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Abstract

Recent functionalmagnetic resonance imaging-based resting-state functional connectivity analyses of group average data have

characterized large-scale systems that represent a high level in the organizational hierarchy of the human brain. These systems

are likely to vary spatially across individuals, even after anatomical alignment, but the characteristics of this variance are

unknown. Here, we characterized large-scale brain systems across two independent datasets of young adults. In these

individuals, we were able to identify brain systems that were similar to those described in the group average, and we observed

that individuals had consistent topological arrangement of the system features present in the group average. However, the size

of system features varied across individuals in systematic ways, such that expansion of one feature of a given system predicted

expansion of other parts of the system. Individual-specific systems also contained unique topological features not present in

group average systems; some of these features were consistent across a minority of individuals. These effects were observed

even after controlling for data quality and for the accuracy of anatomical registration. The variability characterized here has

important implications for cognitive neuroscience investigations, which often assume the functional equivalence of aligned

brain regions across individuals.

Key words: brain systems, fMRI, functional connectivity, individual variability

Introduction

The human cortex is organized into a number of large-scale, spa-

tially distributed systems consisting of multiple interacting cor-

tical areas. These systems can be described in vivo using a

functional magnetic resonance imaging (fMRI)-based technique

known as resting-state functional connectivity (RSFC), which re-

lies on the observation that in the absence of any task, spatially

distant regions of cortex exhibit highly correlated patterns of

blood oxygen level-dependent (BOLD) activity (Biswal et al.

1995); this is posited to at least partly reflect the statistical history

of interactions between regions (Dosenbach et al. 2007). RSFC-

based approaches have consistently identified around 10–17

brain systems that replicate across multiple datasets and ana-

lysis strategies (Power et al. 2011; Yeo et al. 2011) and correspond

with task coactivation patterns (Smith et al. 2009). The spatial

characterization of these systems has enabled the identification

of plausible links between brain organization and cognitive func-

tion (Dosenbach et al. 2007; Laird et al. 2011).

However, these previous descriptions of cortical systemshave

been derived from data averaged across many individuals. While

RSFC correlation patterns calculated in single individuals are

broadly reliable across people (Shehzad et al. 2009), some degree

of interindividual variability can nonetheless be observed in

these patterns (Mueller et al. 2013). Furthermore, recent work
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has shown how the locations of cortical areas—which are be-

lieved to subdivide large-scale brain systems (Sejnowski and

Churchland 1989)—can vary substantially across individuals

(Amunts et al. 2000; Caspers et al. 2006, 2008; Malikovic et al.

2007), even after precise surface-based anatomical alignment

(Fischl et al. 2008; Van Essen et al. 2012). It is likely that such vari-

ability might also be present in the system-level organization of

individual brains, as recent findings have suggested (Harrison

et al. 2015), though this variability has not been comprehensively

described. Such variability could be an important consideration

for system-based RSFC analyses that test for differences in

node-to-node connectivity strength across individuals.

We have recently described the system-level organization of a

single highly sampled human subject (Laumann et al. 2015),

which helps identify the types of individual variability in cortical

systems thatmay be present in a population. Several notable fea-

tures can be observed by comparing this individual’s systemmap

with a group-level system map [Fig. 1, modified from Laumann

et al. (2015)]. First, the individual’s map contains almost all of

the same systems as the groupmap. Second, the discrete, discon-

tiguous patches of each system, hereafter referred to as “system

patches,” observed in the group are generally also present in the

individual. Third, some system patches in the individual are lar-

ger or smaller than equivalent patches in the group. Fourth, the

individual has a number of small system patches that cannot

bematched to anything in the groupmap. Instead, these patches

appear to be connected to “alternate” systems, compared with

the systems present at that location in the group map. For ex-

ample, the individual’s map has a Cingulo-opercular patch in

left anterior inferior frontal gyrus (Fig. 1, green arrow); nothing

similar exists in the group map. Taken together, these observa-

tions suggest that while the group-level systems correspond

well with brain systems defined in the individual, the individ-

ual-specific systems also contain distinct features that may be

important for interpreting system-level analyses of individuals.

Ultimately, it is difficult to draw definitive conclusions about

individual variability from the study of a single individual. Thus,

in the present study, we characterized individual variability in

RSFC systems across two independent groups of healthy adults.

We applied a template-matching procedure to identify brain sys-

tems in individuals. Following our previous observations of a sin-

gle subject’s brain system (Laumann et al. 2015), we examined

the degree to which individuals’ brain systems (1) had similar

topologies to group-level systems; (2) had variability in the sizes

of system patches; and (3) had regions that were consistently

identified across a substantial minority of subjects as connected

to “alternate” systems, relative to the group average.

Methods

We acquired two independent resting-state fMRI datasets: Data-

set 1, a large group of healthy young adults thatwe used to create

system templates and to investigate patterns of system variabil-

ity (n = 120); and Dataset 2, a second large group of healthy young

adults that we used to replicate findings from Dataset 1 (n = 108).

Details of the data acquisition, preprocessing, functional con-

nectivity processing, and surface creation and mapping proce-

dures follow closely the procedures described in Gordon et al.

(2014) and can be found in Supplementary Material.

Group Average System Map

The group average system map we used has been previously

described (Laumann et al. 2015) and can be seen in the top

panel of Figure 1. Briefly, the group average full connectivityma-

trix was calculated for Dataset 1 by correlating the timecourses

of every (cortical and subcortical) gray matter point with every

other gray matter point, applying the Fisher z-transformation

to the resulting correlation matrix, and averaging these matri-

ces across subjects. This resulted in a 66 697 × 66 697 group

average connectivitymatrix. We then applied the Infomap algo-

rithm for community detection in graphs to the resultingmatrix

(Rosvall and Bergstrom 2008), removing connections within

20 mm of each other. System assignments were computed at

a range of correlation thresholds selected for specific edge

sparseness. Systems with 400 or fewer gray matter points were

Figure 1. The system-level organization of a single subject (bottom) is similar to the organization of a group average (top), with almost all of the same systems present in

the same general configuration. However, the patches of the individual’s systems are variously expanded and contracted, as well as physically shifted along the cortex

relative to the group average systems. Furthermore, the individual’s systemmap has numerous small topological features not present in the group average (for example, a

patch of the Cingulo-opercular system in anterior inferior frontal gyrus; see green arrow). Adapted from Laumann et al. (2015).
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considered unassigned and eliminated from consideration. A

“consensus” assignment was then derived by collapsing across

thresholds (Gordon et al. 2014). We then removed from consid-

eration: (1) small communities that were only present at a single

threshold, (2) communities that did not appear to correspond to

brain systems described in previous work (Smith et al. 2009;

Power et al. 2011; Yeo et al. 2011), and (3) subcortical voxels,

which do not tend to robustly sort into systems unless specia-

lized methods are employed (Zhang et al. 2008; Buckner et al.

