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Individualized prediction 
of COVID‑19 adverse outcomes 
with MLHO
Hossein Estiri 1,2,3*, Zachary H. Strasser1,2,3,4 & Shawn N. Murphy1,2,3,4,5

The COVID‑19 pandemic has devastated the world with health and economic wreckage. Precise 
estimates of adverse outcomes from COVID‑19 could have led to better allocation of healthcare 
resources and more efficient targeted preventive measures, including insight into prioritizing 
how to best distribute a vaccination. We developed MLHO (pronounced as melo), an end‑to‑end 
Machine Learning framework that leverages iterative feature and algorithm selection to predict 
Health Outcomes. MLHO implements iterative sequential representation mining, and feature 
and model selection, for predicting patient‑level risk of hospitalization, ICU admission, need for 
mechanical ventilation, and death. It bases this prediction on data from patients’ past medical records 
(before their COVID‑19 infection). MLHO’s architecture enables a parallel and outcome‑oriented 
model calibration, in which different statistical learning algorithms and vectors of features are 
simultaneously tested to improve prediction of health outcomes. Using clinical and demographic data 
from a large cohort of over 13,000 COVID‑19‑positive patients, we modeled the four adverse outcomes 
utilizing about 600 features representing patients’ pre‑COVID health records and demographics. 
The mean AUC ROC for mortality prediction was 0.91, while the prediction performance ranged 
between 0.80 and 0.81 for the ICU, hospitalization, and ventilation. We broadly describe the clusters 
of features that were utilized in modeling and their relative influence for predicting each outcome. 
Our results demonstrated that while demographic variables (namely age) are important predictors 
of adverse outcomes after a COVID‑19 infection, the incorporation of the past clinical records are 
vital for a reliable prediction model. As the COVID‑19 pandemic unfolds around the world, adaptable 
and interpretable machine learning frameworks (like MLHO) are crucial to improve our readiness for 
confronting the potential future waves of COVID‑19, as well as other novel infectious diseases that 
may emerge.

�e global spread of COVID-19, the disease caused by SARS-CoV-2, has resulted in the loss of around 700,000 
lives. Repercussions of the pandemic have wreaked havoc on the economy, sending billions of people into 
lockdown and resulting in record-high unemployment around the world. �e American Hospital Association 
estimates a total four-month �nancial impact of over $200 billion in losses for the U.S. healthcare system as a 
result of cancelled hospital services (e.g., cancelled non-elective surgeries and outpatient treatment) due to the 
COVID-19  pandemic1. Our inability to provide precise estimates of COVID-19 outcomes such as death, hospi-
talization, and need for ICU and ventilation, has contributed to lost opportunities for saving lives with personal-
ized preventive measures and making smart resource allocation plans, such as the distribution of vaccinations. 
Although our inability to predict was partly due to the novelty of the disease, now the critical question is: do we 
have the data and technology to accurately predict outcomes?

Over the past decade, the U.S. federal government has made extensive investments to institute meaningful use 
of electronic health record (EHR) systems. Clinical data in EHRs, however, are still complex and have important 
quality issues, impeding their ability to address pressing health issues that require rapid responses. Nevertheless, 
biomedical researchers are increasingly applying data mining and machine learning techniques to clinical data 
for predicting health outcomes.

