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Abstract 

 

Purpose: This review will address the current state of individualized cancer therapy 

for glioblastoma. Glioblastomas are highly malignant primary brain tumors 

presumably originating from neuroglial progenitor cells. Median survival is less than 

one year. 

Design: Recent developments in the morphological, clinical and molecular 

classification of glioblastoma were reviewed and their impact on clinical decision 

making was analyzed. 

Results: Glioblastomas can be classified by morphology, clinical characteristics, 

complex molecular signatures, single biomarkers or imaging parameters. Some of 

these characteristics, including age and Karnofsky performance score, provide 

important prognostic information. In contrast, few markers help to choose between 

various treatment options. Promoter methylation of the O6-methylguanine 

methyltransferase gene appears to predict benefit from alkylating agent 

chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental 

combination therapy with radiotherapy. Screening for a specific type of epidermal 

growth factor receptor mutation is currently being explored as a biomarker for 

selecting patients for vaccination. Positron emission tomography for the detection of 

v3/5 integrins could be used to select patients for treatment with anti-integrin anti-

angiogenic approaches. 

Discussion: Despite extensive efforts at defining biological markers as a basis for 

selecting therapies, most treatment decisions for glioblastoma patients are still based 

on age and performance status. However, several ongoing clinical trials may enrich 

the repertoire of criteria for clinical decision making in the very near future. 
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The concept of individualized or personalized targeted cancer therapy has gained 

significant attention throughout oncology. Yet, data in support of such an approach to 

glioblastoma, the most malignant subtype of glioma, are limited and personalized 

medicine plays a minor role in current clinical neuro-oncology practice. In essence, 

this concept proposes that tumors which are currently lumped together based on 

common morphological features can be subclassified in a way that the resulting 

subentities are more homogeneous, e.g., in terms of molecular signatures and will 

therefore be amenable to selective therapeutic interventions. At present, the major 

“biomarkers” used to allocate treatment in glioblastoma are age and Karnofsky 

performance score, and these markers have so far survived all efforts at more 

sophisticated approaches to the management of this disease. Treatment allocation 

basically means intensity of treatment, especially the use of the standard-of-care or 

radiotherapy alone beyond age 65-70 years or below a Karnofsky performance score 

of 60. 

 

Subclassifying glioblastoma  

by morphology  

The regularly updated WHO classification describes the histological hallmarks of 

primary brain tumors. Glioblastoma is a distinct glioma entity that can be 

distinguished from other brain tumors, notably anaplastic gliomas (1). In contrast, 

primary glioblastoma cannot be morphologically separated from secondary 

glioblastoma evolving from a prior lower grade tumor. The current WHO classification 

recognizes two glioblastoma variants, giant cell glioblastoma and gliosarcoma. Both 

clinical course and treatment are similar to classical glioblastoma, although some 

authors have proposed that giant cell glioblastoma may have a somewhat less 
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aggressive course.  

by high-throughput analysis 

Beyond morphology, an increasing number of publications used high-throughput 

techniques to derive a subclassification of glioblastomas. One model of molecular 

classification based on gene expression analyses was proposed by Phillips et al. (2). 

Selecting a set of genes associated with survival in their patient cohort enriched for 

long-term survivors (>2 years), they identified three glioblastoma subtypes with 

distinct molecular signatures which they termed proneural, proliferative and 

mesenchymal. The proneural signature is associated with oligodendroglial 

morphology, younger age, lack of phosphatase and tensin homolog on chromosome 

ten (PTEN) or epidermal growth factor receptor (EGFR) abnormalities, activation of 

the Notch pathway, and better outcome. The proliferative and mesenchymal 

signatures are more common in older patients and are characterized by PTEN loss 

and Akt pathway activation, and have a less favourable outcome. They are 

distinguished by a preponderance of either proliferation or angiogenesis. Verhaak et 

al. (3) took an unsupervised approach, extracting gene expression patterns that 

yielded four molecular signatures for glioblastoma which they termed proneural, 

neural, classical and mesenchymal subtypes, in allusion to similarities with signatures 

of the classification proposed by Phillips and colleagues (2). These subtypes also 

segregate the characteristic mutations. The proneural subtype comprises most 

isocitrate dehydrogenase (IDH) 1 mutations and is enriched for p53 mutations, while 

the classic subtype particularly enriches for EGFR-amplified tumors expressing also 

the EGFRvIII variant. The mesenchymal subtype contains most neurofibromatosis 

(NF)-1-mutant tumors. Hence the expression subytypes overlap with major previously 

identified pathogenetic pathways involved. Of note, O6-
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methylguanylmethyltransferase (MGMT) promoter methylation is not particularly 

enriched in any specific subtype. The authors proposed that patients with classical or 

mesenchymal glioblastoma derive more benefit from aggressive treatment, but this 

requires confirmation within a prospective clinical trial. 

