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Evolutionary approaches to judgment under uncertainty have led to new data showing that 
untutored subject reliably produce judgments that conform to may principles of probability 
theory when (a) they are asked to compute a frequency instead of the probability of a single 
event, and (b) the relevant information is expressed as frequencies.  But are the frequency-
computation systems implicated in these experiments better at operating over some kinds of 
input than others? Principles of object perception and principles of adaptive design led us to 
propose the individuation hypothesis: that these systems are designed to produce well-
calibrated statistical inferences when they operate over representations of “whole” objects, 
events, and locations.  In a series of experiments on Bayesian reasoning, we show that human 
performance can be systematically improved or degraded by varying whether a correct 
solution requires one to compute hit and false-alarm rates over “natural” units, such as whole 
objects, as opposed to inseparable aspects, views, and other parsings that violate evolved 
principles of object construal. 

 

     The ability to make well-calibrated probability judgments 
depends, at a very basic level, on the ability to count.  The 
ability to count depends on the ability to individuate the 
world: to see it as composed of discrete entities.  Research on 
how people individuate the world is, therefore, relevant to 
understanding the statistical inference mechanisms that 
govern how people make judgments under uncertainty. 
     Computational machinery whose architecture is designed 
to parse the world and make inferences about it is under 
intensive study in many branches of psychology: perception, 
psychophysics, cognitive development, cognitive neurosci- 
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ence, evolutionary psychology, and others (for review, see 
Hirschfeld & Gelman, 1994).  In consequence, well-
articulated internal principles for individuating rigid objects 
and modeling their interactions are beginning to emerge 
(e.g., Leslie, 1988, 1994; Shepard, 1984; Spelke, 1988, 1990; 
Talmy, 1988).  We will argue that these principles can 
illuminate the study of judgment under uncertainty, and 
report the results of a series of experiments that were 
designed to test some of the predictions derived. 
 

Biased humans versus Bayesian bumblebees: A 
paradox in the study of judgment under uncertainty 

 

Disputes about whether human beings are “rational” have 
been erupting in philosophy for over two millennia.  Re-
cently, psychologists have joined the debate, with the view 
that this ancient argument could be settled by empirical 
evidence.  Given clear-cut criteria for what counts as rational 
thinking, they argued, the question could be decided by 
assessing human performance on inductive and deductive 
reasoning tasks.  A vigorous research program ensued, espe-
cially within cognitive psychology.  Its premise: human 
thought processes are rational to the extent that they produce 
answers that conform to the strictures of normative theories 
drawn from mathematics, probability theory, or logic. 
Psychologists studying judgment under uncertainty in 
humans have used this standard for more than two decades.  
Until recently, however, the results of this research program 
have provided little comfort for defenders of human rational-
ity.  Sound decisions often depend on the ability to estimate 
the probability of uncertain events with some accuracy.  So 
one might expect a “rational” mind to be equipped with 
computational mechanisms that embody normative prin-
ciples drawn from probability theory, and to routinely apply 
these to problems that require statistical inference.  In study 
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after study, however, such tasks elicited performance that 
seemed to violate a variety of these principles (e.g., Kahne-
man, Slovic, & Tversky, 1982).  
    Such findings led many psychologists to conclude that 
human reasoning faculties are riddled with crippling defects: 
heuristics, biases, and fallacious principles that violate 
canons of rationality derived from logic, mathematics, and 
philosophy.  Leading researchers began to argue that the 
human cognitive architecture has “mental limitations” that 
prevent people from applying rational methods.  People 
apply heuristics instead because these “reduce the complex 
tasks of assessing probabilities and predicting values to 
simpler judgmental operations”, and “make them tractable 
for the kind of mind that people happen to have” (Kahne-
man, Slovic, & Tversky, 1982, pp. xi-xii; Tversky & 
Kahneman, 1974, p. 1124). 
    During the same two decades, the study of animal 
behavior was heading in the opposite direction.  Evolution-
ary biologists were exploring judgment under uncertainty in 
nonhuman animals in order to test various mathematical 
models from optimal foraging theory (e.g., Stephens & 
Krebs, 1986).  Their experiments were showing that animals 
with truly minuscule nervous systems, such as bumblebees, 
make judgments under uncertainty during foraging that 
manifest exactly the kind of well-calibrated statistical induc-
tion that the human brain was widely thought of as “too 
limited” to perform  (e.g., Gallistel, 1990; Real, 1991; Real 
& Caraco, 1986; Staddon, 1988).  It was beginning to look 
like Homo sapiens did not deserve to be called “the rational 
animal”,  but that bumblebees, birds, and other organisms 
did.  What was happening? 
    Bumblebees appeared rational when humans did not 
because they were tested under ecologically valid conditions 
(Tooby & Cosmides, 1992, in press).  When one does the 
same for human subjects, they too perform like good 
intuitive statisticians. 
    It turns out that human performance in probabilistic 
reasoning tasks is remarkably sensitive to the format in 
which information is presented and answers asked for.  Most 
experiments that elicited “non-normative” performance asked 
subjects to judge the probability of a single event (e.g., 
“What is the chance that a person who tests positive for the 
disease actually has it?”).  However, many purported biases 
and fallacies disappear when people are asked to judge a 
frequency instead (e.g., “How many people who test posi-
tive for the disease will actually have it?”).  For example, on 
a Bayesian problem about medical diagnosis, this trivial 
change in the wording of the final question boosted perfor-
mance on otherwise identical problems from 36% correct to 
64% correct (Cosmides & Tooby, 1996).  By presenting still 
other elements in the problem as frequencies, Cosmides and 
Tooby were able to push performance even higher: to 76% 
correct in a purely verbal version of the problem and to 92% 
correct in a version where the subject had to actively 
construct a visual representation of the relevant frequencies.  
The same problems elicited base rate neglect when subjects 
were given the likelihood information as a proportion (e.g., 
“5% of healthy people test positive”), and asked to judge the 
probability of a single event.  With a frequency format, 

subjects not only used the base rate information, but they 
used it fully, producing answers that conform to the stric-
tures of Bayes’s rule.  Gigerenzer and Hoffrage (1995) have 
obtained similar results on other Bayesian problems.  The 
conjunction fallacy can also be eliminated by presenting 
problem information as frequencies and asking for answers 
as frequencies (Fiedler, 1988; Tversky & Kahneman, 1983).  
So can the overconfidence bias (Gigerenzer, Hoffrage, & 
Kleinbolting, 199 1). (For review, see Cosmides & Tooby, 
1996; Gigerenzer, 1991.) 
    These results suggest that humans,  like other animals, 
have inductive reasoning mechanisms that embody certain 
rational principles, but that the design of these mechanisms 
requires representations of event frequencies to operate 
properly (see also Christensen-Szalanski & Beach, 1982).  
Prior experiments did not reveal their existence, because 
these mechanisms cannot “read” input in other formats.  By 
analogy, a spreadsheet program will appear to lack algo-
rithms for converting dollars to pounds, unless one enters the 
numbers in the proper format.  Its inability to correctly 
compute pounds from a dollar amount that was formatted as 
a “time of day” is not a design defect, nor is it evidence that 
the spreadsheet lacks the necessary algorithms. 
    Shepard  (1984, 1987) has argued that many long- 
enduring invariances in the world will, through natural 
selection, become instantiated in the mind, and that appreci-
ating this will help psychologists predict and explain many 
otherwise puzzling features of how human minds represent 
the world.  In this spirit, we shall first consider why a well-
engineered statistical inference machine would be designed 
to operate on representations with a frequency format.  
Second, we shall see whether principles of object perception 
impose additional constraints on the class of representations 
that such mechanisms can take. 
    The connection between these two questions is as follows.  
A frequency computation system requires input from mecha-
nisms that count which, in turn, require input from mecha-
nisms that parse the world into countable entities.  By 
considering invariant properties of rigid objects,  Shepard 
and others have discovered that the ways in which people 
conceive of objects and model their interactions is governed 
by a rich set of interlocking principles, which Leslie has 
dubbed a “theory of bodies”, or ToBy

1
 (e.g., Baillergeon, 

1986; Leslie, 1988, 1994; Shepard, 1984; Spelke, 1988, 
1990; Talmy, 1988).  One of ToBy’s primary functions is to 
parse surfaces into representations of discrete objects.  
Surfaces that it does not individuate should not be available 
as input to a counting routine.  ToBy’s operations should 
_________________________________________________ 
 
    

1
ToBy can be thought of as a set of functionally integrated 

computational machines (Leslie, 1994), whose procedures embody 
“principles”,  at least from the point of view of the scientist 
studying them.  These principles need not take the form of 
declarative or propositional representations.  For example, the 
principle that objects move along paths that are spatially and 
temporally continuous is embodied in the mechanisms that give rise 
to apparent motion (Shepard, 1984), but we doubt that these 
mechanisms contain a propositional representation of this prin-
ciple. 
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thereby constrain the set of problems for which a frequency -
computation system can render accurate judgments.  We 
report a series of experiments that explore this claim.  Based 
on the results, we propose that the internal principles by 
which ToBy generates representations of objects and their 
parts can explain some otherwise puzzling features of 
judgment under uncertainty -- in particular, why some prob-
ability problems are easily solved whereas other, mathem-
aticcally equivalent ones, are intractable. 
 

Engineered in ancestral environments 
 

[In discussing sonar in bats] ... I shall begin by posing a 
problem that the living machine faces; then I shall consider 
possible solutions to the problem that a sensible engineer 
might consider; I shall finally come to the solution that nature 
has actually adopted (Richard Dawkins, 1986, pp. 21-22). 

 

    To understand why we consider frequency representations 
to be more “ecologically valid” than proportions and single- 
event Probabilities, one needs to consider the ecological 
situations -the selection pressures -- that caused statistical 
inference mechanisms to evolve in humans and other 
animals. 
    On evolutionary grounds, one expects a mesh between the 
structure of a biological machine and its function.  This is 
because natural selection is a hill-climbing process, in which 
a design feature that solves an adaptive problem well can be 
outcompeted by a new design feature that solves it better.  
This process has produced exquisitely engineered biological 
machines -- the vertebrate eye, photosynthetic pigments, 
efficient foraging algorithms, color constancy systems –  
whose performance is unrivaled by any machine yet de-
signed by humans. 
    Invariant (or statistically recurrent) features of ancestral 
environments tightly constrain evolutionary hypotheses.  For 
any given species, an adaptive problem is defined as a 
problem (e.g., finding food, avoiding predators) that re-
curred over many generations in the environments in which 
that species evolved, and whose solution tended to promote 
the reproduction of an organism or its kin in those environ-
ments.  For example, our color-constancy mechanisms are 
calibrated to natural changes in terrestrial illumination.  As a 
result, grass looks green at both high noon and sunset, even 
though the spectral properties of the light it reflects have 
changed dramatically.  The same mechanisms fail, however, 
in parking lots lit by sodium vapor lamps: evolutionarily 
novel devices that cast an unearthly spectrum (Shepard, 
1992).  This does not mean that the algorithms responsible 
for color constancy are “irrational”, defective, or poorly 
designed.  Biological machines work well under conditions 
that resemble the ancestral ones that shaped their design.  
They are calibrated to those environments, and they embody 
information about the stably recurring properties of these 
ancestral worlds. 
    When natural selection is the engineer, a computational 
machine will be designed to recognize information in the 
form in which it regularly presented itself in the environ-
ments in which our ancestors evolved.  To understand the 
design of statistical inference mechanisms,  then, one needs 

to examine what form inductive reasoning problems – and 
the information relevant to solving them – regularly took in 
ancestral environments. 
 

Why frequencies?  
 

