
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Indivisible Characteristics of Recursively Enumerable Sets

Permalink
https://escholarship.org/uc/item/8c96k74k

Author
Chih, Ellen S.

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8c96k74k
https://escholarship.org
http://www.cdlib.org/

Indivisible Characteristics of Recursively Enumerable Sets

by

Ellen S. Chih

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Leo A. Harrington, Co-chair
Professor Theodore A. Slaman, Co-chair

Associate Professor Lara Buchak

Spring 2015

Indivisible Characteristics of Recursively Enumerable Sets

Copyright 2015
by

Ellen S. Chih

1

Abstract

Indivisible Characteristics of Recursively Enumerable Sets

by

Ellen S. Chih

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Leo A. Harrington, Co-chair

Professor Theodore A. Slaman, Co-chair

A split of an r.e. set A is a pair of disjoint r.e. sets whose union is A. We investi-
gate information theoretic properties of r.e. sets and properties of their enumerations, and
whether these properties are preserved under splittings. The first part is involved with dy-
namic notions. An r.e. set is speedable if for every computable function, there exists a finite
algorithm enumerating membership faster, by the desired computable factor, on infinitely
many integers. Remmel [5] (1986) asked whether every speedable set could be split into two
speedable sets. Jahn [7] published a proof, answering their question positively. However,
his proof was seen to be incorrect and we construct a speedable set that cannot be split
into speedable sets, answering their question negatively. We also prove additional splitting
results related to speedability.

The second part is involved with effectively closed sets. We introduce the notion of being
recursively avoiding and prove several results.

i

To my father

ii

Contents

Contents ii

List of Figures iii

1 Introduction 1
1.1 Overview . 1
1.2 Technical conventions and definitions . 2

2 On the weak jump and speedability 3
2.1 Introduction . 3
2.2 The main question . 4
2.3 Notation and splittings . 5
2.4 One split . 6
2.5 Two splits . 18
2.6 The general case . 25
2.7 Further generalizations and questions . 33

3 On semilow2 sets 35
3.1 Overview . 35
3.2 Requirements . 35
3.3 Priority Tree . 36
3.4 Notation . 36
3.5 Intuition . 37
3.6 Construction . 37
3.7 Verification . 39

4 Recursively avoiding reals 42
4.1 Introduction . 42
4.2 Existence of rec avoiding reals in every ∆0

2 degree 43

Bibliography 46

iii

List of Figures

2.1 The dynamics between the Q- and S-strategies. 10
2.2 A table summarizing the possible switching that can occur for the two split case.

The “Value of Z0 (or Z1)” for configuration n refers to the value of Zν
0 (Zν

1) for
nodes ν between the node for configuration n and the node for configuration n+1.
An equation in Rnode for configuration n refers to the equation in Rη where η is
the value of the node for configuration n. 20

2.3 In this figure, we assume that there is no node with true outcome c above γ except
for β, α and δ. Assuming that this figure signifies a portion of the true path, the
dashed edges between nodes represents the true path in between the two nodes. 20

2.4 Assuming that this figure signifies a portion of the true path, a dotted line signifies
that the true path does not go this way and the dashed edges between nodes
signifies the true path in between the two nodes. Here, we assume that allQ-nodes
on the true path between ν and γ that work on the same Qh requirement as α has
true outcome c. Technically, there are other nodes working on S-requirements
between α and δ and δ and ν but we have not included them in the picture. . . 27

iv

Acknowledgments

First, I would like to thank my advisors, Leo Harrington and Theodore Slaman for their
guidance, valuable advice, kindness, encouragement, patience and insightful discussions.
They suggested many interesting problems and questions for me to think about and were
always willing to share their wisdom. Learning from them was a very enjoyable experience.
I am very grateful that I had the chance to learn from both of them.

Secondly, I would like to thank Lara Buchak for being on my dissertation committee and
for her valuable comments on my dissertation. I would also like to thank Rod Downey for
suggesting problems and in particular, the main question of Chapter 2 to work on.

Thirdly, I would like to thank Theodore Slaman and the Department of Mathematics for
financially supporting me during graduate school. I would also like to thank Barb Waller
and Marsha Snow for all of their help.

Finally, I would like to thank my family and especially my father. Without his encour-
agement and support, graduate school would not have been possible for me. Whenever I
had doubts, he always insisted for me to continue forward and put my doubts behind.

1

Chapter 1

Introduction

1.1 Overview

When one investigates the recursive properties of a recursive enumerable (r.e.) set A, one
considers the aggregate matter of A instead of the exact numbers. If one does a recursive
permutation of a set, the resulting set retains the same recursion theoretic properties. Sim-
ilarly, if one removes a recursive set from A, there is a negligible difference between A and
the resulting set. However, when one removes a nonrecursive set, things are not as clear.
Are there intrinsic properties of A that are lost when one removes a nonrecursive set? What
recursion theoretic properties are still retained?

These questions lead to the study of splittings of an r.e. set. A splitting of an r.e. set
A is a pair of disjoint r.e. sets A0, A1 whose union is A. We say that a splitting of A is
nontrivial if both A0, A1 are not recursive. In this work, we investigate information theoretic
properties of r.e. sets and properties of their enumerations, and whether these properties are
atomic; that is, whether there is a r.e. set with this property such that its elements cannot
be split into two r.e. sets which have the same property.

The first part is involved with dynamic notions. An r.e. set is speedable if for every
computable function, there exists a finite algorithm enumerating membership faster, by the
desired computable factor, on infinitely many integers. Being speedable is closely related to
the weak jump. While working with the universal splitting property, Remmel asked whether
every speedable set could be split into two speedable sets. Jahn published a proof, answering
their question positively. However, his proof was seen to be incorrect. We construct a
speedable set that cannot be split into speedable sets, answering their question negatively.
We also prove other results on the aspects of enumeration and on dynamic notions.

The second part is involved with Π0
1 classes. We introduce the notion of rec avoiding

reals and prove several results relating to them. In particular, we give an alternative proof
of the folklore fact that if A is r.e. and not recursive, there exists a set X of the same degree
as A such that X is not contained in any countable Π0

1 class.

CHAPTER 1. INTRODUCTION 2

1.2 Technical conventions and definitions

The proofs in the first two parts are priority arguments done by constructions on a priority
tree. We list conventions and definitions that we use throughout the proofs. When we refer
to Theorem n or Lemma n in Chapter k, we are referring to Theorem k.n or Lemma k.n.

Our notation follows [11]. We use the following conventions.
Unless specified otherwise, all sets are assumed to be recursively enumerable (r.e.). Fix

the universal standard enumeration of r.e. sets as defined in [11]. Let Wi denote the ith r.e.
set in this enumeration. Let Wi,s denote the subset of Wi as enumerated at the end of stage
s. Let Φi(x) denote the stage s when x enters Wi (i.e. the least s such that x ∈ Wi,s). We
sometimes refer to Φi as ΦV where V = Wi. For α, β that are nodes on our priority tree
T = Λ<ω, we say that α is to the left of β, written α <L β, if there is some γ ∈ T and a, b ∈ Λ
such that a < b and γa〈a〉 ⊆ α and γa〈b〉 ⊆ β (where < is the ordering on Λ and a denotes
concatenation). By the true path, we mean the leftmost path travelled through infinitely
often in the construction. By “true” outcome o of α, we mean that o is the outcome of α
on the true path. We call a node working on an S-strategy active at stage s if the node has
acted at some stage t < s and has not been cancelled (or reset).

3

Chapter 2

On the weak jump and speedability

2.1 Introduction

Given a property P of r.e. sets, we can ask whether P is preserved under splittings. One
way to formulate the question is the following:

Question 2.1.1 (Is P divisible). For all A with property P , is there a split A0, A1 such that
both A0 and A1 have property P?

By the Friedberg Splitting Theorem, every nonrecursive set can be split into two non-
recursive sets and thus being not recursive is a divisible property. Another example of a
divisible property is the property of being not K-trivial. This fact is folklore but as we do
not have a reference for it, we provide a short proof for completeness. 1

Lemma 2.1.2. For every A that is not K-trivial, there is a split A0, A1 such that A0 is not
K-trivial and A1 is not K-trivial.

Proof. To see that we can build such a split, we utilize the Sacks preservation strategy to
satisfy the following requirements for constants c:

Ri,c : (∃n)K(Ai � n) > K(n) + c

Let the length of agreement ls(i, c) for requirement Ri,c at stage s be is the greatest l
such that K(Ai � l) ≤ K(l) + c and let rs(i, c) be the max of lt(i, c) for t ≤ s. We say that a
requirement Ri,c is injured if some x < rsi, c enters Ai.

At each stage s, we mirror the proof of the Sacks Splitting Theorem so that if x enters
A at stage s, we determine the highest priority Ri,c that would be injured if x goes in and
put x into A1−i. If no such requirement exists, we put x into A0.

1An interesting sidenote to make is the following. For any A not K-trivial and any split A0, A1 of A, we
can immediately conclude that at least one of A0 or A1 is not K-trivial as the join of two K-trivials is still
K-trivial.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 4

To see that this construction works, assume otherwise and assume without loss of gener-
ality Ai is the set that is K-trivial. Let c be the least such that (∀n)K(Ai � n) ≤ K(n) + c.
By definition of the length of agreement, we know that the limit of ls(i, c) goes to infinity.
As c was the least, we know that eventually Ri,c stops being injured after some stage s. We
now argue that A1−i is computable. Fix some m. Let t > s be such that lt(i, c) > m. As Ri,c

is not injured after stage s, A1−i � m at stage t is equal to A1−i � m. As m was arbitrary,
A1−i is computable and thus K-trivial. However, we assumed that Ai is K-trivial and the
join of two K-trivials is K-trivial so A is K-trivial, contradicting our assumption that A was
not K-trivial.

What about examples of properties that are not divisible? By Downey and Shore’s [4]
result of the existence of a high set whose nontrivial splits are low, being high is an example
of a property that is not divisible. In this chapter, we introduce another property that is
not divisible, relating to the weak jump ({e : A∩We 6= ∅}) and see how different measuring
complexity by the weak jump is compared to measuring complexity by the jump. In the
next chapter, we also introduce another property that is not divisible.

2.2 The main question

2 An r.e. set A is speedable if for every recursive function, there exists a program enumerating
membership in A faster, by the desired recursive factor, on infinitely many integers. Blum
introduced speedable sets in 1967 and Blum and Marques later expanded the notion of
speedability to r.e. sets. According to Blum and Marques [2], “[a]n important goal of
complexity theory . . . is to characterize those partial recursive functions and recursively
enumerable sets having some given complexity properties, and to do so in terms which do
not involve the notion of complexity” and speedability was a step in the direction of this
goal.

Soare [10] gave an “information theoretic” characterization of speedable sets in terms of
a well-studied class of r.e. sets. He proved that a set A is speedable if and only if A is not
semi-low, namely,

{e : A ∩We 6= ∅} �T ∅′

where We denotes the eth r.e. set. The set {e : A ∩We 6= ∅} is called the weak jump of A.
In 1986, Remmel [5] asked whether every speedable set could be split into speedable sets.

This question is the main topic of this paper.

Question 2.2.1 (The main question of Chapter 1). [5] Can every speedable set be split into
two speedable sets?

The answer was thought to be positive for some time. In 1993, Downey, Jockusch,
Lerman and Stob [6] proved that every hyper-hyper-simple set can be split into speedable

2The following work is to appear in the Journal of Symbolic Logic.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 5

sets, contributing evidence for a positive answer. In 1999, the question was thought to
be resolved when Jahn [7] published a proof that every speedable set could be split into
two speedable sets. His paper was cited [9] as a positive case for other splittings of sets
with related complexity properties and cited again [3] for introducing various complexity
properties and splittings. However, Downey [private communication] pointed out that the
proof in [7] is incorrect.

The main goal of this paper is to construct a speedable set that cannot be split into
speedable sets (i.e. to negatively answer Question 1.1). The proof is by a tree construction but
there are infinite positive requirements to the left of the true path. In most tree constructions,
nodes to the left of the true path are guessing a Π0

2 outcome that is seen to be false so the
action to the left settles down and becomes finite. However, in our construction, “settling
down” means an infinite positive Π0

1 action, namely, all x (of some particular type) get put
into our set quickly.

The first section dealing with the main question of this chapter sets notation and intro-
duces the main theorem of the paper. The second section examines the case where we are
dealing with only one split and the third examines the case where we are dealing with two
splits. The proof of the main theorem is given in the fourth section. In the final section, we
examine various ways the main theorem could be improved.

2.3 Notation and splittings

Our notation follows [11]. We use the following conventions.
Unless specified otherwise, all sets are assumed to be recursively enumerable (r.e.). Fix

the universal standard enumeration of r.e. sets as defined in [11]. Let Wi denote the ith r.e.
set in this enumeration. Let Wi,s denote the subset of Wi as enumerated at the end of stage
s. Let Φi(x) denote the stage s when x enters Wi (i.e. the least s such that x ∈ Wi,s). We
sometimes refer to Φi as ΦV where V = Wi. For α, β that are nodes on our priority tree
T = Λ<ω, we say that α is to the left of β, written α <L β, if there is some γ ∈ T and a, b ∈ Λ
such that a < b and γa〈a〉 ⊆ α and γa〈b〉 ⊆ β (where < is the ordering on Λ and a denotes
concatenation). By the true path, we mean the leftmost path travelled through infinitely
often in the construction. By “true” outcome o of α, we mean that o is the outcome of α on
the true path.

Definition 2.3.1. Let A be an r.e. set. A is nonspeedable if and only if there exists some i
such that Wi = A and a recursive function h such that for all j,

Wj = A⇒ (a.e.x)[x ∈ A⇒ Φi(x) ≤ h(x,Φj(x))]

where (a.e.x) is all x mod finite.
A set A is speedable if and only if it is not nonspeedable.

By [10], instead of just one enumeration being “optimal”, being nonspeedable also implies
that every enumeration is optimal. We use this equivalent condition interchangeably:

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 6

Definition 2.3.2. A is nonspeedable if and only if for every i such that Wi = A there exists
a recursive function h such that for all j,

Wj ⊆∗ A⇒ (a.e.x)[x ∈ A⇒ Φi(x) ≤ h(x,Φj(x))] (∗)

where ⊆∗ is subset mod finite.