Other approaches set out to identify gene signatures characterizing cancer-relevant 

biological features using unsupervised approaches. This, among others, has yielded 

a stem cell-related gene expression signature dominated by HOX genes that was a 

predictor of failure from the addition of temozolomide to radiotherapy, independent of 

the MGMT status (4). This signature was thereafter independently identified in 

pediatric glioblastoma, tumors that are otherwise quite different from their adult 

counterparts. Interestingly, the HOX gene signature predicted failure from 

temozolomide therapy independent of MGMT (5). Another view on the biology of 

tumors is provided by analysing micro-RNAs that have regulatory functions. 

microRNA expression profiles yielded biologically meaningful subclassification of 

glioblastomas, for which 5 five subclasses have been proposed using the TCGA data 

that relate to developmental patterns. Three of these overlap substantially with 3 of 

the 4 subclasses based on the Veerhak and colleagues` gene expression 

classification (2,6). 

Yet another approach to characterize tumors is to evaluate aberrant DNA methylation 

at CpG sites that denotes a major mechanism of epigenetically controlled silencing of 

genes including non-coding RNAs, such as microRNAs. Noushmer et al. (7) 

assessed DNA methylation at 27K CpG sites in 272 glioblastomas of The Cancer 

Genome Atlas (TCGA) and observed several methylation subtypes of which one 

subgroup exerted a striking pattern of concerted hypermethylation consistent with the 

delineation of a glioma-CpG island methylator phenotype now commonly referred to 
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as G-CIMP. The G-CIMP phenotype characterizes a subgroup of tumors with the 

proneural signature, and is closely associated with IDH mutations (see below) and is 

associated with good prognosis. In glioblastoma G-CIMP is associated with 

secondary glioblastoma, arising from lower grade lesions (8). Hence not surprising, 

G-CIMP is also common in grade II and grade III glioma with strong association with 

IDH mutations. Screening for IDH mutations will identify most G-CIMP-positive 

gliomas (7). The recently presented molecular data from the Radiation Therapy 

Oncology Group 0525 / European Organization for Research and Treatment of 

Cancer 26052 glioblastoma trial support this view. G-CIMP only added an 

insignificantly different intermediate group to the highly correlating IDH1-mutated or 

G-CIMP-favourable group versus the IDH1-wild-type / G-CIMP-unfavourable group 

(9). However, a recent study in anaplastic glioma suggested that G-CIMP 

outperforms IDH1 mutations as a prognostic biomarker although IDH2 mutations 

were not determined (10). 

The availability of genome wide methylation analysis provides new opportunities to 

find new targets for personalized therapy or identify the “Achilles heel” of tumors, as 

previously described for the silencing of MGMT by promoter methylation that 

sensitizes tumors to alkylating agents (see below) (11,12). Thus, at present, despite 

promising developments, no specific treatment recommendations can be derived 

from highthroughput approaches of molecular classification. 

 

Subclassifying glioblastoma by single molecular markers 

 

P53 

Mutations of the p53 gene or its down-stream effector molecules are among the most 
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common molecular aberrations in human cancers, including gliomas (13,14). Among 

glioblastomas, p53 mutations are more common in secondary glioblastomas and are 

thus associated with IDH mutation status. However, the p53 pathway in typical 

primary glioblastomas is also commonly disabled since glioblastoma cells do not 

readily undergo apoptosis when exposed to ionizing irradiation or DNA-damaging 

chemotherapy. There is thus no role for the p53 status in determining treatment 

decisions in glioblastoma. Promising efforts at exploiting p53 abnormalities are still 

being evaluated: p53 mutations may result in protein overexpression and give rise to 

novel immunogenic targets that might be used for vaccination therapy (15). Moreover, 

it is likely that tumors with p53 mutations would be susceptible to efforts at 

reintroducing wild-type p53. This could be accomplished in the form of p53 gene 

therapy (16) or the development of new experimental agents which restore an active 

conformation of p53, despite the mutation, and thereby transcriptional activity. Such 

agents exhibit profound anti-glioma properties in vitro, but not of all of their activity 

could be linked strictly to the predicted effect on mutant p53 variants (17,18). 

