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Abstract 
For bacteria, replication mainly involves growth by binary fission. 
However, in a very great many natural environments there are 
examples of phenotypically dormant, non-growing cells that do not 
replicate immediately and that are phenotypically ‘nonculturable’ on 
media that normally admit their growth. They thereby evade detection 
by conventional culture-based methods. Such dormant cells may also 
be observed in laboratory cultures and in clinical microbiology. They 
are usually more tolerant to stresses such as antibiotics, and in clinical 
microbiology they are typically referred to as ‘persisters’. Bacterial 
cultures necessarily share a great deal of relatedness, and inclusive 
fitness theory implies that there are conceptual evolutionary 
advantages in trading a variation in growth rate against its mean, 
equivalent to hedging one’s bets. There is much evidence that bacteria 
exploit this strategy widely. We here bring together data that show 
the commonality of these phenomena across environmental, 
laboratory and clinical microbiology. Considerable evidence, using 
methods similar to those common in environmental microbiology, 
now suggests that many supposedly non-communicable, chronic and 
inflammatory diseases are exacerbated (if not indeed largely caused) 
by the presence of dormant or persistent bacteria (the ability of whose 
components to cause inflammation is well known). This dormancy 
(and resuscitation therefrom) often reflects the extent of the 
availability of free iron. Together, these phenomena can provide a 
ready explanation for the continuing inflammation common to such 
chronic diseases and its correlation with iron dysregulation. This 
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implies that measures designed to assess and to inhibit or remove 
such organisms (or their access to iron) might be of much therapeutic 
benefit.
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      Amendments from Version 1

This summary of the differences between versions 2 and 1 is 

very short, since we simply made modifications as described in 

our response to the referees’ very helpful comments, particularly 

around recognising the semantic issues (persistence ‘vs’ 

dormancy). We rehearsed a little more some of our areas of 

ignorance of the detailed physiological states that these high-

level, replicatorily observable phenotypes represent. We clarified 

the meaning of “reversibility” (of growth/non-growth) in terms 

of states vs mechanisms. We added references to some work 

that we had missed, e.g. that of McKinney. We amplified slightly 

the points about how a ‘standing crop’ of mainly non-growing 

bacteria (else it would be sepsis) must reflect a balance between 

resuscitation, growth and clearance, and how these and related 

questions (e.g. how cells evade the innate and adaptive immune 

systems) represent a future ‘to do’ list. We stressed further 

that the observation of bacterial sequences in the absence of 

immediately culturable microbes always implies their potential for 

resuscitation/regrowth, although it cannot, of course, discriminate 

dormant from moribund, injured or irreversibly nonculturable 

(‘dead’) cells. We added a paragraph on the more philosophical 

reasoning behind our approach, which takes the idea that a self-

consistent narrative is more persuasive intellectually than one 

lacking elements of join-up, a principle known in Philosophy of 

Science circles as ‘coherence’. Finally, we entirely redid Table 3 

to make its layout much more logical, and streamlined it so as to 

add more emphasis on the nature of the evidence of bacterial 

involvement in the various classes of diseases.

See referee reports

REVISED

Introduction
“It is now well established that some micro-organisms can, under 

certain conditions, be deprived of all visible signs of life and yet 

these organisms are not dead, for, when their original conditions are 

restored, they can return to normal life and activity.”1.

“Bacterial populations in both batch and continuous culture are 

much more heterogeneous than is normally assumed, and such cul-

tures may consist of several types of subpopulations simultaneously 

differing in viability, activity and integrity of the cells”2.

Consider a typical axenic flask or broth culture of bacteria (Figure 1), 

arguably the staple of modern laboratory microbiology. We seed 

a suitable growth medium with an appropriate inoculum of cells 

known to be capable of replicating in that growth medium. After 

a lag phase the number of culturable cells (the ‘viable count’3,4, 

as judged by plate counts of the number of colony-forming units 

observable on the same medium solidified by agar or a similar mate-

rial) is observed to increase, typically exponentially, for a number 

of generations (the growth phase or exponential phase). Apart from 

the changes in nutrient concentration, and for non-synchronised 

cultures, it is generally taken that cells pass smoothly through their 

cell cycles en route to doubling their numbers by binary fission. The 

population distribution of organisms in different parts of their cell 

cycle during the exponential phase is thereby unchanged and thus 

in a steady state (from which the cell cycle parameters can even 

be inferred5). In time this increase in cell numbers ceases, usually 

because of the exhaustion of a nutrient in a closed system, or some-

times in part or whole because of the build-up of toxins. Again, 

after a further period, the viable or colony count decreases (often to 

quite low levels if such starvation is carried out for extended peri-

ods). Inoculation of a new broth culture with a similar number of 

viable cells from this culture usually provides a simple repeat of the 

previous culture6, and in the absence of mutation may reasonably 

be anticipated, for organisms proliferating asexually, to be played 

out indefinitely.

The development of continuous7, nutrient-limited (‘chemostat’8) or 

feedback-controlled (‘turbidostat’9–11) cultures was and is entirely 

consistent with this view of steady-state microbial doubling via 

homogeneous cell cycles that are common, within statistical fluctu-

ations, to each cell. The same is true for cultures undergoing serial 

transfer (where there is slightly more of a focus on selection for 

genotypic variants that grow faster – see e.g. 12–14).

There should be nothing controversial in the above passage, but in 

fact it hides a variety of assumptions that themselves conceal a con-

siderable feast of very interesting physiology. The chief one here is 

that – given that all cells in the culture are genetically homogene-

ous and see the same ‘environment’, and modulo where they are in 

their cell cycles – all such cells are indeed supposed to represent a 

single population (as per Figure 2). If they do not, and as we shall 

see they never do15–18, we are dealing with differentiated systems. It 

turns out that a particular subset of typical cell cultures – a pheno-

typically dormant or non-growing sub-population, occurring even 

in non-sporulating bacteria2 – is widespread to the point of ubiquity. 

This leads to an exceptionally important biology with significant 

consequences both for our understanding of microorganisms and 

our ability to harness and domesticate them. Although the relevant 

literatures rarely cite each other or overlap, it is clear that simi-

lar phenomena are common to bacterial behaviour in the natural 

environment, the laboratory, and in a variety of samples of clinical 

interest. This theory or hypothesis that we develop here comes 

about from the synthesis19 of a large amount of data, and is sum-

marised in Figure 3 and Figure 4.

Figure 1. A typical laboratory bacterial culture. After the end of 
stationary phase the viable count decreases over time, but very rarely 
to precisely zero. Some authors recognise an extended “period of 
prolonged decrease”852 during which some of the survivors undergo 
significant dynamics, and in which mutants are selected. Our interest 
here is largely in cells that have not mutated.
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Phenotypic differentiation to dormancy or 
persistence – some early indications
While dormancy and resuscitation of rotifers had been observed by 

Leeuwenhoek himself in 17021, some of the earliest modern indica-

tions for a physiologically significant ‘phenotypic heterogeneity’20 

or differentiation of microbial cultures came in the 1940s. In a 

conceptually simple experiment (illustrated in Figure 5), Bigger21 

exposed staphylococcal cultures to concentrations of penicillin 

that would normally be sufficient to kill them completely (and they 

did kill all but 1 in a million). However, these (10-6) survivors, that 

Bigger21 and McDermott22 (and many modern commentators have) 

referred to as ‘persisters’, were not genetic mutations selected for 

resistance to penicillin, since when they were inoculated into fresh 

broth they were just as susceptible as were those in the first cul-

ture. Bigger recognised (correctly) that the only explanation that 

made any kind of sense was that despite being exposed to nominally 

the same conditions, these cells were operationally dormant in the 

sense of not replicating in a medium that, apart from the penicillin, 

would normally admit their growth (even if they were metabolically 

active23,24) and thus phenotypically resistant to the penicillin (that 

anyway kills only dividing cells25–27). Similarly, Luria and Latarjet28 

Figure 2. To clarify the general concept of a population as used 
here, a population of individuals involves those who share 
certain properties (between stated values). One main population 
is shown. A second, smaller population is also shown; these might 
represent dormant cells.

Figure 3. Infographic summary of the review. (1) A bacterial system contains distinct subpopulations, that we classify as culturable, 
dormant and non-culturable (2). Specific attention is given to persister cells (3), and the inter-relationship (4) between the subpopulations. 
Subpopulations within environmental biology are discussed (5), followed by subpopulations within laboratory cultures (6). Particular emphasis 
is placed on phenotypic switching between the culturable and dormant subpopulation of laboratory cultures (7). Generalized detection 
techniques typically fail to detect dormant cells, and we review the various reasons for this failure and discuss alternatives (8). Resuscitation 
of and endotoxin production by such dormant cells underpins many diseases not normally seen as having a microbial component.
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noted that approximately 1% of the cells in a culture of Escherichia 

coli displayed a phenotypic resistance to normally sterilising doses of 

ultraviolet irradiation. Many similar experiments since (e.g. 29–32), 

discussed in more detail below, have recapitulated this basic phe-

nomenon. (We note here that high-frequency antigenic ‘phase’ 

variation can occur due e.g. to changes in microsatellite DNA33; 

detailed discussions of such genotypic changes34, including those 

that can affect the extent of dormancy in persistent bacteria35, are 

outwith the scope of the present, purely phenotypic analyses.)

Dormancy as an operational property, and semantic 
issues
For the avoidance of doubt, and in accordance with Keilin’s descrip-

tion with which we opened, we shall define dormancy as:

“a reversible state of {often} low metabolic activity, in which cells 

can persist for extended periods without division; we shall see that 

this often corresponds to a state in which cells are not ‘alive’ in the 

sense of being able to form a colony when plated on a suitable solid 

medium, but one in which they are not ‘dead’ in that when condi-

tions are more favourable they can revert to a state of ‘aliveness’ as 

so defined”2.

Figure 4. Summary of the review in the form of a ‘mind map’853 of the article.

Figure 5. Assessment of phenotypic differentiation of a dormant 
subpopulation via antibiotic challenge. This kind of protocol can 
be used to determine if the resistant subpopulation has accumulated 
genetic mutations that encoded resistance or whether, as focused 
on here, the resistance is purely phenotypic. A detailed analysis of 
the shape of the time-survivor curves may also be informative854.

Page 5 of 53

F1000Research 2015, 4:179 Last updated: 28 MAR 2022



We thus stress36 the recognition that dormancy is not solely an innate 

property of a bacterial cell; it is a property assessed by one or more 

experiments, so whether a cell appears to be dormant depends on 

both the cell and the experiment used to assess that dormancy. (This 

principle shares a similar philosophical foundation to the independ-

ence from any specific experiment, or otherwise, of the perceived 

state of objects within the quantum theory36–38). As do Postgate3,4,39 

and Barer40–44, we take the hallmark of a viable or living bacterial 

cell to be its ability to replicate or its ‘culturability’. This means 

that we cannot tell via culturability that a cell is alive, only (after 

a cell division) that it was alive36,45. Dormant cells – even if ‘not 

immediately culturable’ – must by definition be resuscitable to form 

culturable cells. We also recognise (as does Michael Barer889) that it 

may be hard to discriminate the resuscitation of dormant cells from 

the recovery of injured cells. Although the term ‘nonculturable’ is 

quite commonly used to describe not-immediately-culturable cells 

it is best avoided, as we cannot try every possible combination46 of 

incubation conditions that might serve to resuscitate a cell in a sam-

ple. ‘Non-cultured’, ‘as-yet-uncultured’ or ‘operationally noncul-

turable’ are better terms. Culturable, (operationally) non-culturable 

and (operationally) dormant bacteria in the differentiated bacterial 

(cellular) system can therefore be seen as distinct subpopulations of 

the system, and culturable and dormant bacteria as reversible states 

of the same population. A culture containing several subpopula-

tions, whether distinct (as in Figure 2, or part of a single population 

characterised by a particular value from a range of an extensive 

variable) may be said to be differentiated (and of course may  

de-differentiate) in terms of physiological macrostates, that may 

or may not be able to interconvert. However, we recognise (thanks 

to Michael Barer889) that such interconversion does not imply a 

mechanistic reversibility. The same kinds of issues attach to cells 

described as having any other physiological property with regard 

to the ability to replicate. We note (with thanks again to Michael 

Barer889) that it is easy to conflate dormancy and ‘persistence’, since 

they do share some similarities (e.g. such cells are not immediately 

replicable); however, there is not much in the way of evidence as 

to how different say their expression profiles are, since it would 

require, for instance, single cell omics measurements, that are only 

just becoming available (e.g. 47,48), more typically49 for the much 

larger eukaryotic cells. Certainly there can be extensive changes in 

gross biochemical composition as cultures are starved50. One strat-

egy would be to separate sub-populations51,52, acquire ‘averaged’ 

values of say their transcriptome, proteome or metabolome, and see 

how much they differed. In a similar vein, whether states such as 

dormancy are adaptive is a matter for experiment.

The general relationships between various subpopulations of 

the bacteria within a differentiated cellular system are shown in 

Figure 6.