A splitting of an r.e. set B is a pair of disjoint r.e. sets X, Y whose union is B.

Theorem 2.3.3. There is a speedable set B such that if X and Y form a split of B, at least
one of X or Y is nonspeedable.

By [10], being nonspeedable is equivalent to being semilow and the following corollary
follows immediately:

Corollary 2.3.4. There is a non-semilow set B such that if X and Y form a split of B, at
least one of X or Y is semilow.

To construct B = Wi to be speedable, we diagonalize against all recursive functions h
that could witness (∗); i.e. for each recursive h, we build an r.e. Wj ⊆∗ B that witnesses the
failure of (∗) for h.

To ensure that B cannot be split into speedable sets, if X and Y form a split of B, we
first try to ensure that X is nonspeedable. This attempt may interfere with our making B
speedable, in which case we see that we have the means to ensure that Y is recursive.

2.4 One split

We first deal with the case where we are given a split of B = We recursively in e, i.e. Wi,Wj

are splits of B given by a recursive function f such that f(e) = (i, j).

Lemma 2.4.1. For every recursive function f , there is a speedable set B such that if X, Y
is the split of B given by f , at least one of X or Y is nonspeedable.

Proof. We recursively enumerate B and ensure that B is speedable.
The proof is a tree construction in the sense of [11] (Chapter 14). Nodes work on strate-

gies. For a node α working on a strategy, α builds Bα which is intended to be an enumeration
of B with a different timescale. B∅ is B. α also builds Pα, a recursive set which will be used
as a pool of numbers. We refer to Pα as the pool lower priority nodes use. α uses witnesses
from the pool given by the previous node. P∅ is ω. A member in a pool can become “used”
but does not necessarily have to go into B. One way a number x can become used is if x
enters Bα. If a number in α’s pool is “unused”, α can keep it out of B.

Modulo finite injury, a node can recursively tell which pool it is using. A node can also
recursively tell which elements in a pool it can keep out.

By the fixed point theorem, we have some index k such that B = Wk. We technically
want to show that Wk is speedable.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 7

Requirements

To build a speedable set, we build an r.e. set B satisfying the following requirements, one
for each partial recursive function h:

Q∗h : (∃M ⊆∗ B)(∃∞x)(ΦB(x) > h(x,ΦM(x)),

where ΦB(x) is according to when we put x into B.
As there is at most a recursive difference between when x enters B and when x enters

Wk, satisfying Q∗h shows that Wk is speedable.
We do not satisfy Q∗h directly. Instead, we satisfy the following:

Qh : (∃M ⊆∗ B)(∃∞x)(ΦB(x) > h(x,ΦM(x)) ∨ Y is recursive.

We work on Qh instead of Q∗h as we are unable to achieve the first disjunct if X is
speedable. If Y is recursive, we have another node working on Qh.

We try to build an r.e. set M ⊆∗ B satisfying (∃∞x)(ΦB(x) > h(x,ΦM(x)) by putting
x’s into M and keeping them out of B until stage h(x,ΦM(x)) + 1. If we succeed for only
finitely many x’s, we conclude that Y is recursive and thus nonspeedable.

To make one of X or Y nonspeedable, we either make Y recursive by some Q-strategy or
we make X nonspeedable by satisfying the following requirements for the recursive g defined
below and all r.e. sets V (an equivalent to Definition 2.1):

SV : (∃x)(x ∈ V ∧ x /∈ X) or (∀x)[x ∈ V ⇒ ΦX(x) ≤ g(x,ΦV (x))]

Define g(x, s) to be the least stage t that x enters X or Y if x is in Bs. Otherwise, we
let g(x, s) equal 0. Observe that g is total and recursive.

We also have the following requirements to help the Q-strategies (see Lemma 3.8 for
where the Di requirements are required in the verification):

Di : ∆i 6= B

Remark

It may seem redundant to have the D strategies when every speedable set is not recursive but
showing that the set we build, B, is speedable requires showing that a particular recursive
description does not work. Satisfying all of the D strategies shows that B is not recursive and
thus the particular recursive description does not work. It is true that we could incorporate
this into the Q strategy but we have chosen to separate the strategies in order to not overly
complicate the construction.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 8

Outcomes of Q-nodes

A node α working on a Q-strategy has outcomes: ∞ (for infinitely many), c (for cofinitely
many) and h. Along the ∞ outcome, infinitely many x’s in Mα enter B after stage
h(x,ΦMα(x))+1. Along the c outcome, cofinitely many x’s inMα enterB before h(x,ΦMα(x))+
1 and we see that we have the means to ensure that Y is recursive. Along the h outcome, h
is partial.

Outcomes of S-nodes

A node α working on an S-strategy has outcomes: k (for keep out of B) and s (for (]) where
(]) will be defined in the description of the strategy). Along the k outcome, either there is
some x in both V and Y or α can keep some element in V out of B. Along the s outcome, α
does not achieve (∃x)(x ∈ V ∧ x /∈ X) and α tries to achieve x ∈ X ⇒ ΦX(x) ≤ g(x,ΦV (x))
for all x.

Outcomes of D-nodes

A node α working on a D-strategy has outcomes: a (for act) and d (for diverge). Along the
a outcome, ∆i(x) converges and equals 0 and α would like to put x into B. Along the d
outcome, ∆i(x) diverges or ∆i(x) converges and does not equal 0 and α tries to keep x out
of B.

Priority Tree

Fix a recursive ordering of the Q- and S-requirements.
Let Λ = {∞, c, h, k, s, a, d} with ordering ∞ < c < h < k < s < a < d. The tree is a

subset of Λ<ω and is built by recursion as follows:
Assign the highest priority Qh requirement to the empty node and let ∞, c and h be

its successors. Assume that we assigned a requirement to β = α � (|α| − 1), which we call
the β-requirement. We now assign a requirement to α. If c is the last node of α, assign
β-requirement to α and let its successors be ∞ and h.

Suppose c appears in α and is not the last node of β: If the β-requirement is a D-
requirement, assign the highest priority Q-requirement that has not been assigned so far and
let its successors be ∞ and h. If the β-requirement is a Q-requirement, assign the highest
priority D-requirement that has not been assigned so far and let its successors be a and d.

Suppose c does not appear in α: If the β-requirement is a Q-requirement, assign the
highest priority D-requirement that has not been assigned so far and let its successors be a
and d. If the β-requirement is a D-requirement, assign the highest priority S-requirement
that has not been assigned so far and let its successors be k and s. Otherwise, assign the
highest priority Q-requirement that has not been assigned so far and let its successors be
∞, c and h.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 9

Observe that we only allow∞ and h to be successors for Q-requirement nodes that appear
after an instance of c. We will prove in the verification (Lemma 3.8) that on the true path, if
the c outcome occurs, all Qh-nodes α after it must achieve: (∃∞x)(ΦB(x) > h(x,ΦMα(x))+1)
for Mα that α builds if h is not partial.

Dynamics of the construction

We now describe exactly how the Qh nodes α and the S nodes achieve their goals. At a
typical stage of the construction, we will need to consider the configurations as indicated by
Figure 1 below. At α, Qh will attempt to pick a witness, wait for a delay determined by h,
and put the element into its local version of B, giving this to β for it to process in a like
fashion, assuming that β is a Qh′ node (strictly speaking, this is likely a β′ ⊂ β). Eventually
all such Q nodes process x and it will enter B. We refer to this as x entering B the slow
way.

Now, it could be that an S-node might care about x and interrupt this procedure. There
are two ways this can occur. First some S node ν of higher priority than α discovers x ∈ Vν [s].
Then, ν can see a global win and will restrain x with priority ν. We will allow this to happen
even if ν is strictly left of the current approximation to the true path. An inductive argument
will show that such restrains with a ν-node injuring the action of α with ν <L α can happen
at most finitely often.

The most important new idea in this construction is that other S nodes can affect the
action of α. We will allow η nodes for SVi for αa〈∞〉 ⊆ η to also pull witnesses from α.
This will only be allowed if such a node η is active, meaning that we have actually visited
it at some stage s′ < s. If these η nodes prevent α from satisfying the first conjunct of Qh

(i.e. cofinitely many x’s go into B before stage h(x,ΦMα(x)) + 1), we can give a proof that
Y is recursive. The construction does the following. If an active η sees such an x then η
immediately puts x into B and α makes sure that the next such x must be large. Notice that
the hypothesis of the S node being correct implies that x must enter X and not Y . Thus,
assuming that the c outcome is the true outcome for α, no small number can enter Y since
we can ensure that pulled numbers that enter B are from a set that is disjoint from Y .

The point is the following. The only place (small) numbers that enter B will come from
will be from those nodes extending αa〈c〉. If η above saw these numbers before they reached
α in their upward climb, then η would simply restrain them and win forever. Hence they
can only be pulled by η after they reach α. The relevant x always enters X. Then we will
reset the sizes of numbers so that we get a recursive description of Y .

The reader should note that if αa〈∞〉 is not on the true path, then we will only visit
η’s extending αa〈∞〉 finitely often so the true outcome of α is c if h is total. This outcome
has a version of Qh attached which will succeed in meeting h since we know that such active
η ⊇ αa〈∞〉 cannot pull the element before they get to α.

It is important to note that there are no S requirements below the c outcome since if c
is the true outcome, we have a proof that Y is recursive. If α is on the true path and c is
the outcome of α on the true path, Π2 (in Figure 1) reflects the fact that infinitely often, we

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 10

β

α (Qh requirement)

γ (Di requirement)Π2 and Σ2SV1

SV2

s

∞
c

h

Figure 2.1: The dynamics between the Q- and S-strategies.

assign numbers to go into Mα and Σ2 (in Figure 1) reflects the fact that only finitely many
numbers stay in Mα long enough to see h defined.

As an S-strategy can become infinite positive, the Q- and D-strategies cannot be infinite
negative. Furthermore, the Q- and D-strategies cannot have negative restraints that effect
S-strategies. Negative restraints that go up and drop down, such as in the minimal pair
construction, are also not allowed.

We now turn to the formal details.

Convention

We use the following convention for labeling an element “used” or “unused” at α and at stage
s. If an element becomes used, it is used forever. If an element is picked by a D-strategy, it
is used. If an element is picked by an S-strategy, it is used. If an element goes into Bα, it
is used. For a Q-strategy, a picked element is still “unused” (see step (1) of the strategy for
Qh) but becomes used when put into Mα or into Bα (see step 2(b) of the strategy for Qh).

This convention is needed in the verification (see Lemma 3.4) to prove that for every
node α, if an element x is unused and in α’s pool, x does not go into B while α restrains x.

In the following strategies, we work on a node α whose predecessor is β. α uses the pool
given by its predecessor, denoted by Pβ. Recall that the pool of the empty set is ω and recall
that B∅ = B.

Strategy for Di

Takes parameters: (Bβ, Pβ). Outputs parameters (Bα, Pα) = (Bβ, Pβ \ xα).

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 11

Pick an unused witness xα ∈ Pβ. Keep xα out of B and wait for ∆i(xα) to converge to
0. If it does, put xα into Bβ.

If an element x enters Bα, put x into Bβ unless Di is assigned to the h outcome, in which
case we put x into Bη (where η is β’s predecessor). Define Pα to be Pβ \ xα and Bα = Bβ.

Note that xα may have to enter other sets before entering B.

Strategy for SV

Takes parameters: (Bβ, Pβ). Outputs parameters (Bα, Pα) = (Bβ, Pβ \ xα) or = (Bβ, Pβ).
Below, we go through steps (1) - (4) to find a witness xα in V that can be permanently

be kept out of X either by action of α, by action of a higher priority node or by the existence
of an x already in V ∩ Y . Step (3)(b) is allows an S-node to grab and restrain any element
x before x reaches a higher priority node in its upward climb. Step (3)(b) also stops such x,
if chosen, from continuing in its upward climb.

While xα has not been defined, go through the following steps in order. Upon defining
xα, continue to define Bα and Pα as below.

1. Ask whether there is some x in V ∩ Y . If so, let xα be the least such x and continue
to define Pα and Bα as below. Note that SV is satisfied as V * X.

2. Ask whether there is a γ working on an S-strategy such that xγ is defined and xγ ∈ V .
If so, let xα = xγ and restrain lower priority requirements from putting xα into B. Note
that if α permanently restrains xα, SV is satisfied as xα witnesses (∃x)(x ∈ V ∧x /∈ B),
hence V * X.

3. Look for a γ working on a D-strategy with xγ ∈ V as follows.

a) Ask whether there is a higher priority γ already restraining xγ ∈ V . If so, let
xα = xγ. Note that if γ permanently restrains xγ = xα, then SV is satisfied as xα
witnesses (∃x)(x ∈ V ∧ x /∈ B) hence V * X as in case (2). If γ is reset, we reset
xα as well.

b) Ask whether there is some weaker priority γ such that xγ is not in B and not in Bδ

for any δ of higher priority than α. If so, let xα = xγ and restrain lower priority
nodes η from putting xα into Bξ where ξ is η’s predecessor. Reset the γ node (so
that if we travel to the γ node again, it chooses another witness). Note that if α
permanently restrains xα, SV is satisfied as xα witnesses (∃x)(x ∈ V ∧ x /∈ B),
hence V * X as in case (2).

4. Ask whether there is an unused x ∈ V ∩ Pβ. If so, let xα be the least such x and
restrain lower priority requirements from putting xα into B. Note that if α permanently
restrains xα, SV is satisfied as xα witnesses (∃x)(x ∈ V ∧ x /∈ B), hence V * X as in
case (2).

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 12

While (1) - (4) do not hold, commit to:

When x enters V , put x into B immediately. (])

With (]), if x enters V at stage s, it must enter B at stage s so ΦX(x) = g(x,ΦV (x)).
Thus, SV is satisfied (by satisfaction of its second disjunct).

If an element enters Bα, put it into Bβ. If xα is undefined, let Pα = Pβ. Otherwise, let
Pα = Pβ \ xα. In either case, let Bα = Bβ.