Recent studies have shown that COVID-19 disease severity and mortality are associated with a number of 
comorbidities including cardiovascular disease, diabetes mellitus, hypertension, chronic lung disease, cancer, 
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chronic kidney disease, and obesity, and demographics including age, sex, and race/ethnicity2–8. A number of 
Machine Learning (ML) models have been developed to predict susceptibility in the general population, the 
likelihood of a positive diagnosis in a patient with symptoms, and prognosis in those with the  disease9. Many 
of these models are based on a combination of demographics, comorbidities, symptoms, and  biomarkers10–15, 
and use data from relatively small cohorts of COVID-19 patients. Jiangfent et al.10 for example, performed a 
logistic regression analysis on 299 patients that identi�ed age, lymphocyte count, lactate dehydrogenase, and 
oxygen saturation as independent predictors for mortality. Jiang et al.15 used data from 53 patients to develop 
ML models that identi�ed elevated alanine aminotransferase (ALT), the presence of myalgias, and an elevated 
hemoglobin as the most predictive features for disease severity, achieving approximately 70–80% accuracy in 
modeling COVID-19 morality. Huang et al.11 examined clinical data from 125 COVID-19 patients and identi-
�ed the presence of comorbidities, increased respiratory rate, elevated C-reactive protein, and elevated lactate 
dehydrogenase as independently associated with a worse prognosis. While the inclusion of vital signs and bio-
markers in these models may be highly predictive of some adverse outcomes of COVID-19 infection, they are 
typically measured a�er the patient has already started to show signs of the disease and may be at a point that 
is too late for a useful intervention.

Estiri et al. (2020) introduced the transitive Sequential Pattern Mining (tSPM) along with a dimensionality 
reduction algorithm (MSMR), and demonstrated that together, the two algorithms can successfully predict 
di�erent health  outcomes16,17. �e goal in tSPM is to mine temporal data representations from clinical data for 
application in downstream ML. �e MSMR algorithm—the short form stands for Minimize Sparsity, Maximize 
Relevance—applies high performance dimensionality reduction to tSPM representations. It takes the initial set 
of N features mined by the tSPM algorithm and provides a list of < 400 features, through a three-step process 
including frequency-based and information-based (mutual information and joint mutual information) �ltering 
of a large number of  features16,17.

We adapt the tSPM temporal representation mining and MSMR dimensionality reduction algorithms and 
make adjustments to architect an end-to-end ML framework that enables iterative feature and algorithm selection 
to predict Health Outcomes (MLHO, pronounced as melo). MLHO o�ers an architecture for parallel outcome-
targeted calibration of the features and algorithms. �e goal in MLHO is to mine relevant data representa-
tions and select the most e�cient algorithmic solution for accurately predicting future health outcomes. As 
the COVID-19 pandemic unfolds in many areas of the world, being able to provide personalized predictions 
of adverse outcomes could be transformative to a healthcare system. In this study, we focus on predicting four 
outcomes (hospitalization, ICU admission, mechanical ventilation, and death) in patients with a veri�ed COVID-
19 infection, using their past medical records. Utilizing about 600 clinical features mined from patients’ past 
medical records (before contracting COVID-19), we trained and tested predictive models that estimate risks 
of hospitalization, ICU admission, mechanical ventilation, and death. We also demonstrate and discuss the 
predictiveness of demographic features, such as age.

Results
�e overall mortality rate in the patient cohort was 5.3%. Table 1S provides a summary of demographic charac-
teristics of this patient cohort. White patients had the highest mortality rate (7.3%) of any race or ethnic group. 
However, the rate of hospitalization and mechanical ventilation was highest among African American/black 
patients. Compared to females, male COVID-19 patients had a signi�cantly higher chance of hospitalization, 
ICU admission, ventilation, and mortality. While the average age in the cohort of COVID-19 patients was 51, 
the average age of patients who were hospitalized, admitted to the ICU, or needed mechanical ventilation was 
between 62 and 64. �e average age of mortality in COVID-19 patients was much higher at 78 (Table 1S).

Figure 1 summarizes the sequential scenarios in which the four adverse outcomes are observed in COVID-19 
patients. Overall, in more than 72% of the patients, we did not observe any adverse outcomes. Approximately, 
13% of patients were hospitalized and then discharged. �e cumulative probability of patients needing to be 
admitted to the ICU was about 10%, which sorted in a declining order of subsequent sequential events of 5.4% 
(Hospitalized → ICU → Discharged), to 4.2% (Hospitalized → ICU → Ventilation), to less than 1% (Hospital-
ized → ICU → Died). �is order supports our general hypothesis about the severity spectrum. Of the 5.3% 
who died, about 4% fall into the sequential scenarios of Hospitalized → ICU → Ventilation → Death, Hospital-
ized → ICU → Death, and Hospitalized → Death.

