.2 m,

respectively.

During data acquisition, the oblique images may have op-

tical distortion, which is the deviation from the control point

corresponding to the images, and it needs to be corrected. In

addition, it is also necessary to rotate or format the images

properly according to the flight direction. The above image

corrections were completed by the self-calibration before AT in

Fig. 3. Four oblique and one vertical images.

Context Capture software. The detailed parameters of distortion

are described in the CC user manual.

2) LiDAR Data: In February 2018, A Rc6-2000 UAV was

equipped with a RIEGL vux-1 LiDAR sensor to acquire LiDAR

data by the Chinese Academy of Forestry under windless and

sunny conditions. The LiDAR data are provided in the LAS

format, and the average point density is approximately 3.35

points/m2. The detailed scanning and flight parameters of the

airborne LiDAR system are shown in Table II.
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TABLE I
UAV FLIGHT PARAMETERS

Exposure interval: the interval in which camera was triggered.

Scanning angle: the iCam Q2 integrates an ortho and a side-view camera. The angle of

the side-view camera is 45°.

TABLE II
FLIGHT PARAMETERS OF AIRBORNE LiDAR

Laser points that are not in the actual elevation range (laser

signals hit by airborne objects such as birds) are considered noise

and removed to eliminate the effects of coarse points on the

filtering results. The airborne laser scanning (ALS) point cloud

was preprocessed by Tarascan software (www.terrasolid.com),

which classified the point cloud as ground points and nonground

points. A triangular irregular network (TIN) surface was created

by linear interpolation of the classified ground points to construct

a 1 m spatial resolution LiDAR DTM.

3) Reference Data: A field investigation was performed after

image data collection. Five Chinese fir sample sites with dimen-

sions of 20 × 20 m were chosen at random in the study area. We

set up the base station at a stable location on the ground. The

position of individual tree was measured by Sanding STS-722

tripod laser total station. The horizontal positioning accuracy is

within 0.5 m. The direction and inclination of the sample sites

were measured by a compass. The length of the sample site

boundary was determined with a tape measure. In the sample

sites, all the trees with a diameter at breast height (DBH) ≥
5 cm were measured using a breast diameter ruler. A Vertex IV

ultrasonic altimeter was used to measure the tree height. Due

to the irregularity of the tree crowns and the steep slope of the

sample sites, the measured crown area error is high, making

it difficult to use the crown area as reference data for accuracy

verification. Thus, we use the artificial canopy area delineated on

the digital orthophoto map (DOM) as reference data for accuracy

evaluation. The details are listed in Table III.

III. METHODOLOGY

A dense point cloud with absolute coordinates was recovered

from the UAV oblique images based on the structure from motion

(SfM) algorithm [24]. A canopy height model (CHM) of the

Chinese fir was generated by the DTM of the LiDAR data and

the DSM of the oblique photographs at four spatial resolutions

of 0.1, 0.25, 0.5, and 1 m. The local maximum algorithm

with fixed window size (FWS) and variable window filtering

(VWF) were used to detect individual treetops in the study area

[25]. The boundaries of the tree crowns were delineated by the

marker-controlled watershed segmentation (MCWS) and seed

region growing (SRG) algorithms. Finally, the accuracy of the

extraction results was evaluated. The framework is shown in

Fig. 4.

A. 3-D Reconstruction

The Bentley Context Capture V4.3 (CC) (www.bentley.com)

software was used to reconstruct the 3-D model of the study

area using the UAV images. Such software implements modern

SfM algorithms on RGB photographs and thereby produces 3-

D reconstruction models based on the location of the images

[18], [25]–[28]. All the processes were fully automated. The four

main steps of the workflow are as follows: select the qualified

aerial images; calibrate the camera by automatically extracting

the related information about the image and camera; add the

GCPs; and perform AT by extracting and matching image feature

points to generate dense point cloud data.

www.terrasolid.com
www.bentley.com
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TABLE III
FIELD MEASURED RESULTS OF SAMPLE SITES

Fig. 4. Framework for 3-D parameter extraction of individual trees combining
UAV-based oblique photogrammetry and airborne LiDAR data.