Strategy for Qh

Takes parameters: (Bβ, Pβ). Builds parameters: Rα, Mα, P∞α , Bc
α. Outputs parameters

(Bα, Pα) =

(Bβ, P

∞
α) if outcome is ∞

(Bc
α, Rα) if outcome is c

(Bβ, Rα) if outcome is h

To explain, Rα is a recursive set, Bc
α is an r.e. set and P∞α is a recursive set.

Recall (see section, Dynamics of the construction) that in the c outcome, we need to
ensure that Y is a recursive set. To achieve this, we ensure that Y is contained in a recursive
subset of B (namely, B \Rα) so Y is part of a split of a recursive set and thus Y is recursive.

Also recall that in the c outcome, pulled numbers have to enter X and such (small)
numbers have to come from nodes below αa〈c〉 and reach α in their upward climb. The
role Rα plays is to provide a pool of elements for these numbers so pulled numbers only
come from Rα (but do not have to be contained in a version of Rα that has been reset).
Furthermore, we ensure that B ∩ Rα only consists of these pulled numbers, which enter X
in the c outcome. Thus in the c outcome, Y ⊆ B \ Rα and we will ensure that B \ Rα is
recursive.

In order to ensure that B ∩Rα only consists of pulled numbers in the c outcome, Rα can
be reset as numbers that are not pulled and enter B cannot be in Rα. In the ∞ outcome,
Rα is reset infinitely many times.

The role of P∞α is the following: As the construction tries to ensure that B\Rα is recursive
and can potentially reset Rα infinitely often, we need a pool of elements for the∞ outcome,
namely, P∞α . P∞α will only increase when we see another witness for the ∞ outcome so as
long as we ensure that (B \ Rα) ∩ P∞α is recursive, B \ Rα is recursive in the c outcome as
P∞α is finite. In the ∞ outcome, P∞α will be recursive and infinite.

Now, we explain the intuition behind steps (1) - (4) below: Step (1) builds Rα and step
(2) builds Mα.

Step (3) looks at the case where x has entered Mα (i.e. x has reached α in its upward
climb) and no node has pulled x. In (3)(a), we put x into Bβ to let x continue in its upward
climb. In 3(b), we add another element to P∞α as we see another instance of (∃∞x)(ΦB(x) >
h(x,ΦMα(x)) + 1). We also reset Rα as x is not a pulled number but is in Rα and we only

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 13

want B ∩ Rα to contain pulled numbers. We put all elements in Mα into B at this step as
these elements are no longer in Rα after the reset.

In step (4), we put all unused elements below x that are in Rα ∩ P∞α into B. This step
forces later witnesses to be large and in particular, bigger than x.

Now we formally state steps (1) - (4):

1. Pick an unused witness x ∈ Pβ. Put x into Rα. x is subject to steps (2) and (3). Note
that x does not necessarily have to enter Mα.

2. While x is not in Mα,

a) Restrain x from entering Mα until it enters Bc
α (by the action of lower priority

nodes).

b) If x goes into Bc
α, put x into Mα.

3. If x enters Mα,

a) If the current stage is greater than h(x,ΦMα(x)) + 1 and x has not entered Bβ,
put x into Bβ.

b) If x is successfully is kept out of B until stage h(x,ΦMα(x))+1, we do the following:
Pick an unused witness y in Pβ ∩ Rα. Put y in P∞α and extend P∞α ’s recursive
description up to y, i.e. if an arbitrary z ≤ y is in P∞α at the current stage, the
description says z is in and if z is not in P∞α at the current stage, the description
says z is out. Reset Rα and put all elements in Mα into B (since these elements
are no longer in our current Rα).

4. Put all unused elements in {y : y < x} ∩Rα ∩ P∞α into B.

If we have the c outcome, Pα = Rα and Bα = Bc
α. If we have the ∞ outcome, Pα = P∞α

and Bα = Bβ.
Observe that we would like to achieve:

(†) If x enters Mα, x is kept out of B until stage h(x,ΦMα(x)) + 1.

If (†) is achieved for infinitely many x’s, Qh is satisfied. Recall we use ∞ outcome to
denote that infinitely many x’s achieve (†). Thus in the ∞ outcome, Qh is satisfied.

Construction

We call a node working on an S-strategy active at stage s if the node has acted at some
stage t < s and has not been cancelled (or reset).

At stage s, define δs (an approximation to the true path) by recursion as follows. Suppose
that δs � e has been defined for some e < s. Let α be the last node of δs � e. We now define
δs � (e+ 1) ⊇ δs � e.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 14

1. If α is a Q-node, look to see if it is waiting for a number x to go into Bβ (where β is
α’s predecessor), i.e. there is some x in Mα that has not entered Bβ. If so, look to see
if an active node η to to the left or below αa〈∞〉 would like to put x in (or keep x out
if η is to the left). Let η act. If there are no remaining numbers that α is waiting on,
let δs � (e+1) = (δs � e)a〈c〉. Otherwise, look to see if there is some z in the remaining
numbers such that h(z,ΦMα(z)) has converged and our current stage is greater than
h(z,ΦMα(z)) + 1. If so, let δs � (e + 1) = (δs � e)a〈∞〉. If not and some x was pulled,
let δs � (e+ 1) = (δs � e)a〈c〉. Otherwise, let δs � (e+ 1) = (δs � e)a〈h〉.

2. If α is an S-node, look to see if xα has been defined. If so, let δs � (e+1) = (δs � e)a〈k〉.
Otherwise, go through steps (1) - (4) in the strategy for SV . If one of (1) - (4) holds and
we can define xα, let δs � (e+1) = (δs � e)a〈k〉. Otherwise, let δs � (e+1) = (δs � e)a〈s〉.

3. If α is a D-node, look to see whether ∆i(xα) has converged and equals 0. If so, let
δs � (e+ 1) = (δs � e)a〈a〉. Otherwise, let δs � (e+ 1) = (δs � e)a〈d〉.

Reset nodes to the right of δs and let active S-nodes to the left of δs or below the ∞
outcome for one of the nodes in δs act. At substage t ≤ s, let δs � t act according to its
description in the strategies above, i.e. δs � t enumerates numbers in its sets and extends
their definitions.

Verification

Recall that the true path denotes the leftmost path traveled through infinitely often by the
construction. β is α’s predecessor unless stated otherwise.

Lemma 2.4.2. For α on the true path working on a D-requirement, we only reset xα at
most finitely many times. For α on the true path working on a Q-requirement, Mα ⊆∗ B.

Proof. Let α be a node on the true path. We travel to the left of α at most finitely often in the
construction so in the limit, there are only finitely many higher priority active S-strategies.
Now, consider only the stages after which we do not go to the left of α.

Suppose that α is working on a D-requirement. At any stage s, we only reset xα due to a
higher priority active S-strategy. We only reset xα at most once per every given S-strategy
due to 3(b) in the S strategy and thus we only reset xα at most finitely many times.

Suppose that α is working on a Q-requirement. We only restrict x in Mα from entering
B due to a higher priority active S-strategy. We only restrict at most one element per every
given S-strategy due to 3(b) in the S strategy and thus Mα ⊆∗ B.

The next lemma shows that if an x has started on its upward climb, it either reaches B
or is reset. The next lemma also shows that if x has started on its upward climb, this action
must be initiated by a D-node.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 15

Lemma 2.4.3. If xα is picked for a node α on the true path and α puts xα into Bβ, it is
either reset or put into B. For α 6= ∅, if x is put in Bα by a lower priority node, x was
picked as a witness for a lower priority node γ working on a D-strategy.

Proof. Suppose that xα is never reset. Consider only the stages after which we do not go
to the left of α. By assumption, xα is put into Bβ. We now prove on the true path that if
xα enters Bγ for γ ⊆ α then xα enters B by an S-strategy or xα enters Bδ where δ is γ’s
predecessor. Suppose that xα enters Bγ for γ ⊂ α. If xα is grabbed by an active S-node to
the left, it is put in B. If γ is working on a S-requirement, γ either puts xα into B by (]) or
puts xα into Bδ as we assumed that xα is never reset. If γ is working on a D-requirement, γ
puts xα into Bδ. If γ is working on a Q-requirement, either x was put into Bδ as Bδ = Bγ if
α extends the ∞ or h outcome of γ or γ puts xα into Mγ as xα is not reset and thus is not
being restrained by another strategy. γ then puts xα into Bδ at step (3)(a) or B if xα /∈ Rα

at step (3)(b) of the Q-strategy. Thus it follows that xα enters B.
By inspection of strategies, if x is put in Bα by a lower priority node, x must come from

a lower priority node γ working on a D-strategy as the Q- and S-strategies do not pick
elements and put them into Bη for any η. The only elements D-strategies γ put into Bη for
any η are the witnesses xγ they chose.

Lemma 2.4.4. For every node α, if x ∈ Pβ is unused and is not reset as a witness, x does
not go into B while α is restraining x.

Proof. This follows by inspection of strategies and induction. Let x be an arbitrary unused
element in Pβ and let s be the stage that we choose x to be kept out of B. By our convention
of unused/used, x is used after stage s.

Let γ be another node on the tree and let δ be its predecessor.
If γ is working on a D-strategy, it only puts xγ or a number put into Bγ by its successor

into Bδ. γ cannot pick x as xγ before stage s as x would then be a used witness at stage s.
Thus, xγ 6= x. γ cannot pick x as xγ at some stage t > s as xγ must be unused when chosen.
The same reasoning shows that x cannot be put into Bγ by its successor as such a number
comes from a lower priority D-node by the previous lemma.

If γ is working on a S-strategy, it only puts elements into B due to the (]) requirement.
If xα ∈ V , γ would either reset xα by step (2) or (3) in the S strategy, set xγ = xα or have
already defined xγ 6= xα.

If γ is working on a Q-strategy, it either puts elements into B at step (4) or puts elements
from Mγ into Bδ or B at step (3). At step (4), γ only puts unused elements into B to make
B recursive on the complement of Rγ. If an arbitrary y goes into Mγ, it must enter Bγ first.
By the previous lemma, y must be a xη for a lower priority D-node η. η cannot pick x as
xη before stage s as x would be a used witness at stage s. Thus xη 6= x by assumption. η
cannot pick x at some stage t > s as xη must be unused when chosen.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 16

Lemma 2.4.5. Let α be a node on the true path and let s be the least stage such that the
true path does not go to the left of α after stage s. Pα is either infinite at stage s or for
infinitely many stages t > s, there are be unused elements added to Pα at stage t.

Proof. By induction and inspection of strategies. If α is working on a D-requirement or
S-requirement, Pα = Pβ \ xα or = Pβ.

If α is working on a Q-requirement and its outcome is c, Pα = Rα. α adds elements to
Rα infinitely often at step (1) and does not reset Rα after some stage s. If the outcome for
α is ∞, α adds an element to P∞α infinitely often at step (3)(b). Since Pα = P∞α for the ∞
outcome, we are done.

Lemma 2.4.6. Each Di requirement is satisfied.

Proof. Let α be a node on the true path that is working on the Di requirement and by
Lemma 3.2, let s be the least stage such that xα is not reset. If ∆i(xα) does not converge or
does not equal 0, the xα does not enter B by Lemma 3.4 and the requirement is satisfied.

Now assume that ∆i(xα) converges and is equal to 0. In the construction, the α-strategy
puts xα into Bγ where γ is its predecessor. As xα does not reset after stage s, xα is put into
B by Lemma 3.3 and the requirement is satisfied.

Lemma 2.4.7. Either every SV requirement is satisfied (and X is nonspeedable) or Y is
nonspeedable.

Proof. Suppose that c appears on the true path. Let α be the node on the true path
whose outcome is c and let Qh be the requirement that α is working on. As α’s outcome
is c, cofinitely many x’s in Mα enter B before h(x,ΦMα(x)) + 1. Thus, higher priority
requirements SVi must grab cofinitely many elements of Mα and put them into B before
h(x,ΦMα(x)) + 1 due to (]). In this case, we have the following equation: B ∩ Rα =
Mα∩Rα = (V0∪· · ·∪Vi)∩Rα = X ∩Rα (modulo finitely many elements). The last equality
comes from (1) in the strategy for SV (i.e. we commit to (]) only if there is no x in both V
and Y). By inspection of the Qh strategy, we see that B is made recursive outside of Rα

by step (4). Y is a split of this recursive part of B and thus it is recursive. Therefore Y is
nonspeedable.

Suppose that c does not appear on the true path. By construction of the tree, for every
SV requirement, there is a node on the true path working it. By inspection of the strategy
for SV , either one of (1) - (4) holds or it commits to (]) for cofinitely many stages in the
construction. If it commits to (]), we have that whenever x enters V , x enters B immediately.
Therefore g(x, s) = g(x,ΦV (x)) = ΦX(x) by the definition of g and thus SV is satisfied.

If (1) holds, SV is satisfied as V ∩ Y 6= ∅ and X ∩ Y = ∅. Thus V * X.
If (2) or (3) holds, a number in V is permanently kept out of B by the proof of Lemma

3.4. Thus V * B and so V * X and the requirement is satisfied.
If (4) holds, a number in V is permanently kept out of B by Lemma 3.4. Thus V * B

and so V * X and the requirement is satisfied.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 17

Lemma 2.4.8. Each Qh requirement is satisfied.

Proof. Let α be the first node on the true path f that is working on Qh.
If c does not appear on f , each node α that is working on a Qh strategy has outcome∞ (or

h) and thus there are infinitely many x’s that are kept out of B until stage h(x,ΦMα(x)) + 1
or h is partial. Therefore, each Qh is satisfied.

Suppose that c appears on f . If α appears before the c outcome and its successor is not
c, we know its outcome is ∞ or h and thus its requirement is satisfied. If α’s outcome is c,
the next node γ on the true path works on the same requirement Qh. Now suppose x enters
Mγ at stage s. Such an x must exists. If no x ever enters Mγ from some point on, B would
be recursive contradicting Lemma 3.6. Let η ≤L α be working on a S-requirement. η cannot
lie below the c outcome by construction of the priority tree. If η lies to the left or above
the c outcome, η either restrains x permanently or has already restrained another element
out permanently by (3)(b) in the strategy for SV . By the proof of Lemma 3.2, there are
only finitely many such active η’s that restrain numbers from Mγ and each η only restrains
one number. If x ∈ Mγ eventually enters B, it enters B at stage ≥ the stage it enters Bδ

(where δ is γ’s predecessor) by Lemma 3.3. Thus ΦB(x) > h(x,ΦMγ (x)) for infinitely many
x’s. By Lemma 3.2, Mγ ⊆∗ B so Qh is satisfied. If α appears after γ, the same reasoning as
the previous case shows that ΦB(x) > h(x,ΦMα(x)) for infinitely many x’s and Mα ⊆∗ B by
Lemma 3.2.