On methods for detecting microbial presence, ‘viability’ and 
culturability
Given our operational definition of dormancy as including reversible 

culturability, we note that different kinds of assays for the presence 

or activity of bacteria necessarily reflect cells in different kinds of 

physiological states (and can thereby be used to discriminate them). 

Thus direct counts with stains such as acridine orange (a list of 

these and other methods is given in Table 1 of 36) do not determine 

Table 1. Some bacterial infections for which an intracellular, reversibly non-replicating, persistent or dormant state 
is well established as part of the cells’ lifestyle. Examples are given for both low- and high-GC Gram positives, as well 
as a number of Gram-negative organisms.

Organism Comments Selected 
references

Bartonella spp. Persists inside erythrocytes 347–350

Brucella spp. Environmental and intracellular persistence and immune evasion 351–354

Listeria monocytogenes Well-established low-GC Gram-positive intracellular saprophyte and non-
sporulating persister

355,356

Mycobacterium tuberculosis Often seen as the ‘classical’ dormant bacterium, a high-GC Gram-positive; 
probably one third of humans carry it in a latent or potentially dormant 
state; other forms may be metabolically active

357–366

Salmonella typhimurium Gram-negative; non-replicating forms common in macrophages and 
elsewhere

367–370

Staphylococcus aureus Low-GC Gram-positive; can escape antibiotics by hiding inside various 
phagocytes

371–374

Figure 6. The relationships between culturable, dormant and 
non-culturable bacteria within a differentiated cellular system.
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culturability, only presence or activity. Similarly, macromolecular 

sequencing methods such as those based on rDNA and its amplifica-

tion (e.g. 53–58), or that of other housekeeping genes (e.g. 59–61), 

almost certainly reflect mainly dormant cells plus any actively 

dividing ones (in that ‘naked’ DNA is usually degraded fairly rap-

idly in serum or the environment). The difference between cultur-

able counts and total sequence-based counts probably provides 

one of the best methods for detecting and enumerating potentially 

dormant cells when they cannot yet be brought back into culture, 

although (as recognised by referee 1) such differences may also 

reflect dead, injured or moribund cells. It is particularly noteworthy 

(and see also 62 and below) that the amount of prokaryotic DNA 

in whole blood exceeds by 10–100-fold that detectable in serum63, 

implying adsorption onto or sequestration within blood cells.

We shall return to clinical and laboratory microbiology later, but it 

is to environmental microbiology that we now turn to discuss the 

culturability of typical microbes. While the same general truths 

undoubtedly pertain in viruses (e.g. 64,65), and in yeasts, fungi, 

archaea, mycoplasmas and other unicellular organisms, our focus 

will be on prokaryotes.

Bacterial culturability and dormancy in 
environmental microbiology
It has long been known that the number of bacteria observable 

microscopically exceeds, typically 100-fold, those that can readily 

be grown axenically in standard isolation media (i.e. to proliferate 

in liquid culture or to form colonies on solid media). The latter has 

been referred to as ‘the great plate count anomaly’66, and has been 

amply confirmed by more modern, culture-independent sequencing 

methods. A selection of papers and reviews serve to document both 

the numerical anomaly and the much greater biodiversity detect-

able by sequencing (e.g. 67–86). It is thus useful to discriminate 

(1) bacteria that have been cultured, that are typically available in 

culture collections, and whose growth requirements are known, 

from (2) bacteria that may be recognised as novel via macromo-

lecular sequencing (typically of ribosomal DNA80,87–90) but that have 

not yet been cultured and whose growth requirements may not yet 

even be known. Much (sequencing) evidence indicates that the bulk 

of the ‘missing microbes’ or ‘dark matter’91–93 in natural ecosystems 

falls into this second category94, and that ‘single cell’ methods may 

be required to culture them95.

There are at least four general reasons of principle why these organ-

isms have not yet been cultured. We consider each in turn (although 

more than one may contribute in individual cases).

Not-yet-cultured bacteria may have more-or-less fastidious 
growth requirements
It is an elementary observation in microbiology, and the basis for 

selective isolation media, that not all bacteria grow on all media 

and in all conditions. Leaving aside truly syntrophic bacteria (that 

for thermodynamic or unknown nutritional reasons require another 

organism for growth (e.g. 96–102)), some organisms may have quite 

fastidious growth requirements. A number of bacteria determined 

as causative of disease, whose role had originally been inferred 

only through microscopic observation, were later cultured and could 

be shown to fulfil Koch’s postulates. These include Helicobacter 

pylori103,104 (with an unusually high requirement for urea to fuel its 

alkalinogenic urease activity105) and Legionella pneumophila106–109 

(with an unusually high requirement for cysteine). Note that even the 

supposedly rich LB medium110 (Lysogeny Broth, often erroneously 

called Luria-Bertani medium, see http://schaechter.asmblog.org/

schaechter/2009/11/the-limitations-of-lb-medium.html) is not in 

fact a particularly rich medium111–113. An especially nice example114,115 

is provided by Tropheryma whipplei, the causative organism of 

Whipple’s disease116,117. It resisted attempts (over many decades) to 

bring it into axenic culture until systematic genome sequencing118,119 

showed its requirements for a variety of common amino acids that 

it was unable to synthesise itself, the provision of which permit-

ted its growth. The MetaGrowth database120 is now available for 

similar purposes. Another good example is Coxiella burnetii, the 

causative agent of Q fever, for which a genome-derived growth 

medium (‘acidified citrate cysteine medium’) permitting axenic 

culture has now been developed121,122. Other examples are given by 

Stewart123 and by Singh and colleagues114, and include marine bac-

teria of the highly common SAR11 clade83,124,125. Of course these 

kinds of phenomena are not absolute; much evidence indicates 

that host stress hormones may act as growth or virulence factors 

for a variety of Gram-negative organisms, representing a kind of 

‘microbial endocrinology’ (e.g. 126–128).

Not-yet-cultured bacteria may even be killed by our 
isolation media
Organisms in nature are often living in low-nutrient conditions129–133. 

It is thus reasonable (and unsurprising) that the isolation of microbes 

from starved, oligotrophic environments benefits from the use of 

low-nutrient conditions75,123,134–136; some manifest this ‘starvation’ 

through their size, as ‘ultramicrobacteria’ (see e.g. 137–143). In a 

similar vein, taking cells from low-nutrient natural environments 

directly onto, say, a highly aerobic agar plate may produce stresses 

that effectively kill them, so that afterwards they would not even 

grow on the kinds of media (as in the previous section) that would 

support their growth. Thus, Tanaka and colleagues144 showed inter-

actions between phosphate and agar when autoclaved together that 

led to the production of compounds inimical to bacterial growth. 

Gellan may be a better solidifying agent here96. However, we recog-

nise that it may be hard to discriminate cells that we kill in the act of 

trying to isolate and grow them from ‘already dead’ bacteria.

Not-yet-cultured bacteria may simply be dead and thus 
incapable of resuscitation
While this possibility certainly exists, and is included for complete-

ness, it is actually the least likely for a number of conceptual and 

empirical reasons. The first is that if an organism is present in a 

particular environment it must have been able to grow and divide 

in it at some point in the more or less recent past, even if the result 

of such growth was its utilisation of a finite amount of necessary 

nutrients or growth factors whose exhaustion caused replication to 

cease. (Interestingly, in soil it seems that sequestration, rather than 

complete exhaustion, of nutrients is the more significant phenome-

non145–147.) Secondly, it is highly unlikely that evolution could select 

for unicellular organisms that cannot replicate. Thirdly, environ-

mental organisms can be shown to metabolise even when they can-

not be shown to divide (e.g. in the ‘Direct Viable Count’ method148 

and in any number of other tests that detect metabolic activity36,149). 

And finally, as we shall see in the next section, careful methods of 

resuscitation/cultivation do indeed allow a very significant fraction 
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of organisms that can be isolated from a variety of environments 

(e.g. the gut150–153) to be resuscitated and to grow very effectively.

Not-yet-cultured bacteria are mainly dormant and thus 
resuscitable
As indicated in the introduction, it is now well established that 

even laboratory cultures, that from a macroscopic point of view 

are growing exponentially, contain subpopulations of non-growing 

cells. These cells are dormant by definition, because they may later 

be resuscitated and grow. It is easy to ascribe an evolutionary advan-

tage of this culture differentiation from the perspective of the bene-

fits of having a sub-population that by not growing is more resistant 

to environmental stresses (e.g. 154–156). Indeed, this general kind 

of phenotypic differentiation strategy, in which the variance in 

reproductive rate is traded off at the expense of the mean, has been 

referred to as bet hedging78,156–167 and is actually adaptive168,169. An 

important point here168 is that in many natural environments, asexu-

ally reproducing organisms such as bacteria are likely to be (spa-

tially) close to their ancestors and descendants, such that inclusive 

fitness theory170,171 implies that it is entirely reasonable for them to 

behave altruistically, e.g. by ‘bet hedging’. This is also discussed 

further below.

It is also reasonable that in isolated (closed) natural environments, 

nutrients and thus sources of energy must be exhausted at some 

point, and thus for simple energetic reasons multiplication becomes 

impossible and a dormant state likely (if later resuscitation proves it 

to be so). Similarly, it is likely that in the absence of energy, nutri-

ents and/or signalling molecules, and based on more ecological or 

community considerations (e.g. 172–175), it is necessary to add any 

or each of them to ‘prime’ bacteria to resuscitate. This has indeed 

been shown70,174,176–179, including for sources of energy180,181, iron-

acquiring compounds182 (siderophores183–185), cell wall muropep-

tides186, and various signalling molecules187,188 (especially pherom-

ones168,169,189,190) that exist in natural environments70,174,191. We note 

too that ‘kick starting’ dormant cells may require the synthesis of 

transporters (a neglected clade192) necessary for the uptake of all 

kinds of molecules193–197. Overall, the idea that most bacteria that 

may be observed in the natural environment are ‘unculturable’ is 

incorrect.

Finally here, and though this is obvious it is well worth rehearsing, 

the simple fact that we can store non-growing microbes under des-

iccated or frozen conditions or as agar ‘stabs’ in culture collections 

for extended periods means that most microbes are certainly well 

adapted to entering and leaving dormancy.

Pheromonal proteins
A related and unexpected discovery came from analyses of starved 

laboratory cultures of the actinobacterium Micrococcus luteus, in 

which almost all cells lost culturability2,198–200. However, they were 

not dead but dormant, as they could be resuscitated by using a com-

bination of weak nutrient media and a signalling molecule found 

in spent culture supernatants201–206. The original studies used flow 

cytometry to discriminate the physiological state of individual 

cells51,207–210 (see also 211,212). By using another ‘single cell’ assay 

based on dilution to extinction (that avoids artefacts connected with 

the regrowth of ‘initially viable’ bacteria36), we were able to purify 

the signalling molecule. It turned out to be a protein, named Rpf 

(for ‘resuscitation-promoting factor’)213. In M. luteus there is only 

one homologue214, and the gene (product) is essential for both resus-

citation and multiplication213,215. Rpf contains a highly conserved 70 

amino acid ‘Rpf domain’ and is widely (and probably ubiquitously) 

distributed throughout the actinobacteria216–219, but with examples 

elsewhere220,221. Most organisms that have a homologue have more 

than one. Thus M. tuberculosis has five homologues222–224. Rpfs 

can have peptidoglycanase and muralytic activity225–230 and known 

crystal structures are consistent with this231–236. These activities can 

certainly account for at least some237 of the resuscitation-promoting 

properties. As an extracellular protein that may be required for 

growth, and with a high level of immunogenicity238, it is obviously 

an excellent candidate target for inclusion in appropriate vaccines 

against pathogenic actinobacteria213,225,239–246. It is also more directly 

of potential utility in stimulating bacterial communication and 

resuscitation in a variety of cultures in both samples taken from 

Nature247–257 and in the laboratory258–271.

Culturability, dormancy and persistence in laboratory 
cultures of non-fastidious bacteria
Having established the frequency of occurrence of microbial dor-

mancy in the natural environment, it is of interest to understand bet-

ter the mechanisms by which microbes might effect this dormancy 

and potential resuscitation. Unsurprisingly, microbiologists have 

turned to E. coli, and considerable progress has been made24,272–279.

The starting position is as in Figure 1 and Figure 6, to the effect 

that at any given moment in a typical culture a small fraction of 

the population is non-growing, and thus potentially dormant. Since 

clearly the same fraction cannot (or is wise not to) remain in dor-

mancy indefinitely in the presence of suitable nutrients that permit 

the growth of its siblings, we must invoke at least one mechanism 

that can cause the bacteria to ‘oscillate’ between growing and 

dormant states. Many simple gene expression network topologies 

admit this behaviour159,280–284, including a simple feedback loop with 

delay285,286, and we note that even whole cultures can exhibit oscilla-

tions and deterministic chaos287. While flow cytometric observations 

(e.g. 51,288) show that even ‘homogeneous’ laboratory cultures 

show highly heterogeneous distributions in cellular volume (not 

just between X and 2X) and expression profiles (and see 289), our 

particular focus will be on ‘binary’ or ‘bistable’ systems in which 

individual cells either are or are not operationally culturable.