Iterative feature and algorithm selection. In phase 1, MLHO mined over 60 thousand raw (e.g., diag-
nosis/medication/procedure codes) and 160 million transitive sequential (e.g., medication → diagnosis) rep-
resentations. �rough the iterative feature selection, these features were shrunk to over 2300 representations, 
about 900 of which were raw features and about 1400 were transitive sequential features. As described in the 
methods, both MSMR �lter method and embedded methods (while training preliminary classi�cation algo-
rithms) were utilized in iterative sampling of train-test data. �e other outcome of this step was identi�cation of 
the top predictive algorithms. Figure 2 illustrates the Area Under the Receiver Operating Characteristic Curve 
(AUC ROC) results obtained from the ten algorithms for estimating the risk of hospitalization. We found that 
two Boosting algorithms obtained the best overall results: �e Stochastic Gradient Boosting (gbm)—a.k.a., gra-
dient boosting machine—and the eXtreme Gradient Boosting (xgb) with DART booster (xgbDART).

Final modeling. We fed the shrunken clinical feature set (with ~ 2300 features) to the two top algorithms for 
the �nal model training—with ten iterative train-test sampling and �vefold cross-validation, which means for 
each outcome, we trained 20 �nal clinical models. For each outcome, we then trained 20 demographic models, in 
which we only used demographic features (age, gender, race, and ethnicity). We also trained 20 models (for each 
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outcome) using the combination of demographic and clinical features. Table 1 presents the mean AUC ROC 
values obtained from the �nal models for each outcome and feature class, representing the model’s discrimina-
tion power.

Overall, the models that relied on both the combined demographic and clinical features resulted in the best 
modeling performance (as measured by AUC ROC). For predicting mortality and the need for ventilation, 
demographic models provided slightly superior discrimination power. In contrast, only using the clinical features 
resulted in superior performance in predicting ICU and hospital admission, over demographic-only models.

To further evaluate the utility of demographic and clinical features for predicting adverse outcomes a�er 
COVID-19 infection, we also assessed the models’ reliability for clinical interpretation using diagnostic reliability 
diagrams (calibration curves). To compare the models, we �tted smoothed trend lines as a representation of the 
overall calibration curve obtained from the 10 calibration plots for each model (Fig. 3). �e calibration plots are 
produced from the raw predicted probabilities computed by each algorithm (X axis) against the true probabilities 
of patients falling under probability bins (Y axis). In a well-calibrated model, the calibration curve appears along 

Table 1.  �e classi�cation performance of the �nal models. a Mean b 95% Con�dence Interval.

Mortality ICU Ventilation Hospitalization

Demographic 0.888a (0.887–0.888)b 0.756 (0.751–0.76) 0.773 (0.768–0.778) 0.736 (0.735–0.737)

Clinical 0.865 (0.862–0.868) 0.784 (0.782–0.786) 0.748 (0.741–0.755) 0.777 (0.774–0.780)

Demographic + clinical 0.914 (0.910–0.918) 0.805 (0.801–0.810) 0.795 (0.791–0.797) 0.800 (0.798–0.800)

Figure 1.  Probability of the sequential scenarios for outcomes a�er COVID-19 infection.

Algorithms from right to left: bartMachine: Bayesian Additive Regression Trees, dnn: Stacked 

AutoEncoder Deep Neural Network, gbm: Stochastic Gradient Boosting, glmboost: Boosted Generalized

Linear Model, xgbDART: eXtreme Gradient Boosting (xgb) with DART booster, linear model solver 

(xgbLinear), tree learning (xgbTree), avNNet: model-averaged Neural Network, glmnet: Elastic-Net 

regularized generalized linear model, and ORFlog: Oblique random forest.  