 

EGFR 

Increased expression of the EGFR gene is common in glioblastoma, in particular in 

primary glioblastoma, and is thus inversely correlated with p53 and IDH mutations. 

Enhanced EGFR signalling may result from enhanced expression related to 

amplification or from mutational activation. Loss of exons 2-7 of the EGFR gene 

affects 801 base pairs and results in a mutant receptor (EGFRvIII) that is 

constitutively active in the absence of ligand binding (19). Enhanced EGFR signalling 

activity promotes proliferation, invasiveness and resistance to irradiation and 

chemotherapy. Extensive efforts at identifying responders to anti-EGFR treatment 
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have not resulted in a uniform picture: Patients with high EGFR expression and low 

levels of phosphorylated Akt have been proposed to respond better to erlotinib than 

patients with tumors with low levels of EGFR expression and high levels of 

phosphorylated Akt (20). Coexpression of EGFRvIII and PTEN was also reported to 

be associated with responsiveness to EGFR kinase inhibitors (21). However, these 

observations were not confirmed in a prospective randomized trial comparing 

erlotinib with alkylating agent chemotherapy in recurrent glioblastoma (22). A 

randomized trial of afatinib indicated inferior activity compared with reexposure to 

temozolomide (23), and addition of erlotinib to combined chemo-radiotherapy in 

newly diagnosed glioblastoma showed no promising results (24). Several trials 

aiming at targeting the EGFR in glioblastoma patients have failed to demonstrate 

meaningful antitumor activity, even though it was shown for gefitinib that high drug 

levels are reached in the tumor tissue, efficiently dephosporylating the EGFR, 

however, without measurable effects on downstream targets (25). Similar to p53, 

there is therefore currently no role for determining the EGFR status except that the 

detection of EGFR amplification or EGFRvIII mutation supports the diagnosis of 

glioblastoma in cases of doubt.  

Nevertheless, targeting the EGFRvIII remains under investigation as a target for 

immunotherapy. Rindopepimut (CDX-110) is a vaccine product that consists of a 14 

amino acid synthetic peptide built from 13 amino acids of EGFRvIII plus a cysteine 

residue, covalently linked to keyhole limpet hemocyanin as a carrier. This vaccine 

has been explored in phase II trials in patients with EGFRvIII-positive glioblastoma. 

Intriguingly, tumors progressing after vaccination therapy had commonly lost 

EGFRvIII expression, which is probably not the natural course of disease in standard 

treated EGFRvIII-positive glioblastoma, and responses on immune monitoring 

defined by antibody reactivity and delayed skin hypersensitivity were associated with 
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better outcome (26). In this very small trial a progression-free survival of 14.2 months 

and median overall survival of 26.0 months were observed. This may simply reflect 

careful patient selection since vaccination was limited to patients who had undergone 

a gross tumor resection and had completed concomitant chemoradiotherapy without 

progression. The feasibility of performing a blinded, randomized trial to test the 

efficacy of this immunotherapeutic approach is currently being explored. 

 

MGMT 

MGMT has become the most promising and controversial biomarker in the field of 

glioblastoma (11,27). MGMT is a DNA repair protein that removes alkyl groups from 

DNA and is consumed by proteasomal degradation during that process. Its 

expression by cancer cells confers resistance to alkylating agent chemotherapy and 

may be a predictive factor for outcome in patients treated with such chemotherapy. 

Methylation of the MGMT promoter was strongly associated with benefit from 

combined chemo- and radiotherapy compared to radiotherapy alone in the 

registration trial for temozolomide in newly diagnosed glioblastoma (28). A better 

outcome of patients with MGMT promoter methylation has been confirmed in 

numerous uncontrolled trials and retrospective analyses of glioblastoma patients 

treated with alkylating agents. However, a specific prediction of benefit of 

chemotherapy can only be deduced from data sets which include a chemotherapy-

free control arm like the initial temozolomide trial. Surprisingly, two randomized trials 

in patients with anaplastic gliomas containing radiotherapy only control arms reported 

the same degree of improved outcome in patients with MGMT promoter methylation 

irrespective of whether the patients were treated with radiotherapy alone or 

chemotherapy alone (29) or radiotherapy alone or radiotherapy plus nitrosourea-
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based chemotherapy (30). Whether this is limiting the relevance of MGMT being 

predictive or just reflecting biological differences between anaplastic glioma and 

glioblastoma is currently investigated. The missing predictive impact in anaplastic 

glioma may be due to a retained allele of MGMT on the other arm of chromosome 

10q or a strong association with the G-CIMP phenotype at least in anaplastic 

oligodendroglial tumors (10). So far, these data support the view that anaplastic 

gliomas and glioblastomas are distinct entities that may be best separated by their 