Experimentally, it is also common to assess the phenotypic ability of 

subpopulations of cells to tolerate normally inhibitory concentrations 

of bactericidal drugs290,291, this being a marker for that fraction of 

cells that is ‘persistent’ (and maybe dormant) at the stage in question. 

Note that the persistence phenotype is not induced by the drugs275. 

Changes or transitions in the state of a particular cell in a popula-

tion between the various phenotypic states is a phenomenon that 

may be (and is commonly) referred to as ‘phenotypic switching’.

‘Phenotypic switching’ in experimental laboratory cultures
A particularly well-developed example of this ‘bet hedging’ or phe-

notypic switching between physiologically dormant and growing 

states may be observed in laboratory cultures of organisms such 

as E. coli demonstrating ‘persistence’161,164,166,292–298. In general, 

any scheme in which both a first gene product inhibits cellular 

proliferation and in which this first gene product may be titrated 
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out potently299 by a second gene product that thereby undoes the 

inhibition of proliferation, can have the effect of phenotypically 

switching cells between dormancy and growth. This seems to be 

precisely what is going on, and such pairs of gene products have 

been referred to (somewhat misleadingly300) as toxin-antitoxin (TA) 

pairs300–307. One such involves the well-known pp(p)Gpp metabolic 

system that can serve to inhibit DNA gyrase24,308–311, and points to 

the fact that in these circumstances, persisters may be quite meta-

bolically active23,24,309,312, even if transiently incapable of reproduc-

tion. Another phenotype switching mechanism, underlying colony 

phenotype switching, comes from metabolic bifurcations driven by 

the levels of a particular metabolite313.

Any mechanisms that permit cells to communicate with each other 

can amplify switching effects by cell synchronisation, and by defi-

nition such ‘social’ signals act as pheromones, whose apparent 

‘altruism’ can be explained on the basis of kin selection theory168. 

There is considerable interest, largely outwith our scope here, in 

these evolutionary aspects (e.g. 314–321). Such systems are com-

monly, but far too broadly relative to the term’s origin322, referred 

to as ‘quorum-sensing’. However, they do offer opportunities for 

limiting bacterial virulence (e.g. 323–330).

Classical clinical microbiology of culturable organisms
Until relatively recently, almost all of clinical microbiology331,332 

was based on rather classical methods of plate counting333, cou-

pled to assessment of antibiotic sensitivity. Various means of auto-

mated blood culture that assess metabolism exist (although they 

require typically 48–72h to show a ‘positive’)334. Positive tests, 

often implicitly involving culture (and not just metabolism) within 

the assay, would be followed by other tests seeking to identify the 

organisms detected, nowadays typically by nucleic acid sequence-

based methods58,335–338. However, these and other tests for the pres-

ence of antigens or even antibodies339 cannot speak to the question 

of culturability (and of course antigens such as lipopolysaccharide 

(LPS) are shed by dying cells). This said, it makes little sense to try 

to culture microbes from samples that molecular sequencing meth-

ods indicate lack them, so the molecular methods always provide 

a useful starting point for seeking to resuscitate any resuscitable 

(hence operationally dormant) microbes that might be present.

The existence of bacterial DNA in even ‘healthy’ blood has long 

been known340, and since naked DNA would be degraded and living 

cells would soon kill the host, the (seemingly) obvious conclusion 

that the prokaryotic DNA must reflect occult, and potentially dor-

mant, cells seems neither to have been drawn nor acted upon.

Some well-established cases of dormancy in clinical 
microbiology
The idea that (typically intracellular) dormancy is a major com-

ponent in some infectious diseases (including in the absence of 

antibiotics that may serve to light up ‘persisters’) is of course well-

established, and the main purpose of this brief section is simply 

to remind readers of this. Such a reminder serves as a prelude to a 

longer discussion of the very many clinical circumstances where 

we consider that the role of dormant microbes is not widely appre-

ciated, and where they are not really considered to involve a com-

municable or microbial component at all. Thus Table 1 shows a few 

organisms (and references) for which we consider that most readers 

would regard the idea of and evidence for dormancy as more or 

less uncontroversial. We do not include disease-causing infectious 

agents where they are better known for their ability to persist in the 

natural environment. Organisms such as Legionella pneumophila 

that represent significant public health issues, fall into this category, 

and Legionella and other persisters (in environments such as water 

system biofilms) are indeed well known (e.g. 341–345), although 

they too have special adaptations to an intracellular lifestyle 

(e.g. 346).

Generalised failure of classical techniques to detect 
dormant bacteria in clinical microbiology
As noted above for environmental microbiology, dormant bacte-

ria can represent as much as 99% of the organisms that may be 

observed microscopically or by macromolecular sequencing, but 

classically (and by definition) they are not enumerated by culture-

based methods that determine ‘immediate culturability’36. Such 

culture-based methods are also widely used in clinical microbiol-

ogy. However, if we were to plate out 100 µL of a culture contain-

ing 200 bacteria.mL-1, of which 99% were dormant at any instant, 

we would expect (based on a Poisson distribution) to see fewer 

than 1 propagule or colony-forming unit per sample. We have 

noted above that it can be determined by sequencing that many 

of the non-cultured environmental organisms largely differ from 

those in standard culture collections. Certainly the examples given 

above in clinical microbiology, such as Tropheryma whipplei, were 

both observed microscopically and were sequenced prior to being 

brought into axenic culture.

The PCR method is exquisitely sensitive (down to one cell or prop-

agule per sample), and we note that contamination artefacts from 

the PCR reagents represent a real issue that must always be checked 

(e.g. 375–379), albeit this is no less true of blood cultures380. We 

have rehearsed elsewhere62 five classes of argument that collec-

tively make it implausible that these are all contamination arte-

facts; probably the most persuasive is simply the sheer number of 

prokaryotic DNA molecules that can be measured in blood and 

serum (e.g. 381–383). While some of the most recent nucleic acid 

sequencing methods (e.g. 384–389) do operate on single molecules, 

and genome-wide sequencing may soon be routine (e.g. 390,391), 

the analysis of prokaryotes usually used a broad-range PCR step to 

amplify small-subunit rDNA to assess their presence, whether in 

environmental74,80,88,392 or clinical388,393–405 samples. Using this, and 

while these methods alone cannot tell whether they were opera-

tionally dormant or dead, a very considerable number of studies 

have been performed in which ‘culture-negative’ clinical samples 

showed the presence of prokaryotes (at least as judged by sequence-

based methods). This has some profound consequences.

We note that in a steady state such cells must be supplied at a rate 

equal to that of their clearance, and that the fact that clearance is 

lower than probably expected implies a significant ability of such 

cells to evade the innate and adaptive immune systems. We also 

take it that at least for common organisms (not very slow grow-

ers such as certain mycobacteria) the former rates must be much 

lower than those typically attainable in laboratory cultures, else we 

would have classical sepsis, and we do not. Most likely the observ-

able facts are best accounted for by a combination of a periodic 

resupply of resuscitating cells, coupled to physiological changes in 
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non-growing cells (especially including of cell wall antigens) that 

help them evade natural clearance mechanisms.

Broad-range PCR methods indicate the widespread 
presence of prokaryotic DNA in culture-negative 
clinical samples
While PCR-based methods have long been used to assess the spe-

cies involved in culture-positive samples406, e.g. from blood, our 

interest here is in samples that are culture-negative407 that may 

yet (and indeed likely do) contain dormant cells. Among the first 

such indications of this was the study by Relman’s group340, who 

showed that the blood of even healthy controls contained significant 

amounts of prokaryotic DNA. Table 2 lists some studies in which 

broad-range PCR has been used to amplify and detect prokaryotic 

rDNA in culture-negative samples.

In environmental microbiology, as mentioned above, there were 

many early indications (as observed microscopically or flow 

cytometrically) for the presence of bacteria that did not (or not 

easily) prove resuscitable or culturable. In a similar vein, many 

studies have shown microscopically observable organisms in 

culture-negative but disease-positive samples. This is true both for 

diseases considered to be due to microbial pathogens and, in fact, 

for many others normally considered non-communicable62.

Microscopically observable and potentially dormant 
bacteria in clinical disease
Microscopic observations in tissues have been a major part of 

the discovery process by which certain bacteria were indeed 

identified as the cause of various diseases. Billings431, Price432, 

Domingue413,433–435, Mattman436, Ewald437 and Onwuamaegbu and 

colleagues438 review the extensive and largely forgotten early lit-

erature. Domingue and Schlegel439 also mentioned that they could 

recover culturable bacteria, probably mainly from L forms (see 

62,436,440), from lysates of normal and diseased blood. It was to 

be assumed that these cells were not replicating at significant rates 

in the blood itself. However, we can find no evidence that this was 

ever followed up. Our own work441,442, summarised in 62, showed 

that both bacillary and coccoid cells could be found attached to 

and within the erythrocytes of patients with Parkinson’s disease 

and Alzheimer’s disease, at rather greater concentrations than in 

samples taken from nominally healthy controls.

Table 2. Some examples of blood culture-negative but PCR-positive systems, implying the 
presence of dormant bacteria. Note that we have sought to exclude examples where anaerobic 
bacteria could be detected by PCR but not cultured simply because cultures were not anaerobic, 
and also cases (e.g. 408,409) where high antibiotic concentrations might have prevented culture.

Aims Culture-negative but PCR-positive References

Assessment of endocarditis 6 out of 29 410

Development of broad-range PCR 71 out of 382 406

Development of broad-range PCR; 
limit of detection 5000 cfu.mL-1

10 out of 103 411

Improved broad-range PCR method 20 out of 24 53

Review Many examples 412

Interstitial cystitis 14 out of 14 413

Endocarditis 270 (36.5%) of 740 414 (and see 415)

Endophthalmitis 116 out of 116 (selected) 416

General study 18 out of 394 (271 also  
culture-positive, PCR-positive)

417

Bacteraemia in intensive care 48 out of 197 
45 out of 94

418 
419

Sepsis/SIRS 29 out of 59 
38 out of 72 culture-positive 
14.6% vs 10.3% (no antibiotics) 
123 vs 95

420 
421 
422 
423

Osteoarticular samples 141 out of 1667 424

Review Many examples 425

Various, including antibiotic-treated 34 out of 240 426

Meningitis 26 out of 274 
19 out of 21

427 
428

Orthopaedic samples 9% out of 125 398

Thoracic empyaema 14 out of 22 429

Trauma 28 out of 35 430

Page 10 of 53

F1000Research 2015, 4:179 Last updated: 28 MAR 2022



In a similar way, our preliminary data show that bacteria are vis-

ible in plasma, as well as in whole blood smears in various inflam-

matory conditions. Here we show bacteria in platelet-rich plasma 

(PRP) taken from a patient with systemic lupus erythematosus and 

smeared onto a glass cover slip (Figure 7A and Figure 7B). We 

also show the same from patients with hereditary hemochromatosis 

(Figure 7C) and type 2 diabetes (Figure 7D). We also noted micro-

biota associated with erythrocytes in thromboembolic ischemic 

stroke (Figure 8A and Figure 8B). (Our microscopy methods are 

as published previously (e.g. 442–451), but fuller publications will 

appear elsewhere). The ultramicroscopic evidence that these are 

indeed small bacteria and not say, cellular debris or microparticles 

(see 452) is presently mainly morphological, though we note the 

considerable evidence for the presence of bacterial DNA in blood 

(see previous sections and e.g. 63,340,453).

It is worth rehearsing the very great significance of this. With eryth-

rocytes being present at some 5x109.mL-1 in human blood, even if 

only one erythrocyte in a thousand harboured just a single dormant 

bacterium (that would be hard to detect microscopically, but see 

453–457), the dormant bacterial load would still be 5,106.mL-1. 

This is both far from negligible, and serves to exclude the (always 

potentially worrisome) claim that ‘it is all contaminants’.

A culturable blood microbiome
A recent and highly significant paper by Damgaard and colleagues458 

bears discussion. These workers note458 that while bacterial growth 

can normally be elicited during sterility testing in vitro from fewer 

than 1 in a 1000 blood units459–461, transfusion-transmitted infections 

occur with a very much higher frequency (more like 10–12%462,463, or 

even more464), and are responsible for a high fraction of transfusion- 

associated deaths465–467. Although it was acknowledged that 

venepuncture-associated contamination or an effect of transfusion 

in suppressing the immune system might contribute, it was also rec-

ognised458 that one means by which to account for this would be that 

‘normal blood’, and in particular its erythrocyte components, might 

Figure 7. A and B) Platelet rich plasma (PRP) from a patient with systemic lupus erythematosus (SLE). A) Platelet with bacteria visible in the 
surrounding smear (pink arrows); B) areas in smear with bacteria (pink arrows); C) Erythrocyte with associated bacteria from patient with 
confirmed hereditary hemochromatosis D) Erythrocytes with bacteria from patients with diagnosed type II diabetes. A–C Scale bar: 1 µm and 
D 400 nm.