2011; Greene et al. 2014).

Template Matching for System Identification in
Individual Subjects

In principle, system identification could be conducted in individ-

ual subjects by applying an unsupervised clustering or commu-

nity detection procedure to single-subject correlation matrices,

such as the Infomap procedure described above [as in Laumann

et al. (2015)]. However, herewe are testing the presence and local-

ization of known brain systems in individuals, rather than at-

tempting the data-driven discovery of unknown systems. Thus,

we have developed a procedure to identify systems in individual

subjects using previously described group average systems as

priors for a template-matching procedure.

To derive a connectivity template for each system in the group

average system map, we calculated the average timecourse

across cortical vertices within that entire system for each subject.

Then, we correlated that timecourse against all other graymatter

timecourses to obtain a system connectivity map. We then ap-

plied the Fisher z-transformation and averaged these maps

across subjects for each system (see Supplementary Fig. 1 for sys-

tem connectivity maps). Finally, we thresholded and binarized

each of these averaged maps at the top 5% of connectivity

strengths (as calculated across systems), which was Z(r)≥ 0.383.

This binarization was done because a brain region’s network

membership is most typically identified based on the regions

with which it has strong positive connections [in line with

graph theory-based approaches, as reviewed in Bullmore and

Sporns (2009) and Sporns (2014)]. These binarized maps serve

as templates for individual subject matching.

Tomatch each cortical vertex in each subject to a template,we

first correlated the vertex’s timecourse with all other graymatter

timecourses in that subject’s data, Fisher z-transformed the re-

sulting connectivity map, and then thresholded and binarized

the resulting map at the top 5% of connectivity values (as calcu-

lated across vertices). This resulted in a binarized map of regions

with high connectivity to the chosen cortical vertex.We then cal-

culated the Dice coefficient of overlap between the binarized ver-

tex connectivity map and each binarized template map,

excluding from the calculation all vertices within 20 mm geodes-

ic distance from the selected vertex, in order to prevent matches

from being driven by purely local connectivity (Power et al. 2011).

The template with the highest overlap was judged to be the best

match, and that template’s system identity was assigned to that

vertex in that subject.

Finally, contiguous surface patches of a given system identity

that were smaller than 100 mm2 were removed, as such patches

are smaller than the approximate effective resolution of our data

(originally 4 mm isotropic voxels, smoothed 6-mm full-width at

half-maximum on the cortical surface). Neighboring system

identities were “grown” into the removed regions one vertex at

a time until the region was filled. See Supplementary Figure 2

for individual systemmaps resulting from the template-matching

procedure.

Matching Group-Level System Patches to Subject-Level
System Patches

The discrete pieces of subject-level system maps (“system

patches”) can be expected to vary across subjects, both in their

position on the cortical surface and in their size (Frost and Goebel

2012). However, despite this variance, these system patches can

visually be compared between an individual and the group

based on their spatial position and overall shape. To directly

compare subject-level system maps with the group-level system

map, we developed an automated procedure to match the

patches of the subject- and group-level systems in a way that is

robust to slight displacements thatwould be expected by individ-

ual variability.

We first identified discrete system patches of at least 100 mm2

in the group systemmap. For each of these group systempatches,

we then matched the most similar system patch in each individ-

ual subject. This matching was performed by attempting to min-

imize the total geodesic distance from all vertices in the group

patch to the closest vertex in each candidate individual patch

with the same system identity. Overlapping points would thus

have distances of zero, whereas points that did not overlap the

template would have increasing distances, depending on their

proximity to the group patch. This distance-based approach

thus indexes the spatial similarity between two local, binarized

maps by testing for proximity rather than overlap.

We conducted patch-to-patch matching that minimized this

distance metric by using a variant of the classic Hungarian as-

signment algorithm (Bourgeois and Lassalle 1971) that allows

many-to-one assignments (Dondeti and Emmons 1996), because

individual subject patches were sometimes spatially discontinu-

ous (e.g., the medial patches of the Cingulo-opercular system in

Fig. 2A). Matches with a mean distance greater than 20 mm

were disallowed. Figure 2A shows examples of individual subject

system patches that were matched to group patches.

Assessment of Variance in System Patch Sizes

To assess how variable the sizes of system patches were, we cal-

culated the surface area of each subject-level system patch as a

percentage of the surface area of the group-level matched

patch (this normalization prevents observed variance being dri-

ven primarily by patch size). For each group-level patch, we

then calculated the standard deviation across subjects of the

matched subject-level patch sizes, including only subjects who

had a patch matching that group-level patch. This analysis was

conducted for Datasets 1 and 2 separately.

We then testedwhether therewere interdependencies among

the observed patch size variability, such that knowing the size of

one system patch could predict something about the sizes of

other patches. For this analysis, we first combined Datasets

1 and 2, and then, for each pair of group-level system patches,

we correlated the sizes of the matched subject-level patches

against each other, restricting the analysis to all subjects

who had successful matches for both patches. We Bonferroni-

corrected the observed P-values from these correlations for

multiple comparisons.

Finally, to determine whether any observed interdepen-

dencies between system patch sizes were related to the net-

work structure of the systems, we tested whether size

interdependencies were related to the connectivity strengths

between those system patches. For each subject, we calculated

the connectivities between all successfully matched system

patches as the Fisher z-transformed correlations between
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the patches’ average timecourses; we averaged these con-

nectivity strengths across subjects to create a group average

connectivity matrix. We then tested whether the average

connectivity strengths predicted patch size relationships by

correlating the values in the (Fisher z-transformed) patch size

correlation matrix against the values in the group average con-

nectivity matrix, separately for within- and between-system

relationships.