This ends the verification for the one split case.
In the one split case, we are either successful at making X nonspeedable by satisfying

S-requirements or successful at concluding that Y is nonspeedable from the failure of a Qh

at satisfying its requirement using Mα. When working with more than one split, we would
like to conclude that one of Y0, Y1,... is nonspeedable in the latter case. However, there
could be Vi’s for different pairs of splits (e.g. we could have various Vi’s for X0 and various
Vj’s for X1) so the equation in Rα could involve more than one X (e.g. X0, X1, X2).

To overcome this difficulty, we switch which side of the split we are making nonspeedable
(e.g. from Xi to Yi). Let Zi be the side of the split we are making nonspeedable. In
the case that α fails to satisfy its requirement, switching Zi will give us some progress
on higher priority requirements. In the proof of the one split case, having the equation:
B ∩Rα = Mα∩Rα = (V0∪ · · · ∪Vi)∩Rα = X ∩Rα (modulo finitely many elements) gave us
progress on higher priority requirements by allowing us to conclude that Y is nonspeedable.
As equations of such form are important for showing that we have made progress on higher
priority requirements for the two split and general case, we give the following definition:

Definition 2.4.9. By equation in Rα, B = Mη = Vi0 ∪ ... ∪ Vik = Zl0 ∪ ... ∪ Zln (where
α, η are arbitrary nodes and i0,...,ik and l0, ..., ln are arbitrary numbers), we mean that the
following holds: B ∩Rα = Mη ∩Rα = (Vi0 ∪ ... ∪ Vik) ∩Rα = (Zl0 ∪ ... ∪ Zln) ∩Rα.

If the context is clear, we may drop “in Rα”.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 18

2.5 Two splits

In this section, we work with the case where we are recursively given two splits: X0, Y0 and
X1, Y1. We refer to Zi as the half of the split that we are making nonspeedable.

Recall that in the one split case, we are either successful at making X nonspeedable
by satisfying S-requirements or successful at concluding that Y is nonspeedable from the
failure of an Qh at satisfying its requirement using Mα and the equation in Rα (see Definition
3.9) that its failure implies. However when working with two splits, there could be Vi’s for
different pairs of splits (e.g. we could have various Vi’s for X0 and various Vj’s for X1) so the
equation in Rα could involve X0 and X1.

To overcome this obstruction, we use the following idea: If Mα fails to satisfy its require-
ment (and we have an equation in Rα as before e.g. X0 ∪ X1 = B), we switch Z1 from X1

to Y1. If another Mγ fails to satisfy its requirement where γ ⊇ α, we have an equation in
Rγ, e.g. X0 ∪ Y1 = B. We also switch Z0 from X0 to Y0 and reset Z1 back to X1. From
these equations together and since Rγ ⊆ Rα, we can conclude the following equation in Rγ:
X0 = B. If we continue to see more nodes ν ⊇ γ fail to satisfy their requirements using Mν ,
our method of switching the value of Zi lets us conclude Y0 = B in some Rη ⊆ Rγ (for some
node η). This will allow us to prove that only a fixed number of switchings can occur. These
switchings will be explained in detail in the proof.

Lemma 2.5.1. For any two recursive functions f, g, there is a speedable set B such that if
X0, Y0 is the split of B given by f and X1, Y1 is a split of B given by g then for each i, at
least one of Xi or Yi is nonspeedable.

Proof. The proof is by a tree construction like in the one split case.

Requirements

To make B speedable, we have similar requirements Qh as in the one split case:

Qh : (∃M ⊆∗ B)(∃∞x)(ΦB(x) > h(x,ΦM(x)) ∨ switch some Zi

Switching some Zi is a form of progress on higher priority strategies just as concluding that
Y is nonspeedable was a form of progress for the one split case.

To make Xi or Yi nonspeedable, we have the following requirements:

Si : (∃x)(x ∈ V ∧ x /∈ Zi) or (∀x)[x ∈ Zi ⇒ ΦZi(x) ≤ gi(x,ΦV (x))]

and its subrequirements, where gi is as defined below:

Si,V : (∃x)(x ∈ V ∧ x /∈ Zi) or (∀x)[x ∈ Zi ⇒ ΦZi(x) ≤ gi(x,ΦV (x))]

Let gi(x, s) be the least t that x enters Xi or Yi if x is in Bs. Otherwise, we define gi(x, s)
to be 0. Observe that gi is total and recursive. We also require Si to be of higher priority
than Sj if i < j. We occasionally drop the i subscript if the context is clear.

We refer to Si as the parent requirement of Si,V .
Again, we have the Di requirements as before to help the Q-requirements.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 19

Strategies

The strategies for Q-, S- and D-requirements are the same as before except for the following
differences:

1. Each α node has a current Zα
i that it is working on. Each Zα

i is initially defined to be
Xi but may switch to Yi in the course of the construction.

2. The strategy for Si,V is the same as the strategy for SV in the one split case except
that instead of X and Y , we have Zα

i and the other half of the ith pair.

Outcomes

Each node α working on a D-strategy has outcomes: a (for acts) and d (for diverge). On
the a outcome, ∆i(x) converges and equals to 0 and α would like to put x into B. Along
the d outcome, either ∆i(x) diverges or is not equal to 0.

Each node α working on a Q-strategy has outcomes: ∞, c and h. Along the∞ outcome,
infinitely many x’s in Mα enter B after stage h(x,ΦMα(x)) + 1. Along the c outcome,
cofinitely many x’s in Mα enter B before h(x,ΦMα(x)) + 1 and we switch Zi. Along the h
outcome, we see that h is partial.

Each node α working on a Si-strategy has a blank outcome. In the general case, it is
important to keep track of the overall timing of when x’s from V ’s enter B due to actions
of Si,V strategies. Here, Si keeps track of the state of its child nodes.

Each node α working on a Si,V -strategy has outcomes: k and s. Along the k outcome,
either there is some x in both V and Y or α can keep some element in V out of B. Along the
s outcome, α cannot achieve (∃x)(x ∈ V ∧ x /∈ X) and we try to achieve x ∈ X ⇒ ΦX(x) ≤
g(x,ΦV (x)) for all x.

Switchings of Zα
0 and Zα

1

The new ingredient in the two split case that goes beyond the one split case is our way of
assigning Zα

i to each node α so that if we get an equation in Rα from the c outcome, the
equation in Rα gives us progress on higher priority strategies. In the one split case, we proved
that we could eventually get Y to be recursive. Here, the situation is more complicated and
we switch the Z0 and Z1 so that we can obtain a contradiction from getting too many c
outcomes for different nodes on the same path.

The main idea is the following: A c outcome for a Q-node causes a switch of the highest
indexed Zi that is equal to Xi and resets all higher indexed (for k > i) sets Zk to Xk. If
such a Zi does not exist, we do not switch anything. We will prove in the verification that
such a Zi will always exist for c outcomes on the true path (see Lemma 4.3). Switching at
some node α effects Zγ

i for γ ⊇ α unless a switching occurs at a later node ν ⊇ α.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 20

Configuration Node Value of Z0 Value of Z1 Equation in Rnode

0 before β X0 X1 no equation by assumption
1 β X0 Y1 X0 ∪X1 = B
2 α Y0 X1 X0 ∪ Y1 = B
3 δ Y0 Y1 Y0 ∪X1 = B
4 γ Y0 Y1 Y0 ∪ Y1 = B

Figure 2.2: A table summarizing the possible switching that can occur for the two split case.
The “Value of Z0 (or Z1)” for configuration n refers to the value of Zν

0 (Zν
1) for nodes ν

between the node for configuration n and the node for configuration n + 1. An equation in
Rnode for configuration n refers to the equation in Rη where η is the value of the node for
configuration n.

β with c outcome

α with c outcome

node with Config. 1Π2 and Σ2

δ with c outcome

γ

Nodes obey Config. 3

Nodes obey Config. 2

SV1 with Config. 1

∞
c

h

Nodes in between obey Config. 1.

Figure 2.3: In this figure, we assume that there is no node with true outcome c above γ
except for β, α and δ. Assuming that this figure signifies a portion of the true path, the
dashed edges between nodes represents the true path in between the two nodes.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 21

Now, we assume that β ⊆ α ⊆ δ ⊆ γ are on the true path with true outcome c (as
in Figure 3 above). We also assume that there is no other Qh requirement node with
true outcome c between them and β is the first node on the true path working on a Qh-
requirement with true outcome c and so Zβ

0 and Zβ
1 are equal to their initial values, X0 and

X1 respectively. In other words, we assume that β, α, δ, γ are the first, second, third and
fourth node (respectively) on the true path with true outcome c. The possibilities are the
following (summarized in Figure 2 above):

1. As c is the true outcome of β, we have the following equation in Rβ as in the one split
case: X0 ∪X1 = B. We switch Z1 from X1 to Y1.

2. As c is the true outcome of α, we have the following equation in Rα as in the one split
case: X0 ∪ Y1 = B. We switch Z0 from X0 to Y0 and reset Z1, i.e. switch Z1 from Y1

back to X1.

3. As c is the true outcome of δ, we have the following equation in Rδ as in the one split
case: Y0 ∪X1 = B. We switch Z1 from X1 to Y1.

4. (cannot occur on the true path) As c is the true outcome of γ, we have the following
equation in Rγ as in the one split case: Y0 ∪ Y1 = B. We do not switch anything.

Possibility (4) cannot occur due to the following reasoning: Suppose for a contradiction
that possibility (4) occurs. As β ⊆ α ⊆ δ ⊆ γ, we have Rβ ⊇ Rα ⊇ Rδ ⊇ Rγ. Therefore,
we have the following equations in Rγ: X0 ∪ X1 = B, X0 ∪ Y1 = B, Y0 ∪ X1 = B and
Y0 ∪ Y1 = B. The first two equations implies the following equation in Rγ: X0 = B. The
last two equations implies the following equation in Rγ: Y0 = B. The satisfaction of some
Di requirement on a node after γ puts some element x into B ∩ Rγ as requirements being
satisfied by nodes on the true path after γa〈c〉 only take witnesses from Rγ. However, this
would mean that x enters both X0 and Y0 by the two equations in Rγ: X0 = B and Y0 = B.
This is a contradiction because X0 and Y0 are disjoint as X0 and Y0 form a split of B.

Priority Tree

Fix a recursive ordering of the D-, Q- and S-requirements, respectively, where Si is of higher
priority of than Si,V .

Let Λ = {∞, c, h, k, s, a, d} with ordering ∞ < c < h < k < s < a < d. The tree is a
subset of Λ<ω.

We define by recursion a function G such that G assigns to each α the list of Zα
0 and

Zα
1 it is working on in the construction (e.g. G(α) = (X0, Y1)). We also keep track of

two lists L1(α) and L2(α) for each node. L1 keeps track of the S-requirements that have
appeared so far (but gets reset at every appearance of a c outcome) and L2 keeps track of
S-requirements that need to be repeated and we remove a requirement from this list once it
has been repeated.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 22

We assign requirements to nodes as well as define G,L1, L2 by recursion at the same time.
For the empty node, assign the highest priority Qh requirement to α. Let G(∅) = (X0, X1)
and let L1(∅) = L2(∅) = ∅. Suppose that we have assigned a requirement to β = α � (|α|−1),
which we will call the β requirement and suppose that we have definedG(β), L1(β) and L2(β).
We now assign a requirement to α and define G(α), L1(α) and L2(α).

Defining G(α)

Ask whether β is a node working on some Qh with successor c. If not, let G(α) be G(β).
If so, let k be 1 if X1 appears in G(β) and let k be 0 otherwise. We have the following
possibilities:

1. If k = 0 and Y0 appears in G(β), define G(α) to be G(β).

2. If k = 0 and X0 appears in G(β), define G(α) to be (Y0, X1).

3. If k = 1, define G(α) to be G(β) with X1 switched to Y1, i.e. if G(β) = (Z ′, X1) then
define G(α) to be (Z ′, Y1).

Defining L1(α) and L2(α)

Ask whether β is a node working on some Qh with successor c. If so, let L2(α) = L1(β) and
set L1(β) = ∅. Otherwise, ask whether β is a node working on some S-requirement. If so,
let L1(α) be L1(β) with β’s requirement affixed at the end. If L2(β) is not empty and this
S-requirement is in L2(β), let L2(α) be L2(β) with this S-requirement removed. Otherwise,
let L1(α) = L1(β) and let L2(α) = L2(β).

Assigning a requirement to α

If the β-requirement is an Q-requirement with outcome c, assign the β-requirement to α and
let its successors be ∞, c and h.

Otherwise, check if L2(α) is empty or not. If L2(α) is not empty, assign the highest
priority S requirement in L2(α) to α. If this requirement is a Si-requirement, let its successor
be the blank outcome and if this requirement is a SV -requirement, let its successors be k
and s.

If L2(α) is empty, we assign a requirement to α based on the type of requirement assigned
to β-requirement: If the β-requirement is a Q-requirement, assign the highest priority D-
requirement that has not been assigned so far and let its successors be a and d. If the
β-requirement is a D-requirement, assign the highest priority S-requirement that has not
been assigned so far and let its successors be k and s if it is a SV requirement and let its
successor be the blank outcome if it is a Si requirement. Otherwise, assign the highest
priority Q-requirement that has not been assigned so far and let its successors be ∞, c and
h.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 23

Construction

We call a node working on an S-strategy active at stage s if the node has acted at some
stage t < s and has not been cancelled (or reset).

At stage s, define δs (an approximation to the true path) by recursion as follows. Suppose
that δs � e has been defined for e < s. Let α be the last node of δs � e. We now define
δs � (e+ 1) ⊇ δs � e.