Figure 8. Bacteria in whole blood from a patient with thromboembolic ischemic stroke A) Microbiota in whole blood; scale bar: 200 nm. 
B) Erythrocyte with bacteria; scale bar: 1 µm.
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also contain infectious agents that might be able to grow post-trans-

fusion. Indeed, these authors found458 that under anaerobic condi-

tions a small number of colony-forming units (ca 4–5.mL-1) could 

be recovered by direct plating from fully 62% of blood units, with 

‘controls’ producing an average of just 1 cfu.mL-1. More of the 

bacteria were associated with red blood cells than with plasma, and 

rDNA was used to identify them. These data are entirely consistent 

with the idea that dormant bacteria are present in the blood of even 

‘normal’ individuals (note that periodontitis was not a criterion for 

donor exclusion here458), that they are probably lurking in or on 

erythrocytes468,469, and that they can be resuscitated and grow under 

the correct conditions.

Evidence for a microbial component in a very large 
variety of ‘non-communicable’ diseases
We have surveyed the literature for evidence in which a microbial 

component has indeed been observed to be an accompaniment of, 

and probably a major contributory factor to, a variety of (typically 

inflammatory) diseases that are normally considered ‘non-commu-

nicable’. Rarely has the physiological state of these microbes been 

considered, but since it would be obvious if they were growing, it 

is most likely that they are indeed dormant. Table 3 summarises 

these highly extensive associations. While some are just associa-

tions, and we could have extended this table considerably, some 

studies (e.g. 470) contain very detailed aetiological arguments that 

Table 3. Evidence for infectious agents in non-communicable diseases. We purposely largely confine ourselves to bacteria here, 
but include the occasional parasite, fungus, mycoplasma and virus. While obesity is usually seen as a cause of other diseases, rather 
than a disease itself, we note the influence of endotoxaemia on obesity471–476. We note too the extensive evidence for the role of LPS in 
inflammation477–479, and the experimental models (e.g. for Parkinson’s480) where it can induce disease directly. We do not much discuss 
diseases such as Crohn’s disease where the extensive uncertainty over the extent of involvement of mycobacteria (e.g. 481–483) needs 
no extra rehearsal (albeit it serves to illustrate the difficulties of identifying the role of hard-to-cultivate bacteria in chronic diseases). 
Further, while similar phenomena may be observed in a variety of cancers (e.g. 484–489), for reasons of space we have determined that 
this must be the subject of a separate work.

Disease Class of bacteria Nature of the evidence of involvement Selected 
References

AUTOIMMUNE DISEASES

Ankylosing spondylitis Klebsiella pneumoniae LPS antibodies found in various patient populations 490–493

Multiple sclerosis Clostridium perfringens Single case isolation: 
Immunoreactivity to ETX, fecal culture and PCR analysis, 
lysogenic bacteriophage footprint analysis (to exclude 
the possibility of laboratory contamination), sequencing 
of the patient-derived ETX gene

494

Chlamydia (Chlamydophila) 
pneumoniae

17 patients with relapsing-remitting MS, 20 patients with 
progressive MS, and 27 patients with other neurological 
conditions. Bacterial present in the cerebrospinal fluid.

495–501

Chlamydia (Chlamydophila) 
pneumoniae

PCR, Serology 
Many patients studied: cerebrospinal fluid

496–498, 
500,501

Infectious causes of multiple sclerosis – discussion in The Lancet Neurology 499

Rheumatoid arthritis/
Osteoarthritis/reactive 
arthritis

Porphyromonas gingivalis Periodontal bacterial DNA in serum and synovial 
fluid of many patient groups Anaerobic cultures (from 
subgingival samples), PCR, ELISA

502–506

Porphyromonas gingivalis Antibody responses found in many patients 503,505

Proteus mirabilis, 
Escherichia coli

ELISA and indirect immunofluorescence techniques 
Anti-LPS antibodies and human serum 
Elevated levels of IgM and IgA specific to bacteria 
Studies involving many patients

470,507–515

Mycoplasma (arthritidis 
mitogen, hominis and 
fermentans (MAM))

PCR, Western Blot 
Elevation of antibodies to MAM in RA sera: stuies involve 
many patients

520–522

Mycoplasma in 209 synovial fluid samples 520

Staphylococcus aureus Microbiology reports from patient records 523,524

Salmonella 
Shigella 
Yersinia 
Campylobacter 
Clostridium difficile

Review discussing the involvement of these bacteria in 
arthritis

525

Propionibacterium acnes In 23 of 55 patients, undergoing primary shoulder joint 
replacement, P. acnes was found in the joint fluid

526

Chlamydia trachomatis Synovial tissues of patients: review of literature 528

Chlamydia from synovial fluid in single case 527
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Disease Class of bacteria Nature of the evidence of involvement Selected 
References

Systemic Lupus 
Erythromatosus

Cell wall-deficient form Histologic observations of coccoid forms suggestive of 
cell wall deficient bacteria in cutaneous and systemic 
lupus erythematosus in 7 patients

529

Streptococcus pneumonia, 
Haemophilus influenza, 
Mycobacterium tuberculosis, 
Listeria monocytogenes, 
Klebsiella pneumonia, 
Staphylococcus aureus; 
Cryptococcus neoformans, 
Aspergillus fumigatus

Blood & tissue culture, patient records 
Hypocomplementaemia and infection with encapsulated 
bacteria

530–534

Vasculitis Possibly mainly viral, but 
bacteria include 
Staphylococcus aureus, 
Treponema pallidum, 
Rickettsiaceae, 
Borrelia burgdorferi, 
M. tuberculosis

Various reviews that suggest bacterial involvement 535–541

CARDIOVASCULAR DISEASES

General Comprehensive reviews 383,542,543

Atherosclerosis Aggregatibacter 
actinomycetemcomitans

This was an animal (mice) study 544

Chlamydia (Chlamydophila) 
pneumoniae

Antigens, PCR and treatment of patients with antibiotics 
with good results

545–549

Helicobacter cinaedi This was an animal study. H. cinaedi infection significantly 
enhanced atherosclerosis in hyperlipidaemic mice

550

Helicobacter pylori 
Chlamydia pneumoniae

Bacteria in atherosclerotic plaques of carotid arteries: 
PCR detection: study comprised 52 patients

547

Porphyromonas gingivalis PCR: periodontopathic bacteria were detected in 
atherosclerotic arterial wall specimens of large patient group

551–556

PCR, 
IgG Titers Against P.gingivalis Measurement

553

Comprehensive reviews 554,556

PCR in a murine models 551,555

Periodontopathic bacteria 
Prevotella intermedia 
Treponema denticola

PCR: large patient based study 552

Streptococcus pneumoniae Inoculated animals 557

Toxoplasma gondii Animal (mouse) model 558

Endocarditis Many cell-wall-deficient forms Comprehensive review 559 
See Table 2

Benefit of antibiotic prophylaxis: review of literature 560

Hereditary 
haemochromatosis

Chryseomonas, Veillonella, 
Streptococcus

qPCR: 454 pyrosequencing of 16S rRNA genes to 
survey the bacterial diversity of atherosclerotic plaque, 
oral, and gut samples of 15 patients with atherosclerosis

561

Gemella haemolysans Blood culture (Gram stain, catalase activity and 
biochemical characteristics)

562

Listeria monocytogenes Letter to the editor regarding infection 563,564

Case study 564

Plesiomonas shigelloides Case study: Blood culture; API20E system 565

Vibrio vulnificus Case study: wound infection 566,567

Infected wild-type and hepcidin-deficient mice 567

Vibrio cholerae Case studies: Blood culture; PASCO and API20E 568

Yersinia enterocolitica Case studies: Microbial cultures, serotype O:3, serotype 9 569–572

Yersinia pseudotuberculosis Case studies: Mobility test and API 573,574
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Disease Class of bacteria Nature of the evidence of involvement Selected 
References

Hypertension Periodontal infection with 
A. actinomycetemcomitans, 
P. gingivalis, T. forsythia, and 
T. denticola

Large study: DNA-DNA checkerboard hybridization 575,576

Periodontal infection Review: Strong positive association between periodontal 
infection and prevalent hypertension

576

Myocardial infarction Chronic dental infection 
correlated positively with MI

Association between dental chronic inflammatory 
diseases and the occurrence of acute myocardial 
infarction was studied

577–579

Chlamydia pneumoniae, 
Helicobacter pylori

Large study: 3315 case patients aged 75 years or 
younger

580

Enterobacteria & influenza-like 
illness

Immunohistochemistry: Association study 582

Stroke (and TIA) Comprehensive papers reviewing infection and stroke 585–594

Many bacterial species 84 different species detected in 77 patients 595,596

Community-acquired 
bacteremia

Population-based cohort study 597

Bacterial endocarditis 
(Organisms found included  
S. pneumoniae, N. meningitides 
and other)

Culture of cerebrospinal fluid: 
Observational cross-sectional study

598

Borrelia burgdorferi ELISA 599

Brucella spp. Brucella agglutination and Coombs’ tests in blood 600

Chlamydia pneumoniae Serology 601–603

Haemophilus influenzae Multivariate time series analysis to assess an association 
between infections and stroke using the established 
‘3h-algorithm’

604

Mycobacterium tuberculosis Cox proportional hazard regressions 605

Mycoplasma pneumoniae Association between MP infection and risk of ischemic 
stroke; ELISA; serology

606–608

Neisseria meningitidis Latex agglutination test and 
counterimmunoelectrophoresis

609

Staphylococcus aureus Prospective observational cohort study and 
retrospective review

610,611

Streptococcus bovis Blood culture 612

Streptococcus mutans PCR 613

Streptococcus pneumonia Cox proportional hazard model 614

Streptococcus viridans Blood culture 615

Treponema pallidum Neurosyphillis also present 
Serology and Treponema pallidum haem agglutination 
test; rapid plasma regain test, and fluorescent 
treponemal antibody-absorption test 
Serum and cerebrospinal fluid profiles for syphilis in Thai 
patients

616,617

Treponema pallidum Case study: Serology and haem agglutination test 616

Vascular disease 
(aneurysmal and lesions 
and atherosclerotic 
plaques)

Numerous bacterial species 
found in atheromas

Seven nonseptic patients: 6S rDNA analysis, 
biochemical tests, random amplification of polymorphic 
DNA PCR analysis, quantitative polymerase chain 
reaction (qPCR) and immunohistofluorescence

618
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Disease Class of bacteria Nature of the evidence of involvement Selected 
References

ENDOCRINE DISEASES

Diabetes Overview papers 624,625

Pseudomonads, 
Stenotrophomonas maltophilia 
and Ps. aeruginoas

PCR and antibodies from blood samples 626

type 1 E. coli, Candida albicans, 
enterovirus

Urine and blood culture: form patients with urinary tract 
infection

627–629

Various proteobacteria PCR: 16SRNA form human blood 630

Decreased bacteroidetes Review paper 631

type 2 Systemic antibiotics improved 
diabetes control

Measured as a reduction in glycated hemoglobin or 
reduction in insulin requirements

632

Many Gram-positives qPCR: blood from patients 633

NEUROLOGICAL DISORDERS

General Comprehensive reviews 634–636

Alzheimer’s Disease Comprehensive reviews 637,638

Porphyromonas gingivalis 
Chlamydia pneumoniae

Immunolabeling and immunoblotting of brain tissue 
for the presence of LPS from P. gingivalis LPS will 
activate innate immune system in CNS and initiate pro-
inflammatory cascades.