Figure 2. (A) Examples of matches between group-level system patches (left column) and system patches in 4 individual subjects (right columns). From top to bottom are

displayed matched patches in Default, Fronto-parietal, Cingulo-opercular, Medial Parietal, and Ventral Attention systems. (B) Most group average system patches are

present in the vast majority of subjects. Group average system patches (see Fig. 1 for systems) are demarcated by black outlines and are colored according to the

number of subjects in Dataset 1 (left) and Dataset 2 (right) who had a matching system patch. Orange–red colors indicate that greater than 95% of subjects had a

matching patch. (C) Variance in sizes of subject-level system patches, relative to the group-level system patches, was largest in relatively small patches and lowest in

primary visual and motor regions. For Dataset 1 (left) and Dataset 2 (right), group-level systems are demarcated by black outlines and are colored according to the

standard deviation of the patch sizes, expressed as a percent of the group-level patch sizes. Green and hotter colors indicate that the patch’s size variance was greater

than 30% of the group patch size.
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Identification of Regions with Variable System
Identities Across Subjects

We conducted several analyses to investigate the intersubject

variability of the system identities found at each cortical vertex.

First, we identified the modal system identity across subjects at

each cortical vertex. We then tested whether some vertices had

an “alternate” system identity (i.e., a different identity from the

one present at that vertex in the group-level system map), and

whether that alternate identity was shared across a substantial

minority of subjects. In particular, we tested whether the second

most common system identity was present in at least 10%, 15%,

20%, 25%, 30%, 35%, and 40% of subjects. This analysis was

conducted for Datasets 1 and 2 separately. As results from the

two datasets were very similar (see Supplementary Fig. 4), they

were combined for subsequent analyses to increase power.

Identification and Characterization of Regions with
Variable System Identities Across Subjects

Results from the previous analysis indicated that the majority of

intersubject variability in system identity occurred very near sys-

tem borders, suggesting variability in the location of these sys-

tems on the cortical sheet. However, variability in system

identity was also observed in a few regions that were not near

system borders. In other words, for some subjects, a region in

the middle of a group average system patch had a different sys-

tem identity, similar to our previous observations (Laumann

et al. 2015). Such system variability in these regions cannot easily

be attributed to simple displacement of system patches along the

cortical surface (due to, e.g., mis-registration, or to anatomical

variability in the location of cortical areas relative to cortical fea-

tures used for registration), as they are too far away fromother re-

gions in the system.

We identified these variable regions as contiguous patches of

cortical vertices that (1) had a substantial number of subjects

with the same “alternate” system identity (i.e., not the identity

of the group system at that vertex), and (2) were at least 8 mm

away from the nearest border of that alternate system in the

group system map (so that, e.g., a variable region representing

theDefault systemcould be near a Fronto-parietal/Ventral Atten-

tion system border, as long as it was far from any Default system

borders). We then eliminated patches of variable cortical vertices

that (1) did not span at least 100 mm2 of cortex, (2) appeared to

trace the contours of the nearest system border (likely reflecting

border variability that extended beyond 8 mm), and (3)were in re-

gions known to have low signal-to-noise (SNR) ratios [defined as

regions with mean BOLD signal <750, consisting primarily of or-

bitofrontal cortex and anterior temporal lobe; see Ojemann et al.

(1997) andWig et al. (2014)].We stress thatmanyof the parameter

choices here are relatively arbitrary (e.g., the number of subjects

with alternate systems; the size of variable regions; and the dis-

tance from system borders). These parameters were chosen be-

cause they identify a relatively small number of the most

variable regions, but they could be adjusted to identify more,

smaller regions with fewer variable subjects. Accordingly, we

do not claim to have precisely characterized all brain systems

in all subjects, but rather to have provided a reasonable and con-

servative description of particularly variable regions.

To test whether the identification of an “alternate” system in

each region reflects meaningful differences in connectivity pat-

terns, we characterized each subject as either having the alter-

nate system identity in that region, or not having the alternate

system. This characterization was done by calculating whether

at least 50% of the region’s surface area in the subject’s system

map contained the alternate system identity. We then compared

subjects with alternate system connectivities against those with

common system connectivities in two different ways.

First, we examined whether the “alternate” system identified

in the variable regions reflected a categorical distinction in the

patterns of correlation observed in different subjects [e.g., as sug-

gested by Laumann et al. (2015), Fig. 7] or a continuous gradation

in correlation patterns [perhaps reflecting regions participating

in multiple systems, as suggested by Yeo et al. (2014)]. We rea-

soned that if different subjects had categorically different sys-

tems in the region, the subjects’ system-level connectivities

would be distributed in a bimodal pattern. On the other hand, if

the variability was related to mixed signals from multiple sys-

tems, connectivity would be distributed in a unimodal pattern.

For each subject, in each variable region, we calculated the

mean timecourse of all the vertices in the region with the alter-

nate identity (if the subject was classified as having the alternate

system in the region) or the common identity (if the subject was

classified as having the common identity). We then correlated

this timecourse against the mean timecourse of the remaining

regions of the brain with the common identity, as well as against

the mean timecourse of the remaining regions of the brain with

the alternate identity. These correlation values were then Fisher

z-transformed. This procedure produced the connectivity

strength between the variable region and the common system

for each subject, as well as between the variable region and the

alternate system. The difference between these two values in a

given subject reflects how closely the variable region is asso-

ciated with the common system versus the alternate system.

Thus, we examined the distributions of these connectivity differ-

ences for evidence of bimodality, suggesting a categorical as op-

posed to a continuous distinction of these systems in the variable

region across subjects.

Second, we examined the effect of multiple system represen-

tation on connectivity patterns seeded from the variable regions

as awhole.We calculated the region’s connectivitymaps for each

subject by correlating the average timecourse of thewhole region

against the timecourses of every other cortical vertex and ap-

plying the Fisher z-transformation. The connectivity maps

from subjects with the alternate identity were compared with

the maps from subjects with the common identity using a two-

sample t-test. Results were corrected for multiple comparisons

(including the number of regions tested) by employing a two-

dimensional surface-based version of the approach described

by Nichols and Holmes (2002) and Hayasaka and Nichols (2004),

in which group labels of subject connectivity maps are permuted

and the maps are entered into t-tests to generate a null distribu-

tion of variously sized patches. This approach established the

correction threshold at T > 3.85, with the cluster extent threshold

varying between 42.2 and 45.0 mm2 for the various regions

tested; this corresponded to an overall corrected level of P < 0.05.