Detailed descriptions of this workflow can be found in this

paragraph. First, the aerial images were selected to remove

the unqualified images, such as unclear and color deviation

images. Second, the focal length information was extracted

from the images, thousands of features were detected, which

were then matched between the images, and then the iterative

Fig. 5. Oblique photogrammetry point cloud. (a) Original dense point cloud.
(b) Point cloud normalized for height.

bundle adjustment was applied to estimate the 3-D positions

of the matched features, and the camera orientation and scene

geometry information [29]. Third, GCPs were added for ge-

ometric precision correction to improve the accuracy of 3-D

reconstruction, a nonlinear least square algorithm was used to

continuously optimize and generate sparse point clouds [30].

Finally, dense matching based on a sparse point cloud is nec-

essary to construct the 3-D information of the plantation scene.

Therefore, the patch-based multiview stereo (PMVS) algorithm

is used to construct the artificial forest dense point cloud [31],

[32] [see Fig. 5(a)].

Next, the oblique photography point cloud is normalized to

height above ground by subtracting the DTM elevation with

1 m spatial resolution generated by the LiDAR data from the

Z coordinate of each point projected on the ground [25]. The

normalized oblique point cloud [see Fig. 5(b)] is used to generate

an oblique DSM by the GridSurfaceCreate functions in FUSION

3.4 [33].

B. CHM Generation

The CHM expresses the height of the canopy surface from

the ground and the horizontal distribution of the canopy. Coreg-
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istration of the DSM with the DTM is a crucial step in the

CHM computation because a poorly aligned DSM and DTM

may produce local and overall shifts in the canopy elevation

model [34]. We evenly selected 20 control points on the DSM

and determined the corresponding 20 points on the DTM of the

LiDAR data. The points must be obvious terrain features (road,

intersections, etc.) or easily distinguishable canopy vertices.

Finally, the elevation RMSE of the two layers was calculated

based on the GCPs and used for elevation correction of the

oblique photographs. The elevation correction error is 0.17 m.

Registration of the horizontal direction was based on the affine

transformation model. Finally, the CHM is calculated as the

relative height between the DTM of the LiDAR data and the

DSM of the oblique photographs.

Previous studies used CHM with 0.5–2 m spatial resolution

to extract individual tree parameters [23], [39]. However, the

Chinese fir crowns in study area can be as small as 1m, the

resolution of 0.5–2 m are too coarse to describe the crown

shape. Therefore, to study the influence of spatial resolution on

individual parameter extraction and identify the optimal spatial

resolution of CHM, we define four spatial resolutions (0.1, 0.25,

0.5, 1 m) and conduct a simulation.

C. Individual Tree Detection

In this article, the local maximum algorithm was used for

individual tree detection (ITD) based on the CHM [35], [36].

At present, the two most commonly used methods for ITD are

VWF [37] and moving window with an FWS [25]. To achieve

optimal tree detection, we first tested three FWSs (5 × 5, 7 ×
7, 9 × 9 pixels) on an unsmoothed CHM. Then, the same three

FWSs were tested on a smoothed CHM by a mean smooth filter

with a fixed smoothing window size (SWS) of 3 × 3, 5 × 5,

and 7 × 7 pixels. The pixel that is the local maximum in the

window is defined as the treetop, and its value is the tree height.

For the VWF method, the window size changed according to

the crown width (CW) to tree height (TH) allometry. The linear

relationship between the CW and TH is determined from the

field data ((1)) [38], [39]

CW = a× TH+ b. (1)

CW is the crown width (m), TH is the tree height (m), and a

and b are constants.

By applying this linear relationship to each pixel in the CHM,

assuming the pixel in the CHM is a treetop, we can estimate the

potential crown size by this linear relationship to set the proper

window size for tree detection [40]. The pixel that is the local

maximum in this window is defined as the treetop.

D. Crown Extraction

1) Marker-Controlled Watershed Segmentation Algorithm:

Using the accurately detected treetops as markers, we apply the

MCWS algorithm to delineate the crown boundaries [41]. The

CHM is first inversed so that the treetops become local minima

and the crown becomes a water basin. Then, we add water to

the inversed CHM, and the water rises in the basins. Finally,

a dividing line is constructed at the junction of the two basins

(low elevation values) to form a watershed to delineate the crown

boundaries [21], [35], [42]–[44].