639

Spirochetal bacteria Comprehensive overview papers: 
Immunohistochemistry, Statistical correlation of a meta-
analysis

640–653

Helicobacter pylori Histology for diagnosis of Hp-I from AD patients 654–656

Population studies: eradication of bacteria versus state 
of dementia

655

Animal (Rat) model 656

Actinomyces naeslundii Serum IgG levels in patients 657

Amyotrophic Lateral 
Sclerosis

Mycoplasma infections 
(M. fermentas, M. genitalium, 
M. penetrans, M. fermentans, 
M. hominis, M. pneumoniae), 
Chlamydia pneumoniae, 
Borrelia burgdorferi

PCR, serology, microscopic observation: patient blood 
antibody analysis

436,658–660

Autism spectrum 
disorders

Mycoplasmal infections 
(M. fermentas, M. genitalium, 
M. penetrans, M. fermentans, 
M. hominis, M. pneumonia)

PCR 661

Chlamydia pneumoniae (co-
infection with mycoplasma 
and human herpes virus-6), or 
wall-less bacteria

PCR: detected in blood of patients 663

Critical review: amylotrophic lateral sclerosis (ALS) 662

Chronic depression Numerous Gram-negatives 
from gut, e.g. Hafnia alvei, 
Pseudomonas aeruginosa, 
Morganella morganii, 
Pseudomonas putida, 
Citrobacter koseri,  
Klebsiella pneumoniae

IgA and IgM responses in patients 665

Parkinson’s Disease Helicobacter pylori 13C urea breath test, odd ratios for the association 
between treatment for HP and risk of PD using logistic 
regression

666–669

Toxoplasma gondii Serology, ELISA (IgG antibodies) patient-based study 670

Helicobacter suis DNA evidence: gastric biopsies of patients 671
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Disease Class of bacteria Nature of the evidence of involvement Selected 
References

Schizophrenia Toxoplasma gondii (and 
Herpes simplex virus type 2)

A correlation between contact with house cats in early 
life and the development of schizophrenia exist

672–676

Prenatal exposure to 
bacterial infection in the first 
trimester increased risk of 
schizophrenia in the offspring

Prospective association study 677

Toxoplasma, Mycoplasma 
and Chlamydia trachomatis/
pneumoniae

Hypothesis paper 679

Antibodies against bacteria in blood of patients 678,679

OTHER INFLAMMATORY CONDITIONS

Preeclampsia Tannerella forsythensis, 
Porphyromonas gingivalis, 
Actinobacillus 
actinomycetemcomitans, 
Prevotella intermedia, 
Fusobacterium nucleatum 
Treponema denticola 
Significantly lowered risk 
following antibiotic treatment

PCR: placentas of 16 women 689

Hypothesis and review 690

Significant association with 
periodontal disease and UTI

Review papers 691–694

Chlamydia pneumonia ELISA and qPCR of genomic DNA of bacteria from 
studies using many patients

695(but cf. 
696)

Chlamydia trachomatis Serology: Antibodies were analyzed at a first prenatal 
visit (mean 14.2 weeks) and at delivery

697

Helicobacter pylori 
Chlamydia pneumonia

Review paper discussing hypothesis of bacterial 
involvement in condition

698,699

Serology C-reactive protein (CRP), tumor necrosis factor 
alpha (TNFalpha), Chlamydia pneumonia IgG, IgM 
and plasma Helicobacter pylori IgA levels between 40 
preeclamptic and 40 normal pregnant women

698

Chronic fatigue 
syndrome

Comprehensive reviews 701,702

Hafnia alvei, 
Pseudomonas aeruginosa, 
Morganella morganii, 
Proteus mirabilis, 
Pseudomonas putida, 
Citrobacter koseri, 
Klebsiella pneumoniae

Serum IgA and IgM against LPS 
Serology

700–703

Mycoplasmal infections 
(M. pneumonia, M. fermentans, 
M. honinis, M. penetrans), 
Chlamydia pneumonia, Human 
herpes virus-6

PCR: Conference proceedings 704

Various enterbacteria and 
others

IgG is patient blood 705

Vitamin D receptor 
(VDR) dysregulation

Cell wall deficient bacteria Evade immune destruction by invading nucleated cells 
where they persist in the cytoplasm. From here they 
down-regulated the vitamin D receptor

706

Multiple organisms, including 
mycrobacteria, Borrelia

Paper discusses a model describing how multiple 
species-bacterial, viral, and fungal-can cumulatively 
dysregulate expression by the VDR nuclear receptor

705

Antiphospholipid 
syndrome

S. aureus A review paper: Cross-reacting antibodies 707

Various viral and bacterial 
triggers

General review paper reviewing co-infections 708–710

Toxoplasma Anti-Toxoplasma antibody screening in 98 patients with 
antiphospholipid syndrome

711
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Disease Class of bacteria Nature of the evidence of involvement Selected 
References

Sudden Infant Death 
Syndrome

S. aureus Review papers: seasonality, bacteriology 712–714

Papers discuss markers of infection and inflammation 
are often found on autopsy along with microbial isolates

715,716

Toxaemic shock indicators in serum 717,718

Other Inflammatory 
Bowel Diseases

Papers discussing dysbiosis of gut microbiota 719–727

Sarcoidosis P. acnes P. acnes antibodies and antigens 728–730

Migraine H. pylori A randomized, double blind, controlled trial 731,732

A meta-analysis of research between 2000 and 2013 732

leave little room for doubt. Overall, the sheer size of the Table does 

strongly indicate the commonality of many of the microbially based 

mechanisms underpinning or accompanying various autoimmune 

and inflammatory diseases. In conditions such as atherosclerosis, 

transient ischemic attacks (TIAs), and stroke, it is very easy to con-

ceive how resuscitating bacteria might serve to block the flow of 

blood, for instance. At all events, our main point here is that the 

evidence for a microbial contribution to many diseases supposedly 

lacking a microbial component is both multi-factorial and very con-

siderable. Indeed, the purpose of a synthetic review such as this is to 

provide such pointers for more detailed studies in individual cases. 

Our specific interest is with the chief mechanisms by which these 

supposedly dormant bacteria might resuscitate and act as triggers 

of disease.

Relation between iron dysregulation, sepsis and 
other comorbidities
Many of the diseases in Table 3 are precisely those inflamma-

tory diseases that we have listed before as coupled to iron dys-

regulation183,184,449,452,733. A consequence of our analysis is that iron 

dysregulation and sepsis (as judged either by genuine infection by 

culturable bacteria or their inflammatory products such as LPS) 

should be associated causally with these various other diseases.

This leads to a variety of predictions and postdictions that we 

rehearse. A purposely simple (and simplistic) indication of a plau-

sible chain of events (for which each step is underpinned by sub-

stantial evidence) is given in Figure 9, both in general terms (for 

unspecified diseases) and for a couple of steps to type 2 diabetes. 

Figure 9 aims specifically to highlight the relationship between the 

ability of available iron to stimulate bacterial growth and the poten-

tial disease sequelae thereof.

Iron and sepsis
First of all, it is well established that free iron may be raised in sep-

sis and related conditions734–742, as may serum ferritin743–747 (that has 

mainly dumped its iron452). We have here argued that this is likely 

to be a significant contributor to the relationship between overt or 

cryptic infection and the many iron-related inflammatory diseases 

discussed here and elsewhere183,184,452,733. Note that patients suffering 

from iron overload diseases such as hereditary haemochromatosis 

are especially susceptible to infection (see e.g. 748–750 and Table 3). 

Certainly the idea that iron-related metabolism and siderophores 

are virulence factors (e.g. 751–763) is established unequivocally. In 

many diseases (e.g. lupus764,765 or type 1 diabetes766) it is considered 

that patients with the disease are more prone to sepsis, but we sug-

gest here that (as with stroke581,585,586,588–590,767–775) it may more likely 

be the converse that is truer: patients suffering from latent infections 

are in fact more prone to acquiring, having, or exacerbating the state 

of these other conditions, in a vicious cycle (see Figure 9).

Role of iron chelation in preventing sepsis
This was discussed at considerable length previously184, and that 

discussion is not repeated here (though a few more recent and per-

tinent references include776–779). However, while (perhaps surpris-

ingly, given what we see as the evidence) it does not even appear in 

the guidelines780, there is considerable evidence184 that appropriate 

iron chelation slows, inhibits or overcomes sepsis. We note, how-

ever, that some chelators are in fact known iron siderophores, and 

such molecules may assist the pathogen (e.g. 781–783) and are to 

be avoided. On this basis, iron chelation may be a suitable alter-

native to antibiotics in preventing multiple inflammatory diseases 

(and such chelation may be nutritional rather than pharmacological 

in nature, e.g. 183). However, it is clear that we also need to learn 

to kill ‘dormant’ bacteria, and this usually requires that they are 

growing.

Utility of antibiotics in treating non-communicable diseases
It is well established that the re-use of protein motifs in natural (and 

directed784) evolution means that most drugs, especially the more 

lipophilic ones, are promiscuous in the sense that they bind to mul-

tiple targets194,785 (on average six known ones for marketed drugs786). 

This said (and while we are very far from wishing to encourage the 

unnecessary use of antibiotics), the prediction here is that appropri-

ate antibiotics will prove to have clinical benefit in diseases com-

monly seen as non-communicable. This is certainly known to be the 
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case for a number of autoimmune diseases787 such as rheumatoid 

arthritis788–793, multiple sclerosis794–800 and psoriasis801–803. Vaccina-

tion may prove equally effective804,805.

Concluding comments: on the systems properties of 
dormancy and virulence
We have here brought together some of the relevant elements of 

environmental, laboratory, and clinical microbiology. We have 

argued that while their languages may differ (e.g. ‘dormancy’ vs 

‘persistence’), very similar phenomena have been observed in each 

of these spheres (plausibly underlying a commonality of mecha-

nism). Certainly the ability to culture microbes, and not merely to 

observe them (whether microscopically or via their macromolecu-

lar sequences or chemical products), remains an important goal 

of basic microbiology. This is likely to have significant payoffs in 

bioprospecting (e.g. 179,806). However, we are sure that improved 

methods of detecting and identifying these dormant bacteria, 

whether this is done via chemical imaging, through macromolecu-

lar amplification and/or sequencing, or through resuscitation and 

culturing, will have a major role to play in increasing the awareness 

of their existence and importance.

Clearly dormant and/or persistent bacteria are likely to be relatively 

avirulent when they are in such dormant states, and able to bypass 

the attentions of the innate immune system (albeit the production of 

superantigens by at least some microorganisms807,808 may be what 

triggers autoimmune diseases). This ‘stealth’ antigenicity is prob-

ably why they have been largely unnoticed by us too809, and their 

routine estimation via molecular methods810 seems highly desirable. 

Indeed, virulence varies widely between individual strains (e.g. 

811,812). Modern molecular microbiology places much emphasis 

on the virulence of the pathogen, with concepts such as ‘patho-

genicity islands’813–818, ‘virulence genes’819,820, and the ‘virulome’821 

being commonplace. However, if dormant microbes resuscitate 

(or are to be resuscitated) in vivo we shall need to pay much more 

attention to the environmental triggers that can cause this to hap-

pen than we probably have so far822 (given that the pathogen geno-

type is fixed823,824). In other words, virulence, like dormancy, is a  

phenotypic as well as a genotypic property. We remain largely igno-

rant of the means by which an optimal immune system has been 

selected for (or against) by longer-term evolution on the basis of 

microbial exposures in early life, and how this may have changed with 

more recent changes in human lifestyle825–828. Nor do we understand 

Figure 9. An elementary systems biology model of how iron dysregulation can stimulate dormant bacterial growth that can in turn 
lead to antigen production (e.g. of LPS) that can then trigger inflammation leading to cell death184 and to a variety of diseases. While 
it is recognised that this simple diagram is very far from capturing the richness of these phenomena, there is abundant evidence for each of 
these steps, but sample references for the numbered interactions are (1)855–858 (especially including the release of free iron from ferritin452), 
(2)859–861, (3)285,473,475,862–869, (4)476,733,870–873, (5)183, 184,452, (6)874,875, (7)876–882, (8)883, (9)884–886, (10)887,888.
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how such microbes might enter and exit blood cells (and see 62,347, 

829–833) (albeit the known endosymbiotic origins834,835 of eukaryo-

tic organelles must have presaged such mechanisms). Similarly, 

we do not yet know what may cause these dormant microbes to 

resuscitate (and/or to exit their intracellular niches). However, the 

potential for iron-associated replication and (e.g.) LPS production 

and shedding does provide a very straightforward explanation for 

the continuing low- or medium-grade inflammation characteristic 

of the many inflammatory diseases we have considered here and 

elsewhere183,184,449,452,733,890 (Figure 9).

Recognising that correlation does not at all equate to causality (e.g. 

195,836), one approach to Science is based on varying independ-

ently something considered a cause and observing its predicted 

effects (e.g. 195,837,838). Temporal covariation of measurands can 

also be performed. The levels of free iron are clearly one such pos-

sibility. To assess causality in microbiology it is usual (e.g. 815, 

839–841) to invoke what are (variously842) referred to the Henle-

Koch or Koch’s postulates. These are based on the nature and 

presence, but not the physiological state, of an agent that might be 

believed to ‘cause’ (or at least contribute to) an infectious disease. 

Consequently, dormancy poses something of a challenge to the full 

completion of the required tests. Indeed a number of authors437,815,842–845 

have recognised that these tests may need revision in the light of 

the ability to identify disease-causing microbes by sequence alone. 

We suspect that a key element here will be the ability to resuscitate 

dormant organisms in vivo and to see the effects of that on clinical 

disease.

From a ‘philosophy of science’ point of view (e.g. 841), one strat-

egy taken to develop the evidence for a particular point of view 

hinges on the idea that if a series of ostensibly unrelated findings 

are brought together into a self-consistent narrative, that narrative 

is thereby strengthened. This is the strategy pursued here, and it is 

known as ‘coherence’846–848.