We note that this analysis does not represent the testing of an in-

dependent hypothesis, but rather is used to validate that differ-

ences observed in template-matched systems actually reflect

reliably different connectivity patterns.

Controlling for Inadequate Surface Registration
and Data Quality

It is possible that observed variability in system identitymight be

driven at least in part by inadequate registration of cortical sur-

faces. The surface registration procedure registers individual sub-

jects to a template that has substantially less anatomical detail

390 2017, Vol. 27, No. 1| Cerebral Cortex
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than the individuals; as a result, many gyral and sulcal features

in a given individualmaynot be preciselymatchedwith anything

on the template. This could reduce intersubject agreement in re-

gions with poor registration of features. Furthermore, connectiv-

ity estimates could be affected by the amount each surface point

had to be deformed to match the template. For each subject, we

assessed feature alignment at each vertex in three ways: (1) by

calculating the absolute difference between the subject’s regis-

tered cortical curvature map and the template curvature map;

(2) by calculating the absolute difference between the subject’s

registered sulcal depth map and the template sulcal depth

map; and (3) by calculating the amount that the surface repre-

sented by each vertex was distorted in the registration process

(the “areal distortion” of the vertex).

Similarly, it is possible that variability in system identities

might be driven in part by reduced data quality, which could

introduce noise that would reduce the accuracy of the tem-

plate-matching procedure. The precision of connectivity esti-

mates may be reduced for a number of reasons, including

insufficient data (Anderson et al. 2011; Laumann et al. 2015);

the existence of artifacts driven by small residual motion effects

that may still exist in the data even after scrubbing frames with

head motion (Power et al. 2014); or low SNR in a given brain re-

gion. Thus, for each subject, we assessed data quality in three

ways: (1) by counting the number of frames remaining after

scrubbing; (2) by calculating the mean frame-wise displacement

(FD; a summary measure of frame-to-frame motion) in the

frames remaining after scrubbing; and (3) by calculating the tem-

poral SNR ratio in each vertex as the mean of the BOLD signal

across timepoints divided by the standard deviation of that

signal.

We combined Datasets 1 and 2 and performed a series of tests

to determinewhether any of these 6 possible confound variables

—(1) curvature mis-alignment, (2) sulcal depth mis-alignment,

(3) areal distortion, (4) number of frames, (5) mean FD, and (6)

SNR ratio—affected the system variability we are measuring.

First, for each group-level patch, we conducted amultiple regres-

sion across subjects to determine whether any of the 6 confound

variables predicted the size of the patch. Significant effects of

each variablewere corrected for the number of regions tested. Se-

cond, we tested whether these confound variables affected the

identification of variable regions far from system borders. We

conducted a similar multiple regression across subjects testing

whether the percent of each variable region assigned to an “alter-

nate” system identity was predicted by the 6 confound variables

(averaging vertex-wise values within each variable region to get a

single value for each region). Third, we tested whether the ob-

served patch size interdependencies were maintained following

confound variable regression. Fourth, we testedwhether the con-

found variables drove any observed differences in connectivity

maps of the variable regions between subjects with and without

the alternate system identity. For each region’s connectivity map

in each subject, we regressed out the confound variables in a ver-

tex-wise fashion, andwe repeated the two-sample t-tests of RSFC

maps described above.

Results

Topological Similarity of Individual Systems
to Group-Level Systems

We examined the general topological similarity between the

group systemmapand the individual systemmaps by calculating

the percentage of subjectswhohad a patchmatching each group-

level patch. We observed that the majority of group-level system

patches were identifiable in almost every subject, in both data-

sets (Fig. 2B). In Dataset 1, 49 of 68 group-level patches (72.1%)

were identified in at least 95% of individual subjects. These com-

mon system patches tended to be relatively large, and together

covered 94.0% of the portion of the cortical surface that had

group-level system identities. Similarly, in Dataset 2, 56 of

68 group-level patches (82.4%) were identified in at least 95% of

individual subjects, covering 95.9% of the cortical surface with

group-level systems. These results indicate that the majority of

group-level system patches, covering a very large percentage of

cortex, tend to be present in almost every individual, suggesting

strong topological similarities between individuals and the

group-level systems (though, notably, these matched patches

did not have identical sizes, shapes, or positions across indivi-

duals; see below). Across both datasets, small patches appeared

to be identified less frequently, possibly because some subjects

had versions of these patches smaller than the minimum size

threshold set in our analysis.

Variance of System Patch Sizes

We examined how variable the size of each system patch was

across individuals. Figure 2C shows the standard deviation of

patch sizes across subjects (expressed as a percentage of the

group average patch size). In both datasets, we observed high

size variance in small patches and in patches near low-SNR re-

gions. Among larger patches, moderate variance was observed

in lateral prefrontal, lateral parietal, lateral temporal, andmedial

prefrontal cortex. Lowest size variance was observed in the oc-

cipital Visual system patch, the Dorsal and Ventral Somatomotor

system patches, and the posterior medial Default system patch.

Interdependence of System Patch Sizes

Given that there is variability in the sizes of system patches, a

natural question follows: does knowing the size of one system

patch predict something about the sizes of other patches? For ex-

ample, do system patches expand randomly and independently,

or do all of the patches of a given system expand together? Do

particular patches or systems compete with one another for cor-

tical real estate, such that expansion of one predicts contraction

of another?

We examined relationships between system patch sizes and

found 91 significant correlations between patch sizes at P < 0.05,

Bonferroni-corrected for multiple comparisons (Fig. 3A). The

majority of these significant relationships (67.0%) were positive.

Notably, every single positive relationship was between patches

within the same system, whereas every single negative relation-

shipwas between patches in different systems. Thewithin-system

positive relationships suggest that coordinated expansion occurs

within a given system, independent of expansion in other sys-

tems (see Fig. 3B for an example). Furthermore, these relation-

ships were observed to be more robust in systems with stronger

within-network connectivity (see Supplementary Fig. 3).

In contrast, the between-system negative relationships

suggest that some systems expand into specific cortical regions

usually represented byother systems (see Fig. 3C for an example).

Broadly, these negative relationships tended to be stronger

between systems that have stronger cross-network connectivity

(see Supplementary Fig. 3); furthermore, the most significant

negative relationships were between patches that were physi-

cally adjacent, such as between Visual and Dorsal Attention

systems (which are adjacent in the lateral occipital lobe), and

391Variability of Human Brain Systems Gordon et al. |

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
7
/1

/3
8
6
/3

0
5
6
2
3
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv239/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv239/-/DC1


between Dorsal and Ventral Motor systems (adjacent in the

central sulcus).