1. If α is a Q-node, look to see if it is waiting for a number x to go into Bβ, i.e. there is
some x in Mα that has not entered Bβ. If so, look to see if an active node η to to the
left or below αa〈∞〉 would like to put x in (or keep x out). Let η act. If there are no
remaining numbers that α is waiting on, let δs � (e+ 1) = (δs � e)a〈c〉. Otherwise, look
to see if there is some z in the remaining numbers such that h(z,ΦMα(z)) has converged
and our current stage is greater than h(z,ΦMα(z)) + 1. If so, let δs � (e + 1) = (δs �
e)a〈∞〉. If not and some x was pulled, let δs � (e + 1) = (δs � e)a〈c〉. Otherwise, let
δs � (e+ 1) = (δs � e)a〈h〉.

2. If α is a SV -node, look to see if xα has been defined. If so, let δs � (e+1) = (δs � e)a〈k〉.
Otherwise, go through steps (1) - (4) in the strategy for SV . If one of (1) - (4) holds and
we can define xα, let δs � (e+1) = (δs � e)a〈k〉. Otherwise, let δs � (e+1) = (δs � e)a〈s〉.

3. If α is a D-node, look to see whether ∆i(xα) has converged and equals 0. If so, let
δs � (e+ 1) = (δs � e)a〈a〉. Otherwise, let δs � (e+ 1) = (δs � e)a〈d〉.

Reset nodes to the right of δs and let active S-nodes to the left of δs or below the ∞
outcome for one of the nodes in δs act. At substage t ≤ s, let δs � t act according to its
description in the strategies above, i.e. δs � t enumerates numbers in its sets and extends
their definitions.

Verification

Recall that the true path denotes the leftmost path traveled through infinitely often by the
construction.

Lemma 2.5.2. For every node α, if x is an unused witness in Pβ and is not reset as a
witness, x does not go into B while α is restraining x. For every node α, if xα = xγ for
another node γ, we can successfully keep xα out of B. If α is on the true path, Mα ⊆∗ B. If
α is on the true path, we only reset its witness finitely many times.

Proof. The proof follows the same reasoning as in the one split case.

Lemma 2.5.3. There cannot be more than three nodes with true outcome c on the true path.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 24

Proof. Suppose otherwise and let β ⊆ α ⊆ δ ⊆ γ be the first four nodes on the true path
with outcome c. By our scheme of switching between X and Y , we obtain the following
equations: X0∪X1 = B (in Rβ), X0∪Y1 = B (in Rα), Y0∪X1 = B (in Rδ) and Y0∪Y1 = B
(in Rγ). By our choice of β, α, δ and γ, we have Rβ ⊇ Rα ⊇ Rδ ⊇ Rγ and thus all of these
equations are true in Rγ. The first two equations give the following equation in Rγ: X0 = B
and the last two equations give the following equation in Rγ: Y0 = B. At some stage, the
satisfaction of some Di requirement puts some element x into B ∩Rγ as requirements being
satisfied by nodes on the true path after the c outcome of γ only take witnesses from Rγ.
However, this would mean that x enters both X0 (from the equation in Rγ: X0 = B) and
Y0 (from the equation in Rγ: Y0 = B). As X0 and Y0 are disjoint, we have obtained our
contradiction.

Lemma 2.5.4. We only switch Z0 and Z1 finitely many times on the true path.

Proof. This follows immediately from the previous lemma as the construction does not switch
the value of Z0 or Z1 unless it meets a c outcome.

Lemma 2.5.5. On the true path, for every requirement, there is a node that works on it.

Proof. It suffices to show that there exists an α on the true path such that for all ν ⊇ α
on the true path, L2(α) is empty. Let γ be an arbitrary node and let δ be the successor of
γ. By construction of L2, either L2 is a finite set or is empty. L2(γ) is not empty if and
only if L2(δ) is not empty or δ is a node working on a Qh requirement with outcome c. The
latter case can only occur less than three times by Lemma 4.3. The former case only occurs
finitely many times as the cardinality of the value of L2 strictly decreases as we go down a
path unless we met another node working on a Qh requirement with outcome c. However,
there are only finitely many such nodes on the true path so the lemma follows by setting α
to be the first node such that L2(α) is empty and no nodes after α has the c outcome on the
true path.

Lemma 2.5.6. For all i, the Di requirement is satisfied.

Proof. This follows by Lemma 4.2 and similar reasoning as in the one split case.

Lemma 2.5.7. S0 and S1 are both satisfied.

Proof. If we never switch the value of Z0 to Y0 on the true path, we never reset the S0,V

strategies and as there is a node working on S0,V for every V on the true path, the S0

requirement is satisfied. If we do switch, we finish switching at some stage s by Lemma 4.4.
We do not reset the value of Z0 for S0 strategies again after we finish switching so there is
a node working on S0,V with the final value of Z0 for every V on the true path and thus the
S0 requirement is satisfied by Lemma 4.5 and by our scheme of repeating SV -requirements
using list L2.

The same reasoning works for S1 as well. By Lemma 4.4, Z1 finishes switching at some
stage t. We do not reset the value of Z1 for S1 strategies again after we finish switching so

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 25

there is a node working on S1,V with the final value of Z1 for every V on the true path and
thus the S1 requirement is satisfied.

Lemma 2.5.8. For all h, Qh is satisfied.

Proof. This follows from Lemma 4.3. As there can only be three nodes on the true path
with outcome c, some α on the true path working on Qh must get the ∞ outcome, i.e. there
are infinitely many elements in Mα that are kept out of B until stage h(x,ΦMα(x)) + 1.

2.6 The general case

In this section, we prove Theorem 2.3.
We would like to use the same line of argument as in the two split case where having

too many equations (as in the sense of Definition 3.9) leads to a contradiction. Here, we are
dealing with infinitely many splits. During the construction, various sets will be proven to
be recursive and various switchings will occur. The worry is that this may fill up the whole
universe and then there would be no way to make B speedable or even nonrecursive. Lemma
5.5 is devoted to establishing that such a situation does not occur.

Proof of Theorem 2.3. We deal with all possible splits of B. Recursively order all pairs Xi, Yi
of disjoint r.e. subsets of B. As before, we let Zi be the split we are currently trying to make
nonspeedable. To start, Zi is Xi. For each node α, the priority tree assigns which Zi α is
working on.

Requirements

We have Qh requirements like in the one split case:

Qh : (∃M ⊆∗ B)(∃∞x)(ΦB(x) > h(x,ΦM(x)) ∨ switch some Zi

Switching some Zi is a form of progress on higher priority strategies just as concluding
that Y is nonspeedable was a form of progress for the one split case.

We have S-requirements to make Zi nonspeedable:

Si : (∃gi)(∀r.e. V) either V 6⊆ Zi or (∀x)[x ∈ Zi ⇒ ΦZi(x) ≤ gi(x,ΦV (x))]

and their subrequirements, Si,V :

Si,V : (∃x ∈ V)x /∈ Zi or (∀x)(x ∈ Zi ⇒ ΦZi(x) ≤ gi(x,ΦV (x)))

We refer to Si as the parent requirement of Si,V .
We define gi at the parent node working on Si. We also require Si to be of higher priority

than Sj iff i < j. We occasionally drop the i subscript if the context is clear.
Again, we have the Di requirements as before to help the Q-requirements.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 26

Strategies

Let fi(x, s) be the least y greater than every h(x, t), where h belongs to a higher priority
Qh that does not have the h outcome and greater than every gj(x, t) where gj belongs to
a higher priority Sj for all t ≤ s. Let gi(x, s) be the least y greater than fi(x, s) and also
greater than the least stage t that x enters either Xi or Yi if x has entered Bfi(x,s). This
definition of gi is needed in the verification to show that if α is a Q-node, child nodes for
lower priority Si requirements cannot injure α (see first paragraph of the proof of Lemma
5.3).

The strategies for Qh, Si,V and Di are the same as in the one and two split cases except
that the Si,V strategy has the following differences:

1. Each node α has its version of the Zα
i , fαi , gαi , determined by the priority tree. Instead

of X and Y in the strategy for SV in the one split case, we work on Zα
i and the other

side of the split for Si,V .

2. The (]) commitment we use for the general case in the Si,V requirement is:

When x enters V at stage s, we put x into B at stage fi(x, s). (])

Switching of the Zα
i and reduction to the n-split case

At an Q-node α, we will prove in the verification that any equation obtained in Rα will only
involve Zi’s where i is such that the Si requirement is assigned to a node above α. We will
only introduce new splits to be considered only after α’s requirement has been satisfied by
an ∞ outcome (i.e. until some node assigned to α’s requirement gets the ∞ outcome, we do
not assign any new Si-requirements to any node on this path).

Let α be an arbitrary node on the tree working on some Qh-requirement and let Z0, ..., Zn
be a listing of Zi’s such that the Si requirement is assigned to some node above α.

The switching of the Zα
i is similar to the two split case. A c outcome for a Q-node causes

a switch of the highest indexed Zi that is equal to Xi and rests all higher indexed (for k > i)
sets Zk and Xk. The reasoning behind this switching is to systematically switch so that if we
just look at Z0, ..., Zl and all of the switches have occurred concerning Z0, ..., Zl, we obtain
equations Z0 ∪ ... ∪ Zl = B for every combination of values for Z0, ..., Zl. This is necessary
for proving that we can make B speedable.

A typical situation is as in Figure 4 below. There are nodes working on the same Qh

requirement and as in the two split case, the Qh requirement is continually being assigned
to nodes along this path until one of the nodes γ working on this Qh requirement gets an∞
outcome. Until γ appears, all nodes appearing after α on this path are working on a same
fixed number of splits as α. If γ never appears, the situation for nodes appearing after α is
as in the n-split case. Like in the 2 split case, we can argue as in Lemma 4.3 that we obtain
a contradiction from having too many equations resulting from too many nodes working on
the Qh requirement with outcome c. Thus, γ has to appear.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 27

α (Qh requirement)

δ (same Qh requirement)

ν (same Qh requirement)

γ (same Qh requirement)

∞
c

h

Switching of the Zα
i occurs as in n-case

SV2

∞
c

SV1

∞
c

Figure 2.4: Assuming that this figure signifies a portion of the true path, a dotted line signifies
that the true path does not go this way and the dashed edges between nodes signifies the true
path in between the two nodes. Here, we assume that all Q-nodes on the true path between
ν and γ that work on the same Qh requirement as α has true outcome c. Technically, there
are other nodes working on S-requirements between α and δ and δ and ν but we have not
included them in the picture.

Outcomes

Each node α working on a D-strategy has outcomes: a (for acts) and d (for diverge). On
the a outcome, ∆i(x) converges and equals to 0 and α would like to put x into B. Along
the d outcome, either ∆i(x) diverges or is not equal to 0.

Each node α working on a Q-strategy has outcomes: ∞, c and h. Along the∞ outcome,
infinitely many x’s in Mα enter B after stage h(x,ΦMα(x)) + 1. Along the c outcome,
cofinitely many x’s in Mα enter B before h(x,ΦMα(x)) + 1 and either we have the means to
conclude that Zi is nonspeedable or we switch Zi. Along the h outcome, we see that h is
partial.

Each node α working on a Si-strategy has outcomes: split or finite. Along the split
outcome, we see that Xi and Yi form a split of B and define fi and gi for the child-nodes of
Si to work on. Along the finite outcome, we see that Xi and Yi do not form a split of B.
Under the finite outcome, there are no child nodes of Si.

Each node α working on a Si,V -strategy has outcomes: k and s. Along the k outcome,
either there is some x in both V and Y or α can keep some element in V out of B. Along the

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 28

s outcome, α cannot achieve (∃x)(x ∈ V ∧ x /∈ X) and we try to achieve x ∈ X ⇒ ΦX(x) ≤
g(x,ΦV (x)) for all x.

Priority Tree

Fix a recursive ordering of the D-, Q- and S-requirements where Si is of higher priority of
than Si,V .

Let Λ = {∞, c, h, split, finite, k, s, a, d} with ordering ∞ < c < h < split < finite <
k < s < a < d. The tree is a subset of Λ<ω.

As in the two split case, we define by recursion a function G such that G assigns to each
α the list of Zα

i ’s it is working on in the construction (e.g. G(α) = (X0, Y1, X2)). As in the
two split case, we also keep track of two lists L1(α) and L2(α) for each node. L1 keeps track
of the S-requirements that have appeared so far (but gets reset at every appearance of a c
outcome) and L2 keeps track of S-requirements that need to be repeated.

We assign requirements to nodes as well as define G,L1, L2 by recursion at the same time.
For the empty node, assign the highest priority Qh requirement to α. Let G(∅) = (X0) and
let L1(∅) = L2(∅) = ∅. Suppose that we have assigned a requirement to β = α � (|α| − 1),
which we will call the β requirement and defined G(β), L1(β) and L2(β). We now assign a
requirement to α and define G(α), L1(α) and L2(α).

Defining G(α)

Ask whether β is a node working on some Qh with successor c. If so, let k be the largest

index such that Xk appears in G(β) and let
−→
Z0 and

−→
Z1 be such that G(β) =

−→
Z0Xk

−→
Z1. Note

that we will prove that k always exists if α is on the true path. If k does not exist, define
G(α) to be G(β). If k exists, define G(α) to be G(β) with Xk switched to Yk and Xi’s and

Yi’s in
−→
Z1 reset to be Xi i.e. G(α) =

−→
Z0Yk

−→
X1 where

−→
X1 is the X-side of the splits in

−→
Z1. If

β is not working on some Qh with successor c, ask whether β is a node working on some Si.
If so and both Xi and Yi do not appear in G(β), let G(α) be G(β) with Xi appended to the
end of G(β)’s list. If not, define G(α) to be G(β).

Defining L1(α) and L2(α)

Ask whether β is a node working on some Qh with successor c. If so, let L2(α) = L1(β) and
set L1(β) = ∅. Otherwise, ask whether β is a node working on some S-requirement. If so,
let L1(α) be L1(β) with β’s requirement affixed at the end. If L2(α) is not empty and this
S-requirement is in L2(α), let L2(α) be L2(β) with this S requirement removed. Otherwise,
let L1(α) = L1(β) and let L2(α) = L2(β).