Figure 2.  AUC ROC result of the preliminary classi�cation (phase 1) for predicting hospitalization.
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the main diagonal—the closer to the line, the more reliable. �e calibration curves from the both the clinical 
and the combined demographic + clinical models provide more reliable predictions than the demographic-only 
models. Speci�cally, in predicting the need for ventilation, mortality, and ICU admission, only using the demo-
graphic features does not provide clinically reliable estimates of the risk for the adverse outcome.

Features’ relative influence. �e features with the highest weights from the gbm models were assigned 
to 100, and the remaining values were scaled  accordingly33. Using only the non-zero relative in�uence values, a 
�nal set of 598 features used for predicting at least one of the outcomes, were identi�ed.

Each feature was then assigned a label to assist with its interpretability. International Classi�cation of Dis-
eases (ICD) codes, both ICD-9 and ICD-10, were assigned to corresponding general comorbidities. �is list 
included cardiovascular disease, chronic renal disease, chronic lung disease, neurological disorder, diabetes 
mellitus, and other chronic illness. �e listed comorbidities were previously identi�ed as associated with poor 
outcomes in COVID-1933. �e “Other chronic illness” cluster includes comorbidities such as hypertension, 
hyperlipidemia, hypothyroidism, obstructive sleep apnea, and obesity. Other features that were included in the 
clinical model, but that did not �t neatly into a speci�c comorbidity, were assigned to clusters that described 
their general category. Many of these categories were labeled as either complex or general depending on the 
implied severity of the feature. For example, a previous billing code for a critical care encounter was interpreted 
as a “Complex Inpatient Episode”, whereas a billing code for a 25-min inpatient encounter was interpreted as a 
“General Inpatient Episode”.

A�er transforming the features to more interpretable labels, the top �ve labels of each outcome (excluding 
age) are listed in Table 2. In each of the combined demographic + clinical models, age is the feature with the 
greatest in�uence on the outcome. However, a�er age, the features with in�uence varied signi�cantly between 
the di�erent models.

For mortality, the critical features were neurological disorder, cardiovascular disease, other chronic ill-
ness, diabetes mellitus and chronic kidney disease. �e features with the greatest weight for predicting an ICU 

Figure 3.  �e diagnostic reliability diagrams (calibration curves).
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admission were healthcare utilization episodes including previous complex inpatient episodes, inpatient proce-
dures, and inpatient medications. Some of the ICU features included transitive sequence features that captured 
common patient narratives. For example, a previous imaging episode followed by an inpatient medication was 
helpful for predicting an ICU admission. In this case, both previous complex inpatient episodes and inpatient 
medications were the most important features for determining the outcome. �e critical features for predicting 
mechanical ventilation were a combination of chronic lung disease and signi�cant healthcare utilization. Finally, 
the top features for a hospitalization were almost entirely billing codes that suggested a previous hospitalization.

Discussion
Using the MLHO framework, we developed models for predicting risks of hospitalization, ICU admission, need 
for mechanical ventilation, and death for patients infected with COVID-19. We were able to model the four 
adverse outcomes with about 600 features from patients’ past medical records, before they contracted COVID-
19. MLHO can leverage the past medical records in clinical repositories to quickly develop predictive models 
with acceptable accuracy. One could envision di�erent applications for such predictions. For example, we could 
aggregate MLHO’s predictions based on a population’s expected rates of infection during a pandemic, to better 
allocate healthcare resources in preparation for a surge in cases. It could also help inform the allocation of criti-
cal care nurses and doctors, ventilators, hospital beds, and supplies in the case of a resurgence of the pandemic.