Most Common System Identity at Each Cortical Vertex

Across subjects, themap of the systemmost commonly observed

at each vertexwas highly similar to the community detection-de-

rived template map, in both Datasets 1 and 2 (Fig. 4A), indicating

that the template-matching approach accurately recapitulates

the template. We further calculated the number of subjects

with the mode template identity at each cortical vertex. In both

datasets, we observed large expanses of the cortex where greater

than 90% of subjects had the same system identity (Fig. 4B). Re-

gions with more variable system identities primarily appeared

at the borders between systems.

Cortical Regions with Consistent, Alternate System
Identities Across Subjects

We identified cortical vertices in which a significant percentage

of subjects had the same “alternate” system identity (i.e., differ-

ent from the group-level system identity at that vertex), and we

varied that threshold from 10% to 40% of subjects (see Supple-

mentary Fig. 4). The resulting maps of alternate system identity

were very similar for both Datasets 1 and 2; as a result, we com-

bined the two datasets for subsequent analyses.

We observed that most of the regions with consistent, alter-

nate systems present in some subjects were very near system

borders. This can be most easily observed in the map requiring

at least 20% of subjects to have an alternate identity (Fig. 5A,

left). In total, 85.2% of the cortical surface area in which alternate

connections were present in this map was within 8 mm of a bor-

der between group-level systems. Furthermore, the presence of

alternate systems near the border between two given systems

was generally due to many subjects having the “other” system

at each point (e.g., a point near a Default/Cingulo-opercular bor-

der that is part of the Default system inmost subjects, but that is

Cingulo-opercular in a minority). In other words, this was driven

by shifts in the borders between systems in individual subjects.

However, we also observed a few regions that had alternate

connections in a largeminority of subjects, butwere not near sys-

tem borders. The alternate connections in these regions cannot

easily be explained by shifts in borders. To examine this phe-

nomenon, we identified regions in the 20% map in which every

point was at least 8 mm from the borders of the group-level sys-

tem map and which had a surface area of at least 100 mm2. We

found 14 regions thatmet these criteria; see Figure 5B and Table 1

for a complete description of these variable regions.

Figure 3. The sizes of system patches are correlated across subjects, such that system patches within networks tend to be expanded/contracted together, relative to the

group-level patches, whereas patches in different networks can expand/contract in opposite directions. (A) Matrix indicating cross-correlations between the sizes of all

system patches, correlated across subjects. Patches are sorted by system membership (Fig. 1). Hot colors indicate positive correlations, which occur exclusively within

systems, whereas cool colors indicate negative correlations, which occur exclusively between systems. Black indicates that the correlation did not achieve significance

at P < 0.05 after Bonferroni correction. (B) Examples of coordinated expansion of the Cingulo-opercular system. From top to bottom, 3 subjects with, respectively, a small

system across all patches, a medium-sized system, and a large system. (C) Examples of negative relationships between patch sizes. From top to bottom, three subjects

with, respectively, a large Dorsal but a small Ventral Somatomotor system; two moderately-sized systems; and a small Dorsal but a large Ventral Somatomotor system.
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To evaluate whether these regions represent truly distinct

systems, we characterized the distribution of connectivity to

common versus alternate systems. For the majority of regions,

the distributions of connectivity differences suggest a bimodal

distribution (see Supplementary Fig. 5), though in some regions

the distributions are not well enough separated to make this un-

ambiguously clear. This result suggests a categorical rather than

a continuous connectivity difference between vertices with dif-

ferent system identities.

Finally, to evaluate whether, across subjects, the presence of

varying systems in these variable regions affected region-seeded

connectivity patterns, we compared the connectivity patterns of

these regions in subjects with the alternate identity against those

in subjects without the alternate identity. For each region, we

Figure 4.Mode system identities recapitulate the original group average systemmap, and in some cortical regions arepresent in large proportions of subjects. (A) Themost

common system identity at each vertex, inDataset 1 (left) andDataset 2 (right). (B) At each vertex, the percentage of subjectswhohad themost common system identity, in

Dataset 1 (left) and Dataset 2 (right). Red coloring indicates that greater than 90% of subjects had the mode system identity.

Figure 5.Most regions with consistent alternate system identities in at least 20% of subjects are primarily near group average system borders, but some are far from those

borders. (A) Striped colors indicate all vertices where at least 20% of subjects in the combined dataset (Datasets 1 and 2) had the same alternate system identity, with one

color in the stripes representing the modal identity and the others representing alternate identities. (B) Striped colors indicate regions of at least 100 mm2 that had

consistent alternate system identities in at least 20% of subjects (as in the left panel) and that were also at least 8 mm from the borders of that group average

alternate system. Fourteen such regions (outlined in black) can be observed (see Table 1 for details).
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observed large and reliable connectivity differences between

subjects with substantial alternate-network vertices in the re-

gion and subjects without; these differences invariably con-

formed with the putative system differences identified by the

template-matching procedure (see Fig. 6 for effects seeded from

example regions; see Supplementary Fig. 6 for all regions). This

result indicates that these regions, which are far from average

system borders, are connected with different large-scale systems

in different individuals.

Effect of Inadequate Surface Registration and Data
Quality on System Variability Estimates

We used multiple regressions to test whether a variety of con-

found variables (including inadequate registration of cortical fea-

tures such as sulcal depth and curvature, amount of distortion

induced by the registration procedure, amount of data remaining

after motion scrubbing, mean FD of retained data, and SNR ratio

of retained data) influences estimates of patch sizes or regions

with multiple system identities across subjects. We found that

the sizes of a number of regions were influenced by these con-

found variables. The sizes of multiple large patches in Default,

Fronto-parietal, and Cingulo-opercular systems were predicted

by the confound variables at P < 0.05 uncorrected (Fig. 7A, top

row). Additionally, at P < 0.05 corrected, the amount of data re-

tained predicted the sizes of two Default patches in lateral tem-

poral cortex (near low-SNR regions); sulcal depth mis-alignment

predicted the size of one small superior frontal Dorsal Attention

patch; and areal distortion predicted the size of one small lateral

temporal Dorsal Attention patch. However, none of these mul-

tiple regressions explained as much as 10% of variance in the

size of any system patch (Fig. 7B, top).