2) Seed Region Growing Algorithm: Using the accurately de-

tected treetops as seeds, we apply the SRG algorithm to delineate

the crown boundaries [45], [46]. If each original seed grows to

form a continuous area, its nearest four points will be regarded

as secondary seeds. If these neighbors have heights similar to

that of the seed pixel, they will be included in the growth area;

otherwise, they will be discarded. The above process will be re-

peated until all crown delineation is complete. After completing

the crown delineation using the SRG and MCWS algorithms,

the crown area is compared with the measured tree crown area

to calculate the segmentation accuracy.

E. Accuracy Assessment Metrics

The accuracy verification mainly includes two aspects: tree

detection and crown extraction accuracy. The verification of

individual-tree location detection mainly overlaps the extracted

treetops with the measured treetops in ArcGIS 10.2 software.

If there is only one extracted tree near the measured tree, it is

positive. If there are several extracted trees, the extracted tree

closest to the real position shall be taken as the positive value,

and the rest are false trees. If there is no tree near the measured

tree, it will be recorded as a missing tree. We use true positive

(TP), false negative (FN), false positive (FP), recall (r), precision

(p), and F1-score measures as accuracy indicators [47], which

are calculated as follows:

F =
TP

TP + FN
(2)

p =
TP

TP + FP
(3)

F1−score = 2×
r × p

r + p
. (4)

Here, r describes the tree detection rate as inversely propor-

tional to FN, therefore it can be viewed as a measure of trees

detected [25]. p is inversely proportional to FP, indicating that

treetop detection has a positive confirmation rate. The F1-score

represents the harmonic mean of the detection rate and accuracy,

so the higher the r and p results, the higher the F1-score.

When verifying the accuracy of the extracted crown area,

the area is overlapped with the actual reference crown area

delineated by ArcGIS 10.2 software. When the overlap rate for

both crowns is 50% or more, we define it as correct segmentation

[see Fig. 6(a)]. When it is less than 50% and the extracted

crown is smaller than the reference crown, we define it as

oversegmentation [see Fig. 6(c)]. Otherwise, it is defined as

undersegmentation [see Fig. 6(b)]. To describe the accuracy of

crown extraction, the detection accuracy (DA) ((5)) is used as

an accuracy indicator [40], [48], [49]

DA = n/N. (5)

Here, n is the number of correctly extracted crowns, and N is

the total number of measured crowns.
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Fig. 6. Schematic of the crown segmentation results. (a) Correct segmentation. (b) Oversegmentation. (c) Undersegmentation.

Fig. 7. Canopy height model (CHM) of the five sites at 0.1 m resolution. The abnormal areas are marked by blue circles.

In addition, we adopted four attribute precision metrics as

accuracy evaluation indicators. Linear correlation analysis be-

tween the measured values and the extracted values was carried

out to verify the height and crown area accuracy of individual

trees. R2 is used as an accuracy estimation index [50], and other

estimated indicators include RMSE ((6)) [51], rRMSE ((7)) [52],

and MAE (8)

RMSE =

√

∑

n

i=1
(yi − xi)

2

n
(6)

rRMSE =
RMSE

xi

(7)

MAE =

∑

n

i=1
|yi − xi|

n
(8)

where n is the number of matched trees, yi and xi are the

estimated value and field measured value, respectively, of the

parameter, and xi is the average value of the field measured

parameter.

IV. RESULTS

A. CHM Generation

Many abnormal areas are observed at the surface of the CHM

(see Fig. 7) because occlusion between the crowns produces

many shadow areas. These shadow areas cause a “blind spot”

when the UAV is acquiring images. Therefore, many 3-D point

clouds were not successfully calculated in the 3-D reconstruc-

tion process. In addition, the differing resolution between the

oblique photogrammetry DSM and the LiDAR DTM results in

a “sawtooth” phenomenon in the CHM (see Fig. 7). All of the

above sources of error also apply to the subsequent steps.