The unobservability of single events 
 

    Asking for the probability of a single event seems 
unexceptionable in the modem world, where we are bom-
barded with numerically expressed statistical information, 
such as weather forecasts telling us there is a 60% chance of 
rain today.  Against this background, it is easy to forget that 
our hominid ancestors did not have access to the modem 
system of socially organized data collection, error-checking, 
and information accumulation which has produced, for the 
first time in human history, reliable, numerically expressed 
statistical information about the world beyond individual 
experience. In ancestral environments, the only external 
database available from which to reason inductively was 
one’s own observations and, possibly, those communicated 
by the handful of other individuals with whom one lived. 
    The “probability” of a single event cannot be observed by 
an individual, however.  Single events either happen or they 
don’t -- either it will rain today or it will not.  Natural 
selection cannot build cognitive mechanisms designed to 
reason about, or receive as input,  information in a format 
that did not regularly exist.

2 

    An individual can, however, observe the frequency with 
which events occur,  for example, that it rained on 6 out of 
the last 10 days with cold winds and dark clouds, or that we 
were successful 5 out of the last 20 times we hunted in the 
north canyon.  Our hominid ancestors were immersed in a 
rich flow of observable frequencies that could be used to 
improve decision-making, given procedures that could take 
advantage of them.  So if humans have adaptations for 
inductive reasoning, one might expect them to be good at 
picking up frequency information incidentally (Hasher & 
Zacks, 1979; Hintzman & Stern, 1978) and using it to make 
probability judgments. 
 

Natural sampling as an environmental invariant. 
 

    Certain methods of acquiring information - e.g., certain 
sampling methods -- are common across species and time.  
Counting events as one encounters them is a widespread 
sampling scheme across species, for example.  Kleiter (1994) 
and Aitchison & Dunsmore (1975) call this form of 
information acquisition natural sampling (in contrast with 
designed experiments).  Kleiter has argued that natural 
sampling is an invariant that has come to be reflected in the 
design of evolved inference mechanisms.  Furthermore, he 
has shown that when information is acquired through natural 
sampling, base rate information is redundant, and base-rate 
neglect is an optimal strategy (Kleiter, 1994).  
_______ 
    

2
 Sometimes evolved mechanisms can process data in a format 

that did not exist during a species evolutionary history, but when 
this happens, it is a byproduct of a design that was shaped by 
selection to do something else.   
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      Consider the sampling scheme and data depicted in 
Figure 1 (inspired by Kleiter, 1994).  You are walking 
through a forest, looking for fruit trees.  The foliage is dense, 
so the color of fruit is sometimes visible before its shape can 
be discerned.  You are wondering how often trees with red 
fruit (R) are apple trees (A)—i.e., p(A|R). As you pass each 
tree, you note whether or not it is an apple tree, and whether 
or not it has red fruit.   So far you’ve seen 36 trees  (i.e., 
taken one sample of N trees).  Twelve were apple trees, 24 
were trees of other species.  There was red fruit on 9 of the 
apple trees, and on 4 of the other trees –that is, 13 of the trees 
you saw had red fruit.  This means that, using red fruit as a 
cue, you had 9 hits (red fruit on apple trees) and 4 false 
alarms (red fruit on other trees).  So p(A|R) = 9/13 –  
(number of hits)/(number of hits + number of false alarms).  
No base rate information was necessary for calculating the 
conditional probability: under conditions of natural sam-
pling, all you need to know is the absolute number of hits 
and false alarms.  Base rates are needed only in designed 
experiments: ones in which two samples are taken, and the 
size of each is set in advance.  In designed experiments, 
likelihoods contain no information about base rates. 
     Kleiter (1994) has noted that the knowledge bases for 
most animals, and for ancestral hominids: 
 

 \. . . only contained data acquired through their own experi-
ences.  Such a highly individual knowledge base is constrained 
by a specific structural feature: the total number of observa- 
tions made decomposes top-down in a strictly additive way. 
[Perhaps humans]  tend to ignore base rates because we are 
well-adjusted to natural sampling conditions.  If we process the 
information of our episodic memory, which by definition is a 
highly personal knowledge base of our own experiences,  we are 
rational without base rates. (p. 385)   

 
This analysis applies to other animals as well as humans, and 
it suggests why many animals maintain representations of the 
absolute frequencies of biologically relevant events 
(Gallistel, 1990; Kleiter, 1994). It can also explain findings 
by Christensen-Szalanski and Beach (1982) on Bayesian 
diagnosis problems in which subjects sequentially experi-
enced event frequencies.  They were able to solve the 
problem correctly when they experienced frequencies of hits 
and false alarms in a natural sampling scheme but not when 
they experienced only the base rate as a frequency (having 
been given diagnostic information verbally, as a percent).  
 

36 trees 
 
 
 
 

12 apple trees             24 other trees 
 
 
 
 

                9 w/Red            3 w/No      4 w/Red            20 w/No 
                  Fruit              Red Fruit       Fruit              Red Fruit 
 
Figure 1. Natural sampling (inspired by Kleiter, 1994). 
 

Storing probabilistic information  

in a frequency format 
 

    Once acquired, there are advantages to maintaining 
frequency representations.  Important information is lost 
when an encountered frequency (e.g., “9 out of the last 13 
trees with red fruit were apple trees”) is converted to and 
stored as a proportion or single event probability (“there is a 
69% chance that a tree with red fruit is an apple tree”).  
When this happens, the absolute frequencies of the two 
component events cannot be recovered.  As a result, (a) it is 
difficult to update the database as one encounters new 
instances; (b) the sample size is lost, and with it a basis for 
indexing how reliable one’s estimate is (300 observations 
provides a more reliable database than 3; indeed on 
Gallistel’s (1990) model of classical conditioning, animals 
use sample size to compute the statistical uncertainty 
associated with an estimate of the rate of the unconditioned 
stimulus  (US)  in the presence of a conditioned stimulus 
CS), and their monotonically increasing learning curve 
reflects the decrease in this uncertainty as the sample size 
increases); (c) more data needs to be stored (including 
likelihoods and base rates); and (d) the original data cannot 
be recategorized to construct novel reference classes after the 
fact, as they become useful.

3
 (These issues are discussed 

more fully in Cosmides & Tooby, 1996; Tooby & Cosmides, 
1992, in press; and Gigerenzer & Hoffrage, 1995.) 
    Naturally, organisms need to make decisions about single 
events (e.g., should I take my umbrella today?).  Forecasts 
about single instances can, however, be based on frequencies 
(e.g., in the past, how often did it rain on cloudless days like 
today?).  Choices are generated by decision rules, and these 
can take frequency representations as input (as in signal-
detection theory). Moreover, when fed into an appropriate 
decision rule,  a frequency representation can easily produce 
a subjective degree of confidence, making me, for example, 
quite sure that I’ll find an apple tree where l saw red fruit in 
the distance.” In some frequency-based psychological mod-
els, confidence levels reflect an internal assessment of the 
reliability of the cues upon which one’s judgment was based 
(Gigerenzer, Hoffrage, & Kleinbolting, 1991). (For these 
reasons, the fact that people routinely report experiencing 
subjective degrees of confidence that an event will occur 
does not weaken the claim that the machinery that underlies 
them operates along frequentist principles.) 
    Evidence that the human cognitive architecture includes a 
statistical inference system that requires data in frequency 
________ 
     

3
 It is computationally trivial to reconstruct a reference class 

according to new criteria given frequency representations of events.  
The database will be versatile if individual instances, richly 
encoded by a broad band filter, are stored –  as in episodic memory 
systems.  If the human mind has a system designed to use episodic 
memory as a database for extracting frequencies associated with 
new reference classes, this system would need a procedure for 
using new cues to access the episodic memory base.  Perhaps 
Tversky & Kahneman’s (1974) “availability heuristic” reflects the 
operation of such a procedure.  If so, then it would be more 
appropriately seen as a component of a well-designed system rather 
than a satisficing rule-of thumb. 
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formats in order to operate properly raises an obvious 
question: Frequencies of what? 
 
 
 

Frequencies of What? 
 

Individuation, Counting. and Natural Sampling.   
 

    Computing probabilities via natural sampling requires the 
ability to count, and the ability to count requires the ability to 
individuate events.  In an extensive review of the animal 
literature, Gallistel (1990) has shown that a wide variety of 
animals are able to count; that is, to produce a one-one 
mapping from the numerosity of a set to behavior- 
controlling entities that, because of the formal properties of 
the computations into which they can enter, can be thought 
of as representations of number.  Every organism that can 
learn via classical or operant conditioning can estimate  rates 
– number per unit time – and use them to compute 
conditional probabilities in what amounts to a natural 
sampling scheme (Gallistel, 1990; Kleiter, 1994; Rescorla, 
1967, 1968; Staddon, 1988).  An association in space and 
time between, e.g., a tone and meat, is not sufficient to 
produce conditioning.  The animal needs to be able to detect 
a contingency, such that the CS predicts a change in the rate 
of occurrence of the US: a dog will not salivate in response 
to a tone (CS) unless p(meat|tone) > p(meat|no tone). (See 
Gallistel, 1990; Rescorla, 1967, 1968; Staddon, 1988.) 
    These computations can be made because animals have 
mechanisms that parse the sensory stream,  breaking it up 
into countable events: food pellets, lever presses, brief 
sounds, flashes of light.  Conditioning in the laboratory is 
successful when the experimenter chooses stimuli and 
rewards that are adoptively important to the animal and can 
be individuated by it. 
    But what counts as a countable event differs from species 
to species.  Some species parse the world in ways that others 
cannot.  For example, on the basis of ultraviolet patterns, 
bees distinguish flowers that look identical to human eyes.  
Moreover, the cognitive architecture of a species need not 
contain machinery designed to count every class of events 
that it can parse.  A bird who can assess the rate of return of 
berries on a bush may not be able to assess the frequency of 
cars or dog ears, even though it is capable of seeing them.  
For example, even though rats can compute the probability of 
electric shocks given the onset of a colored light and of 
nausea given the taste of a food, they cannot compute the 
probability of shocks given food or of nausea given lights (or 
if they do, the nofrmaitn is not used to regulate avoidance 
behavior; Garcia & Koelling, 1966). The female digger 
wasp, Ammophila campestris, distributes her larva among 
several different, burrows, which she provisions every day 
with paralyzed insects.  Every morning she assesses the 
quantity of food in each burrow, and adjusts her provisioning 
accordingly -- this can be shown by experimentally altering 
the contents of her burrow.  But these alterations affect her 
behavior only if they are done in the morning.  Changes 
made at other times of day have no effect on her behavior 
(Baerends, 1941).  So, although she can count paralyzed 
insects, the machinery that allows this is turned on only in 

the morning,    “ . . . almost as though it was a costly,   
power-consuming instrument” (Dawkins, 1986, p. 50).  This 
counting mechanism is content-specific and situation spe-
cific: It can be applied only to insects (and possibly a few 
other items), and only in the morning. 
    Some of the mechanisms that assess quantities in humans 
are content-specific as well.  Gallistel (1990) points out, for 
example, that the retina of a student who has never taken 
calculus computes the second derivative of the local distribu-
tion of light intensity (p. 332).  In other words, the machine 
that carries out this computation can operate on representa-
tions of light, but not on representations with the content 
and/or format typically found in math books. 
 

What can frequency computation systems count? 
 