As phrased by Silvers849, “Several of our contributors showed how 

discoveries and insights could emerge with what seemed great 

promise, and yet be pushed aside, discarded, and forgotten – only 

to re-emerge once again, sometimes many years later, and become, 

in their new formulation, accepted as important”. In this sense, and 

as presaged in the opening quotation1, it seems that ideas, as well as 

bacteria, can remain dormant for extended periods850,851.
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This review paper is an important modern perspective on bacterial persistence and expression of 
disease. The role of ‘stressed’, atypical, cell wall-defective, cryptic, pleomorphic forms in chronic 
inflammatory diseases in clinical medicine and especially in diagnostic pathology and clinical 
microbiology is grossly neglected and overlooked.  This paper warrants publication for its timely 
approach to a vastly important overlooked topic in science and medicine and its relevant, useful 
890 cited references.  I see no point in further elaboration on semantics: persistence vs. 
dormancy.  In my opinion, regardless of terminology preferred (or debated) the relevant and 
important fact is identity of atypical forms in tissues, their basic biology and their relationship to 
disease.   
 
Although there is provocative circumstantial evidence linking pleomorphic forms suspected of 
being bacterial in origin in a wide array of chronic diseases, many were categorized as 
autoimmune, unrelated to microbes (unambiguous proof lacking). While the persistence of 
stainable forms (various structures) are often seen in tissue specimens utilizing histopathologic 
and bacteriologic stains, most are discarded as insignificant staining artifacts and debris, and 
especially in the absence of non-cultivable bacteria from accompanying specimens.  In my opinion, 
this is a primary reason the significance of such stainable findings has been ignored in clinical 
medicine and has stymied their identity as causative agents of disease. Furthermore, even when 
there may be growth of atypical bacterial forms on artificial culture media, bizarre (non-standard) 
morphologic, biochemical, physiological characteristics of the isolated organism in vitro, the 
findings are most often disregarded as “contaminants”.  
 
Permit me to digress and cite such an example of an unidentified pleomorphic form isolated from 
patients with interstitial cystitis (a chronic, debilitating disease of unknown origin).  These atypical 
isolates were subjected to elaborate, microbiological, immunological, biochemical, physiologic and 
electron microscopic characterizations. The findings (data) were presented at the American 
Urological Association annual meeting, only to have a well-known academic urologist and 
interstitial cystitis specialist congratulate the researchers for the elaborate experimental 
description of an ‘artifact’.  Obviously with that type of unexpected and disappointing comment, 
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there was nothing more to be said, other than, thank you! So there you have it:  The regrettable 
dismissal of a potentially important finding in a disease of unknown origin by an individual who 
could not see the forest through the trees and without evidence to substantiate the claim that the 
finding was an ‘artifact’.  
 
The 14 topics and subsections outlined in Figure 4 of the review set the stage for the “dramatics” – 
‘mind map’ – that follows. In itself this graphic may have been enough when accompanied by 
germane references instead of lengthy written discussions for each topic since much is déjà vu, 
gleaned over a period of many decades from published findings.  On the other hand, it is often 
useful to repeat, for emphasis, and especially to call attention to neglected topics, which I suspect 
was the intent.  Although the tables and graphics are worthwhile, it does take time to digest it all, 
meaning it may have been possible to shorten the paper. 
 
Two important publications (not cited in list of 890 references): companion papers by Green et al in 
Infection and Immunity, 1974, Oct; 10 (4): 889-914 and 915-927; demonstrated the phenomena of 
microbial persistence and reversion with Streptococcus faecalis L-forms in human embryonic 
kidney cells, followed by a proposed reproductive cycle for a relatively stable L-phase variant of 
Streptococcus faecalis.  I call these publications to the attention of the authors because of their 
possible application to the fundamental basis of persistence by ‘stressed’, atypical bacteria in 
chronically diseased human subjects.  Essential to the thesis of Green et al is that small, electron 
dense, non-vesiculated L-forms were shown to be the central (core) element in bacterial 
persistence in these experimental studies. The researchers concluded that depending on the 
stimulus received, these dense forms might be considered as undifferentiated cells, with the 
capacity to develop along several different routes.  In vitro, the dense form was observed to divide 
and bud rapidly. In addition, the dense forms appeared to be capable of growth and development 
within vesicles of mature mother forms.  When these forms were released from the vesicles into 
the surrounding fluid medium, further growth occurred, resulting in the development of 
immature and ultimately mature mother forms. Under conditions unfavorable for L-form growth, 
these dense forms developed first into transitional forms and then into the bacterial form. These 
dense forms might therefore be considered as undifferentiated ‘stem cells’ with the capacity to 
develop along several different routes, depending upon the stimulus received.  Hence, in applying 
these findings to altered forms created in vivo (humans) these may take up intracellular and/or 
extracellular residence; possibly establishing a sort of immune protected parasitic relationship 
persisting/surviving phagocytic action, and creating subtle pathologic changes in the host during 
a prolonged period of tissue persistence.  This might translate into an etiology for chronic 
inflammatory diseases, when the ‘stressed’ bacteria increase in numbers and overwhelm the 
normal biological functions of the host.  I further propose that in vivo persistence of these 
bacterial elements escape immune surveillance partially, completely, or may integrate with host 
cell organelles to create bacteria-host cell-antigen complexes which could provoke 
immunopathologic consequences. Highly relevant, recently published data on modifications of 
gene expression, modes of division for stressed bacteria, and the paradoxical finding of 
peptidoglycan in L-forms are pertinent to the hypothesis that atypical, pleomorphic bacteria are 
the organisms responsible for persistence and expression of disease. Finally, it is hoped that the 
Kell, Potgieter, Pretorius timely, interesting and provocative review will call attention to this highly 
significant, too often overlooked subject.  In my opinion, this review calls for a scientific/medical 
challenge: 1) to motivate visionary scientists and clinicians to investigate the fundamental origins 
of bacterial persistence in chronic diseases; 2) to unambiguously identify tissue persisting forms 
utilizing modern molecular technology, and 3) to design elegant experiments to provide 
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convincing scientific proof (or disprove) that extracellular and or intracellular stainable bodies 
observed in histopathologic specimens and dense bodies at the electron microscopic level (culture 
negative) are bacteria existing as ‘stressed’ altered forms in tissues and not tissue or staining 
artifacts.  Proof of the above hypothesis would open new arenas in clinical diagnosis, 
management and treatment of numerous chronic inflammatory human diseases of unknown 
etiology and might even extend to a bacterial cause for certain malignancies (as previously 
proposed many decades ago).
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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© 2015 Gant V. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Vanya Gant  
Department of Medical Microbiology, University College London Hospitals NHS Foundation Trust, 
London, UK 

I review Kell et al’s review relating to individuality, phenotypic differentiation, dormancy and 
“persistence” as a clinical microbiologist, infectious diseases doctor, with an interest in developing 
and assessing the impact of rapid sequence-based molecular blood and lung diagnostics in the 
critically ill. 
 
 This review reminded me of Mussorsky’s Pictures at an Exhibition, a collection of hastily composed 
pieces whose theme was to take an interested individual through an art gallery, and to tarry 
awhile in front of 10 Tableaux, interspersed with musical elements referring to the “Promenade” 
through the gallery. 
 
And so it is with Kell et al’s review. After an introductory Promenade relating to matters of bacterial 
dormancy and its relationship with just about any other conceivable physical state between life 
and death, exhaustively referenced together with the thought provoking Postgate-ian concept of 
the difficulties inherent in differentiating bacterial life from death if you only have an instant in 
time to measure it – we are then presented with several pictures, garlanded for us in extensively 
referenced detail by the authors. Were mindmaps not enough to capture the reader’s curiosity as 
to this magnum opus of a kind, we are invited to walk through Kell et al’s gallery of mental pictures 
depicting scenes of the Yet to be Cultured, Those bacteria that aren’t culturable yet but are 
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certainly not dead, the biological importance of bacterial pheromones, the evils of Iron - thence to 
the Clinical Microbiology Room of Pictures with a liberal helping of systems biology throughout. 
 
I am a proponent of, and believer in, the present and future potential of Nucleic Acid Technology 
(NAT) for pathogen detection in Clinical microbiology and I use such techniques on a daily basis. 
When appropriately deployed, it allows me to find those “unculturable” pathogens as drivers for 
individual clinical cases of infection. Perhaps strangely, this is a relatively new paradigm for most 
practising clinicians, and one which likely will generate fundamental discoveries highly relevant to 
human disease, and for all we know as equally important as Helicobacter. That such sequences 
should be found in blood is hardly surprising, given that human beings have between 10 and 100 
times more bacterial cells than their own, living (or persisting, or dormant) on and in them. This 
groups’ demonstration of bacteria adhering to red cells (also in red cells) is certainly very 
intriguing, and such suggested “atopobiosis” is more expansively dealt with in another publication 
and prompts far more questions than it answers – in a good way. Another obvious question 
relates to how these adherent bacteria may remain undetected and intact in the presence of 
numerous moieties central to both innate and acquired immunity (complement and antibody to 
name but two) as well as escaping phagocytosis in the liver and spleen. It would certainly be 
interesting to look at red cells in the grave condition of erythrophagocytosis, a condition whose 
mechanism is in most cases obscure –it might even be that adherent bacteria “opsonize” the red 
cells in these cases. This reader, however, does baulk at the very serious work to be done as 
regards untangling the mechanistic nature of an “association” with several diseases, and certainly 
at this stage it would be very unwise to suggest it’s anything more than that. Further work of this 
nature should be approached and undertaken with extreme caution and rigor in view of the 
myriad possible explanations other than causative ones; the Measles vaccine/autism saga comes 
to mind here. 
  
It is likely therefore that such technologies will perforce “lift the lid” on what might lie beyond the 
Culturable, and its relationship to human disease. This is explored in Table 3, which represents a 
tour de force as concerns the sheer volume of references relating to all that appears to associate 
human Disease and organisms, mostly bacteria. 
 
Unfortunately, this Table doesn’t work for me. Whilst it will serve me as a unique and accessible 
resource of information in this space, it is anarchic. Correctly described as “Evidence for agents in 
non-communicable diseases”, it lists, in no particular order, and with no apparently critical eye, 
references 470 to 712 as relevant to the Table subject stated above. This list’s breadth as concerns 
both organisms and clinical diseases is extraordinary; and the literature quoted in a table 
described as “effect of bacterial involvement” ranges from unusual cases, to mechanistic 
assumptions of what LPS might do, to the concept of “dysbiosis” amongst many others. I was left 
rather dizzy from the mental exercise needed to constantly adjust to the sheer scale and variation 
of why a particular organism, or something it produces, might either directly causally relate to a 
particular disease, or perhaps through the individuals’ immune response to it; especially now we 
know how outbred we are as concerns immune responsiveness. 
  
This review finishes with an impressive and lyrical chiding for Scientists, whereby those who 
research this field should wake up from their intellectual slumber, as might and indeed do 
bacteria. 
  
This review is additionally peppered with tantalizing if perhaps sometimes unfounded 
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assumptions, some arguable and some bordering on plain unreasonable. Certainly my eyebrow 
raising went into overdrive when considering Kell’s conviction as concerns a Catholic Grand 
Unifying Theory based around the Evils of Iron, the subject of a previous equally grand Magnum 
Opus. 
 
This review has to be one of the most undisciplined I have read in a long time, on occasions 
associating seemingly disparate observations  and conflating “scientifically” determined facts with 
clinical issues. 
  
Having said this, I should finish by applauding Kell et al’s review as a thumping good read. It’s fast 
paced, edgy, a real treasure trove of papers for me to read at leisure, and goes way outside the 
usual, expected and conventional  boundaries of style of prose and rigor we “normally expect” of 
such scientific publications.  And (warts and all, and there are many) it left this reader thinking that 
there indeed is Life beyond dormancy within the review’s style itself,  beyond the doubtless very 
important but less imaginative run-of-the-mill, tightly written yet dreary “Scientific Publication”. It 
is almost as if this review in all its unconventionality were particularly well aligned to the current 
state of the Art for the Uncultured in Clinical Medicine (bacteria, not Doctors) and its potential to 
release significant Paradigm shifts.  No doubt this reviews’ readers are made up of those who 
have the capacity to appreciate Kells’ latest brand of emergent, imaginative systems biology style 
of thinking underneath what some might consider a publication of inadequate scientific rigor.
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 18 Aug 2015
Douglas Kell, The University of Manchester, Manchester, UK 

"I review Kell et al’s review relating to individuality, phenotypic differentiation, dormancy 
and “persistence” as a clinical microbiologist, infectious diseases doctor, with an interest in 
developing and assessing the impact of rapid sequence-based molecular blood and lung 
diagnostics in the critically ill. 
 
This review reminded me of Mussorsky’s Pictures at an Exhibition, a collection of hastily 
composed pieces whose theme was to take an interested individual through an art gallery, 
and to tarry awhile in front of 10 Tableaux, interspersed with musical elements referring to 
the “Promenade” through the gallery. 
 