B. Individual Tree Detection

The detection results obtained from different FWS and SWS

combinations are listed in Table IV. An FWS of 5 × 5 is more
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TABLE IV
DETECTION RESULTS FOR METHOD OF FIXED WINDOW SIZE AND SMOOTHING WINDOW SIZE COMBINATIONS

TABLE V
COMPARISON OF INDIVIDUAL TREE DETECTION OF FWS AND SWS COMBINATIONS AND VARIABLE WINDOW FILTERING

Fig. 8. Fitted line for measured tree height and half of the crown width.

accurate than that of 7 × 7 and 9 × 9. A low SWS was found to

be favorable for individual tree detection. Finally, we assessed

the accuracy of the best combination, which was the 5 × 5 FWS

and 0 × 0 SWS combination. The detection results using VWF

are shown in Fig. 10. According to the field measured results of

129 trees, the linear fitting relationship [see Fig. 8, (9)] for tree

detection explains 43% of the crown size variation (R2 = 0.43),

which means that it can only explain 43% of the changes in

window size

CW

2
= 0.141TH − 0.646. (9)

Fig. 9. Results of individual tree location detection based on variable window
filtering (VWF).

The radar plot in Fig. 10 summarizes the accuracy assessment

parameters. The r value ranged from 0.75 to 0.81, the P value

ranged from 0.62 to 0.8, and the F1-score value varied from 0.7

to 0.77. Among the 129 reference trees used for this article, 121

trees (see Figs. 9, 11) were detected using the CHM with 1 m

resolution, and the precision was up to 80%. When the spatial

resolution of the CHM was 0.25 m, the recall was up to 0.81 (see

Fig. 10), indicating that the number of correctly detected trees

(105) was the highest.
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Fig. 10. Accuracy of individual tree detection based on VWF. P is the accuracy,
r is the recall rate, and F is the harmonic mean of the detection rate and accuracy.

The comparison results between the FWS and SWS combi-

nations and VWF are shown in Table V. This table illustrates

that the method of FWS and SWS combinations has a precision

similar to that of VWF, but there are fewer extracted treetops

than measured treetops, resulting in a large amount of data

loss. The precision of treetop extraction based on VWF is over

0.6, and the missed trees of this method are significantly less

than those of the FWS and SWS combination method. Based

on the above conditions, we conclude that the local maximum

algorithm based on VWF is a useful technique for extracting

individual tree locations.

C. Tree Height Extraction Results

To assess the ability of the local maximum algorithm to

extract tree height, a linear regression (see Fig. 12) is built

for each group of data derived from the CHM of a certain

spatial resolution. These linear regressions exhibited a strong

relationship between the estimated and measured tree heights.

Specifically, the three resolution models (0.1 m, 0.25 m, 1 m)

have similar R2 (0.65–0.76) and rRMSE (5.4%–6.9%) values,

while the 0.5 m resolution model showed better results (R2 =
0.82, rRMSE = 4.3%) (see Fig. 14).

D. Crown Extraction Results

1) Effect of Spatial Resolution on the Crown Delineation

Results: The crown delineation results are shown in Fig. 13. In

general, the MCWS algorithm delineates the crowns better than

the SRG algorithm. The DA of the MCWS algorithm is 3%–19%

higher than that of the SRG algorithm at different resolutions

(see Fig. 15), and both algorithms achieve the highest accuracy

using the 0.25 m resolution CHM. No matter which delineation

algorithm is used, the number of undersegmentations is higher

than that of oversegmentations. For the MCWS algorithm, when

the spatial resolution of the CHM is decreased from 0.1 to 1

m, the number of undersegmentations increases from 24 to 52

because the height difference is less obvious when the resolution

becomes coarser. Simultaneously, the number of corresponding

oversegmentations decreases from 18 to 8 because some pixels

are mistakenly identified as crown boundaries.

2) Crown Delineation Results Using Different Algorithms:

Fig. 16 shows two typical examples where the MCWS and SRG

algorithms have different performance results. In Fig. 16(a), the

number of crowns delineated by the SRG algorithm is much

smaller than the number of reference crowns. The SRG algo-

rithm starts growing and ends when the height changes suddenly

or reaches the defined threshold, resulting in the phenomenon

of oversegmentation. However, the MCWS algorithm does not

stop growing until the next canopy is detected, so the height

difference has less influence on it, resulting in a more accurate

crown [see Fig. 16(b)]. In Fig. 16(d), the MCWS algorithm

cannot detect the next crown, so canopy growth does not stop

appropriately. Thus, a crown larger than the reference crown is

obtained, resulting in the phenomenon of undersegmentation.