We further observed that after regressing out the confound

variables, 94.5% of significant relationships between patch sizes

remained significant after correction and in the same direction

(see Supplementary Fig. 7A), suggesting that the observed inter-

dependencies were not driven by known registration or data

quality effects.

We also found that the percent of the variable region identi-

fied as an “alternate” system was influenced by mean FD in the

left inferior frontal gyrus at P < 0.05 uncorrected and in the left

ventromedial prefrontal cortex at P < 0.05 corrected; by the

amount of areal distortion in the left anterior superior frontal

gyrus at P < 0.05 uncorrected; and by SNR in the leftmiddle frontal

gyrus at P < 0.05 uncorrected (Fig. 7A, bottom row). Of all regions,

the regression explained greater than 10% of the variance only in

the left ventromedial prefrontal region (adjusted R2 = 0.15; Fig. 7B,

bottom).

Finally, we observed that after regressing the confound vari-

ables out of subject-level connectivity maps seeded from these

regions, we still observed large and highly significant connectiv-

ity differences between subjects with alternate-network identity

in the region and subjects without; these effects were almost

identical to the effects observed before the confound variable re-

gression (see Supplementary Fig. 7B).

Discussion

Large-Scale Brain Systems Vary Across Individuals

In this work, we investigated the individual variability of large-

scale brain systems in two large, independent groups of healthy

adults. We described several notable findings resulting from

these analyses. First, we showed that the majority of group-

level system patches, covering a very large percentage of the cor-

tex, were observed in at least 95% of individual subjects. This sug-

gests that the group system map provides a valid description of

the system topology that is common across individuals. While

the smaller group system patches were somewhat less reliably

present across subjects, we believe this is likely due to the low ef-

fective resolution of the data (and our resulting methodological

choice to remove small patches in individual system maps), pre-

venting us from reliably measuring small features in individuals.

Second, we observed that the sizes of the discrete system

patches could vary across individuals, withmany patches having

a standard deviation of over 30% of the group-level patch size.

This agrees with previous work describing substantial individual

variability in the sizes of cytoarchitectonically defined cortical

areas (Van Essen et al. 2012). Of course, the system patches mea-

sured here do not strictly correspond to architectonically defined

cortical areas. However, cortical areas in general, as defined via a

combination of architectonic anatomy, connectivity, and func-

tion (Felleman and Van Essen 1991), are believed to be the dis-

crete units of the cortex which interact to form the large-scale

systems identified here (Sejnowski and Churchland 1989), and

Table 1 Cortical regions >8 mm from system borders that had variable system identities across individuals

Region

number

Group-level system

identity

Alternate system

identity

Location Centroid

coordinates

(MNI)

Size

(mm2)

Subjects with >50%

alternate system

identity (%)

1 Default Fronto-parietal Left superior frontal gyrus −22 17 50 184 23.7

2 Default Fronto-parietal Right superior frontal gyrus 24 10 49 259 18.9

3 Default Fronto-parietal Left anterior inferior frontal sulcus −22 58 3 120 16.2

4 Default Ventral Attention Left anterior superior frontal gyrus −4 56 34 149 17.5

5 Default Salience Left ventromedial prefrontal cortex −9 48 1 195 20.6

6 Visual Dorsal Attention Left lateral occipital lobe −39 −78 11 649 17.1

7 Visual Dorsal Attention Right lateral occipital lobe 40 −76 8 1014 21.1

8 Fronto-parietal Ventral Attention Left posterior inferior frontal sulcus −38 13 25 126 21.5

9 Fronto-parietal Ventral attention Right posterior middle frontal gyrus 42 5 44 152 20.2

10 Fronto-parietal Ventral Attention Right posterior inferior frontal sulcus 38 17 25 208 18.4

11 Fronto-parietal Cingulo-opercular Right anterior middle frontal gyrus 39 44 14 193 19.7

12 Dorsal Attention Visual Right superior parietal lobule 26 −55 53 187 27.2

13 Ventral Attention Default Left inferior frontal gyrus −52 24 8 324 20.2

14 Ventral Attention Default Right inferior frontal gyrus 55 26 10 120 22.8
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Figure 7. Estimates of variability in subject-level systems are significantly affected by confound variables, but these variables explain a lowpercent of variance. (A)Multiple

regressions reveal significant effects of 6 possible confound variables (columns) on patch size (top row) and the percent surface areas of region that were assigned to an

alternate system identity (bottom row). Red indicates significance at P < 0.05 uncorrected; yellow indicates significance at P < 0.05 Bonferroni-corrected for multiple

comparisons. Regressions were only calculated for a priori regions (group system patches in the top row; variable regions in the bottom row). (B) The percent of the

total variance in the size of each patch (top) and the percent surface area assigned to an alternate system (bottom) explained by the confound variable regressions.

The confound variables explained >10% of the total variance in only one region.

Figure 6. Connectivity patterns seeded from regions with “alternate” system identities differ between subjects who had the common system in the region and subjects

who had the alternate system. Column 1 (leftmost): Visual representation of the region. Column 2: Identity of most common (modal) system. Column 3: Identity of the

alternate systempresent at eachvertex in at least 20%of subjects. Column4: Average connectivity pattern seeded from the region for subjectswhohad <50%of the vertices

in the region identified as the alternate system. Column 5: Average connectivity pattern seeded from the region for subjects who had >50% of the vertices in the region

identified as the alternate system. Column 6: Vertex-wise two-sample t-test illustrating differential connectivity between subjects with the common system (hot colors)

and subjects with the alternate system (cool colors), thresholded at P < 0.05 corrected for multiple comparisons. See Supplementary Figure 6 for additional regions.
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thus the system patches may be presumed to vary in similar

ways. Indeed, it appears that many of the regions of greatest sys-

tem variability in the present work (e.g., posterior inferior frontal

gyrus and inferior frontal sulcus; anterior inferior parietal lobule;

and posterior lateral temporal cortex; Fig 5A) correspond with

cytoarchitectonically defined cortical areas shown to have par-

ticularly large individual variability in size and position (respect-

ively, BA44, Fischl et al. 2008; the opercular subdivision of

anterior inferior parietal lobule, Caspers et al. 2008; human

occipital cortex area 5, Malikovic et al. 2007).