And so it is with Kell et al’s review. After an introductory Promenade relating to matters of 
bacterial dormancy and its relationship with just about any other conceivable physical 
state between life and death, exhaustively referenced together with the thought provoking 
Postgate-ian concept of the difficulties inherent in differentiating bacterial life from death 
if you only have an instant in time to measure it – we are then presented with several 
pictures, garlanded for us in extensively referenced detail by the authors. Were mindmaps 
not enough to capture the reader’s curiosity as to this magnum opus of a kind, we are 
invited to walk through Kell et al’s gallery of mental pictures depicting scenes of the Yet to 
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be Cultured, Those bacteria that aren’t culturable yet but are certainly not dead, the 
biological importance of bacterial pheromones, the evils of Iron - thence to the Clinical 
Microbiology Room of Pictures with a liberal helping of systems biology throughout." 
 
This is a lovely analogy, which we shall let readers enjoy in the open referee’s report; 
we are probably not capable of recasting the review in Mussorgskian style anyway! In 
this regard, readers might also enjoy a little known and whimsical piece on 
bioinformatics that takes just such an approach: Goble C, Wroe C: The Montagues 
and the Capulets. Comp Func Genomics 2004; 5:623-632. 
 
"I am a proponent of, and believer in, the present and future potential of Nucleic Acid 
Technology (NAT) for pathogen detection in Clinical microbiology and I use such 
techniques on a daily basis. When appropriately deployed, it allows me to find those 
“unculturable” pathogens as drivers for individual clinical cases of infection. Perhaps 
strangely, this is a relatively new paradigm for most practising clinicians, and one which 
likely will generate fundamental discoveries highly relevant to human disease, and for all 
we know as equally important as Helicobacter. That such sequences should be found in 
blood is hardly surprising, given that human beings have between 10 and 100 times more 
bacterial cells than their own, living (or persisting, or dormant) on and in them. This 
groups’ demonstration of bacteria adhering to red cells (also in red cells) is certainly very 
intriguing, and such suggested “atopobiosis” is more expansively dealt with in another 
publication and prompts far more questions than it answers – in a good way. Another 
obvious question relates to how these adherent bacteria may remain undetected and 
intact in the presence of numerous moieties central to both innate and acquired immunity 
(complement and antibody to name but two) as well as escaping phagocytosis in the liver 
and spleen. It would certainly be interesting to look at red cells in the grave condition of 
erythrophagocytosis, a condition whose mechanism is in most cases obscure –it might 
even be that adherent bacteria “opsonize” the red cells in these cases. This reader, 
however, does baulk at the very serious work to be done as regards untangling the 
mechanistic nature of an “association” with several diseases, and certainly at this stage it 
would be very unwise to suggest it’s anything more than that. Further work of this nature 
should be approached and undertaken with extreme caution and rigor in view of the 
myriad possible explanations other than causative ones; the Measles vaccine/autism saga 
comes to mind here." 
 
These are excellent points, and we have covered some of them in the forward-looking 
concluding section. While they might be seen as ‘premature’ (in the sense that it 
requires acceptance of the basic ‘dormancy’ hypothesis in the first place) they do 
point to important areas where we would seek a mechanistic understanding of what 
is going on. 
 

○

"It is likely therefore that such technologies will perforce “lift the lid” on what might lie 
beyond the Culturable, and its relationship to human disease. This is explored in Table 3, 
which represents a tour de force as concerns the sheer volume of references relating to all 
that appears to associate human Disease and organisms, mostly bacteria. 
 
Unfortunately, this Table doesn’t work for me. Whilst it will serve me as a unique and 
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accessible resource of information in this space, it is anarchic. Correctly described as 
“Evidence for agents in non-communicable diseases”, it lists, in no particular order, and 
with no apparently critical eye, references 470 to 712 as relevant to the Table subject 
stated above. This list’s breadth as concerns both organisms and clinical diseases is 
extraordinary; and the literature quoted in a table described as “effect of bacterial 
involvement” ranges from unusual cases, to mechanistic assumptions of what LPS might 
do, to the concept of “dysbiosis” amongst many others. I was left rather dizzy from the 
mental exercise needed to constantly adjust to the sheer scale and variation of why a 
particular organism, or something it produces, might either directly causally relate to a 
particular disease, or perhaps through the individuals’ immune response to it; especially 
now we know how outbred we are as concerns immune responsiveness." 
 
We very much accept the point that the table could be improved with regard to 
ordering, and we have done so accordingly. However, we think that readers will 
recognise it for what it is (as does the referee), viz. as a useful resource and/or pointer 
to a large literature in which specialists in disease X may wish to read at least those 
papers we suggest as relevant to ‘their’ disease, while others will simply see it as a 
recognition of the widespread evidence for our more general claims. 
 
"This review finishes with an impressive and lyrical chiding for Scientists, whereby those 
who research this field should wake up from their intellectual slumber, as might and 
indeed do bacteria. 
 
This review is additionally peppered with tantalizing if perhaps sometimes unfounded 
assumptions, some arguable and some bordering on plain unreasonable. Certainly my 
eyebrow raising went into overdrive when considering Kell’s conviction as concerns a 
Catholic Grand Unifying Theory based around the Evils of Iron, the subject of a previous 
equally grand Magnum Opus." 
 
As mentioned in the comments on the review of referee 1, the basis for this is the 
desire to produce a coherent story (in the sense used by Philosophers of Science), 
and (as referee 1 also states) it is well known that microbial growth in vivo is normally 
limited by iron availability. That iron dysregulation is also a hallmark of just those 
chronic inflammatory diseases that we highlight here is consistent with this view, and 
indeed serves to provide a simple explanation for this. Of course, as the referee 
indicates (and referee 1 does too), further demonstrations will benefit from varying 
iron levels as an independent variable. 
 

○

"This review has to be one of the most undisciplined I have read in a long time, on 
occasions associating seemingly disparate observations  and conflating “scientifically” 
determined facts with clinical issues. 
 
Having said this, I should finish by applauding Kell et al’s review as a thumping good read. 
It’s fast paced, edgy, a real treasure trove of papers for me to read at leisure, and goes 
way outside the usual, expected and conventional  boundaries of style of prose and rigor 
we “normally expect” of such scientific publications.  And (warts and all, and there are 
many) it left this reader thinking that there indeed is Life beyond dormancy within the 
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review’s style itself,  beyond the doubtless very important but less imaginative run-of-the-
mill, tightly written yet dreary “Scientific Publication”. It is almost as if this review in all its 
unconventionality were particularly well aligned to the current state of the Art for the 
Uncultured in Clinical Medicine (bacteria, not Doctors) and its potential to release 
significant Paradigm shifts.  No doubt this reviews’ readers are made up of those who have 
the capacity to appreciate Kells’ latest brand of emergent, imaginative systems biology 
style of thinking underneath what some might consider a publication of inadequate 
scientific rigor." 
 
Many thanks for these last comments; we have nothing further to add here.

 

Competing Interests: No competing interests were disclosed.
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Michael R Barer  
Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK 

Kell, Potgieter and Pretorius present a stimulating and argumentative review ranging from the 
interrelationships between the culturablilty of bacteria and their viability and any links these 
descriptions may have to defined physiological states, through a discussion of environmental 
bacteria and ultimately focusing on the human-associated microbiota, particularly those found in 
blood (without associated symptoms of sepsis) and their proposed roles in disease. Two central 
themes are developed beyond those that have been discussed extensively elsewhere: 1) the 
proposal that failure to culture bacteria from many samples often reflects dormancy and 2) that 
such dormant bacteria interact with host iron regulation to contribute to or directly cause a 
panoply of chronic diseases largely labelled as non-communicable. 
 
At a general level I support the provocative stance taken by the authors.  With 861 cited 
references, at the very least they provide a valuable resource for anyone wishing to consider the 
potential microbial contribution to diseases traditionally considered free of this aetiological 
component. Of course Helicobacter infection stands as a monument to the stupidity of dismissing 
this possibility in the face of carefully assembled evidence. Indeed this reviewer, who many years 
ago, was presented with a case of duodenal ulcer in his final medical exams, would probably have 
experienced quite a different career had he claimed a role for infection in causing his patient’s 
pathology. 
 
In considering the specific points presented I have multiple concerns, the most significant of 
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which I will indulge in outlining below. 
 
Semantics present a central problem in considering bacterial viability and physiology and I broadly 
support the approach taken here. The authors do try to define their terms but some problems 
remain. In particular I take issue with the very broad application of term “Persisters” which should 
be reserved for cells that survive (have the potential to replicate) after exposure to an 
antimicrobial stress to which kills most cells in an actively growing culture of the organism 
concerned. Conflation of this term with “Dormancy” implies on the one hand that the persisting 
cells must have been dormant and on the other that dormancy and persistence represent the 
same physiological state in bacteria. This difficulty resurfaces later when they define dormancy but 
other problems emerge before then. 
 
I was next concerned by the extensive use of the term “Differentiation”.  I completely agree that 
what we used to think of as uniform bacterial populations are probably never so but the degree to 
which subpopulations may be considered differentiated rather than reflecting a range of adaptive 
responses or indeed, some degree of injury, is not considered here and again I think this leads to 
problems in considering their hypotheses under a unitary banner downstream. I consider 
differentiation to require phenotypic changes that are not directly reversible, as in the case of 
sporulation, whereas adaptation can involve expression of a single gene that can be reversed by 
its subsequent repression.  I do agree that cell cycle contributes to the range of phenotypes in a 
pure bacterial culture and that this is not the only reason for their diversity (but was not 
enlightened by use of the term “modulo” in this regard). 
 
The operational definition of dormancy given deliberately leaves open the possibility of metabolic 
activity and seems only to require that the cell so defined should not divide; this did not allow me 
to recognise which operational tests might be applied to enumerate or detect dormant cells. 
Subsequently the detection of molecular signals indicative of bacterial presence in samples from 
which they were not isolated in culture is taken as evidence of dormancy. In the first case do we 
accept any non-dividing cell as dormant and in the second I can (and will) offer multiple alternate 
explanations other than dormancy. Moreover, returning briefly to the conflation between 
dormancy and persisters, the recent work of John McKinney and colleagues shows that antibiotic 
exposed persisting cells are not necessarily non-dividing cells in the mycobacterial system he 
studied. 
 
Alternative interpretations of the presence of bacterial 16SrDNA sequences in blood when culture 
fails to detect the organisms from which they derive, include the presence of dead, injured or 
moribund cells. If they are shown to be repeatedly present then they must either be able to persist 
in the face of clearance mechanisms or be supplied at a rate equal to their clearance; both seem 
equally plausible to the dormancy explanation to me. Moreover, why the first three explanations 
offered for “Not-yet-cultured” should apply to environmental bacteriology but not to clinical 
samples escapes me. 
 
I am led to the conclusion that the authors have chosen to label evidence for discrepancies 
between culture and nucleic acid detection of bacteria in blood to give their hypotheses a simple 
headline. I have no problem with the proposal that human blood and tissues classically considered 
sterile in the absence of overt symptoms of infection are frequently exposed to bacteria and 
bacterial products that in many cases contribute to serious chronic disease. However, I consider 
the burden of available evidence currently provides many potential explanations within the field of 
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microbiomics/metagenomics in contrast to the dormancy hypothesis offered here. Further, I feel 
this broad application of dormancy to bacterial phenotypes which, even in the case of Rpf 
dependency, have not been shown to result from a programme of gene expression that could be 
considered as differentiation, diminishes the value of the term. Indeed there remains no direct 
proof that dormancy of Mycobacterium tuberculosis underpins what we call latent tuberculosis 
infection and it is not essential to the observed clinical or pathological pattern, notwithstanding 
the widespread acceptance of this view by most researches, including me. 
 
I am not fundamentally opposed to the ideas presented by Kell and colleagues but I do not think 
they are assisted by lack of attention to the contradictions I have identified above. 
 
Finally I come to the iron dysregulation hypothesis and its pro-inflammatory consequences. It is 
beyond my expertise to comment on the plausibility of the inorganic chemistry deployed here or 
to review the evidence relating to more than a fraction of the conditions listed. The importance of 
the struggle between pathogens and host for access to iron is beyond question. When I entered 
the medical field of infectious disease it was fully recognised that depriving bacteria from iron was 
a potential therapeutic angle and indeed iron chelation was studied. Desferioxamine, a widely 
used agent in iron overload, was investigated and found to effectively deliver iron to the pathogen 
and the approach was set aside. More recently this agent has been identified as a major risk factor 
in serious fungal infection and guidance specifically recommends its avoidance.   Newer agents 
seem not to suffer from this problem and the approach deserves renewed attention. However, I 
would not underestimate the ability of pathogens to outwit our pharmaceutical industry in the 
battle to sequester iron. While there are reasons beyond the host –pathogen tug-of war for iron to 
consider chelation as a therapeutic option, the potential for adverse effects is significant and I 
think the suggestion that omission of iron chelation from recent guidance on sepsis management 
is “shocking” is not justified. 
Focussing briefly on the specific diseases cited and their relation to bacterial exposure in one form 
or another, I find that evidence cited frequently rests on what can be considered “fringe” 
hypotheses that have little currency in their respective fields. This is not to discourage their 
continued pursuit but it does weaken the strength of the authors’ argument when investigation of 
the supporting literature frequently leads to papers that are given little credence in the specialist 
field.  Of course “cave Helicobacter” must remain on the table. But there, an accidental technical 
breakthrough led to an avalanche of convincing laboratory and clinical data. 
  