The SRG algorithm stops growing the canopy when the height

difference is greater than the threshold, resulting in correct

segmentation [see Fig. 16(c)].

Fig. 17(a), (d), (g), (j) shows that the shape of the crown

gradually changes from rounded to serrated when the spatial

resolution of the CHM is reduced from 0.1 to 1 m. As the

sampling interval increases from 0.1 to 1 m, the loss of detailed

information in the images increases gradually. The shape of

the crown changes, and the precision of crown extraction is

gradually reduced. In contrast, the tree crown segmented by the

SRG algorithm has no such features.

3) Parameter Extraction Results: A linear regression is built

for each group of data derived from the CHMs of a certain

spatial resolution (see Fig. 18). Various accuracy assessment

metrics (R2, RMSE, rRMSE, MAE) were used to compare

the performances of the two crown delineation algorithms.

Overall, the crown area obtained by the MCWS algorithm

exhibited a better relationship between the estimated and

measured crowns than the SRG algorithm. Specifically, for the

MCWS algorithm, the three finer resolution groups (0.1 m,

0.25 m, 0.5 m) have slightly better R2 (0.43–0.46) and rRMSE

(14.4%–18.3%) (see Fig. 14) values than the 1 m resolution

group (R2 = 0.36, rRMSE = 22.3%). As the spatial resolution

of the CHM increases from 1 to 0.1 m, the estimation accuracy

also improves [see Fig. 18(a)], and the final crown area value

achieves the optimal estimation accuracy at 0.1 m resolution.

For the SRG algorithm, the optimal resolution is 0.25 m (R2

= 0.58, rRMSE = 16.4%) [see Fig. 18(b)]. In summary, the

optimal resolution and algorithm for crown delineation is 0.25 m

and MCWS, respectively. The optimal resolution and algorithm

for parameter extraction is 0.1 m and MCWS, respectively.

However, the parameter extraction accuracy and the crown

delineation accuracy should be considered at the same time

because the parameter accuracy is assessed according to the

correctly delineated crown [53]. Therefore, although the 0.1 m

resolution model shows great potential for parameter extraction,

0.25 m is the optimal resolution for crown extraction.
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Fig. 11. Individual tree detection result of the 1 m resolution CHM based on variable window filtering. (a), (b), (c), (d), and (e) represent sample sites S1–S5,
respectively; FN is false negative; FP is false positive; and TP is true positive.

Fig. 12. Tree height extraction results. The fitted lines are plotted together on the left, and scatter plots of each spatial resolution model are plotted separately on
the right.

V. DISCUSSION

A. Individual Tree Detection

The VWF method detects the location of individual trees

better than the method of FWS and SWS combinations be-

cause VWF determines the size of the variable window mainly

depending on the relationship between tree height and crown

width, thereby avoiding the limitation of the fixed window

in the process of ITD. The capability of ITD is also sensitive to

the FWS and SWS combinations. However, in this experiment,

the point cloud density obtained by the UAV images is high

enough to easily reflect the tree details; extracting treetops via a
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Fig. 13. Tree crown extraction results of the MCWS and SRG algorithms.

Fig. 14. Radar plot showing the detection-related RMSE of tree height and
crown area.

Fig. 15. Detection accuracy (DA) of the crown delineation.

smoothing window will result in detail loss and many missed

trees. Therefore, the method of VWF is useful for extract-

ing the structural parameters of plantation forests with similar

structures.

The individual tree extraction results derived from CHMs

with different spatial resolutions are different. Thus, we use

DSMs with four different resolutions (0.1, 0.25, 0.5, 1 m) and a

LiDAR DTM with 1 m resolution in the process of generating

the CHMs. The CHM calculated by the DSMs with 0.1, 0.25,

and 0.5 m resolutions and the LiDAR DTM with 1 m resolution

has slightly lower accuracy than the CHM calculated by the 1 m

resolution DSM and 1 m resolution LiDAR DTM because the

former generates a “sawtooth” phenomenon. Therefore, ITD by

the CHM with unmatched resolution identifies some pixels as

treetops, resulting in a large number of falsely detected trees

and affecting the detection accuracy. In addition, the number

of missed trees is lower than that of falsely detected trees

in this experiment because the point cloud generated by the

SfM algorithm has high density; when resampling according

to different distances, the loss of information is lower, and the

retention of tree details is higher.