    It is therefore reasonable to ask, To what extent are human 
inductive reasoning mechanisms content-specific?  Can they 
operate on any kind of frequency information, or are there 
privileged contents?  Does the design of our cognitive 
architecture favor certain ways of individuating objects and 
events over others? 
    Research from cognitive development suggests that it 
does.  For example, a newborn’s brain has response systems 
that “expect” faces to be present in the environment: babies 
less than 10 minutes old turn their eyes and head in response 
to face-like patterns, but not to scrambled versions of the 
same pattern with identical spatial frequencies (Johnson & 
Morton, 1991).  Infants make strong ontological assumptions 
about how the world works and what kinds of things it 
contains -- even at 2 1/2 months (i.e., as soon as their visual 
systems have matured).  They assume, for example, that it 
contains rigid objects that are continuous in space and time, 
and they have preferred ways of parsing the world into 
separate objects.  Ignoring shape, color, and texture, they 
treat any surface that is cohesive, bounded, and moves as a 
unit as a single object (Spelke, 1988, 1990).  When one solid 
object appears to pass through another, these infants are 
surprised (Baillargeon, 1986).  Yet a system with no privi-
leged hypotheses –  a truly “open-minded” system – would 
be undisturbed by such displays.  In watching objects 
interact, babies less than a year old distinguish causal events 
from non-causal ones that have similar spatio-temporal 
properties (Leslie, 1988); they distinguish objects that move 
only when acted upon from ones that are capable of         
self-generated motion (the inanimate-animate distinction; 
Leslie, 1994); they assume that the self-propelled movement 
of animate objects is caused by invisible internal states –  
goals and intentions -- whose presence must be inferred, 
since internal states cannot be seen (Baron-Cohen, 1995).  
When an adult utters a word-like sound while pointing to a 
novel object, toddlers assume the word refers to the whole 
object, rather than to one of its parts or the material it is made 
of or its superordinate category (Markman, 1989).  Toddlers 
can count individual animals, but not kinds of animals; dots 
of different colors, but not the number of colors.      They 
spontaneously count teddy bears, but not teddy bear ears: 
toddlers do not count the parts of intact objects.  But if those 
same parts have been broken off of the parent object, and are 
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therefore capable of independent motion, toddlers will count 
them (Shipley & Shepperson, 1990). 
 
 

Privileged parsings in statistical inference 
 

    The existence of sciences that investigate the properties of 
subatomic particles, gases, and waves shows that the human 
mind is capable of individuating an astonishing array of 
events.  But some ways of parsing the world may be more 
natural than others -- faster, more automatic, and cross-
culturally universal, emerging without conscious delibera-
tion and in the absence of explicit instruction.  Moreover, 
different adaptive problems might have required different 
ways of parsing the world.  When you are sharing food with 
another person, it might make sense to think of your apple as 
having two halves; but when you are assessing the product-
iveity of apple trees while foraging, it is the frequency of 
apples that is relevant, not the frequency of half apples.  To 
construct a 3-D representation, the visual system needs to 
know that two percepts are different views of the same apple 
tree; but we doubt there is any adaptive context in which the 
visual system would need to individuate and count up the 
number of different angles from which you have viewed that 
tree or the number of times you have viewed it from each of 
these angles. 
    Statistical inference mechanisms that embody content-
independent rational principles are most useful when applied 
to adaptive problems whose solution requires recent samples 
of local information about rapidly-decaying reference class 
interrelationships -- changes in the spatial and temporal 
distributions of game, plant foods, predators, people, weather 
conditions, and so on.  To do this, they should be designed to 
pick up incidental information about the frequencies of 
whole objects, actions, and events as a function of time, 
location, and the presence of other objects, actions, and 
events.  By whole object, we mean cohesive, bounded 
entities that move as a unit, independent of other surfaces: 
the definition that human infants automatically apply 
(Spelke, 1988, 1990).  The more closely a “part” of an object 
conforms to this definition, the easier it should be to count.  
For example, apples – which, though attached to the tree,  
can move somewhat independently of it – should be easier to 
count than 4 square-inch patches of bark on the tree’s trunk.  
Furthermore, what gets classified as an individual object 
(e.g., tree versus apple) should shift meaningfully as a 
function of the adaptive problem at hand. (See Jackendoff, 
1983, for a more general discussion of how the human mind 
individuates not only objects, but actions, events, locations, 
and paths.  For evidence that infants can individuate and 
count actions and sounds, as well as objects, see Wynn, 
1995; Starkey, Spelke, & Gelman, 1990.) 
    There are some aspects of the world that one would not 
expect such statistical inference mechanisms to spontane-
ously count.  One example is the frequency of events that 
have remained stable over many generations (e.g., how often 
the sun rises in the east; how often the day-night cycle lasts 
24 hours; how often solid objects fail to pass through one 
another).  The probability of these events can be phylogeneti-
ally given (Shepard, 1987; Staddon, 1988).  Nor should they 

count aspects of the world that are adaptively irrelevant – for 
example, the number of different colors in a scene or the 
number of sides of leaves on a tree.  Indeed, inseparable 
aspects of objects, views of objects, or their orientations 
should be particularly difficult to count, because they are 
seldom individuated (e.g., top versus bottom side of a leaf, 
southwest face of a stone, right versus left ear of a cat), and 
when they are, their frequency often can be derived from 
information about the frequency of their parent object (oak 
leaves have two sides, cats have two ears).  For similar 
reasons, one would not expect arbitrary chunks of intact 
objects -- chunks with no causal import -to be spontane- 
ously counted: When looking at an intact fork, we see one 
fork, not six (or 10 or 100) fork parts.  In fact, given the way 
our minds privilege “moves as a unit” as a dimension for 
construing objects, the less capable of independent motion an 
aspect of an object is, the more difficult it should be to 
individuate and count” (e.g., rock flanks should be more 
difficult than rabbit ears).  In other words, the principles 
whereby ToBy parses the world should influence perfor-
mance on any task that requires counting.  This includes 
statistical inference tasks, if the frequency-natural sampling 
view discussed previously is correct. 

 

Arbitrary parsings in statistical inference. 
 

    Given this perspective, consider the following problem 
(from Bar-Hillel & Falk, 1982): 
 

Three cards are in a hat.  One is red on both sides (the red-red 
card).  One is white on both sides (the white-white card).  One 
is red on one side and white on the other (the red-white card).  
A single card is drawn randomly and tossed into the air. 
    What is the probability that the red-red card was drawn, 
assuming that the drawn card lands with a red side up? 

 
    Most people answer “½”  (66% in Bar-Hillel & Falk, 
1982; 79% in Bar-Hillel, 1989).  In doing so, they apparently 
reason as follows:  “The card landed with a red side up, so 
it’s not the white-white card.  There are only two cards left, 
the red-white and the red-red.  These are equally probable, so 
the probability that the drawn card is the red-red one must be 
½” (see p.119 of Bar-Hillel & Falk, 1982).  In this line of 
reasoning, the presence of a red side is used as a cue 
indicating which of several (whole) objects are potentially 
involved, and the subject computes the probability over 
whole objects (i.e., cards).  The trouble is, these two cards – 
red-white and red-red – are not equally likely to land with a 
red side up. 
    To answer the 3 -card problem correctly, one has to count 
up sides of cards, rather than whole cards.  We know the card 
in question landed with a red side up; the red-red card has 
two red sides, whereas the red-white card has only one red 
side.  That means there are three red sides total, two of which 
________  
    

4
 All else equal.  Other cues -- such as the sharp light-dark 

transition associated with many boundaries -- are highly correlated 
with surfaces that move as a unit.  Ontogenetically, as these cues 
come to be used to distinguish objects, inseparable aspects of 
objects that happen to share them may become easier to individuate 
and count as well (e.g., polka dots on a piece of cloth). 
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are from the red-red card.  Therefore, the answer is 2/3.  Very 
few subjects give this answer: only 6% and 9%, respectively, 
in Bar-Hillel’s studies.  The 3-card problem appears to be 
intractable -- it reliably elicits the same wrong answer from 
most people.  Why? 
    If our statistical inference mechanisms are designed to 
operate over frequencies of whole objects, then the 3-card 
problem is twice-cursed: (1) it is not posed in a frequency 
format, and (2) to solve it correctly, one needs to count views 
of objects -- sides of cards -- rather than whole objects.  If 
whole objects are the natural unit of analysis for our 
statistical inference mechanisms, then people should have 
difficulty with any problem whose solution requires one to 
count arbitrary parsings of intact whole objects -- views, 
inseparable aspects, random chunks, nonfunctional frag-
ments, and so on. 
 

The Individuation Hypothesis 
 

    The experiments reported herein were designed to test the 
hypothesis that the computational structure of human mecha-
nisms for assessing relative frequencies is better designed for 
operating over whole objects than arbitrary parsings of   
them.  For convenience, we will refer to this as the individua-
tion hypothesis.  If it is correct, then the 3-card problem and 
others like it should remain difficult, even when they are 
posed in a frequency format.  Furthermore, one should be 
able to systematically improve or depress performance on 
otherwise similar problems by varying whether a correct 
answer requires one to count over whole objects or arbitrary 
parsings of objects. 
     In the experiments that follow, the hit and false-alarm 
rates are not explicitly given: they must be inferred from 
what one knows about the structure of objects and their 
relationships, as in the 3-card problem.  In that problem, the 
event of interest is whether the red-red card was drawn, and 
the presence of a red side is the conditioning event: the event 
upon which the probability of another event is conditioned.  
Bar-Hillel and Falk made the following observation: 
 

Outside the never-never land of textbooks, however, condition-
ing events are not handed out on silver platters.  They have to 
be inferred, determined, extracted.  In other words, real-life 
problems (or textbook problems purporting to describe real 
life) need to be modeled before they can be solved formally. 
(p. 121) 

 

In this light, another way of expressing the individuation 
hypothesis is this: The human cognitive architecture privi-
leges some parsings of the world over others.  Inferring and 
extracting the appropriate conditioning event will be more 
difficult when this event represents an arbitrary parsing of 
the world than when it represents a more natural parsing. 

 

Experiment 1 
 

    Experiment 1 was designed with three purposes in mind.  
First, we wanted to see if we could replicate Bar-Hillel’s 
findings for the 3-card problem (Bar-Hillel, 1989; Bar-Hillel 
& Falk, 1982).  Second, we wanted to see whether perfor-
mance would improve if subjects were given a version of the 

problem in frequency format.  Third, we wanted to explore 
our conjecture that arbitrary parsings impede performance.  
In the frequency version, subjects still have to assess the 
frequency of sides of cards. If the individuation hypothesis is 
correct, then posing this problem in frequency terms should 
produce little or no improvement.  If it is incorrect, then the 
frequency version should elicit high levels of performance. 
 

Method 
 

    Subjects.  The subjects in all of our experiments were under-
graduates at the University of California, Santa Barbara.  Some 
participated to fulfill a class requirement, others were paid vol-
unteers.  Subjects were randomly assigned to conditions, and 
their average age was 19.1 years.  Fifty-two participated in 
Experiment 1: 27 in Condition 1 and 25 in Condition 2. 
    Procedure. The procedure was identical in every experiment.  
Each subject was given a booklet that consisted of an instruction 
page followed by a word problem.  They had no time limit, and 
most subjects completed the problem in less than 10 min.  The 
instructions directed subjects to give the “typical” answer if they 
thought the answer to the word problem would vary over trials. 
    Materials for Condition 1. We used the same problem tested 
by Bar-Hillel and Falk (1982) and listed above.  The only 
difference is that in our version, the colors were black and white 
rather than red and white. 
    Materials for Condition 2. This tested a frequency version of 
the 3-card problem. In the single event version, there is only one 
event in which a card is drawn. In the frequency version, this 
event occurred 30 times (sampling with replacement). The sub-
ject was then asked for the answer as a frequency, rather than as 
the probability of a single event.  The text read as follows: 
 

    Three cards are in a hat.  One is black on both sides (the 
black-black card). One is white on both sides (the white-white 
card).  One is black on one side and white on the other (the 
black-white card).  Without looking, you draw a single card 
from the hat and toss it onto a table.  Someone else records 
whether the card is black-black, black-white, or white-white.  
That person also records the color of the side which landed 
face up.  Afler all this information is recorded for a card, the 
card is put back in the hat. 
    The next day, you draw a card from the hat again, and the 
same information is recorded for that card.  Each day you 
repeat this procedure, until you have drawn a card from the 
hat a total of 30 times. 
    Of the cards which land on the table with a black side up, 
how many will be black-black cards?  ___ out of ___ cards 

 

Results 
 

    Any version of “⅔” was scored as a correct answer: “2 out 
of 3,” “10 out of 15,” “2/3,” “66%,” “2 to 1,” and so on.  The 
correct answer was elicited from 7% of subjects in the   
single event version, and 28% of subjects in the frequency 
version.  The difference between these two conditions is 
significant (7% vs. 28%: Z = 1.96, p = .025), and the effect 
size, Φ, is .27. 