In summary Kell, Potgieter and Pretorius have produced an interesting read which bring many 
important ideas to our attention. I am not convinced of the breadth of conditions to which they 
argue their ideas are applicable and I await with interest, demonstration of of how they may be 
practically pursued and some selected definitive proofs that iron-driven inflammatory disease is as 
important as they claim.
 
Competing Interests: No competing interests were disclosed.
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expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Douglas Kell, The University of Manchester, Manchester, UK 

"Kell, Potgieter and Pretorius present a stimulating and argumentative review ranging 
from the interrelationships between the culturablilty of bacteria and their viability and any 
links these descriptions may have to defined physiological states, through a discussion of 
environmental bacteria and ultimately focusing on the human-associated microbiota, 
particularly those found in blood (without associated symptoms of sepsis) and their 
proposed roles in disease. Two central themes are developed beyond those that have been 
discussed extensively elsewhere: 1) the proposal that failure to culture bacteria from many 
samples often reflects dormancy and 2) that such dormant bacteria interact with host iron 
regulation to contribute to or directly cause a panoply of chronic diseases largely labelled 
as non-communicable. 
 
At a general level I support the provocative stance taken by the authors.  With 861 cited 
references, at the very least they provide a valuable resource for anyone wishing to 
consider the potential microbial contribution to diseases traditionally considered free of 
this aetiological component. Of course Helicobacter infection stands as a monument to the 
stupidity of dismissing this possibility in the face of carefully assembled evidence. Indeed 
this reviewer, who many years ago, was presented with a case of duodenal ulcer in his 
final medical exams, would probably have experienced quite a different career had he 
claimed a role for infection in causing his patient’s pathology. 
 
In considering the specific points presented I have multiple concerns, the most significant 
of which I will indulge in outlining below." 
 
Many thanks for the above; it is perfectly accurate and we have nothing to add here. 
 

○

"Semantics present a central problem in considering bacterial viability and physiology and 
I broadly support the approach taken here. The authors do try to define their terms but 
some problems remain. In particular I take issue with the very broad application of term 
“Persisters” which should be reserved for cells that survive (have the potential to replicate) 
after exposure to an antimicrobial stress to which kills most cells in an actively growing 
culture of the organism concerned. Conflation of this term with “Dormancy” implies on the 
one hand that the persisting cells must have been dormant and on the other that 
dormancy and persistence represent the same physiological state in bacteria. This 
difficulty resurfaces later when they define dormancy but other problems emerge before 
then." 
This is entirely fair; we see that we occasionally elided the terms ‘dormancy’ and 
‘persistence’ to imply synonymy, when either there is none or at least there is no 
evidence for it. We think the best solution is to add a little section pointing out the 
semantic difficulties, repeating the operational nature of the definitions, and 
specifying that in very few cases do we actually know the true physiological state of 
individual cells – which is what matters with regard to replicatory potential. This 
material mainly appears in the section defining dormancy, and its title has been 
extended to note the semantic issues. 
 

○

"I was next concerned by the extensive use of the term “Differentiation”.  I completely agree ○
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that what we used to think of as uniform bacterial populations are probably never so but 
the degree to which subpopulations may be considered differentiated rather than 
reflecting a range of adaptive responses or indeed, some degree of injury, is not 
considered here and again I think this leads to problems in considering their hypotheses 
under a unitary banner downstream. I consider differentiation to require phenotypic 
changes that are not directly reversible, as in the case of sporulation, whereas adaptation 
can involve expression of a single gene that can be reversed by its subsequent repression.  
I do agree that cell cycle contributes to the range of phenotypes in a pure bacterial culture 
and that this is not the only reason for their diversity (but was not enlightened by use of 
the term “modulo” in this regard)." 
 
We mainly agree, and suggest what we think is a useful clarification or extension. We 
note again that “reversibility” is established post hoc, but there are at least two 
meanings involved. At one level we are discussing a reversibility of states. Let us take 
a spore and a vegetative cell, which obviously, for sporulating bacteria, can indeed 
interconvert (“reversibly”). However, another level or meaning implies a mechanistic 
reversibility, i.e. the path from A to B is simply traversed in the opposite direction 
when B reverts or interconverts to A. Not only is this not what we mean but (also for 
thermodynamic reasons) it is certainly not what is done (sporulation and germination 
in B. subtilis are definitely quite separate processes, as indicated by the referee, and 
one is not at all the reverse of the other). We have added clarificatory comments 
accordingly. (One might also have added, but we have not in the ms as it would 
distract, that similar issues apply to the ‘reversibility’ of enzymes and of biochemical 
pathways (gluconeogenesis is not mechanistically a reversal of glycolysis, even if the 
“start” and “end” states are the same molecules.) 
 
"The operational definition of dormancy given deliberately leaves open the possibility of 
metabolic activity and seems only to require that the cell so defined should not divide; this 
did not allow me to recognise which operational tests might be applied to enumerate or 
detect dormant cells. Subsequently the detection of molecular signals indicative of 
bacterial presence in samples from which they were not isolated in culture is taken as 
evidence of dormancy. In the first case do we accept any non-dividing cell as dormant and 
in the second I can (and will) offer multiple alternate explanations other than dormancy. 
Moreover, returning briefly to the conflation between dormancy and persisters, the recent 
work of John McKinney and colleagues shows that antibiotic exposed persisting cells are 
not necessarily non-dividing cells in the mycobacterial system he studied." 
 
The hallmark of the dormant macrostate, stated in quotation marks in the second 
paragraph of the ‘dormancy’ section, is indeed that the cells in question do not 
immediately grow when attempts to culture them under “suitable” conditions (that 
normally admit their growth), are often (but not necessarily) of low metabolic activity, 
but are not operationally dead since they can be resuscitated. On this basis we think 
that this should allow the referee or anyone else to determine the operational tests. It 
follows that we do not accept ‘any’ non-diving cell as dormant since only resuscitable 
cells can – post hoc – be considered dormant, and certainly a non-dividing cell it may 
be irreversibly injured or operationally dead. However, the presence of molecular 
signals (e.g. 16S) in samples from which nothing (or many fewer colonies or OTUs) 

○
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may be recovered by culture is certainly an indication of the possibility of 
resuscitation, and hence dormancy. 
The referee is entirely correct that we had missed John McKinney’s recent and very 
relevant work, and we mention it accordingly. 
 
"Alternative interpretations of the presence of bacterial 16SrDNA sequences in blood when 
culture fails to detect the organisms from which they derive, include the presence of dead, 
injured or moribund cells. If they are shown to be repeatedly present then they must either 
be able to persist in the face of clearance mechanisms or be supplied at a rate equal to 
their clearance; both seem equally plausible to the dormancy explanation to me. 
Moreover, why the first three explanations offered for “Not-yet-cultured” should apply to 
environmental bacteriology but not to clinical samples escapes me." 
 
The referee is entirely correct with regard to the last sentence, and the whole point 
(or at least a major theme) of our review is precisely that what is well established in 
environmental microbiology has had much less impact in clinical microbiology 
(referee 2 makes this exact point, even more explicitly). We agree that in a steady 
state such cells must be supplied at a rate equal to that of their clearance, and that 
the fact that clearance is lower than probably expected implies a significant ability to 
evade the innate and adaptive immune systems. We also take it that for common 
organisms (not very slow growers such as certain mycobacteria) the former rates 
must be much lower than those typically attainable in laboratory cultures, else we 
would have classical sepsis. We have added a few comments on these issues 
accordingly, in the section entitled ‘Generalised failure of classical techniques to 
detect dormant bacteria in clinical microbiology’. 
 

○

"I am led to the conclusion that the authors have chosen to label evidence for 
discrepancies between culture and nucleic acid detection of bacteria in blood to give their 
hypotheses a simple headline. I have no problem with the proposal that human blood and 
tissues classically considered sterile in the absence of overt symptoms of infection are 
frequently exposed to bacteria and bacterial products that in many cases contribute to 
serious chronic disease. However, I consider the burden of available evidence currently 
provides many potential explanations within the field of microbiomics/metagenomics in 
contrast to the dormancy hypothesis offered here. Further, I feel this broad application of 
dormancy to bacterial phenotypes which, even in the case of Rpf dependency, have not 
been shown to result from a programme of gene expression that could be considered as 
differentiation, diminishes the value of the term. Indeed there remains no direct proof that 
dormancy of Mycobacterium tuberculosis underpins what we call latent tuberculosis 
infection and it is not essential to the observed clinical or pathological pattern, 
notwithstanding the widespread acceptance of this view by most researches, including me. 
 
I am not fundamentally opposed to the ideas presented by Kell and colleagues but I do not 
think they are assisted by lack of attention to the contradictions I have identified above." 
 
All of the above is entirely fair, and we do not disagree. We hope that the changes we 
have now made to the ms to weaken the ostensible claims (and misplaced 
synonymies) now meet the referee’s approval. For instance we have stressed that 

○
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while the presence of suitable molecular sequences (e.g. 16S) implies that it is worth 
seeking to resuscitate the organisms from which it came, an absence would imply 
that it is not. A success in resuscitating organisms from a sample that initially 
appeared sterile would from our operational definition imply that those ones were 
indeed dormant, and we’d like to think that this had now been clarified. 
 
"Finally I come to the iron dysregulation hypothesis and its pro-inflammatory 
consequences. It is beyond my expertise to comment on the plausibility of the inorganic 
chemistry deployed here or to review the evidence relating to more than a fraction of the 
conditions listed. The importance of the struggle between pathogens and host for access to 
iron is beyond question. When I entered the medical field of infectious disease it was fully 
recognised that depriving bacteria from iron was a potential therapeutic angle and indeed 
iron chelation was studied. Desferioxamine, a widely used agent in iron overload, was 
investigated and found to effectively deliver iron to the pathogen and the approach was 
set aside. More recently this agent has been identified as a major risk factor in serious 
fungal infection and guidance specifically recommends its avoidance.   Newer agents seem 
not to suffer from this problem and the approach deserves renewed attention. However, I 
would not underestimate the ability of pathogens to outwit our pharmaceutical industry in 
the battle to sequester iron. While there are reasons beyond the host –pathogen tug-of war 
for iron to consider chelation as a therapeutic option, the potential for adverse effects is 
significant and I think the suggestion that omission of iron chelation from recent guidance 
on sepsis management is “shocking” is not justified." 
 
The point about desferrioxamine is well made (and we mention it, with citations), but 
the molecule is of course in fact a natural prokaryotic siderophore, from Streptomyces 
pilosus. We have replaced the term ‘shocking’ with something more suitable. 
 

○

"Focussing briefly on the specific diseases cited and their relation to bacterial exposure in 
one form or another, I find that evidence cited frequently rests on what can be considered 
“fringe” hypotheses that have little currency in their respective fields. This is not to 
discourage their continued pursuit but it does weaken the strength of the authors’ 
argument when investigation of the supporting literature frequently leads to papers that 
are given little credence in the specialist field.  Of course “cave Helicobacter” must remain 
on the table. But there, an accidental technical breakthrough led to an avalanche of 
convincing laboratory and clinical data." 
 
It is probably a philosophical distraction to rehearse how often in science something 
outside the mainstream is blocked for many years by ‘vested interests’. However, we 
may as well mention Peyton Rous, whose discovery of a viral cause of certain cancers 
was sidelined for decades (he received a Nobel prize when he was 87, 40 years after 
first being nominated https://en.wikipedia.org/wiki/Francis_Peyton_Rous!). Closer to 
(prokaryotic) home, Barry Marshall has edited a book (Marshall BJ (ed.): Helicobacter 
pioneers: firsthand accounts from the scientists who discovered helicobacters. 
Melbourne: Blackwell, 2002.) whose invited contributors had all long recognised a 
bacterial cause of ulcers and treated their patients accordingly, on the simple 
grounds that the antibiotics worked! Of course Marshall and Warren (and the wider 
world) knew nothing of this at the time of their discovery of H. pylori. Under these 

○
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circumstances (as here) we rely on the overall weight of evidence (as much as its 
place of publication) to support our views. In Philosophy of Science circles this 
bolstering of a view via overlapping circles of self-consistent reasoning and data is 
referred to as ‘coherence’. Accordingly, in this sense, we have tried to make this a 
coherent story, and rehearse this point in the concluding section. 
 
"In summary Kell, Potgieter and Pretorius have produced an interesting read which bring 
many important ideas to our attention. I am not convinced of the breadth of conditions to 
which they argue their ideas are applicable and I await with interest, demonstration of of 
how they may be practically pursued and some selected definitive proofs that iron-driven 
inflammatory disease is as important as they claim." 
 
We have no further comments at this stage. Many thanks again for a very thoughtful 
review.

○
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