Assigning a requirement to α

If the β-requirement is a Q-requirement with outcome c, assign the β-requirement to α and
let its successors be ∞, c and h.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 29

Otherwise, check if L2(α) is empty or not. If L2(α) is not empty, assign the highest
priority S requirement in L2(α) to α. If this requirement is an Si-requirement, let its suc-
cessors be the split and finite outcomes and if this requirement is a SV -requirement, let its
successors be k and s.

If L2(α) is empty, we assign a requirement to α based on the type of requirement assigned
to β-requirement: If the β-requirement is a Q-requirement, assign the highest priority D-
requirement that has not been assigned so far and let its successors be a and d. If the
β-requirement is a D-requirement, assign the highest priority S-requirement that has not
been assigned so far and such that β does not extend the finite outcome for a node assigned
to the parent requirement of this S-requirement (if this S-requirement is not the parent
requirement itself) and let its successors be k and s if it is an SV requirement and let its
successors be split and finite if it is an Si requirement. Otherwise, assign the highest priority
Q-requirement that has not been assigned so far and let its successors be ∞, c and h.

Construction

We call a node working on an S-strategy active at stage s if the node has acted at some
stage t < s and has not been cancelled (or reset).

At stage s, define δs (an approximation to the true path) by recursion as follows. Suppose
that δs � e has been defined for e < s. Let α be the last node of δs � e. We now define
δs � (e+ 1) ⊇ δs � e.

1. If α is a Q-node, look to see if it is waiting for a number x to go into Bβ, i.e. there is
some x in Mα that has not entered Bβ. If so, look to see if an active node η to to the
left or below αa〈∞〉 would like to put x in (or keep x out). Let η act. If there are no
remaining numbers that α is waiting on, let δs � (e+ 1) = (δs � e)a〈c〉. Otherwise, look
to see if there is some z in the remaining numbers such that h(z,ΦMα(z)) has converged
and our current stage is greater than h(z,ΦMα(z)) + 1. If so, let δs � (e + 1) = (δs �
e)a〈∞〉. If not and some x was pulled, let δs � (e + 1) = (δs � e)a〈c〉. Otherwise, let
δs � (e+ 1) = (δs � e)a〈h〉.

2. If α is a SV -node, look to see if xα has been defined. If so, let δs � (e+1) = (δs � e)a〈k〉.
Otherwise, go through steps (1) - (4) in the strategy for SV . If one of (1) - (4) holds and
we can define xα, let δs � (e+1) = (δs � e)a〈k〉. Otherwise, let δs � (e+1) = (δs � e)a〈s〉.

3. If α is a Si-node, look to see if Xi and Yi seem to form a split of B. If so, let
δs � (e+ 1) = (δs � e)a〈split〉. Otherwise, let δs � (e+ 1) = (δs � e)a〈finite〉.

4. If α is a D-node, look to see whether ∆i(xα) has converged and equals 0. If so, let
δs � (e+ 1) = (δs � e)a〈a〉. Otherwise, let δs � (e+ 1) = (δs � e)a〈d〉.

Reset nodes to the right of δs and let active S-nodes to the left of δs or below the ∞
outcome for one of the nodes in δs act. At substage t ≤ s, let δs � t act according to its

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 30

description in the strategies above, i.e. δs � t enumerates numbers in its sets and extends
their definitions.

Verification

Recall that the true path denotes the leftmost path travelled through infinitely often. In
the following lemmas, we may drop “in Rα” when referring to an equation. In the proofs
below, we only deal with a sequence of equations in Rα where α’s are on the same path.
As Rα ⊆ Rβ if β ⊆ α, these equations in different Rα’s are true in their intersection (see
Lemma 5.4). We also drop the superscript α when referring to Zα

i as the version of Zi we
refer to will be clear from context. The first few lemmas lead to proving that there is a node
working on every requirement on the true path.

Lemma 2.6.1. For every node α, if x is an unused witness in Pβ and is not reset as a
witness, x does not go into B while α is restraining x. For every node α, if xα = xγ for
another node γ, we can successfully keep xα out of B. If α is on the true path, Mα ⊆∗ B. If
α is on the true path, we only reset its witness finitely many times.

Proof. The proof follows the same reasoning as in the one split case.

The next few lemmas use the following definition.

Definition 2.6.2. If α working on Qh has outcome c, we are unable to achieve (†) in
the Qh requirement for infinitely many x’s. Thus Si,Vj strategies must put cofinitely many
of these x’s into B before stage h(x,ΦMα(x)) + 1 due to (]). Let Si0,Vj0 , · · · , Sik,Vjk be a
listing of the S-strategies involved (i.e. the active S-nodes below the ∞ outcome of α). We
only commit to (]) when there is no x in both V and the other half of B, in which case
Vj0 ∪ · · · ∪ Vjk = Zi0 ∪ · · · ∪ Zik . Therefore, modulo finitely many elements we have the
following equation in Rα: B = Mα = Vj0 ∪· · ·∪Vjk = Zi0 ∪· · ·∪Zik . We refer to an equation
in Rα: B = Xi0 ∪ · · · ∪Xij ∪Yk0 ∪ · · · ∪Ykl as an equation obtained from the c outcome if we
obtained this equality directly in the way described above. We refer to an equation in Rα:
B = Xi0 ∪ · · · ∪Xij ∪ Yk0 ∪ · · · ∪ Ykl as an reduced equation if equations obtained from the c
outcome imply it.

Remark 2.6.3. In the equations mentioned above (e.g. Vj0 ∪ · · · ∪ Vjk = Mα), this is not
completely correct as there could be weak Si,V requirements where Si is stronger than α that
put elements into Mα. Let ν be one of these weak requirements. ν could pretend to put x
into one side of the split when x enters B but then switch to the other side. Once it sees an
x that goes into B quickly, it puts x into the other side. Such x’s make our equation false.
However, we still have that inside Mα, B = Vj0 ∪ · · · ∪ Vjk except for numbers that are put
into B by such ν.

Now, we are fine with this because x’s from D-requirements are not effected by these
false η’s. This is because nodes working on the D-requirements will wait until requirements
to the left settle down so D can pick its x to avoid the numbers that these false η’s are

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 31

involved with. D prohibits x from being used by the weaker SV ’s and thus the main point
is that the equations mentioned above hold for all x’s from a D-requirement.

Lemma 2.6.4. Let α be a node working on the Qh requirement. If α’s outcome is c, the
equation obtained from the c outcome can only involve Si,V requirements where Si is of higher
priority than Qh.

Proof. If Si lies below or to the right of α, the lemma follows by our construction of gi(x, s).
We only need x ∈ Mα to stay out of B before h(x,ΦMα(x)) + 1 which is strictly less than
gi(x,ΦV (x)) for x’s such that ΦMα(x) ≤ ΦV (x). This is why we need our definition of gi.

Now let γ be a node on to the left of α working on a Si,V requirement with its parent node
to the left of α. We now prove that Si,V cannot be involved in the equation we obtain from
α’s c outcome. To occur in the equation, Si,V must commit to (]) and some x ∈Mα is put in
B before h(x,ΦMα(x)) + 1 by Si,V . x only enters Bβ (for β ⊂ α) after stage h(x,ΦMα(x)) + 1
so x has not entered Bβ at stage ΦV (x). By our assumption that Si,V is to the left of α so
Si,V would not commit to (]) as x is a potential witness it can keep out.

In particular, Lemma 5.3 shows that for every node α working on a Qh outcome, the
equations obtained from the c outcome only involves a fixed number of Zi’s.

The next lemma shows that if we have several equations obtained from the c outcome
(of γi’s) along some path and γi ⊆ α for all such γi’s, then the reduced equation from these
equations is true in Rα.

Lemma 2.6.5. Let α be on the true path. If we obtain a reduced equation from equations ob-
tained by the c outcome for nodes γ ⊆ α then the reduced equation is true of the intersections
mentioned in the equation in Rα.

Proof. Every equation obtained by a c outcome for γ is an equation in Rγ. As Rγ ⊆ Rα,
equations in Rγ are also equations in Rα. If we have true equations in Rα and we deduce an
equation from it, the deduced equation is true in Rα. Thus, the reduced equation is true of
the intersections mentioned in the reduced equation in Rα.

The following lemma shows that if α is on the true path, in defining G(α), k always
exists.

Lemma 2.6.6. Let α be a node working on a Qh requirement. Let S0, ..., Si be a listing of
all higher priority S-requirements. We cannot get an equation from the c outcome of α on
the true path of the form Yi0 ∪ · · · ∪ Yik = B where {i0, ..., ik} ⊆ {0, ..., i}.

Proof. We prove the lemma by induction on i.
For i = 0, suppose by contradiction that we could obtain such an equation, i.e. we obtain

the equation in Rα, Y0 = B. By our scheme of switching between X and Y , we must have
also obtained the equation in Rγ: X0 = B for some γ ⊆ α. At some stage, the satisfaction of
some Di requirement puts some element x into B∩Rα∩Rγ as requirements being satisfied by
nodes on the true path after the two equations both appear only take witnesses from Rα∩Rγ.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 32

However, this would mean that x enters both X0 (from the equation in Rγ: X0 = B for
some γ ⊆ α) and Y0 (from the equation in Rα: Y0 = B for some γ ⊆ α). As X0 and Y0 are
disjoint, we have obtained our contradiction.

For i + 1, suppose by contradiction that we could obtain such an equation. By our
scheme of switching between X and Y , we obtain all equations of length i + 2 involving all
combinations of Z0, ..., Zi+1 (from the c outcome), i.e. we have Z0 ∪ ... ∪ Zi ∪Xi+1 = B and
Z0∪ ...∪Zi∪Yi+1 = B for every combination of values for Z0, ..., Zi. For a fixed combination
of values, the two equations Z0 ∪ ... ∪ Zi ∪Xi+1 = B and Z0 ∪ ... ∪ Zi ∪ Yi+1 = B imply the
reduced equation in Rα: Z0∪ ...∪Zi = B as Xi+1 and Yi+1 are disjoint. As we are considering
all combinations of Z0, ..., Zi, we have our contradiction by inductive hypothesis.

From Lemma 5.5, we see that we are always able to switch one of the Zi’s.

Lemma 2.6.7. For every i, we only switch Zi finitely many times.

Proof. By induction on i. Let s be the least stage such that all of the higher priority Zi’s do
not switch again. We prove that once Zi switches, it cannot switch back again. Whenever a
higher priority Zj switches, we switch Zi back to Xi so at stage s, Zi is defined to be Xi. If
Zi never switches to Yi, we are done. Otherwise, Zi switches from Xi to Yi. The only reason
why Zi would switch back to Xi would be because some smaller indexed set switched and
thus it cannot switch back after stage s.

Lemma 2.6.8. On the true path, for every requirement, there is a node that works on it.

Proof. It suffices to show that each Qh strategy is not repeated infinitely often. Every Qh

strategy is only repeated when it has a c outcome. By Lemma 5.3, we obtain an equation
only involving Si,V strategies that come from higher priority Si’s. Thus, whenever we have
a c outcome, we have obtain an equation involving a fixed number of Z’s: Z0, · · · , Zk. By
Lemma 5.5, we are always able to switch some Z from an X to a Y . By the previous lemma,
we can only switch every Zi finitely many times. Therefore, we cannot have a c outcome
occur infinitely often and must go to the ∞ outcome.

Lemma 2.6.9. For all i, the Di requirement is satisfied.

Proof. This follows by Lemma 5.1 and similar reasoning as in the one split case.

Lemma 2.6.10. For all i, Si is satisfied.

Proof. If we never switch to a Yi after all of the higher priority Zj’s have finished switching,
we do not reset the Si,V strategies. If we do switch, we finish switching at some stage s by
Lemma 5.6. We do not reset the Si strategies again after we finish switching so there is a node
working on Si,V for every V on the true path and thus the Si requirement is satisfied.

Lemma 2.6.11. For all h, Qh is satisfied.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 33

Proof. By the previous lemmas. Eventually the Zi’s stop switching and some α on the true
path working on Qh must get the ∞ outcome, i.e. there are infinitely many elements in Mα

that are kept out of B until stage h(x,ΦMα(x)) + 1.

2.7 Further generalizations and questions

One way to generalize Theorem 2.3 is to look at generalizations of being semilow (as semilow
is equivalent to being nonspeedable). A particularly interesting generalization is that of the
notion of semilow1.5.

Definition 2.7.1. An r.e. set A is semilow1.5 if and only if

{e : We ∩ A infinite } ≤1 Inf.

Semilow1.5 sets occur when studying the lattice of r.e. sets. Maass [8] showed that if A
is cofinite then A is semilow1.5 if and only if L∗(A) ∼=eff E∗ (where L(A) is the lattice of r.e.
supersets of A and E is the lattice of r.e. sets. The ∗ denotes that we quotient out by the
finite sets).

Semilow1.5 sets also have a characterization using complexity theoretic notions closely
related to nonspeedable sets. Instead of studying the property of having just one a.e. fastest
program, Bennison and Soare [1] defined the notion of a type 1 c.e. complexity sequence,
which is informally a sequence of lower bounds for all running times of programs for A (with
some finite flexibility). They showed that a set has a type 1 c.e. complexity sequence if and
only if it is semi-low1.5.

One question to examine is whether we can replace semilow with semilow1.5 in the state-
ment of the main theorem. In fact, a stronger statement holds [6]. Maximal sets are not
semilow1.5 but have the property that if X and Y form a split of a maximal set and neither
is recursive, then both X and Y are semilow1.5. We give a brief proof for completeness.

Lemma 2.7.2. For B maximal, if X and Y form a split of B (and neither is recursive),
for every r.e. W , W −X infinite if and only if W ∩ Y is infinite.

W ∩ Y being infinite is a Π0
2 property so by Lemma 6.2, X (and by symmetry, Y) is

semilow1.5.

Proof of Lemma 6.2. (⇐) is immediate as X and Y are disjoint. For the other direction,
assume that W −X is infinite for some r.e. W . By maximality, we must have W ∩B finite
or W ∩ B finite. If we have W ∩ B finite, then W ∩ Y is infinite as W − X is infinite. If
we have W ∩B finite, we show that W ∩ Y cannot be finite by contradiction. Suppose that
it were finite. Then the complement of Y is equal to X ∪W ∪ (W ∩ B) minus the finitely
many elements in W ∩ Y . As X and W are r.e. and W ∩B is finite, the complement of Y is
r.e. thus Y is recursive, contradicting the assumption that neither X nor Y is recursive.