 

Discussion 
 

First, we were able to replicate Bar-Hillel’s results quite 
precisely: the original, single event version of the 3-card 
problem elicited the correct answer from  7%  subjects in  
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this study, versus 6% and 9% of subjects in the studies by 
Bar-Hillel (Bar-Hillel, 1989; Bar-Hillel & Falk, 1982). 
    Second, more subjects gave the correct answer in re-
sponse to a frequency version of the 3card problem.  This 
replicates, using different problem content, the results of 
other experiments showing that frequency versions of 
Bayesian problems elicit more correct answers than single 
event versions (Cosmides & Tooby, 1996; Gigerenzer & 
Hoffrage, 1995). 
    Third, the degree of improvement – as measured either by 
the percent correct (28%) or the effect size (.27) – was 
modest.  A minority of subjects answered the 3-card problem 
correctly, even when it had a frequency format: this is what 
one would expect if extracting the proper conditioning event 
is difficult for arbitrary parsings. In contrast, 76% of subjects 
responded with the correct answer on comparable versions of 
a medical diagnosis problem (effect sizes: .36 to .45; 
Cosmides & Tooby, 1996) and ~50% did on the more 
difficult problems tested by Gigerenzer & Hoffrage (1995). 
    This lower level of performance on the 3-card problem is 
not simply a function of differences in the subject popula-
tions tested. We found that the performance of subjects drawn 
from the same pool as those in Experiment 1 can be driven 
much higher, as will be shown in the experiments that follow. 
    To correctly answer the 3-card problem, one needs to 
compute the frequency of sides of cards.  Little or no 
improvement on frequency versions of this problem is what 
one would expect if the frequency computation system were 
capable of counting nothing but whole objects.  In contrast, a 
modest improvement (like the one found) is what one would 
expect if it is capable of counting other kinds of parsings, 
such as inseparable aspects or views of objects, but rarely 
receives this kind of input from a conceptual system that 
privileges whole objects.  On this view, the conceptual 
system that generates inferences about the physical world – 
our “theory of bodies” – does not automatically individuate 
views and other inseparable aspects of objects.  If they are 
not individuated, they won’t be counted.  The key act of 
insight in solving these problems is apprehending which 
aspects of the world need to be individuated and counted.  
Realizing that the conditioning event is the frequency of 
sides of cards should be difficult, however, for an archi-
tecture whose first and most important cut on the world is 
whole objects. 

 

Experiment 2 
 

    Two factors are relevant to the individuation hypothesis: 
(a) whether a problem has a frequency or single-event 
format, and (b) whether the conditioning event is the 
frequency/presence of a whole object versus an inseparable 
aspect, view, or other arbitrary parsing of one.  If the 
individuation hypothesis is correct,  then we should be able 
to systematically change performance levels by creating new 
problems that vary in these dimensions. 
    Experiment 2 was designed to test these predictions.  If the 
variables we are interested in are consequential, then we 
should be able to create a set of problems with new content 
that (a) elicits results parallel to those found for the 3-card 

problem, and (b) elicits enhanced performance on whole-
object versions.  So for Experiment 2, we created a new 
problem that uses candy canes (the straight kind) instead of 
cards.  This allowed us to create a set of problems that are 
structurally isomorphic from the point of view of Bayes’s 
rule, but which vary on the relevant dimensions.  There were 
four problems, which fell into the following categories: 
frequency/whole object; frequency/arbitrary parsing; single 
event/whole object; and single event/arbitrary parsing.  To 
create these categories, the problems had to differ a little in 
surface content; within this constraint, however, we tried to 
create problems whose surface content was as similar as 
possible. 
    These four problems allow us to conduct what is, in effect, 
two experiments: one testing the hypothesis that frequency 
formats enhance performance, and another testing the hypo-
thesis that whole object parsings enhance performance.  The 
same data can also reveal whether these two factors interact. 
    In these problems, the frequency or probability of the 
conditioning event is not given to the subject “on a silver 
platter”, as Bar-Hillel & Falk (1982) put it.  Hit rates and 
false-alarm rates must be derived by the subject from 
information in the problem.  To do so, one needs a model of 
the problem space in which the correct events are individu-
ated and their relationships to one another preserved.  
Inferring what these are and extracting their relationships is 

the crucial act of insight needed to arrive at a correct solution. 
    In the arbitrary parsing versions, whole candy canes of 
different colors/flavors played the role of whole cards; the 
ends of these candy canes played the role of sides of cards.  
Extracting the frequency of ends of intact candy canes, 
independent of the whole candy canes on which these ends 
exist, should be particularly difficult on the individuation 
hypothesis for a number of reasons: 
 

1. A straight candy cane is a radially symmetrical object 
that is internally undifferentiated.  This means it is 
difficult to think of it as having parts.  The question, 
“How many parts does a candy cane have?” has no well-
defined answer.  It can be broken into pieces along a 
number of different axes, these pieces needn’t be of 
equal length, and a single cane can be broken or ground 
up to yield an arbitrarily large number of pieces.  So how 
many parts does it have?  Two?  Three?  An infinite 
number, each corresponding to a distinct but infinitesi-
mally small location?  Ends are locations on a whole 
object that is difficult to think of as having parts. 

2. Ends are inseparable aspects of candy canes.  Unlike the 
handle on a mug (for example), they cannot exist 
independently of a whole object.  This is because they 
are locations on the boundary of an object.  When a 
small bit is broken off the “end” of a candy cane, the 
result is a candy cane that still has two ends, plus a left-
over fragment. 

3. Individuating boundaries (or areas on boundaries) of 
objects should be difficult for a cognitive system that 
privileges whole objects.  It should be especially difficult 
for a system like ours, which uses boundaries to decide 
what counts as an individual object. 
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4. Even if ends are defined as the circular boundaries on a 
cylinder, there is nothing to differentiate the two ends of 
a candy cane from one another.  They are symmetrical 
locations on a symmetrical object. 

5. The boundary definition has other odd properties as well.  
Break a candy cane in half, and there will be four ends 
instead of two; break these in half again, and the same 
cane will have yielded eight ends, and so on. Moreover, 
the surface area of every daughter end will be equal to 
that of the parent ends. In contrast, breaking a mug does 
not yield an indefinitely large number of handles. At 
best, it will yield parts of handles, and the more one 
breaks it, the less “handle-like” the resulting pieces are. 

 

In short, the “ends” of an intact candy cane are not the kind 
of surface that we would expect ToBy to (token) individuate. 

 

Method 
 

    Subjects.  There were 116 subjects in this experiment, with 29 
in each of the four conditions. 
    Materials for Condition 1. This problem falls into the single-
event/arbitrary parsing category. The event to be predicted is the 
presence of an all-pink peppermint stick; the conditioning event 
is the presence of a peppermint end.  The text read as follows: 
 

At the grocery store, there are three jars of straight candy 
canes. 
    The first jar contains only pink candy canes. These are 
peppermint. 
    The second jar contains only yellow candy canes. These 
are lemon. 
    The third jar contains candy canes that change flavor and 
color in the middle.  One half of each stick is pink and tastes 
like peppermint; the other half of each stick is yellow and 
tastes like lemon. 
    You just bought a large number of candy canes.  You put 
three equal-sized handfuls of them into a bag.  You took one 
handful from each of the three jars. 
    When you got home, your friend closed her eyes, reached 
into the bag, and pulled out one candy cane.  While still 
keeping her eyes closed, she tasted one end of it.  The end 
she tasted was peppermint. 
    What is the probability that the stick she tasted was one of 
the all-pink peppermint sticks? ____ 

 

Note that to solve this problem, one needs to realize that the 
probability of discovering a peppermint end on an all-pink 
peppermint stick (PP) is greater than the probability of discover-
ing one on a two-toned stick (PL): p(P end|PP) = 1; p(P end|PL) 
= ½.  The value to be computed is a posterior probability, 
p(PP|P end). 
    Materials for Condition 2. In this frequency/arbitrary parsing 

problem, the event to be predicted is the frequency of all-pink 
peppermint sticks, and the conditioning event is the frequency with 
which one encounters peppermint ends. The first five paragraphs 
are identical to those in condition 1; only the last three differ – they 
transform the prior problem into one with a frequency format. 
 

At the grocery store, there are thee jars of straight candy canes. 
     The first jar contains only pink candy canes.  These are 
peppermint. 
     The second jar contains only yellow candy canes.  These are 
lemon. 
     The third jar contains candy canes that change flavor and 
color in the middle.  One half of each stick is pink and tastes like 

peppermint; the other half of each stick is yellow and tastes like 
lemon. 
    You just bought a large number of candy canes.  You put three 
equal-sized handfuls of them into a bag.  You took one handful 
from each of the three jars. 
    When you got home, your friend reached into the bag and 
pulled out a big bunch of candy canes.  She tasted one – and only 
one – end of each candy cane in that bunch. 
    30 of the ends she tasted were peppermint. 
    How many of these do you expect were from all-pink 
peppermint sticks? ___ out of ___ 

 

Materials for Condition 3. This is a single event/whole object 
problem. The event to be predicted is which jar the drawn candy 
cane originated in; the conditioning event is the presence of a 
peppermint candy cane.  Note that a peppermint candy cane is a 
whole object, and ajar is a whole object.  We preserved as many 
elements of the problem as possible; the only changes in the text 
were ones necessary to transform the conditioning event from an 
arbitrarily parsed entity into a whole object (naturally, this required 
a change in the event to be predicted as well–in all four problems, 
however, this event was defined over whole objects.) 
 

At the grocery store, there are three jars of straight candy 
canes. 
     The first jar contains only peppermint candy canes (the 
“Peppermint Only” jar). 
     The second jar contains only lemon candy canes (the 
“Lemon Only” jar). 
     The third jar contains peppermint candy canes and lemon 
candy canes, in equal proportions (the “Mixed” jar). 
      You just bought a large number of candy canes.  You put 
three equal-sized handfuls of them into a bag.  You took one 
handful from each of the three jars. 
     When you got home, your friend picked a peppermint 
candy cane out of your bag. 
      What is the probability that the peppermint candy cane 
came from the “Peppermint Only” jar? ____ 

 

To solve this problem correctly, one needs to realize that a handful 
of sticks from the peppermint only jar has twice as many 
peppermint sticks as an equal sized handful from the mixed jar.  
Hence the probability that a peppermint stick (P stick) originated in 
the peppermint only jar (PO) is greater than the probability that it 
originated in the mixed jar.  As always, the value to be computed is 
a posterior probability, in this case p(PO|P stick). 
    Materials for Condition  4. This frequency/whole object prob-
lem is identical to condition 3, except for the last two paragraphs, 
which transform the problem into a frequency format. 
 

At the grocery store, there are three jars of straight candy canes. 
     The first jar contains only peppermint candy canes (the 
“Peppermint Only” jar). 
     The second jar contains only lemon candy canes (the “Lemon 
Only” jar). 
     The third jar contains peppermint candy canes and lemon 
candy canes, in equal proportions (the “Mixed” jar). 
     You just bought a large number of candy canes.  You put an 
equal-sized handfuls of them into a bag.  You took one handful 
from each of the three jars. 
     When you got home, your friend picked 30 peppermint candy 
canes out of your bag. 
     How many of these peppermint candy canes do you expect 
came from the “Peppermint Only” jar? ___ out of ____ 

 

Results and Discussion 
 

    The percent correct for each condition is depicted in 
Figure 2.  
 