As the tree height is directly extracted from the CHM with

different resolutions generated by the DSM and DTM, the height

error comes from the resolution of the CHM, DSM, DTM, or

all three. Due to the small number of ground points used during

collection of the LiDAR data, a large part of the study area is

generated by interpolation. In some cases, the understory covers

the low vegetation, so the generated terrain is slightly higher

than the real terrain. In order to improve the DTM accuracy, a

higher density LiDAR point cloud is required. In addition, some

error originates from the DSM. Sufficient feature points cannot

be extracted for some trees because the crown is too small, or

the leaves are scarce. After dense matching, the point cloud still

does not contain enough points to be rasterized into a continuous

point cloud, which led to the DSM error.

B. Individual Tree Crown Extraction

The MCWS algorithm grows in the vertical direction [54],

while the growth curve of the Chinese fir crown is steep and

has much important information in this direction. Therefore,

the MCWS algorithm is more suitable for individual tree crown

delineation in the Chinese fir region. Using the MCWS and SRG

algorithms, more crowns are undersegmented than overseg-

mented. The main reason for this result is the insufficient detec-

tion of treetops, because both algorithms find crown boundaries

based on the correctly detected treetops. The key to correctly

detect the treetops is to correctly define the window sizes [55],

[56], [57], [58], [59]. In this article, variable window size was

used according to the CW to TH allometry, which has proved

useful for ITD in Section IV-B. However, only 43% of the CW

variation is explained for the Chinese fir (see Fig. 8), which

means that it can only explain 43% of the changes in window

size. Determining how to explain the remaining variation and

improve the detection accuracy of individual trees under high

crown closure and complex terrain conditions is a substantial
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Fig. 16. Different representations of canopy segmentation by the SRG and MCWS algorithms. (a) Oversegmentation by SRG. (b) Correct segmentation by
MCWS. (c) Correct segmentation by SRG. (d) Undersegmentation by MCWS.

challenge. In particular, when the resolution is 1 m, the accuracy

of the SRG algorithm for crown delineation is better than that of

the MCWS algorithm. The reason for this result is that a large

number of missed trees are extracted by the CHM with 1 m

resolution (see Fig. 11), while the SRG algorithm can determine

the correct crown size by setting appropriate growing parameters

when a tree is underdetected [60], which reduces the amount of

undersegmentation compared to that of the MCWS algorithm.

Thus, the SRG algorithm is more accurate than the MCWS

algorithm.

One of the main reasons for the error is the abnormal

area caused by the 3-D reconstruction process mentioned in

Section IV.A (see Fig. 7). The abnormal areas have invalid

data, which cause many errors in the crown delineation process.

However, in this experiment, we did not attempt to solve this

problem, which led to the unsatisfactory crown delineation

results. In subsequent research, we will explore some methods

to solve this problem and then delineate the crown again.

Another reason for the error is that the spatial information

below a certain threshold height is masked during the algorithm

execution, which causes the partial crown delineation to be

small. Thus, scholars believe that spectral information provided

by high-resolution images is more reliable than spatial infor-

mation that can be masked [61]. In addition, the registration

of images and LiDAR data will produce geographic errors.

This experiment uses a low-density LiDAR point cloud, so the

DTM generated by LiDAR has low precision and will cause

crown distortion during normalization of the oblique point cloud.

Furthermore, during acquisition of the UAV images (Section

II.B.1)), the study area lacked obvious features (roads, intersec-

tions, etc.). Thus, self-made targets were used as control points,

and manual placement of the control points will cause errors.

In addition, sample surveys may have errors, which depend

on ground survey conditions and personnel. It is difficult for

Vertex IV to observe the true treetops when the trees are high

and the stand is dense. At the same time, the reference crown area

is obtained by ArcGIS visual interpretation of the DOM image,

and there will be errors in the crown area drawn by different

personnel.

C. Challenges of Using Oblique Photogrammetry for

Extracting Individual Tree Parameters

Traditional remote sensing technology, satellite and aerial

photogrammetry technology need manual or semiautomatic

acquisition to obtain the surface texture of the image and

achieve 3-D reconstruction based on high resolution images.