CHAPTER 2. ON THE WEAK JUMP AND SPEEDABILITY 34

The following corollary follows immediately:

Corollary 2.7.3. There is a non-semilow1.5 set B such that if X and Y form a split of B
then at least one of X or Y is semilow1.5.

A further generalization of the notion of being semilow is the notion of being semilow2. We
discuss further splitting questions related to semilow2 and speedability in the next chapter.

35

Chapter 3

On semilow2 sets

3.1 Overview

Let V ↘ B denote {x : x enters V and then enters B}.

Definition 3.1.1. An r.e. set B is semilow2 if {e : We ∩B infinite} ≤T ∅′′

The main theorem of this chapter is the following:

Theorem 3.1.2. There exists a non-semilow2 set B such that for all X, Y that form a split
of B, either X or Y is semilow2 .

To make B non-semilow2, we diagonalize against all functions recursive in ∅′′ that could
witness the Turing reducibility. We only deal with Xi, Yi such that Xi, Yi is a split of B as
it is Π2 to determine whether Xi, Yi form a split of B. Let Zi denote the split we are trying
to make semilow2.

3.2 Requirements

First, we have the requirement to diagonalize against any function recursive in ∅′′ in order
to show that B is not semilow2:

Ri :Γi is total and only takes values 0 or 1 →
(∃e)(Γi(e, ∅′′) = 0 ∧We ∩B infinite or Γi(e, ∅′′) = 1 ∧We ∩B finite)

For each Ri, we will build a set W i to witness the incorrectness of Γi by keeping elements
in W i out of B until we see that Γi predicts that W i ∩ B is infinite. Once we see it predict
W i ∩B infinite, we will put all elements of W i into B.

Observe that by the fixed point theorem, we have an index ei for the W i we are building.

CHAPTER 3. ON SEMILOW2 SETS 36

We also have the requirement to make either Xi or Yi semilow2 :

Si,V : (∃Φ)Φ∅
′′
(e) =

{
1 if We ∩ Zi is infinite

0 if We ∩ Zi is finite

3.3 Priority Tree

Let Λ = {l < r < w < i < f < blank}. The priority tree is a subset of Λ<ω.
Each Ri node has 2 outcomes: l (for left) and r (for right). On the r outcome, we see that

Γi converges and is equal to 0 so we start ensuring that We ∩B is finite by putting elements
from We that appear into B. We will also redo all lower priority requirements. On the l
outcome, we do not see that Γi(e, ∅′′) = 0. Under this outcome, we will have child-nodes
Ri,j. The Ri,j node will attempt to keep one element out of B in an attempt to ensure that
We ∩ B infinite. We will arrange our priority tree so that after the k outcome, the first
child-node Ri,0 will appear. We will refer to Ri as the parent node of Ri,j.

Each Ri,j node will have two outcomes: l (the same as above) and r (the same as above).
We will refer Ri as the parent node and the Ri,j nodes as the child-nodes of Ri. We will also
refer to any node working on a Ri or Ri,j node as a R-node.

Each Si-node will have its first child-node Si,V0 as its immediate successor and has suc-
cessor blank. The parent node Si’s purpose is to keep trap of the status of the child nodes
and give a name to the witness W i that it and the child nodes are building.

Each Si,V node will have two outcomes: w (for win), i (for infinite) and f (for finite). On
the w outcome, we see infinitely many elements in V ∩ Yi. On the i outcome, we see that
there are bigger and bigger finite sets in V that are not in B. On the f outcome, we do not
see this (i.e. there are only less than k many many elements in V that are not in B at any
time).

Under the i outcome, we have nodes Si,V,e that ensure that Wj ∩ B is low for all Wj

defined before the node working on Si,V . These have a blank outcome. There are no further
Si,V nodes under the i outcome.

Under the r outcome, we repeat all Si requirements and child-nodes Si,V that appear
between the parent node Ri and r. In the construction, we will have a link between the
parent node and the f outcome, skipping all nodes in between.

We call nodes working on Ri or Ri,j requirements R-nodes and the nodes working on Si
or Si,V requirements S-nodes.

3.4 Notation

In the following construction, we use the notion of “pool”. Recall that each node on the
tree uses the pool given by its predecessor. Let α be a node on the tree and let β be its
predecessor. If α is a R-node, Pα = Pβ. If α is a node working on some Si,V requirement,
α builds two sets, Uα (an approximation to V) and Nα (a new pool). If α has outcome w,

CHAPTER 3. ON SEMILOW2 SETS 37

Pα = Pβ. If α has outcome i, Pα = V . If α has outcome f , Pα = Nα. If α is not working on
some Si,V requirement, Pα = Pβ.

Another notation that we use in the proof is the notion of used and unused elements.
Elements are used once they are picked by nodes to go into their witness W . An element
becomes unused when the construction goes to the left of the true path and resets everything
to the right.

3.5 Intuition

Note that in the construction the R-requirements are satisfied by their child nodes - each of
which only uses at most finitely many elements. Each child node either tries to restrain one
more element or puts elements from their witness W (built by the parent node) into B.

To make A (or C) semilow2, it suffices to have a ∆3 way to determine whether or not
Ve ∩ A (or Ve ∩ C) is infinite. Suppose α is a node on the true path working on the Si,Ve
strategy. If Ve ∩ C is infinite, we are done as Ve ∩ C is a Π2 property and we can conclude
that V ∩ A is infinite since A and C are disjoint. If Ve ∩ C is finite and V ↘ B is always
bounded by some fixed number k, then V ∩B is finite in the limit. Thus, Ve ∩ A is finite.

Now, suppose that Ve ∩ C is finite and suppose that the cardinality of V ↘ B increases
infinitely often. If we build B in V for nodes after α, then most of the later “action” of nodes
on the true path appearing after α will be inside Ve. As Ve ∩ C is finite, any element used
later on the true path is going into A (if it does go into B). Now, we would like to conclude
that C is semilow2.

Let W0, ...,Wi be a listing of the sets we build for satisfying R-requirements that appear
before α. Fix any V ∗. If V ∗ is finite, we are done as being finite is a Σ2 property. Now,
assume that V ∗ is infinite. To answer the question: “Is V ∗ ∩ C infinite?”, it suffices to ask
the equivalent question of whether V ∗ ∩A is infinite or (V ∗C)∩W for one of the W ’s in our
W0, ...,Wi listing is infinite.

This is because for elements in B, we know that A and C are disjoint so it suffices to
ask the question: “Is V ∗ ∩ A infinite?” (a Π2 question). By making Wi ∩ B low, asking
whether (V ∗C)∩W is infinite becomes a Π2 question. The disjunction of a finite number of
Π2 statements is Π2 and so answering whether V ∗ ∩ C is infinite is Π2.

3.6 Construction

Each node α has a pool Pβ that is given to it by its predecessor, β. First, we find the
approximation TPs to the true path TP (the leftmost path travelled through infinitely
often) at stage s and then we will let the nodes on TPs act. The parent nodes α working on
Ri will be building Wα to satisfy their requirement. Their child nodes will also be working
on the same Wα.

CHAPTER 3. ON SEMILOW2 SETS 38

Finding TPs

Suppose that the nth node α of TPs for n < s has been defined. We now define the next
node of TPs depending on which requirement α is working on.

R-node

If β is working on a Ri,j requirement, we test whether l ∈ ∅′′ for l ≤ j by asking whether
φl(x) ↓ ∀x ≤ s and we estimate the value of Γi(e, ∅′′) according to this test.

1. (Estimating ∅′′) If φl(x) ↓ for all x ≤ s, then we guess that l ∈ ∅′′. If not, we guess
that l /∈ ∅′′.

2. (Estimating the value of Γi(e, ∅′′)) Calculate Γi(e, ∅′′) according to the guesses we ob-
tained in (1).

3. (Diverges or does not equal to 0) If Γi(e, ∅′′) diverges or converges and is not equal to
0, let α be its l outcome.

4. (Converges and equals 0) Otherwise, go to the r outcome and create a link from β’s
parent node to f , skipping all nodes in between. This link is only removed when our
current guess Γi(e, ∅′′) changes or if a higher priority R-node creates a link.

Si,V -node

Let Eα
s be the set of used elements x at stage s such that x is used by a node γ ≤L α.

If |{x : x ∈ Vs ∩ As}| > max0≤t<s(|{x : x ∈ Vt ∩ At}|), let Pα = Pβ and go to the w
outcome.

If |{x : (x ∈ Eα
s ∩Vs ∩Pβ)∧x /∈ Bs}| > max0≤t<s(|{x : (x ∈ Eα

t ∩Vt ∩Pβ)∧x /∈ Bt}|), go
to the b outcome and enumerate the elements in {x : (x ∈ Eα

s ∩ Vs ∩ Pβ) ∧ x /∈ Bs} into Uα.
Let x be the least element in {x : (x ∈ Eα

s ∩ Vs ∩ Pβ)∧ x /∈ Bs}. Reset Nα. Put all elements
not in Uα and not restrained by node γ ≤L α into B. Let Pα = Uα.

Otherwise, go to the c outcome and add another unused number from Pβ into Nα. Let
Pα = Nα.

Action

Now let the nodes in TPs act out according to their description below. If there is a link
between nodes in TPs, we do not carry out any actions for the nodes in between and go
directly to the endpoint of the link.

Let α be the node we are working on.

CHAPTER 3. ON SEMILOW2 SETS 39

R-node

If the next node of TPs is α’s f outcome or if there is a link from α to a f outcome of one
of its child nodes, put all elements in Wα not being restrained by any node γ ≤L α into B.
Otherwise, ask whether xα has been defined. If xα has not been defined, pick an unused
witness x in Pα that is not being restrained by any node β ≤L α and let xα = x. Put xα
into Wγ (where γ is α’s parent node) and keep x out of B. If xα has been defined, continue
keeping xα out of B.

Si,V -node

If our current guess at α’s outcome is w or f , go to the next node. Otherwise, let x be the
least such that x ∈|{x : (x is unused and x ∈ Vs∩Pβ)∧x /∈ Bs} and put all unused elements
≤ x in B.

Si,V,e-node

(α is the parent node that initiates this process) Let W0, ...,Wk be a listing of Wβ’s for β ⊆ α.

For each j = 0, ..., k, ask whether {e}Wj∩B
s (e) converges. If so, define r(α, j) to be its use.

If not, define r(α, j) to be 0. Restrain lower priority nodes from using numbers less than

r(α, j) for j = 0, ..., k. Ask whether {e}Uα∩Bs (e) converges. If so, define r(α, e) to be its use.
If not, define r(α, e) to be 0. Restrain lower priority nodes from using numbers less than
r(α, e).

3.7 Verification

Recall that the true path denotes the leftmost path travelled through infinitely often in the
construction. β will be α’s predecessor unless otherwise stated.

Lemma 3.7.1. Let α be on the true path. Either there exists some stage s such that Pα is
infinite from stage s onwards or there are infinitely many stages where elements are being
added to Pα.

Proof. The proof is by induction on α. Let α be a node working on a Si,V,e-strategy. By
induction, Pβ is either infinite from some stage s or there are infinitely many stages when
elements are added to Pβ so if Pα = Pβ, the lemma immediately follows. If the true outcome
of α is i, then Pα = Uα and we only go to i when we can add elements to Uα so the lemma
follows. If the true outcome of α is f , we do not go to the left of the true path from some
stage onwards and thus Nα does not reset after some stage s. We add a new element into
Nα every time we go to the f outcome and as Pα = Nα, the lemma follows.

Lemma 3.7.2. If α is the node on the true path working on the Si,V requirement such that
the true outcome is that V ↘ B expands infinitely often and we do not build a link in the

CHAPTER 3. ON SEMILOW2 SETS 40

construction that skips over α infinitely often, let W0, ...,Wk be a listing of witnesses that
R-nodes above α build. Then for all j = 0, ..., k, Wj ∩B is low.

Proof. Fix i, V and α such that they satisfy the hypothesis of the lemma and let W0, ...,Wk

be a listing of witnesses that R-nodes above α build. Fix some j and some e. Let Z = Wj∩B.
We would like to show that if {e}Zs (e) ↓ for infinitely many stages then {e}Z(e) ↓. Assume
that {e}Zs (e) ↓ for infinitely many stages. By hypothesis, there is a node γ on the true path
that works on Si,V,e and let s be the stage that the construction does not go to the left of
γ. By assumption, there is a stage t > s such that {e}Zt (e) ↓ and the construction goes to
γ at stage t. By construction, γ restrains elements from going in below the use of {e}Zt (e).
As the construction does not go to the left after stage t, γ’s restraint is there from stage t
onwards and no node can put in an element below its restraint. Thus, {e}Z(e) ↓. As e was
arbitrary, Wj ∩B is low.

Lemma 3.7.3. For every i, Ri is satisfied.

Proof. Let s be the stage that the construction does not go to the left of η where η is the
last node on the true path working on the Ri requirement. Either Γi(e, ∅′′) converges and
equals 0 or it diverges or it converges and equals 1. If Γi(e, ∅′′) diverges, we are done.

If Γi(e, ∅′′) converges and equals 1, we eventually see on the tree that Γi(e, ∅′′) does not
equal 0 and after this point, we go to the l outcome. Thus by construction, there are infinitely
many child-nodes of Ri on the true path. All of them have the l outcome so all of them are
trying to keep one more element out of B. Let α be any child-node of Ri on the true path.
As α restrains its witness x out of B, only nodes above α or to the left are able to put x
into B or reset α’s witness. The construction travels to the left of α finitely often. Let t
be the stage after which the construction does not go to the left of α. Then after stage t,
α’s witness is not reset or put into B so α successfully restrains an element out of B. As
child-nodes of Ri always pick unused elements as their witnesses, each child-node ensures
that one more element in W is not in B. Therefore, We ∩B is infinite.

If Γi(e, ∅′′) converges and equals 0, we eventually see on the tree that Γi(e, ∅′′) equals 1
and will either have a link from η to the f outcome or η will have the f outcome. From
some point on, every element in W (minus finitely many restricted by nodes to the left) is
put into B so We ∩B is finite.