12                                                BRASE, COSMIDES, AND TOOBY 

0

10

20

30

40

50

60

Single Event Frequency

%
 C
o
rr
e
c
t

Whole Object

Arbitrary Parsing

 
Figure 2. Whole-object versus arbitrary parsing problems: candy 
cane series. 
 

    Do frequency formats elicit higher levels of performance, 

all else equal?  The arbitrary parsing problems tested in 
Conditions I and 2 were identical, except that one had a 
single event format and the other a frequency format.  As 
predicted, the frequency version elicited higher levels of 
performance, and the difference was significant (3% vs. 
21%: Z = 2.02, Φ = .26, p = .022). 
    The whole object problems tested in Conditions 3 and 4 
were also identical, varying only in format.  As predicted, the 
frequency version elicited higher levels of performance, and 
the difference was significant (24% vs. 45%: Z=1.66, Φ 
=.22, p =.049).  In other words, as long as parsing was held 
constant, frequency versions elicited higher perfor-mance 
than single event ones.  Moreover, the size of the frequency 
effect is similar for both parsings (whole-object parsing: .22; 
arbitrary parsing, .26). 
    We note that the frequency effect size for the arbitrary 
parsing condition (.26) is extremely similar to that found for 
the corresponding 3-card problems tested in Experiment 1 
(.27). The absolute levels of performance were quite similar 
as well: 7% correct and 3% correct, respectively, for the 
single event versions; 28% correct and 24% correct for the 
frequency versions.  The similarity between these two pat-
terns of performance is what one would expect if our 
invocation of the individuation hypothesis to explain perfor-
mance on the 3-card problem were correct.  Like the original 
version of the 3-card problem, the candy cane problem with a 
single event format and an arbitrary parsing is twice cursed. 
    Is there support for the individuation hypothesis?  The 
individuation hypothesis predicts that, when format is held 
constant, a problem will elicit higher levels of performance if 
the conditioning event can be parsed as a whole object 
(whole peppermint stick) rather than an arbitrary aspect of an 
intact object (end of a peppermint stick).  When the prob- 
lem was posed in a single event format, the whole object 
parsing elicited significantly higher performance than the 
arbitrary one: 24% correct versus 3% correct (Z=2.28, Φ 
=.30, p=.011).   Performance for the whole object parsing 
was also higher than for the arbitrary one when the    

problem was posed in a frequency format: 45% correct 
versus 2l% correct (Z = 1.96, Φ = .26, p =.025).  The size of 
the whole-object effect was similar, regardless of format:   
.30 for single event versions and .26 for frequency ones. 
     Is a frequency-based inference system incapable of count-
ing over arbitrary parsings? (i.e., Is there an interaction 

between format and parsing?)     Kleiter (1994) proposed 
that statistical inference mechanisms in humans are designed 
to work well given natural samples, 16 and that they do so by 
computing the absolute number of hits and false alarms.  
According to the individuation hypothesis, this should be 
easiest when counting the frequency of whole objects, and 
most difficult when solving single event problems that 
involve arbitrary parsings.  The results accord with this 
prediction: the highest level of performance was elicited by 
the problem for which the conditioning event was the 
frequency of a whole object (45%), and the lowest level was 
elicited by the single event/arbitrary parsing problem (3%).  
Moreover, the effect size for this comparison, 0.48, is a 
substantial one (Z = 3.68, Φ = .48, p = .00012).  Using the 
single event/arbitrary parsing problem as a baseline, one can 
see that applying a frequency format to an arbitrary parsing 
improved performance by 18 percentage points, whereas 
applying it to a whole-object parsing improved performance 
by 42 percentage points.  This kind of enhancement is what 
one would expect if whole objects were the natural unit of 
analysis for frequency-computation systems.  However, there 
are (at least) two different ways that the system could be 
built, both of which would lead to this result. 
    It could be that the frequency-computation system is 
simply incapable of taking anything other than whole  
objects as input.  If this were the case, then there would be a 
strong interaction between format and parsing: Frequency 
format would have a much smaller effect for conditioning 
events parsed arbitrarily than for ones parsed as whole 
objects.  This does not appear to be the case.  Format 
(frequency vs. single event) and parsing (whole object vs. 
arbitrary) had independent effects.  To test for an interaction 
between these two variables, subjects’ responses were coded 
as either 1 (correct) or 0 (incorrect), and an analysis of 
variance (ANOVA) was conducted on the coded data 
according to the procedures specified by Rosenthal and 
Rosnow (1984).  There was a significant main effect for each 
independent variable, but no interaction between them 
(parsing: F(1,112) = 10.25, eta = .29, p = .002; format: 
F(1,112) = 7.51, eta = .25, p = .007; parsing x format: 
F(1,112) = .00053, eta = .0022, p = .98). 
    This result suggests an alternative view.  The input to a 
frequency computation system must be representations of 
tokens (rather than types).  This system is, in principle, 
capable of counting tokens of arbitrarily parsed entities.  
Such parsings are rarely fed into it as input, however.  This is 
because representations of the physical world are built by 
other systems (e.g., ToBy), and these systems were designed 
to individuate and imagine transformations of whole objects, 
not arbitrary parsings of them.  These systems can produce 
type and token representations of whole objects  (e.g., 
“canes” and “this cane”).  They might also be able to 
construct type representations of arbitrary parsings (e.g., 
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“canes have ends”).  This does not imply, however, that they 
automatically produce token representations of arbitrary 
parsings (“this cane end”).  If the output of such systems is 
not tokens of arbitrary parsings – if, in fact, the system is not 
well designed for producing such tokens – then they will not 
usually be available as input to the frequency-computation 
system. 
     What kind of representations does ToBy produce?  A 
large body of evidence (some of which was reviewed earlier) 
suggests that the architecture of our minds has systems 
designed to automatically construct and operate over both 
type and token representations of whole objects.  Infants 
construe a surface that is bounded, cohesive and moves as a 
unit as an “object” (token representation; Spelke, 1990); 
toddlers privilege whole objects (type representations) when 
they infer the referent of a novel word (Markman, 1989); 
toddlers spontaneously count whole objects (tokens) but not 
undivided parts of them (Shipley & Shepperson, 1990).  
There is evidence of systems that are designed to represent 
not only the presence of whole objects, but their movement 
and interactions as well.    As early as 7 months,  for 
example, infants distinguish events in which one object 
“launches” another (causes it to move by hitting it) from 
other events with similar spatiotemporal properties (Leslie, 
1988).  Through experiments on apparent motion, “mental 
rotation”, and related phenomena, Shepard and his col-
leagues have shown that representations of the movement of 
objects are constrained by procedures that reflect evolution-
arily long-enduring properties of the world– even when these 
representations occur in the absence of an external stimulus.  
Consequently, this system represents translations and rota-
tions that are, in many ways, functionally isomorphic to the 
translations and rotations of rigid objects through three-
dimensional space (e.g., Shepard, 1984, 1987).  In other 
words, the mental models it produces reflect the world with 
some accuracy.  Results of this kind have prompted Leslie 
(1994) to propose that a basic component of the human 
cognitive architecture is a system called ToBy, which stands 
for “theory of bodies”.  ToBy embodies principles for 
defining objects (types and tokens), representing their move-
ments and interactions, distinguishing animate objects from 
inanimate ones, and so on.  The representations of motion it 
produces can be individuated either as types of events (e.g., 
“launchings”) or as tokens (e.g., “the launching event just 
seen”). 
    On this view, ToBy and related systems produce represen-
tations of the physical world, and these are fed, as input, into 
a frequency computation system.  Because the actual number 
of events is critical to probability estimates, these representa-
tions would need to be of individual events -- of tokens.  In 
this light, one can think about how the results of Experiment 
2 might have been produced. 
    How do ToBy and the frequency computation system 
interact?  In the typical Bayesian word problem, the 
frequency of the conditioning event is given on a silver 
platter—often as explicit hit and false alarm rates.  But in 
these experiments, they must be inferred and extracted.

5
 This 

requires good models of the relationships among the physical 
objects (or aspects of objects) involved. 

    For example, in the whole object/frequency problem, one 
needs to model the path taken by individual sticks of candy 
as they moved from jars into a bag into your friend’s hand 
(see Jackendoff, 1983, on the individuation of “paths”).  This 
should not be very difficult, given that it is a model of the 
movement of whole objects to different spatial locations: 
modeling paths, objects, and movements is what ToBy does 
(see also Freyd, 1987, on dynamic mental representations).  
In fact, the paths of various peppermint sticks differ only in 
their point of origin:  some came from the peppermint only 
jar and others came from the mixed jar.  By running the 
“mental movie” ToBy constructed backwards, it is clear that 
any peppermint stick in your friend’s hand had to originate in 
one of these two jars.  ToBy automatically individuated 
peppermint sticks because they are whole objects, and this 
output can be fed into the frequency computation system, to 
be counted.  By running the movie forwards again, the 
counting system can infer that one out of every two sticks 
drawn from the mixed jar is peppermint, whereas every stick 
drawn from the peppermint only jar was peppermint.  The 
problem stipulates that an equal number of sticks were  
drawn from each jar.  This is translated by the frequency-
computation system into an absolute number drawn from 
each jar (say, 10), because that system is designed to 
represent and operate over absolute frequencies (for the 
reasons discussed under Natural Sampling as an Environment-
tal Invariant earlier).  By counting instances of hits and false 
alarms in this imagined sample, the system computes that 
there are 10 peppermint sticks from the Peppermint Only jar 
(10 hits) and 5 from the Mixed jar (5 false alarms).  This 
means there is a total of 15 peppermint sticks, 10 of which 
came from the Peppermint Only jar.  So the answer to p(PO| 
P stick) is “10 out of every l5” (or “20 out of 30”, if one 
transforms the rate to match the absolute value of hits  +  
false alarms [30] given in the problem). 
    Now consider how ToBy and the frequency computation 
system would interact on a frequency/arbitrary parsing 
problem.  ToBy is designed to model whole objects.  It uses 
information such as color, flavor, or texture to identify 
objects, so it would be very natural for it to use the presence 
of peppermint as a cue that identifies the object at hand as 
_______ 
     