But these technologies have serious occlusion problems, the

cost of acquiring texture data is high, the data processing is

complicated, the efficiency is low. LiDAR can penetrate the

vegetation canopy to obtain the 3-D point cloud, which contain

forest crown and terrain information. But the LiDAR data cannot

obtain the RGB and texture information, and the equipment is

more expensive than others. Oblique photography can acquire

images from multiple angles, and obtain complete and accurate

texture data and spectral features of the forest, which make up for

the shortcomings of other technologies. However, there are still

some obstacles in the study of parameter extraction of Chinese

fir trees by oblique photogrammetry.

1) Accurate measured data are indispensable for verifying

the accuracy of the estimated parameters. However, the

measured data may be inaccurate due to some objective

or subjective factors during data acquisition. In the future,

on the one hand, the data collection process should avoid

these factors to improve the data quality; on the other

hand, terrestrial laser scanning (TLS) data can be used

as supplementary ground data.
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Fig. 17. Crown delineation results of the MCWS and SRG algorithms. (a), (e), (i), (m) Reference crown. (b), (f), (j), (n) MCWS results based on the CHM with
0.1, 0.25, 0.5, and 1 m resolution, respectively. (c), (j), (k), (o) SRG results based on the CHM with 0.1, 0.25, 0.5, and 1 m resolution, respectively. (d), (h), (l), (p)
SRG point cloud based on the CHM with 0.1, 0.25, 0.5, and 1 m resolution, respectively.

2) The CHM used in this research is produced by the oblique

photogrammetry DSM and the LiDAR DTM. Determin-

ing how to improve the accuracy of the LiDAR DTM

and reduce the errors of the DSM to achieve accurate

registration of the two datasets is a problem worth of

further investigation.

3) The 3-D reconstruction algorithm cannot handle weak

texture or the reconstruction problem of absent texture and

highlighted areas. Occlusion between the crowns produces

many shadowed areas, resulting in many abnormal areas

in the 3-D reconstruction process of the study area, which

has a substantial impact on the extraction of individual
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Fig. 18. Tree crown extraction results. The fitted lines are plotted together on the left, and scatter plots of each spatial resolution are shown separately on the
right. (a) MCWS results. (b) SRG results.

tree parameters. In future research, we are committed to

exploring suitable algorithms to extract individual tree

parameters by repairing abnormal areas.

VI. CONCLUSION

In this research, we extracted the structural parameters of

individual trees in Chinese fir plantations by combining UAV-

based oblique photogrammetry images and airborne LiDAR

point cloud data and explored the influence of spatial resolution

on the accuracy of parameter extraction. Then, we proposed an

optimized UAV-based oblique photogrammetry framework for

achieving precise forestry surveys.

1) Using computer vision theory, an incremental SfM algo-

rithm is combined with high-precision control point data to

reconstruct a 3-D point cloud from oblique images. Then, a

DTM derived from LiDAR data was used to normalize the

oblique photogrammetric-measured CHM, and the individual

tree parameters were extracted based on the optimal algorithms.

The result shows that the accuracy of individual tree detection

using the VWF local maximum method at 1 m resolution is

up to 80%. The individual tree height estimates achieved good

accuracy with R2, RMSE, rRMSE, and MAE of 0.82, 0.69 m,

4.3%, and 0.54 m, respectively, when using the 0.5 m resolution

CHM. The crown area extraction is more accurate based on

the 0.25 m resolution CHM using the MCWS algorithm, with

RMSE, rRMSE, MAE, and DA of 2.69 m2, 16.4%, 2.22 m2, and

65%, respectively.

2) By comparing the parameter extraction results for CHMs

with different resolutions, we concluded that spatial resolution

and parameter extraction accuracy are not necessarily positively

correlated, and the optimal resolution of individual tree position,
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tree height, and tree canopy extraction for Chinese fir plan-

tations is 1, 0.5, and 0.25 m, respectively. For UAV oblique

photogrammetry, the spatial resolution of the image is inversely

proportional to the flight altitude, and the flight altitude is the

basis of UAV route design. So, these results are important

for determining flight parameters and provide a guide for the

acquisition of oblique photogrammetry data in the Chinese fir

plantation area.

3) Compared with the traditional remote sensing technology,

the proposed technical framework can provide a more efficient

solution for obtaining precise surveys and monitoring Chinese

fir plantations.
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