Being able to predict outcomes can create possibilities for better preventive measures. For instance, healthcare 
systems and regional health authorities can estimate the probability of an outcome, to identify patients who might 
be at higher risk and plan for more intensive preventive measures such as alerting the patients’ primary care 
providers to prioritize healthcare maintenance visits. At such an appointment, one could ensure the patient is 
up-to-date on immunizations and have an in-person discussion on the importance of taking precaution against 
contracting COVID-19. Given there are limited resources for addressing this public health crisis, being able to 
estimate the relative risk even among otherwise seemingly similar populations could be extremely advantageous. 
For example, the algorithm could help determine who among a nursing home population has the greatest need 
for receiving a vaccination.

�e average age of infection in this cohort was 51. �e average age for hospitalization, mechanical ventilation, 
or ICU admission was between 62 and 64. But the average age of death was 78. While the best performing models 
were a combination of all of the clinical records including demographics and clinical features, age was always the 
highest weighted feature in every model for determining the adverse outcome. �e models’ dependence on age, 
emphasizes that COVID-19 is a disease that poses extreme risk to the elderly. No other features of the clinical 
record, including comorbidities or previous hospitalizations, have as much of an impact on predicting how an 
individual will respond to contracting COVID-19.

Evaluating the top weighted features of the model excluding age, gives insight into how each of the models 
relies on speci�c sets of features for making its prediction. �e most important features identi�ed for predicting 
mortality, correspond well with many of the known associations of disease severity in COVID-1933. �is includes 
cardiovascular disease, neurological disease, chronic kidney disease, diabetes mellitus, and other chronic illnesses. 
Features predictive of future ventilation include chronic lung disease and previous complex hospitalizations. For 
predicting ventilation, the model accurately identi�es medically relevant features for who would need intensive 
respiratory support. In the case of ICU admissions and hospitalizations, the models depend to a greater extent 
on previous healthcare utilization such as inpatient stays, inpatient medications, and inpatient procedures. �ese 
healthcare utilization features are likely correlated with underlying disease, but they collectively predict a subse-
quent hospitalization or ICU admission better than the chronic diseases themselves. All four of the outcome mod-
els have their highest AUC when clinical records are incorporated with the demographics. �e diagnostic labels 
in the clinical records are critical for predicting mortality and ventilation, whereas it is the healthcare processes 
embedded in the clinical records that are relatively more important for predicting ICU and hospital admissions.

Table 2.  �e top �ve ranked features from the clinical records that are associated with death, ICU admission, 
mechanical ventilation, and hospitalization. *Parentheses below each of the interpreted terms include a 
shorthand version of the actual feature.

Death ICU Ventilation Hospitalization

Neurological disorder
(Unspeci�ed delirium)*

Imaging (Electrocardiogram)- > Inpatient medica-
tion
(Liquid acetaminophen)

Complex inpatient episode
(Patient encounter billing, complex med)

Inpatient episode
(Patient encounter billing)

Cardiovascular disease
(Unspeci�ed heart failure)

Complex inpatient episode
(Patient encounter billing, complex med)

Chronic lung disease
(Interstitial Pulmonary Disease)

Complex inpatient episode
(Patient encounter billing, complex med)

Other chronic illness
(Hypertension)

Inpatient Procedure
(Venous blood draw)

Inpatient medication
(Subcutaneous NPH insulin)

Complex inpatient episode
(Patient encounter billing, complex med)

Diabetes mellitus & Chronic renal disease
(Type II diabetes w/chronic kidney disease)

Other chronic illness (Hypertension)
- > Inpatient medication
(Liquid acetaminophen)

Lab Value
(Proteinuria)

Inpatient episode
(Patient encounter billing)

Imaging
(CT scan of abdomen)

Inpatient medication
(IV ce�riaxone)

Diabetes mellitus
(Type II Diabetes w/Foot Ulcer)

Inpatient procedure
(Chest X-ray)
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Methods
MLHO mines both sequential temporal and raw data representations from clinical data and performs iterative 
feature and algorithm selection in a 2-phase process to learn from the unfolding COVID-19 pandemic (Fig. 4). 
MLHO’s architecture enables a parallel outcome-targeted calibration of the features and algorithms, in which 
di�erent statistical learning algorithms and vectors of features are simultaneously tested and leveraged to improve 
prediction of health outcomes. �e four adverse outcomes of interest in this study re�ect a hypothetical sequential 
spectrum of outcome severity in patients with veri�ed COVID-19 infection, ranging from hospitalization to 
ICU admission, to need for mechanical ventilation, and ultimately to death (Hospitalization → ICU → Ventila-
tion →  Death).