5 
 We assume this is why the absolute levels of performance in 

these experiments were a bit lower than those found for Cosrnides 
and Tooby’s medical diagnosis problem, which involved 
calculations of similar complexity. (The calculations required for 
those tested by Gigerenzer and Hoffrage, 1995, were somewhat 
more complex.) One reviewer asked why absolute levels of 
performance were not higher, if our minds contain a well-designed 
frequency computation system.  In our view, it is remarkable that 
they work on paper and pencil problems at all.  A natural sampling 
system is designed to operate on actual events, counting hits and 
false alarms.  Numbers of hits and false alarms are not given in the 
problems we tested.  They need  to be inferred on the basis of 
transformations of internal representations, and in the absence of 
the physical stimuli upon which these internal representations are 
based.  In Cosmides and Tooby’s (1996) experiments, those stimuli 
that prompted subjects to form more “perceptual” representations of 
the problem elicited higher performance, to a ceiling of 92% 
correct. 
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either the all pink stick or the pink-yellow stick.  But 
stopping here will lead to the wrong answer (½), as in the 
card problem.  Alternatively, ToBy could ignore this cue and 
simply look for all pink sticks, which would lead to a 
different wrong answer (⅓).  When one looks at errors for the 
arbitrary parsing conditions, these were, in fact, the most 
common ones.  In the single event problem, 20 out of 28 
errors fell into these two categories (10 in each); in the 
frequency problem, 21 out of 23 errors did (11 answered 
“½,” 10 answered “⅓”).  In both cases, whole objects are 
being counted, but not ends. 
    To solve the arbitrary parsing problem correctly, ToBy 
would need to find a way of individuating ends.  The end of a 
candy cane could, for example, refer to one of its bound-
aries.  ToBy does use boundary information to define whole 
objects, but it does not automatically individuate undifferen-
tiated areas on the boundary of an object and, therefore, 
would not feed tokens representing separate boundary areas 
into a frequency computation system.  Yet solving the prob-
lem would require that the subject count such tokens; 
moreover, these individuated boundary areas would have to 
be counted up in a way that is independent of the intact 
objects whose boundaries they define (because one needs to 
compute that an all pink stick and a pink-yellow stick yield a 
total of three pink ends).  Other ways of individuating ends 
are equally problematic.  In fact, tasting only one “end” of a 
candy cane could refer to licking anywhere to either the left 
or right of the midpoint, or even to biting off a chunk near 
one of the circular boundaries of the cylinder. A defining feat-
ure of the stick that changes color and flavor in the middle, 
from peppermint pink to lemon yellow, is that there is a 
plane bisecting the stick where the color and flavor change 
abruptly: It can therefore be thought of as having “two 
halves” (3 month old infants ignore color and texture in 
defining objects and parts, but older children and adults do 
not; Spelke, 1988).  From a mental image of this cane, it may 
be straightforward to read off that only one end – on any of 
the above definitions – is peppermint.  But the all pink 
peppermint stick is a different matter.  It is a completely 
symmetrical, undifferentiated object.  To compute the fre-
quency of hits and false alarms, ToBy would have to create 
an arbitrary distinction between various areas of this continu-
ous cohesive object.  This distinction would have to classify 
a homogenous object as one with two or more parts, and to 
classify two (and only two) of these parts as “ends”.   The 
fact that these “ends” are visually indistinguishable would, 
presumably, make it even more difficult to have them 
counted as two separate tokens by a frequency-computation 
system.  And the system would have to add these two tokens 
to one derived from a different whole object,  the pink-
yellow stick. 
    In a whole object problem, ToBy is doing what it was 
designed to do: model the movement and interaction of rigid 
objects.  It is also executing one of its design functions when 
it uses color or flavor as a cue to the identity of an         
object – but this output leads to an incorrect probability 
estimate in the arbitrary parsing problems.  To solve these 
correctly, it needs to do something it was not designed for; 
even worse, it needs to parse the world in a way that 

contradicts its own internal principles for defining rigid 

objects – principles that cause a pink stick to be categorized 
as a single rigid object with no obviously differentiated parts. 
 

Experiment 3 
 

    This analysis of how ToBy and the frequency-computa-
tion system might interact in the candy cane problems 
suggests the following: If one can cause subjects to catego-
rize a candy cane as having two distinct ends, this should 
enhance performance on the problems in which the condit-
ioning event is the probability/frequency of ends.  A straight-
forward way of doing this would be to take advantage of 
ToBy’s own internal principles for dividing the world into 
objects and objects into parts.  These include cues such as 
“cohesive, bounded, entity” and “entity that can move 
independently of other entities”.  Breaking a candy cane in 
half creates two “pieces” -- two cohesive bounded entities, 
each of which can move independently of the other.  This is 
the kind of entity that ToBy naturally individuates.  Because 
these daughter objects are what need to be counted to solve 
the problem correctly, having subjects imagine this manipu-
lation should improve performance on what were previously 
“arbitrary parsing” problems. 
    In Experiment 3 we tested this hypothesis, using slightly 
altered versions of the arbitrary parsing problems tested in 
Experiment 2. We tested two versions: one with a single-
event format and one with a frequency form.  On the 
individuation hypothesis, one would predict that perfor-
mance on these two problems will be similar to that found 
for the whole object versions tested in Experiment 2. 
    Experiment 3 has an additional advantage:  It allows one 
to see whether some extraneous surface feature of the  
whole-object problems tested in Experiment 2— which in-
volved candy canes in jars –  can account for the higher 
levels of performance that they elicited.  The surface content 
of the broken cane problems tested in Experiment 3 is almost 
identical to that of the arbitrary parsing problems tested in 
Experiment 2. It is, in fact, an even closer match than that 
provided by Experiment 2’s whole object, jar/cane condi-
tions.  Finding the same pattern of performance in Experi-
ment 3 as we found for the whole object conditions of 
Experiment 2 would militate against the hypothesis that the 
improved performance for whole objects in Experiment 2 
was caused by some extraneous feature of those problems. 
 

Method 
 

Subjects.  There were 48 subjects in this experiment; 21 in the 
single event condition and 27 in the frequency condition. 
Materials for Condition 1. In this single-event problem, each 
candy cane is broken into two halves. The event to be predicted 
is the presence of an all-pink peppermint stick; the conditioning 
event is the presence of a peppermint end (half stick). It is iden-
tical to the single event/arbitrary parsing problem tested in 
Experiment 2 (condition 1), except for the last three paragraphs. 
 

At the grocery store, there are three jars of straight candy 
canes. 
    The first jar contains only pink candy canes.  These are 
peppermint. 
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    The second jar contains only yellow candy canes.  These are 
lemon. 
    The third jar contains candy caries that change flavor and 
color in the middle.  One half of each stick is pink and tastes 
like peppermint; the other half of each stick is yellow and 
tastes like lemon. 
    You just bought a large number of candy canes.  You put 
three equal-sized handfuls of them into a bag.  You took one 
handful from each of the three jars. 
    When you got home, you broke every candy cane in half.  
You put all the pink halves into a pink jar and all the yellow 
halves into a yellow jar. 
     Your friend reached into the pink jar and pulled out one 
pink half stick. 
     What is the probability that it was originally from one of the 
all-pink peppermint sticks? ____ 

 

Materials for Condition 2. This is a frequency version the 
broken stick problem in condition 1. Except for the last three 
paragraphs, it is identical to the frequency/arbitrary parsing 
problem tested in Experiment 2 (condition 2). 
 

At the grocery store, there are three jars of straight candy 
canes. 
     The first jar contains only pink candy canes.  These are 
peppermint. 
     The second jar contains only yellow candy canes. These are 
lemon. 
     The third jar contains candy canes that change flavor and 
color in the middle.  One half of each stick is pink and tastes 
like peppermint; the other half of each stick is yellow and 
tastes like lemon. 
      You just bought a large number of candy canes.  You put 
three equal-sized handfuls of them into a bag.  You took one 
handful from each of the three jars. 
     When you got home, you broke every candy cane in half.  
You put all the pink halves into a pink jar, and all the yellow 
halves into a yellow jar. 
     Your friend reached into the pink jar and pulled out 30 pink 
half sticks. 
     How many of these halves do you expect were originally 
from all-pink peppermint sticks? ___ out of ___  

 

Results and Discussion 
 

    The percent correct for each condition is depicted in 
Figure 3.  Because we are interested in whether the results of 
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Figure 3.   Transforming an inseparable aspect into a whole object: 
candy cane series. 

the broken stick problems more closely resemble those for 
the whole object than the arbitrary parsing problems in 
Experiment 2, the results of Experiment 3 are superimposed 
on a graph that depicts the results of both experiments.  
    Performance on the broken stick problems was clearly 
more similar to that for Experiment 2’s whole object prob-
lems (jar/cane) than its arbitrary parsing problems (cane/ 
end).  The correct answer was elicited from 33% of subjects 
in the single event version, and 56% in the frequency 
version.  These results are not significantly different from the 
24% correct (single event) and 45% correct (frequency) 
found for the corresponding whole object conditions.  They 
are very different, however, from the 3% correct (single-
event) and 21% correct (frequency) found for the correspon-
ding arbitrary parsing conditions (33% vs. 3%: Z = 2.84,  
Φ=.40,  p = .0022;  56%  vs.  21%:  Z  =  2.69,  Φ  = .36,        
p = .0035).   This is in spite of the fact that the surface 
content of the broken stick problems was, in many ways, 
more similar to that of the arbitrary parsing problems.  The 
only dimension along which they differ is the one that is 
relevant to the individuation hypothesis.  Moreover, this is 
the only dimension along which the broken stick problems 
more closely match the whole object ones.  When a stick is 
broken,  the ends are processed differently than when they 
are attached.  They are treated more like whole objects than 
like arbitrarily parsed aspects. 
    We note that in both of the broken stick conditions, 
performance was ~10 percentage points higher than in the 
corresponding whole object versions.  Although this differ-
ence is not statistically significant, it is interesting given our 
hypothesis about the ways in which ToBy and the frequency-
computation system interact.  Given the internal principles 
that govern ToBy’s operation, there is a close causal 
relationship between a pink candy cane and the two daughter 
halves that are produced when it is broken: One object was 
broken in two.  By running the “movie” backwards, it is easy 
to see that all half sticks originated on whole ones.  By 
running it forwards, it is easy to see the following:  Every 
pink half-stick was “born”, so to speak, when a whole stick 
was broken; every whole stick produced two halves; every 
all-pink stick produced two pink half sticks;  and every    
two-toned stick produced only one pink half stick.  Given the 
dimensions along which ToBy construes causality for inani-
mate objects,  there is tight and necessary causal relation- 
ship between parent object and daughter objects when one 
object is broken in two.  In contrast, there is no necessary or 
causal connection between the three spatial locations con-
cerned Oar, bag, and hand) when a whole stick moved from 
place to place in the whole object versions of Experiment 2. 
The mental model constructed would still have conformed to 
ToBy’s internal principles had other locations been used. 
    The effect of frequency, holding parsing constant, appears 
in this data also.  In fact, the size of the effect was almost 
identical to that for the matching whole object condition of 
Experiment 2. For the broken stick versions, there was a 23 
percentage point difference between the single event and 
frequency conditions, and an effect size of .22; for the 
matching whole object conditions, it was a 21-point differ-
ence, with an effect size of .22 (56% vs. 33%: Z= 1.53,    
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Φ=.22, p =.063—the p value is slightly larger in this 
condition because the sample size is smaller—48 vs. 58). 

 

Experiment 4 
 

    The logic of Experiment 4 is identical to that for 
Experiment 2.  They differ only in surface content: The prior 
experiment involved candy canes, whereas this experiment 
involves fish.  Psychologists have been surprised to find that 
changes in surface content frequently alter reasoning perfor-
mance on problems that were thought to be structurally 
isomorphic (for discussion, see Cosmides, 1989;  Cosmides 
& Tooby, 1992; Gigerenzer & Murray, 1987; Wason & 
Johnson-Laird, 1972).  In many cases, differences that were 
assumed to be “surface” turned out to be “structural”.  For 
example, two conditional rules with an identical logical 
structure (If P then Q) will elicit very different patterns of 
performance when the content of one of them happens to 
express the benefit/requirement relationships typical of  
social contracts (Cosmides, 1985;  Cosmides & Tooby, 
1989).  It turns out that for social contracts, logical categories 
are better thought of as structural features, whereas benefit/ 
requirement categories are better thought of as structural 
features (see, e.g., Cosmides & Tooby, 1992, on switched 
social contracts; Gigerenzer & Hug, 1992, on perspective 
change).  Similarly, performance on rules with exactly the 
same surface content (e.g., “If a man eats cassava root, then 
he must have a tattoo on his face”) is vastly different when 
the context causes the terms to be mapped onto the 
benefit/requirement contingencies of a social contract than 
when it maps them onto a contingent relationship that merely 
describes the co-occurrence of events. 
    For reasons like these, we take surface content very 
seriously.  If the individuation hypothesis is correct, then it 
will allow us to predict which kinds of surface content will 
produce changes in performance, and which will not.  The 
fish problems that follow were designed such that they  
would be structurally isomorphic to the candy cane ones, 
given the object primitives that are important to the individu-
ation hypothesis.  In the arbitrary parsing conditions, sides of 
a fish played the role of ends of a candy cane, and whole fish 
played the role of whole candy canes.  In the whole-object 
conditions, fish stood in for candy canes, and lakes stood in 
for jars. 
 