Third, we observed that individual subjects have areas of cor-

tex with “alternate” system identities compared with the group-

level systempresent in the same region (see Supplementary Fig. 2

for examples). These regions of alternate system identity were

most often observed near the borders of the group-level systems

(Figs 4B and 5A). Furthermore, the alternate systems present near

these borderswere consistent across subjects and appeared to re-

flect intersubject variability in the position of the border, suggest-

ing that the boundaries of individual-level systems could be

variably translated along the cortical sheet. This observation of

intersubject variability in the location of functionally similar

units agrees with previous work, demonstrating that the loca-

tions of functional responses can vary along the cortical surface

across individuals, even after the subjects’ cortical surfaces were

aligned using a registration procedure similar to the one

employed in the present work (Frost and Goebel 2012).

Fourth, we observed several regions far from system borders

that had consistent, alternate system identities across subjects.

In at least 20% of subjects, we observed (1) Ventral Attention

patches in the posterior lateral prefrontal cortex and left anterior

dorsomedial prefrontal cortex; (2) a Dorsal Attention patch in the

lateral occipital cortex; (3) a Salience patch in the ventromedial

prefrontal cortex; and (4) a Default patch in the inferior frontal

gyrus, among others (Fig. 5B and Table 1). This finding may

help explain some of the apparent inconsistencies in previous

descriptions of the brain’s group average system organization.

For example, the systems previously described using two different

approaches (Power et al. 2011; Yeo et al. 2011) are mostly conver-

gent, but dodemonstrate somedivergence. In the 17-systemparcel-

lation described by Yeo et al. (2011), there is a system similar to the

Dorsal Attention system identified in Power et al. (2011) and here,

except that it also extends substantially into lateral occipital cortex.

Similarly, the parcellation in Yeo et al. (2011) describes a system

much like the Ventral Attention system described here, except

that it also extends some distance into the anterior dorsomedial

prefrontal cortex. Notably, these two features coincidewith regions

described as having alternate connectivity patterns in aminority of

individuals in the present work (examples 1 and 2 above). We

speculate that the subject sample characterized in Yeo et al.

(2011) may have had a higher proportion of subjects with those al-

ternate connectivity patterns than the sample used here, allowing

those features to emerge in the group average.

Taken together, these results may help contextualize previ-

ous findings showing that, in group average data, various regions

demonstrated reduced system segregation, such that they parti-

cipated inmultiple networks (Yeo et al. 2014). Like the present re-

sults, these regionswere primarily near systemborders, but a few

were far from such borders. The present results suggest that

these regions of reduced segregation may actually be driven by

variability in the systems present across subjects; when aver-

aged, these multiple systems would appear to have aspects of

each system, and would thus appear less segregated. It is not

clear whether reduced system segregation of the type described

by Yeo et al. (2014) would be observable in individuals.

Findings Expand Previous Work Describing Individual
Variability in RSFC Patterns

This work validates and extends several previous observations

about how the systems observed in a single, highly sampled sub-

ject differed from those observed froma group average (Laumann

et al. 2015; Fig. 1). That work indicated that the single subject had

systems that (1) included almost all of the discrete patches ob-

served in the group systems, (2) were variously enlarged or re-

duced relative to the group systems, (3) had system borders that

were sometimes translated along the cortical sheet relative to the

group systems, and (4) contained unusual topological features—

small patches of an “alternate” system embedded inside large

system patches—that were not observed in the group system

map. These findings have now been fully replicated in the pre-

sent work.

This work also extends previous work describing cross-sub-

ject variability in RSFC, which found high variability in lateral

frontal cortex, occipito-temporal cortex, and temporal–parietal

junction (Mueller et al. 2013; Laumann et al. 2015). The present

work generally replicates those findings, while providing add-

itional specificity and descriptive power about the nature of the

variability present. For example, by looking at Figure 5A, we can

observe that (1) variance observed in the posterior lateral frontal

cortex appears to be due to the fact that, in some subjects,

the Dorsal Attention, Default, and/or Ventral Attention systems

intrude into the posterior lateral prefrontal Fronto-parietal

patch; (2) variance in the temporal–parietal junction is driven by

variable borders at the juxtaposition of Fronto-parietal, Cingulo-

opercular, Default, and Ventral Attention systems; and (3) vari-

ance in occipito-temporal cortex is driven by variable borders at

the confluence of a large number of systems, including Visual,

Dorsal Attention, Default, Ventral Attention, Parieto-occipital,

Cingulo-opercular, and Fronto-parietal.

Variability in Brain Systems Has Important Implications
for RSFC Research

A large proportion ofmodern research using RSFC techniques in-

vestigates the connectivity of a priori seed regions (either those

regions’ connectivity to other regions, or the voxel-wise whole-

brain connectivity maps of those regions) and uses a general lin-

ear model (GLM) to test whether the strength of this connectivity

measure differs between groups of interest, or is parametrically

associated with some behavioral variable. This approach impli-

citly assumes that the seed region represents the same object

in two given subjects, and that the resulting connectivity meas-

ure thus varies continuously between subjects. However, the pre-

sent work demonstrates that across subjects, the same seed

region may be a member of different systems (Fig. 5), and that

the connectivity of that seed appears to vary categorically

between subjects (Fig. 6 and see Supplementary Fig. 5), as previ-

ously demonstrated in a single subject (Laumann et al. 2015;

Satterthwaite and Davatzikos 2015). Interpreting “weaker” con-

nectivity of a given seed becomes more challenging in this situ-

ation, and it is dubious whether such connectivity strengths

should be entered into a GLM. Indeed, individual differences in

the system identity of a given seed may be a substantial source

of unexplained variance that could impair the ability to detect ac-

tual relationships between connectivity strength and behavior or

group membership, as previous work has speculated (Wang and

Liu 2014).

A GLM-based approach to seed-derived RSFC analysis should

still be viable as long as there is some confidence that the seeds
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tested really are part of the same system in almost every subject.

Figure 4B shows regions (in red)where subjects showed little vari-

ance in system identity. The connectivity ofmost other seed loca-

tions may be confounded by individual variability in system

identity.

Interdependencies of System Patches Illustrate How
Systems Vary Across Individuals

We observed a large number of significant interdependencies in

system patch sizes (Fig. 3A). The majority of these relationships

were positive correlations between patches of the same system.