IDH status (see below) (31). 

The MGMT status may assume greater relevance in elderly patients with 

glioblastoma where the efficacy of alkylating agent chemotherapy in addition to 

radiotherapy has not been demonstrated and where increased toxicity from combined 

modality treatment remains to be of concern and therefore the use of alkylating 

agents neither in the first-line or relapsed setting is standard-of-care (32,33). Whether 

temozolomide alone may be effective as radiotherapy alone in this setting, remains 

unclear as long as complete data from two large randomized clinical trials are not 

available. The three-arm Nordic trial that compared standard radiotherapy with 

hypofractionated radiotherapy and with temozolomide alone in 5-out-of-28 day cycles, 

reported no difference between the treatment arms (34). A preliminary report of the 

two-armed, randomized NOA-08 trial that compared standard radiotherapy alone with 

dose-intensified temozolomide alone (one week on one week off), failed to 

demonstrate non-inferiority of dose-dense temozolomide (35). A prospective, non-

interventional cohort study of the German Glioma Network has identified a strong 

predictive value of MGMT promoter methylation for benefit from temozolomide: there 

was no evidence for benefit from alkylating agent chemotherapy in glioblastoma 

patients without MGMT promoter methylation whereas, conversely, there was an 

indication that temozolomide alone might be sufficient for patients with glioblastomas 



 12

with MGMT promoter methylation (36). Accordingly, the final results from the Nordic 

trial and NOA-08 need to be awaited and reassessed when data on outcome by 

MGMT status become available. 

Much of the current discomfort of using MGMT as a biomarker results from the fact 

that it has been difficult to establish reliable testing procedures and to establish by 

consensus which test is best and how to perform it in detail (27). Methylation-specific 

PCR remains to be the gold standard whereas more expensive, less readily available 

techniques such as pyrosequencing have not shown to be superior in correlating 

MGMT status with clinical outcome. The failure of MGMT protein assessment to 

correlate with MGMT promoter methylation and outcome has been extensively 

discussed and reviewed (27,37,38). 

The S039 trial analysing enzastaurin and radiotherapy in newly diagnosed non-

MGMT methylated patients was the first trial that implemented MGMT status as an 

entry criterion (39). The most extensive experience with MGMT as a biomarker has 

been made in the CENTRIC phase III trial that compared standard radiotherapy plus 

temozolomide with this standard plus the v3/5 integrin antagonist cilengitide. Based 

on an uncontrolled phase II trial that indicated preferential benefit from cilengitide in 

patients with MGMT promoter methylation (40), centralized upfront MGMT testing 

was introduced at study entry and enrolment restricted to patients with MGMT 

promoter methylation. While it remains unclear whether such an effort of patient 

selection was entirely justified for demonstrating efficacy of cilengitide, this trial 

nevertheless demonstrated the feasibility of molecular testing in large trials for 

patients with newly diagnosed glioblastoma. 

 

IDH 
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The identification of somatic mutations of the IDH genes in the majority of grade II 

and III gliomas as well as a minority of glioblastomas (<10%) was an important 

discovery of molecular neuropathology (41,42). The differential distribution of IDH 

mutations provides a strong rationale to consider grade II/III gliomas and 

glioblastomas as distinct tumor entities. IDH mutations are early events in 

gliomagenesis and are easy to determine using mutation-specific antibodies. The 

consistent mutational targeting of specific codons and the heterozygous nature of the 

mutations strongly suggest that mutant IDH proteins acquire a novel oncogenic 

activity that is only indirectly related to their physiological function, but results in the 

accumulation of a candidate oncometabolite, D-2-hydroxyglutarate. Efforts at 

measuring this metabolite in peripheral blood of patients with IDH-mutant gliomas 

were not successful so far (43), but efforts at detection by magnetic resonance 

spectroscopy are under evaluation and may provide a non-invasive diagnostic tool to 

identify and monitor IDH-mutant gliomas (44). 