Method 
 

    Subjects.    There were 118 subjects in this experiment, with 28 
in three of the conditions, and 34 in one of them (single event/ 
whole object). 
     Materials for Condition 1. This is a single event/arbitrary 
parsing problem.  The event to be predicted is the presence of a fish 
of the blue-blue species, and the conditioning event is the sight of a 
fish in profile, which reveals that that side of the fish is blue. 
 

There are a large number of fish in a tank.  One tank contains 
three different species of fish. 
     One third of the fish are blue on both sides (the blue-blue 
species). 
     One third of the fish are red on both sides (the red-red 
species). 

     And one third of the fish are blue on one side and red on 
the other side (the blue-red species). 
      While you are looking at the tank, a fish swims past you.  
You can only see one side of this fish, and note that the side 
you can see is blue. 
     What is the probability that this fish is a member of the 
blue-blue species? ____ 

 

To solve this problem, one needs to realize that the probability of 
seeing a blue side on a fish of the blue-blue species is twice that of 
seeing a blue side on a fish of the blue-red species.  The value to be 
computed is a posterior probability, p(BB species | B side). 
    Materials for Condition 2. This frequency/arbitrary parsing 
problem is virtually identical to condition 1, except for the changes 
needed to transform the problem into a frequency format. 
 

There are a large number of fish in a tank.  The tank contains 
three different species of fish. 
     One third of the fish are blue on both sides (the blue-blue 
species). 
     One third of the fish are red t-n both sides (the red-red 
species). 
     And one third of the fish are blue on one side and red on 
the other side (the blue-red species). 
     You took a photo of the tank; some of the fish can be seen 
in the photo.  These fish are in profile, so you can see only 
one side of each fish. 
     In the photo, 30 of the fish profiles you see are blue. 
     How many of these fish do you expect are members of the 
blue-blue species? ___out of ___ 

 

    Materials for Condition 3. In this single event/whole object 
problem, the event to be predicted is which lake a fish came from, 
and the conditioning event is the presence of a blue fish. Note that a 
fish is a whole object, and a lake can be thought of as a container 
for fish in the same way that a jar can be thought of as a container 
for candy canes–when described in this way, it is an honorary ob-
ject, bounded, internally cohesive and continuous, with its “insides” 
(the water) capable of moving independently of the surrounding 
banks. (Also, on many theories of conceptual structure, lakes are 
locations that can be individuated either as types or tokens; indeed, 
they would have to be if ToBy is to be able to model the movement 
of objects through paths that connect a point of origin to a 
destination; see Jackendoff, 1983). We preserved as many elements 
of the problem as possible; the only changes in the text were ones 
necessary to transform the conditioning event from an arbitrarily 
parsed entity into a whole object (naturally, this required a change 
in the event to be predicted as well -- in all four problems, however, 
this event was defined over an easily individuated entity). 
 

You sell fish.  The fish you sell come from three different 
fishermen: Tom, Dick, and Harry.  Each man fishes in a 
different lake. 
    Tom fishes in a lake in which there are only blue fish.  It is 
called Blue Lake. 
    Dick fishes in a lake in which there are only red fish.  It is 
called Red Lake. 
    Harry fishes in a lake in which half the fish are blue and half 
the fish are red.  It is called Blue-Red Lake. 
   Today, you bought a large number of fish.  You bought equal 
numbers from each of the fl= fishermen.  You dumped all of 
these fish into one big ice chest. 
    Later that day, a customer picked one blue fish out of your 
ice chest. 
    What is the probability that this fish came from Blue    
Lake? ___ 
 

    To solve this problem, one needs to realize that rate of return for 
blue fish when fishing in Blue-Red Lake is half the rate of return of 
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blue fish when fishing in Blue Lake.  The value to be computed is 
p(Blue Lake|Blue fish). 
 

    Materials for Condition 4. This frequency/whole object problem 
is identical to condition 3 except for the last three paragraphs, 
which transform the problem into a frequency format. 
 

You sell fish.  The fish you sell come from three different 
fishermen: Tom, Dick, and Harry.  Each man fishes in a 
different lake. 
    Tom fishes in a lake in which there are only blue fish.  It is 
called Blue Lake. 
    Dick fishes in a lake in which there are only red fish.  It is 
called Red Lake. 
    Harry fishes in a lake in which half the fish are blue and half 
the fish are red.  It is called Blue-Red Lake. 
    Today, you bought I 00 fish from each man.  You dumped 
all of the blue fish into one ice chest and all of the red fish into 
a different ice chest. 
    Later that day, a customer bought 30 blue fish. 
    How many of these fish do you expect came from Blue 
Lake? ___ out of ___ 

 

Results and Discussion 
 

    The percent correct for each condition is depicted in 
Figure 4. Given the primitives relevant to the individuation 
and frequency hypotheses, the fish problems are structurally 
isomorphic to the candy cane problems, and should therefore 
elicit similar results, which they do.  For the single-event 
problems, one sees the difference between arbitrary parsing 
and whole object versions predicted by the individuation 
hypothesis (7% vs. 26%: Z = 1.98, Φ =.25, p =.024).    This 
l9-percentage-point increase is similar to the 2l-point 
increase found for the comparable candy cane problems, and 
the effect sizes are similar as well (candy cane: .30; fish: 
.25). On frequency versions, the correct answer was elicited 
from 36% of subjects for the arbitrary parsing problem 
versus 50% of subjects for the whole object problem            
(Z = 1.08, Φ .14, p = . 14).  This 14-percentage-point in-
crease in performance is in the right direction, but it is 
smaller than the 24 percentage point increase found in the 
matching conditions of the candy cane series, as is the effect 
size (fish: .14; candy cane: .26). However, frequency/whole-
object versions of the fish and candy cane problems elicited 
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Figure 4.    Whole-object versus arbitrary parsing problems:  fish 
series. 

almost the same percent correct (fish: 50%; candy cane: 
45%), and performance on the frequency/arbitrary parsing 
versions was not statistically different (fish: 36%; candy 
cane: 21%.  Z=1.26; Φ =.17; p =.10).  Nevertheless, there 
was a l5-percentage-point difference between the latter.   
This means that in the fish series, the smaller effect of 
parsing on frequency versions is due entirely to performance 
on the frequency/arbitrary parsing problem, which was 
slightly higher than that found on the comparable candy  
cane and card problems (36% vs. 21% and 28%). 
    On the problems with arbitrary parsings, the effect of 
frequency versus single event format is quite clear: 3 6% for 
the frequency format versus 7% for the single event format 
(Z = 2.6 1; phi .35; p=.0046). The effect of format was also 
clear on the whole object problems: 50% for the frequency 
format versus 26% for the single event format (Z = 1. 9 1; 
phi = .24; p = .028). 
    As expected, the frequency/whole object problem elicited 
the best performance in the fish series, and the most dramatic 
difference was between this problem and the single 
event/arbitrary parsing problem: 50% correct versus 7% 
correct, a difference of 43 percentage points (Z=3.55, Φ= .47, 
p=.0002). This compares favorably to the difference of 42 
percentage points in the comparable conditions of the candy 
cane series (45% vs. 3%); the effect sizes are comparable as 
well (fish: .47, candy cane: .48). 
    An ANOVA for the fish series shows a main effect for 
both format and parsing, but no interaction (parsing: F(1, 
114) = 4.31, eta = . 19, p = .04; format:  F(1,114) = 10.36, 
eta = .29,  p = .002; Parsing x Format:  F(1,114) =  .097,    
eta = .03,  p =  .86).  The values computed are similar to 
those for the candy cane series.  As before, the lack of an 
interaction speaks against the hypothesis that frequency-
computation systems are simply incapable of counting 
arbitrarily parsed aspects of the world.  Instead, it favors the 
hypothesis that performance is lower on arbitrary parsing 
problems because ToBy is not designed to individuate the 
world in these ways, and therefore has trouble modeling the 
situation in a way that would provide the input necessary for 
these systems to arrive at a correct solution. 
    Thus the results of the first series nicely replicated those 
found for the candy cane series. 

 

Experiment 5 
 

    The logic of Experiment 5 is identical to that for 
Experiment 3. Instead of breaking a single candy cane into 
two pieces, in this experiment we sliced a fish in half, 
creating two filets.  These problems were designed as coun-
terpoints for the arbitrary parsing problems of the fish series.  
In those problems, the fish was a whole object, and its sides 
were inseparable aspects of that object, indeed, boundaries of 
it.  But slicing a fish in half creates two “pieces”.  If ToBy 
generates mental transformations that mirror physical ones, 
as Shepard has argued, then imagining this action will 
produce representations of two cohesive bounded entities, 
each of which can move independently of the other.  As 
“newly formed” whole objects, these representations can be 
(token) individuated and counted, to arrive at a correct 
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solution.  If the individuation hypothesis is correct, then, the 
results elicited by these filet problems will more closely 
resemble Experiment 4’s whole object problems than its 
arbitrary parsing ones. 
 

Method 
 

    Subjects.  There were 52 subjects in this experiment, 26 in each 
condition. 
    Materials for Condition 1.  In this single event problem, the 
event to be predicted is the presence of a fish of the blue-blue 
species, and the conditioning event is the presence of a blue filet.  
The latter is analogous to the sight of a blue side profile, which was 
the conditioning event in the arbitrary parsing version.  The text is 
similar to that for the single event/arbitrary parsing problem tested 
in condition 1 of Experiment 4. 
 

You sell fish filets.  By splitting a fish down the middle of its 
spine, you can get two identical filets from each fish (i.e., each 
filet has one eye, one gill, its skin, etc.). 
    The fish you sell come from a fish farm, in which the fish 
are raised in an artificial lake.  The lake contains three different 
species of fish. 
    One third of the fish are blue on both sides (the blue-blue 
species). 
    One third of the fish are red or. both sides (the red-red 
species). 
    And one third of the fish are blue, on one side and red on the 
other side (the blue-red species). 
    A random assortment of fish from the lake were brought to 
your shop today.  You split each fish in half. 
    So each fish from the blue-blue species yielded two blue 
filets. 
    Each fish from the red-red species yielded two red filets. 
    And each fish from the blue-red species yielded one blue 
filet and one red filet. 
    You put all of the blue filets in one ice chest and all of the 
red filets in another ice chest. 
    A customer bought one blue filet today. 
    What is the probability that it came from the blue-blue 
species? ___ 

 

    Materials for Condition 2.  The text of this frequency version is 
identical to condition 1, except for the last two sentences. 