Experimental setup
We used electronic health records data from over 13,400 patients with a con�rmed case for COVID-19 between 
March and September 2020 and who had at least 1 year of medical history with Mass General Brigham (MGB), 
since 2016. Table 1S presents general demographic information about the study cohort. For each patient, we only 
included clinical records from 14 days prior to the positive COVID-19 test date. �is temporal bu�er ensures that 
no COVID-19-related medical conditions are included in the model as a risk factor. �e use of data for this study 
was approved by the Mass General Brigham Institutional Review Board (2020P001063)—a waiver of informed 
consent was also approved. All research was performed in accordance with relevant guidelines and regulations. 
We randomly split the data with an 80–20 training-to-testing ratio. We iterated the train-test sampling ten times 
to account for possible patient population di�erences caused by the sampling.

Representation mining. We used the tSPM algorithm to mine temporal sequential representations. Given 
a list of clinical records R1,R2, ...,Rn for patient p at times ti1 ≤ ti2 ≤ ... ≤ tiki , the tSPM algorithm mines all 
avector of transitive sequential patterns Xij from possible pairs of distinct records (Ri ,Rj), where i  = j ≤ n, by 
setting rij(as samples of random variable Xij for patient p ) to be 1 if ki ≥ 1, kj ≥ 1 and ti1 ≤ tji , and 0 otherwise. 
We also mined raw representations from the clinical data, which are composed of all clinical records. To obtain 
a count of the raw records, for each patient p , we sum the frequency of k1, k2, ..., kn , as samples of a random 
variable Xi . On the training sets, we performed feature and algorithm selection (phase 1) and the �nal predic-
tive modeling (phase 2). We feed the combined representations X ′ = (Xi ∪ Xij)i �=j to the feature selection step.

Phase 1: iterative feature and algorithm selection. In phase 1, as many aspects of the COVID-19 
pandemic was still unknown, we perform iterative feature and model selection on weekly-updated data from 
COVID-19 patients during the �rst four months of the pandemic (March–June 2020). Unlike other studies that 
begin with a limited set of hypothetical risk factors, we took a primarily inductive approach to selecting clini-
cal representations for predicting the risk of adverse outcomes in COVID-19 patients. First, we apply a �lter 
method for feature selection, using a computational algorithm that minimizes sparsity and maximizes relevance 

Figure 4.  Implementation of the MLHO framework for predicting COVID-19 adverse outcomes.
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 (MSMR16,17). Step 1 in MSMR is to cut the initial combined vector of representations X ′ to those that were 
observed in fewer than 0.2 percent of the patients. On the remaining representations, step 2 in MSMR computes 
the mutual information with the outcome variable Y = (y1, ..., yi), which in this study includes labels for hospi-
talization, ICU, ventilation, and death. Mutual  information18,19, in this case, measures the amount of informa-
tion that each remaining representation contains about the outcome. Given the joint probability distribution 
PX ′Y (x′, y) , the mutual information between them is denoted as I(X ′

: Y) is:

We cut the remaining representations from X ′ by ranking based on the mutual information coe�cient, and 
update X ′ to a list of around 30,000 representations with the highest mutual information. In the third and �nal 
step, MSMR computes the joint mutual information (JMI)20 score for the updated vector of remaining represen-
tations, X ′ . �e algorithm starts with a set S containing the top feature according to mutual information, then 
iteratively adds to S the features maximizing the joint mutual information score

where the random variable X ′
X

′∗ corresponds to the joint distribution of X ′ and X ′∗ . As a result, JMI also takes 
into account the redundancy between the features—i.e., reducing multicollinearity among covariates. Second, 
we combine the feature selection with a preliminary evaluation of algorithms for the prediction task.