The correlation of the neomorphic IDH mutants with G-CIMP with has provided 

interesting mechanistic hint: IDH1 or 2 mutations were also correlated with a 

methylator phenotype in leukemia. Furthermore, IDH1 and 2 mutations in leukemia 

were exclusive with TET2 mutations. It turned out that D-hydroxyglutarate inhibits 

TET2 that, in turn, is involved in DNA demethylation (45), suggesting a functional link 

between IDH mutations, the development of a methylator phenotype, and TET2 

function: metabolism meets epigenetics. Of note, it has not been demonstrated that 

this or any other metabolite maintains the neoplastic phenotype of gliomas once the 

tumors have been established. If this was the case, specific pharmacological 

targeting of the gain–of-function enzymatic activity of mutant IDH enzymes would be 

a highly promising targeted therapeutic approach, potentially devoid of side effects. 

In the absence of such approaches, determining the IDH status has diagnostic and 
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(positive) prognostic impact, but does not help to select among the current treatment 

options of radiotherapy versus chemotherapy versus combination thereof. 

 

Angiogenesis 

Inhibitors of angiogenesis are currently in the focus of drug development in 

glioblastoma. Based on uncontrolled phase II data, two agents with differential 

modes of action, the vascular endothelial growth factor (VEGF) antibody 

bevacizumab (46) and the RGD-mimetic 3/5 integrin antagonist cilengitide (40) 

are being evaluated in phase III registration trials in patients with newly diagnosed 

glioblastoma which have completed enrolment in 2011. Similar to traditional 

approaches to glioblastoma, there is significant heterogeneity in the response of 

glioblastoma patients to these novel agents, and predictive biomarkers would greatly 

aid in the selection of specific treatments, both for patient enrichment in clinical trials 

and in the future with a possible scenario where more than one anti-angiogenic agent 

might be approved for glioblastoma. So far, efforts at defining either predictive 

soluble plasma markers or imaging parameters have not been successful, but 

promising approaches include the labelling of the target integrin of cilengitide by 

positron emission tomography (47) or the definition of the vascular normalization 

index consisting of vascular permeability (Ktrans) and microvessel volume determined 

by magnetic resonance imaging and circulating collagen IV in plasma (48). Extensive 

biomarker studies are accompanying most ongoing trials in the angiogenesis field. 

 

Outlook 

The perspectives of individualized treatment for glioblastoma depend on the 

identification and prospective evaluation of biomarkers that allow to predict a 
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preferential benefit from a specific treatment, depending on the absence versus 

presence of this biomarker. To be clinically useful, the predictive biomarker needs to 

provide a clear segregation of patients into responders and non-responders, and its 

evaluation should be based on reproducible, standardized test procedures. The 

usefulness of the best predictive biomarker we have at present, MGMT promoter 

methylation, is limited for these reasons (27). EGFRvIII is currently a candidate 

biomarker that might be developed to meet these criteria, pending the demonstration 

of a test suitable for routine testing and clinical benefit from vaccination against 

EGFRvIII in a well-controlled clinical trial. 

Further, it would be highly desirable if the targeted approach would target the most 

relevant cell populations within the tumor. While the stem cell hypothesis has its 

weaknesses, there is nevertheless broad consensus that not all glioma cells within a 

tumor are alike, and features like spherogenicity, increased clonogenicity, 

multilineage differentiation potential, and tumorigenicity in rodents at low numbers of 

injected cells may well characterize a subpopulation of glioma cells that is 

responsible for resistance to therapy, progression or relapse. However, no reliable 

stem cell marker has been defined in glioma cells so far, in particular no marker that 

would define a suitable target for molecular targeted therapy. Candidate pathways 

include, but are not limited to, the Notch pathway (49) and a HOX gene signature (4). 

Carefully designed prospective trials are the only way to define a novel scenario 

where only patients with EGFRvIII mutation are vaccinated, if this vaccination is 

proven to be of benefit in the future, only patients with MGMT promoter methylation 

receive temozolomide, only integrin-positive patients by positron emission 

tomography will receive cilengitide, if this concept holds its promises, and a novel 

biomarker has been established to predict, which patient group benefits from 
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bevacizumab. This chance should not be missed. 
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