You sell fish filets.  By splitting a fish down the middle of its 
spine, you can get two identical filets from each fish (i.e., each 
filet has one eye, one gill. its skin, etc.). 
     The fish you sell come from a fish farm, in which the fish 
are raised in an artificial lake. One lake contains three different 
species of fish. 
    One third of the fish are blue on both sides (the blue-blue 
species). 
    One third of the fish are red on both sides (the red-red 
species). 
    And one third of the fish are blue on one side and red on the 
other side (the blue-red species). 
    A random assortment of fish from the lake were brought to 
your shop today.  You split each fish in half. 
    So each fish from the blue-blue species yielded two blue 
filets. 
    Each fish from the red-red spears yielded two red filets. 
    And each fish from the blue-red species yielded one blue 
filet and one red filet. 
    You put all of the blue filets in one ice chest and all of the 
red filets in another ice chest. 
    A customer bought 30 blue filets today. 
    How many of these filets do Note expect came from the 
blue-blue species? ___ out of ___ 

Results and Discussion 
 

    The percent correct for each condition is depicted in 
Figure 5. These results are superimposed on a graph that 
depicts the results of Experiment 4, so that it is easy to see 
the relationship among them.  
    Is a filet problem more like a whole object problem or an 
arbitrary parsing problem?   In both the filet problem and 
the arbitrary parsing problem in Experiment 4, subjects were 
asked to estimate p(blue-blue fish | blue side)— the prob-
lems differed mainly in whether the side was still connected 
to the fish.  Yet frequency versions of the filet problem 
elicited the correct answer from considerably more subjects 
than the analogous arbitrary parsing one: 62% versus 36%, 
respectively (Z = 1.90; Φ = .26; p = .029). Indeed, the filet 
vs. arbitrary parsing difference was even larger than the 
whole fish vs. arbitrary parsing difference found in 
Experiment 4 (effect sizes: .26 vs. .14). In contrast, there was 
no significant difference in performance between the filet 
problem and the matching whole object version (62% vs. 
50%: Z=0.85; Φ =.12; p =.20).   In other words, perfor-
mance was more similar for these two whole object condi-
tions, even though the events to be predicted were quite 
different: p(lake|fish) vs. p(fish|filet). 
    Comparisons among single event versions yield analo-
gous results.  Performance on the filet and whole object 
problems was similar: 19% correct and 26% correct, 
respectively (19% vs. 26%: Z=0.66; Φ =.08; p =.26). This is 
what one would expect if filets were being processed as 
whole objects.  In contrast, only '/% of subjects produced the 
correct answer for the matching arbitrary parsing problem 
(7% vs. 19%: Z = 1.32; Φ =  . 18; p =  .09).  Although this 
12-percentage-point difference for single-event versions is 
not significant at the .05 level, the results for the filet 
problem are clearly more similar to those for the whole 
object problem than the arbitrary parsing problem (filet vs. 
whole object: Φ = .08; filet vs. arbitrary parsing: Φ = . 18). 
    Performance on the filet problems was similar to that for 
the broken stick problems from the candy cane series.  
Frequency versions of the filet and broken-stick problems  
did not differ significantly  (62% filet vs. 56% sticks:            
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Figure 5. Transforming an inseparable aspect into a whole object: 
fish series. 
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Z = .44;  Φ = .06;  p = .33),  nor did the single event ver- 
sions (19% filet vs. 33% sticks: Z = 1. 10; Φ = . 16; p = . 14).  
Interestingly, in both cases, frequency versions of the 
problems involving sundered objects elicited slightly higher 
performance than their matching whole object problems   
did: an 11-point difference for the candy cane series, and a 
12 point difference for tlie fish series.  This is consistent with 
our prior suggestion that, when one object is broken in two, 
ToBy will construe the relationship between parent object 
and daughter objects as a close and necessary causal      
one—thereby clarifying the numerical relationship between 
the conditioning event and the event to be predicted. 
    Is there a frequency effect in the filet series?  In the filet 
problems, which hold parsing constant, the effect of 
frequency format is large: 62% correct for the frequency 
version, 19% for the single event version (Z = 3.11, Φ = .43, 
p = .001). 

 

Conclusions 
 

    In tasks requiring judgment under uncertainty, people 
appear to behave like good “intuitive statisticians” when (a) 
information is given and answers are asked for in frequen-
cies, rather than proportions and single event probabilities, 
and (b) the conditioning event is the frequency of a whole 
object rather than an arbitrary parsing. 
    Experiments 1-5 tested the effect of frequency format on 
Bayesian problems with new content— cards, candy canes, 
fish— and found the same enhancement as in previous 
studies.  In fact, the effect sizes produced for whole-object 
problems in these experiments were almost identical to those 
found by Gigerenzer and Hoffrage (1995) and similar to  
those found by Cosmides and Tooby (1996), in spite of the 
fact that the subject populations and problem contents were 
different.  This obtained even though the appropriate hit and 
false alarm rates were given to the subjects on a “silver 
platter” in previous studies, but not in these problems.  In 
these problems, the subjects had to construct the hit and false 
alarm rates,  based on information about the relation-      
ships between rigid objects and their parts, or rigid objects 
and their locations. 
    In fact, we found an enhancing effect of frequency format 
even when the problems tested required subjects to compute 
conditional probabilities over arbitrary parsings of events—  
over sides of cards, ends of candy canes, sides of fish.  
Across seven independent comparisons (three arbitrary 
parsing pairs, four whole-object ones) the size of the frequen-
cy effect remained fairly constant. 
    These experiments also allowed us to test the individual-
tion hypothesis: that whole objects, rather than arbitrary 
parsings of objects, are the natural unit of analysis for the 
frequency-computation systems that are activated in this  
kind of experiment.  Experiments 1-5 consistently supported 
this hypothesis: Holding format constant, whole-object 
problems reliably elicited higher levels of performance than 
arbitrary parsing problems.  Moreover, the lowest levels of 
performance were elicited by single-event/arbitrary parsing 
problems, and the highest levels by frequency/whole-object 
problems.  The difference between these two categories of 

problem was consistently large: In the candy series, perfor-
mance increased by 42 and 53 percentage points, respec-
tively, for the two whole object problems (whole cane and 
broken sticks).  In the fish series, performance increased by 
43 and 55 percentage points, respectively (whole fish and 
filet problems).  This is what one would expect on the 
individuation hypothesis. 
    There are two alternative versions of the individuation 
hypothesis, which we also explored.  The first holds that the 
frequency computation system can only operate on represen-
tations of whole objects.  On this view, arbitrary parsing 
problems elicit lower performance because the frequency-
computation system is simply not capable of counting  
tokens of arbitrarily parsed regions, even if ToBy were to 
generate them.  If this were true, frequency format would not 
improve performance on problems in which subjects have to 
compute the frequencies of arbitrarily parsed forms, and one 
would see in interaction between the format and parsing 
variables.  The data spoke very clearly against this hypoth-
esis.  We consistently found main effects for format and 
parsing variables, but we found no Format x Parsing 
interactions. Arbitrary parsing does not reduce the size of the 
frequency effect, even marginally: The mean frequency 
effect size for the three pairs of arbitrary parsing problems 
(.29)  is almost identical to that for the four pairs of       
whole object ones (.28). Indeed, the only difference between 
these two classes of problems was that the absolute level of 
performance on the arbitrary parsing ones was, on average, 
about 24 percentage points lower than that found for their 
matching, whole-object analogs. 
    This data is more consistent with a different version of the 
individuation hypothesis: that the frequency-computation 
system is capable of counting tokens of arbitrarily parsed 
events, but that it is rarely fed that kind of information.  On 
this view, there are conceptual systems, such as ToBy— the 
theory of bodies (Leslie, 1994)— that are designed to model 
physical objects and their interactions.  The principles of 
object perception embodied by these systems privilege  
whole objects over arbitrary aspects (see page 8 for relevant 
senses of “arbitrary”).  They can produce type and token 
representations of whole objects, and these whole-object 
tokens are routinely fed into the frequency-computation 
system.  However, although these systems can produce type 
representations of some arbitrary aspects (e.g., sides of 
cards), there are many type representations that they are not 
designed to produce, because they would be adoptively 
irrelevant (e.g., “trapezoidal patches of bark near the bottom 
of tree trunks”).  Moreover, although they sometimes pro-
duce type representations of arbitrary aspects, they rarely 
produce token representations of them.  They are not de-
signed to automatically produce tokens of arbitrarily parsed 
aspects because in many cases this information would be 
useless (e.g., tokens representing each side of each leaf on a 
tree), and in many others it would be positively harmful.  For 
example, the memory capacity of the brain would be 
overwhelmed very quickly if the visual system stored tokens 
of every percept produced by every saccadic fixation on a 
familiar tree. 
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    It should be possible to transform an arbitrary aspect of an 
object into an honorary whole object, if the internal prin-
ciples by which ToBy and related systems individuate 
objects are known.  Investigations by Spelke (1988, 1990), 
Leslie (1988), Shepard (1984) and others have elucidated 
some of the principles whereby rigid objects are perceived 
and their movements imagined.  These led us to predict that 
arbitrary chunks of an intact object would be represented as 
whole objects if one imagines breaking them off of the 
original object.  ToBy should classify these representations 
of daughter units as whole objects because it can now 
generate images of them moving independently of one 
another  (in analog representations, the “motion” of imag-
ined objects is constrained in the same ways as the motion of 
real objects; Shepard, 1984). We gave subjects problems in 
which they had to compute probabilities over arbitrary units 
of this kind, but varied whether these were detached from 
their parent object or still an undivided aspect of it.  Subjects’ 
performance on the detached, “honorary objects” improved 
markedly.  This result also shows that low levels of perfor-
mance on arbitrary parsing problems were not due to the 
arbitrary aspect’s function, color, or other characteristics:   
The honorary objects had these same characteristics.  The 
one characteristic that the honorary objects had that the 
others lacked, is freedom: They were no longer bound to the 
parent object, and therefore were capable of independent 
motion. 
    A computational system can produce well-calibrated 
statistical inferences only if its operations are based on an 
appropriate model of the situation at hand.  We proposed that 
ToBy, a system that represents rigid objects and generates 
inferences about them, supplies such models to a frequency-
computation system.  Our experiments supported this conjec-
ture.  When the model needed to solve a probability problem 
was the kind that ToBy is designed to build, subjects did very 
well.  But when it required elements that ToBy does not 
spontaneously individuate, subjects did poorly.  These results 
implicate ToBy.  In so doing, they show that it is not 
necessary to invoke judgmental heuristics— rules of thumb 
for estimating probabilities— to explain poor performance 
on tasks requiring judgment under uncertainty.  Even a 
sophisticated computational system will produce errors  
when it is fed the wrong kind of information. 
    If our interpretation is correct, then computational ma-
chines that build models of the world are routinely activated 
in tasks requiring judgment under uncertainty.  Probability 
tasks will appear intractable when their solution depends on 
individuating the world in a way that violates the internal 
principles of the representational system activated.  If we 
know what these principles are, we should be able to predict 
in advance when people will produce systematic errors, and 
what those errors will be. 
    Jackendoff (1983) has proposed that, just as there are 
automatic, reliably developing, cross-culturally universal 
principles for individuating rigid objects, there are similar 
principles for individuating actions, events, and paths.  
Cosmides and Tooby (1989, 1992), Fiske (1991) and others 
have proposed that there are principles for individuating 
certain kinds of social situations.  The individuation hypoth-

esis (second version) should apply to the representations 
produced by these principles as well.  For example, our 
minds parse a person’s behavioral stream into actions, which 
cause “other” actions, where the mode of causation involves 
mental states, such as beliefs, desires, perceptions, and 
intentions (Baron-Cohen, 1995; Leslie, 1994).  Probabil-    
ity problems that tap into the principles whereby we 
individuate actions and mental states should elicit patterns 
analogous to those we found for problems involving rigid 
objects.  Experiments of this kind can serve two purposes: 
1. They can provide further insight into the conditions that 

promote or impede judgment under uncertainty in 
different domains.  To understand how frequency data is 
used in judging character or personal risk, for example, 
one needs to know how the frequency computation 
system interacts with a conceptual system that treats 
some aspects of a behavioral stream as arbitrary pars-
ings while privileging others as “actions” that can be 
individuated, classified, and counted. 

2. They can be used as a tool to evaluate competing 
hypotheses about conceptual structure -especially ones 
that posit nonconscious modes of construal, which 
cannot be studied via introspection.  Because statistical 
inference requires individuation, these tasks can unob-
trusively reveal the principles whereby our cognitive 
architecture carves a wide variety of ontological catego-
ries— actions, events, journeys, paths, and so on— into 
types and tokens. 

 
After all,  ToBy is just one component of the human 
cognitive architecture that produces models of the world.  
There are many others, and their properties are largely 
unknown. 
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