This finding suggests that, in a given individual, patch size differ-

ences relative to the group average tend to occur across an entire

system, such that many pieces of the system are larger (or smal-

ler) than the group average system. This effect was most obvious

in the Cingulo-opercular system (see Fig. 3B for examples), pos-

sibly suggesting a tighter interdependence of patches within

that system than within other systems, though this possibility

would need to be tested more rigorously.

This analysis also revealed a smaller number of negative cor-

relations of region sizes between patches in different systems,

most frequently between systems physically adjacent to each

other. This finding suggests that the relative expansion of one

system reduces the amount of cortex available to other systems

(as it must), and furthermore, that this reduction is not distribu-

ted evenly across all other systems, but that adjacent, connected

systems in particular surrender cortical real estate to that expan-

sion (Fig. 3C and see Supplementary Fig. 3).

There are two possible explanations for the observed var-

iances in the size of system patches. The first is that it is driven

by variance (i.e., relative expansion or contraction) in the sizes

of the systems’ constituent cortical areas (Van Essen et al.

2012). The second possibility is that expanded systems actually

appropriate cortical areas that normally serve other systems. It

is not clear which of these possibilities is more likely to explain

the variance in systems we observe here. Indeed, these possibil-

ities may not be mutually exclusive; each may explain some as-

pect of the observed variance. For example, the push–pull

relationship between Dorsal and Ventral Somatomotor systems

(Fig. 3C) may be best explained by areal size variation, as it

seems unlikely that a cortical area devoted to hand somatomotor

processing in one individual would be devoted tomouth process-

ing in another. On the other hand, the specific topological anom-

alies observed in themiddle of large systempatches (as in Fig. 5B)

cannot be the result of expanded areas, as there is no adjacent

patch of the same system, and so may be best explained by

areas connecting with different systems in different individuals.

Individual Variability in System Identity DoesNot Appear
to be Strongly Driven by Anatomical Mis-alignments or
Data Quality

In principle, observed individual differences in brain organiza-

tion may be caused by artifactual effects driven by inadequate

intersubject registration (Frost and Goebel 2012) or by motion-

related artifact (Power et al. 2012, 2014). In the present study,

we used surface-based alignment for intersubject registration,

and we used stringent motion controls as recommended in

Power et al. (2014). However, we cannot assume that our correc-

tion methods are perfect; some individual variance may be dri-

ven by residual differences in cortical surfaces, in motion below

the threshold for correction, in the amount of data used for ana-

lysis, or in the quality of the retained data.We testedwhether the

individual variability we observed was affected by these possible

confounds, and we found a number of significant effects (Fig. 7).

However, few effects survived correction for multiple compari-

sons. Furthermore, the amount of variance explained by the con-

found variables was low, and regressing out the effects of these

variables did not affect our estimates of dependencies between

patch sizes or connectivity pattern differences (see Supplemen-

tary Fig. 7). We conclude that these confound variables may

slightly influence individual variability in system identities, but

they do not drive the majority of effects described here.

In contrast, it is possible that some of the variability across in-

dividuals described here may be confounded, at least in part, by

within-individual variability. Connectivity estimates of a given

individual may vary from scan to scan or evenminute tominute,

potentially reflecting temporary state effects (e.g., drowsiness

or anxiety) rather than replicable functional/anatomic variance.

While the present study cannot estimate this within-individual

variability, as we do not have repeated scans on our subject, we

note that previous work (Laumann et al. 2015) demonstrated

that themagnitude of within-subject variability ismuch smaller,

and localized to different regions of the brain, than between-

subject variability. This suggests that the majority of effects

described here likely result from between- rather than within-

individual variability.

Conclusion

Here, we characterized the variability of brain system topologies

across individuals. We demonstrated that systems derived in in-

dividuals have similar topologies as systems derived from a

group average dataset, but that system features were variable in

size and position in individuals. Furthermore, we demonstrated

the presence of additional topological features in individuals

that were not present in the group-level systems, but were con-

sistent across a substantial minority of individuals. We also illu-

strated how the presence of these features can give rise to

divergent connectivity estimates from the same seed region in

different subjects.

This last observation may present challenges for studies that

assume the functional equivalence of anatomically registered re-

gions, as it may represent a substantial, unexplained source of

variance in the connectivity patterns across individuals. If a

given subject is observed to have, for example, relatively weak

functional connectivity between prefrontal and parietal nodes

of the Fronto-parietal system, does that subject truly have a dis-

rupted system? Or is the system intact, but translated along the

cortical surface away from the group average-derived system

node? Parsing anatomical/topological variability from functional

variability in this fashion may be critical for interpretation of ob-

served effects.

Furthermore, if ideas postulating the equivalence of brain

network architecture during the resting state and during tasks

(Fox and Raichle 2007; Smith et al. 2009) are correct, then the

same concerns are likely to be relevant for task fMRI studies. Spe-

cifically, “lower activation” in a given subject could indicate either

a reduced functional response or a translation of the activated re-

gion away from the peak of the group average response or the a

priori region of interest. Given the present findings, it is possible

that an RSFC-based approach for deriving individualized func-

tional regions of interest, like the techniques presented here,

may improve the accuracy of activation estimates made in

task-based studies. Future work may examine the feasibility of

this approach.
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These concerns may point to the need for a functional align-

ment approach that does not attempt to register subjects into a

common anatomical space, because even the most advanced

alignment procedures (e.g., Robinson et al. 2014) will fail to find

a registration warp that can align two subjects who have topo-

logically dissimilar features (Wang and Liu 2014; Harrison et al.

2015). Previous work has proposed alignment into a purely func-

tional space (Sabuncu et al. 2010; Haxby et al. 2011); future ver-

sions of such approaches may be improved by using the system

maps identified here as priors to assist in functional registration.

Finally, we note that the functional significance of the vari-

ability observed here is not yet clear. One possibility is that

some aspects of this variability—for example, the size of a sys-

tem, or the presence or absence of a particular system feature—

may be predictive of variability in cognitive performance. Alter-

nately, it is possible that these varying system configurations

may represent a diverse but equivalently effective set of possible

brain systems—in other words, that these systems are degener-

ate, such that equivalent performance may be enabled by many

different possible system configurations (Tononi et al. 1999; Price

and Friston 2002). Such possibilities remain to be investigated in

future work.
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