Using the < 400 clinical features identi�ed by the MSMR algorithm, we train a set of preliminary classi�ca-
tion algorithms that perform embedded feature selection. �e preliminary classi�cation serves two goals. First, 
we screened features used in those algorithms to compile a list of the common features used for modeling the 
four outcomes. Second, during each sampling iteration, we computed the Area Under the Receiver Operating 
Characteristic Curve (AUC ROC) on the held-out test sets to evaluate the algorithms’ performance for predicting 
the outcome labels. We used tenfold cross-validation to train the prediction algorithm—therefore, a 72-8-20, 
train-evaluation-test split. We tested ten classi�cation algorithms—bartMachine: Bayesian Additive Regression 
 Trees21,22, Stacked AutoEncoder Deep Neural Network (dnn), Stochastic Gradient Boosting (gbm)23,24, glmboost: 
Boosted Generalized Linear Model, eXtreme Gradient Boosting (xgb)25 with DART booster (xgbDART)26, lin-
ear model solver (xgbLinear), tree learning (xgbTree), model-averaged Neural Network (avNNet), Elastic-Net 
regularized generalized linear model (glmnet)27,28, and Oblique random forest (ORFlog)29.

Phase 2: calibrated predictive modeling. �e iterative feature and algorithm (preliminary classi�ca-
tion) selection in phase 1 results in a set of common features and a ranking of classi�cation algorithms. �e 
predictive modeling in phase 2 are therefore calibrated speci�c outcomes. We use the top-performing algorithms 
(as measured by AUC ROC) and the common clinical features to perform a �nal round of training predictive 
models with ten train-test sampling iteration and tenfold cross-validation in phase 2.

We summarize and report the AUC ROCs and calibration curves from the �nal models as well as the fea-
tures’ relative in�uence values. Further, we evaluate the role of demographic covariates in predicting the adverse 
outcomes a�er COVID-19 infection. To do so, we run three classes of models using: (1) only clinical features 
(from MLHO’s phase 1), (2) only demographic features (age, gender, race, and ethnicity), and (3) clinical plus 
demographic features.

As we shall reveal in the results, the gbm algorithm was one of the top 2 performing algorithms. As a result, 
we computed the relative feature in�uence metrics from the �nal gbm models to measure features’ importance. 
In the gbm model, boosting estimates F̂(X) as an ‘additive’ expansion of the form

where the expansion coe�cients {βm}M
0

 and the base learner’s—h(X; a)—parameters {am}M
0

 are jointly �t to the 
training data in a feedforward process. A regression tree model specializes tue base learner Tm(X; {Rjm}

J
1
) parti-

tions the feature space into J disjoint regions {Rjm}
J
j=1

 to predict a di�erent constant value for  each30. �e relative 
in�uence (or contribution), I2j  averages the improvement made by each variable when it is permuted from all 
trees in which the given variable was  incorporated30,31. In an additive tree model, the relative in�uence measure 
is provided by Friedman and Meulman (2003)

where I2j (T) is the measure of relevance for a single tree T32.

Data availability
Protected Health Information restrictions apply to the availability of the clinical data here, which were used under 
IRB approval for use only in the current study. As a result, this dataset is not publicly available.

Code availability
�e computer code for MLHO is available at: https ://hesti ri.githu b.io/mlho.

(1)
∑

x′y
PX ′Y (x′

, y) × log
PX ′Y (x′, y)

PX ′(x′)×PY (y)

(2)Jjmi(X
′) =

∑
X ′∗∈S

I(X ′X ′∗
;Y)

(3)F̂(X) =

∑M

m=0
βmh(X; am)

(4)I2j =

1

M

∑M

m=1
I2j (Tm)

https://www.hestiri.github.io/mlho
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