Lemma 3.7.4. For every i, Si is satisfied.

Proof. Let η be the last Si node on TP and let s be the first stage that the true path does
not go to the left of η. To satisfy Si, it suffices to have, for all V , a ∆3 method of determining
whether V ∩ A (or V ∩ C if an i outcome appears on the true path) is infinite or not.

Suppose that there is no i outcome after η on TP . We would like to argue that A is
semilow2 by arguing that there is a series of ∆3 questions whose disjunction is equivalent to
asking whether V ∩A is infinite. Fix some arbitrary infinite V and let α be the node on TP
that is working on Si,V . If α has outcome w on the true path, then V ∩ C is infinite and
thus V ∩ A is infinite. As V ∩ C being infinite is a Π2 property, we are done.

CHAPTER 3. ON SEMILOW2 SETS 41

Now, suppose that α has the f outcome. Then we have a few possibilities: 1) there is
some k such that at any stage, there are only less than k many numbers in V and out of B
or 2) elements in V ↘ B are i) used by elements to the left ii) used by W0, ...,Wi or iii) are
not in the pool or iv) are in B.

In the first case, there are only finitely many numbers in V and out of B in the limit.
Thus minus finitely many numbers, V ⊆ B and thus it suffices to ask whether V ∩ C is
infinite or not (a Π2 question). If it is infinite, V ∩A is infinite. If not, V ∩A is finite. The
same holds for 2) iv).

There are only finitely many elements in 2) i) so α cannot have an f outcome with only
2) i) holding. If 2) iii) held, we know that either these elements are in the other pool at an
earlier Si,V -node γ pool split or in B by the action of the construction (4.1.2). If they are in
the other pool, then either they are in Uα or Uγ, but both Uα and Uγ are finite as the true
outcome of the either node is not i. The elements cannot be in Nγ and not some other Uδ
as either Pβ ⊆ Nγ or Nγ is reset infinitely often (as we know that the true path goes to the
left of the f outcome of γ by construction of pools).

If 2) ii) held, we know that all elements in V that are out of B are in W0, ...Wi. As
Wj ∩ B is low by Lemma 6.2, it suffices to ask whether there is some j = 0, ...i such that
Wj ∩B ∩ V is infinite (a Π2 question).

Thus it suffices to ask the disjunction of “Is V ∩ C infinite?” and Wj ∩ B ∩ V (for
j = 0, ..., i), which is a Π2 question and thus is ∆3.

Now suppose that there is an i outcome after η on TP . We would like to conclude that
C is semilow2. Let α with requirement Si,V be the child-node with the i outcome after η on
TP . We only have the i outcome when V ∩ C is finite and thus all elements in V that go
into B are going into A. As discussed in the intuition section, we have that V ∗ ∩ C if and
only if V ∗ ∩ A is infinite or V ∗ ∩ V is infinite or Wj ∩ B ∩ V ∗ is infinite for the W0, ...Wi

of higher priority than α. This holds because it suffices to ask whether V ∗ ∩ A is infinite
for elements in B since A and C are disjoint. The other elements used in the construction
(not in B) are those used by strategies to the right of α that are put in W0, ...,Wi because
elements not in V and not in Pβ and not used (in the limit) by the construction for R-nodes
are put into B and elements used by the strategies below α below outcome i are all in V .
As we make Wj ∩B is low so asking Wj ∩B ∩ V ∗ is a ∆3 question.

42

Chapter 4

Recursively avoiding reals

4.1 Introduction

It is folklore that if A is r.e. and not recursive, there exists a set X of the same degree as A
such that X is not contained in any countable Π0

1 class. In this chapter, we prove a stronger
theorem using the definition of rec avoiding that we will introduce below. Its proof is simpler
than the usual proof of this folklore fact as rec avoiding is a Σ0

2 definition while X not being
contained in any countable Π0

1 class is a Π0
2 statement.

Recall that being ranked means that x belongs to some Π0
1 P and is thrown out at some

step n of the Cantor-Bendixon analysis of P . The Cantor-Bendixon analysis throws away
points until we are left with only isolated points, which we call the perfect kernel D(P).
P\D(P) is a countable set. Any countable set has a recursive element. If P is a Π0

1 class,
then the intersection of P with a countable set is a countable set so its intersection must
have a recursive path. If x is not ranked then it is not contained in any countable class.
However, this does not mean that it is in a class with no recursive element. Suppose x is not
ranked but belongs to a Π0

1 class P with some ranked element y. Let Q be some Π0
1 class

such that Q witnesses that y is ranked. P ∩ (Q\D(Q)) is a countable set that is nonempty
(as it contains y) and must have a recursive element.

Motivated by this, we give the following definition:

Definition 4.1.1. For a real x, we say that x is rec avoiding (for recursively avoiding) if
and only if there is some Π0

1 class P such that x ∈ P and P does not contain a recursive
element.

Rec avoiding is stronger than being not ranked as being rec avoiding implies being not
ranked. Suppose otherwise. Let x be rec avoiding and ranked. Then x belongs to some Π0

1

class Q such that Q\D(Q) contains x. Let P be such that P witnesses that x is rec avoiding.
Then P ∩ (Q\D(Q)) is countable and nonempty and thus it contains a recursive element,
contradicting our assumption that P does not contain a recursive element.

CHAPTER 4. RECURSIVELY AVOIDING REALS 43

4.2 Existence of rec avoiding reals in every ∆0
2 degree

In this section, we prove the following theorem:

Theorem 4.2.1. In every nonrecursive ∆0
2 degree, there exists a rec avoiding x.

Proof. Let a be a nonrecursive ∆0
2 degree. We construct a recursive tree T such that the

set of infinite paths through T is a Π0
1 class P with no recursive element and P contains an

element of degree a.

Let X be some set of degree a. We enumerate Φ such that Z = Φ(X) and compute T such
that Z ∈ [T].

Requirement 1: If ν extends σ, Φ(ν) extends Φ(σ).

Requirement 1 is necessary for Φ(X) to be a path in T .

Requirement 2: If σ1 is incompatible with σ2 and both are in the domain of Φ, then Φ(σ1)
is incompatible with Φ(σ2).

Requirement 2 is necessary for us to compute X from Z to conclude that Z has the same
degree as X.

Construction

We label a node σ as extendible if σ is equal to Φ(τ) for some τ . Let ls be the highest level
at which there is a node in T of level ls at stage s.

By the Limit Lemma and since X has ∆0
2 degree, there is a recursive sequence {fs}s∈ω such

that the characteristic function of X is the limit of the fs. We can assume without loss of
generality that the range of fs is a subset of {0, 1} for all s.

At stage 0, we do nothing.

At stage s+ 1, we do the following:

1. (Extend Φ) Look at the current approximation to X, fs, and compute fs up to s− 1.
Let σ = 〈fs(0), ..., fs(s− 1)〉. Let τ be of least length such that σ extends τ and Φ(τ)
is not defined and let τ− be τ � (|τ | − 1).

Define Φ(τ) to extend Φ(τ−) (to satisfy Requirement 2 and to extend to level ls) by
taking Φ(τ) to be the leftmost finite sequence of length ls that extends Φ(τ−) such
that if Φ(ν) is defined and ν is incompatible with τ , then Φ(τ) is incompatible with
Φ(ν).

Put Φ(τ)a0 and Φ(τ)a1 in T .

CHAPTER 4. RECURSIVELY AVOIDING REALS 44

2. (Extend all extendible nodes to satisfy Requirement 1) For every ν 6= τ and in T
extending an extendible node, if ν ′ is an extension of ν of length ls and is DNR
(diagonally nonrecursive) for all values between the length of ν and ls, put ν ′ into
T .

Verification

In step (1), we are able to define Φ(τ) by the following reasoning and induction: Look at the
first place of disagreement between τ and ν. If this place occurs in the domain of τ−, Φ(τ−)
is incompatible with Φ(ν) by induction and definition and any extension of Φ(τ−) is thus
incompatible with Φ(ν). Thus, we can assume that τ = (τ−)ai and ν extends (τ−)a|1 − i|
where i = 0, 1 and |1 − i| denotes the absolute value of 1 − i. We can then take Φ(τ−) to
be the leftmost extension of Φ(τ)a1 up to level ls as Φ(ν) must have extended Φ(τ−)a0 by
construction.

By construction, Requirement 1 is met and thus Φ(X) = Z is in [T]. Now we claim that
Z computes X. Suppose that we have already computed σ = X restricted up to length n.
To compute the value of the characteristic function of X at value n, we enumerate Z and
Φ until either Φ(σa0) ⊆ τ or Φ(σa1) ⊆ τ for some τ ⊆ Z. One of the two must occur as
Φ(X) = Z and only one of the disjuncts holds by Requirement 2, which holds by our way of
defining Φ(τ). Whichever one holds is the correct value of X since Φ(X) = Z.

If f ∈ [T] is not Z then the approximation fs stops going through f . Let n be the least such
that the construction does not define Φ(τ) to be f � n. By step (2), f is DNR for all values
greater than n and thus all f ∈ [T] such that f 6= Z are not recursive. As X is not recursive
and Z computes X, Z is not recursive and so [T] has no recursive member.

Observe that for the Π0
1 class P constructed in the proof, all elements except for the element

of specified ∆0
2 degree are DNR mod finite and thus have DNR degree. As the {0, 1}−DNR

degrees are the same as complete extensions of Peano Arithmetic, the proof of our theorem
gives the following:

Corollary 4.2.2. For any ∆0
2 degree a, there exists a Π0

1 class P such that there is an
element x of P with degree a and whose elements all have PA degree except possibly x.

As we said in the introduction, Theorem 5.2 also implies that if A is r.e. and not recursive,
there exists a set X of the same degree as A such that X is not contained in any countable
Π0

1 class as we can take X to be as constructed in the proof of Theorem 1 and X cannot be
contained in any countable Π0

1 class Q or else P ∩ Q would contain a recursive element for
P witnessing that X is rec avoiding.

CHAPTER 4. RECURSIVELY AVOIDING REALS 45

Further observations

The previous theorem showed that there is a rec avoiding real in every nonrecursive ∆0
2

degree. We now give an example of x’s that are not rec avoiding. The canonical code of P
is the coding of P by its representative tree with no dead ends.

Theorem 4.2.3. Suppose that G is 2-generic and Φ(G) belongs to a Π0
1 class P = [T]. Then

there is a closed subset of P whose canonical code is r.e. In particular, P has a recursive
element. If Φ(G) is not recursive, it is contained in a perfect closed subset of P whose
canonical code is r.e.

Proof. Since Φ(G) belongs to [T], there is some p such that p G ∈ [T]. Thus, p Φ(G) is
total and p ∀n(Φ(G) � n ∈ T). Find recursive p = p0 > p1 > p2 > ... such that pi decides
Φ(G) � i, i.e. Φ(pi) � i is defined with use less than the length of pi. Let X = limi→∞Φ(pi).
X is recursive and belongs to [T] = P .

For the closed subset of P whose canonical code is r.e., take the paths through T ∗ = {σ :
(∃q < p)Φ(q) = σ}. The leftmost path in T ∗ is a recursive element in P . If Φ(G) is not
recursive, take p to also force that Φ(G) is not recursive. T ∗ is a perfect tree.

46

Bibliography

[1] Victor L. Bennison and Robert I. Soare. “Some lowness properties and computational
complexity sequences”. In: Theoret. Comput. Sci. 6.3 (1978), pp. 233–254. issn: 0304-
3975.

[2] M. Blum and I. Marques. “On complexity properties of recursively enumerable sets”.
In: J. Symbolic Logic 38 (1973), pp. 579–593. issn: 0022-4812.

[3] S. Barry Cooper and Sergey S. Goncharov, eds. Computability and models. The Uni-
versity Series in Mathematics. Perspectives east and west. Kluwer Academic/Plenum
Publishers, New York, 2003, pp. xx+375. isbn: 0-306-47400-X.

[4] R. G. Downey and Richard A. Shore. “Splitting theorems and the jump operator”. In:
Ann. Pure Appl. Logic 94.1-3 (1998). Conference on Computability Theory (Oberwol-
fach, 1996), pp. 45–52. issn: 0168-0072. doi: 10.1016/S0168-0072(97)00066-3. url:
http://dx.doi.org/10.1016/S0168-0072(97)00066-3.

[5] R. G. Downey and L. V. Welch. “Splitting properties of r.e. sets and degrees”. In: J.
Symbolic Logic 51.1 (1986), pp. 88–109. issn: 0022-4812. doi: 10.2307/2273946. url:
http://dx.doi.org/10.2307/2273946.

[6] Rod Downey and Michael Stob. “Splitting theorems in recursion theory”. In: Ann. Pure
Appl. Logic 65.1 (1993), p. 106. issn: 0168-0072. doi: 10.1016/0168-0072(93)90234-
5. url: http://dx.doi.org/10.1016/0168-0072(93)90234-5.

[7] Michael A. Jahn. “Implicit measurements of dynamic complexity properties and split-
tings of speedable sets”. In: J. Symbolic Logic 64.3 (1999), pp. 1037–1064. issn: 0022-
4812. doi: 10.2307/2586618. url: http://dx.doi.org/10.2307/2586618.

[8] Wolfgang Maass. “Characterization of recursively enumerable sets with supersets ef-
fectively isomorphic to all recursively enumerable sets”. In: Trans. Amer. Math. Soc.
279.1 (1983), pp. 311–336. issn: 0002-9947. doi: 10.2307/1999387. url: http://dx.
doi.org/10.2307/1999387.

[9] Roland Sh. Omanadze. “Splittings of effectively speedable sets and effectively levelable
sets”. In: J. Symbolic Logic 69.1 (2004), pp. 143–158. issn: 0022-4812. doi: 10.2178/
jsl/1080938833. url: http://dx.doi.org/10.2178/jsl/1080938833.

[10] Robert I. Soare. “Computational complexity, speedable and levelable sets”. In: J. Sym-
bolic Logic 42.4 (1977), pp. 545–563. issn: 0022-4812.

BIBLIOGRAPHY 47

[11] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical
Logic. A study of computable functions and computably generated sets. Springer-
Verlag, Berlin, 1987, pp. xviii+437. isbn: 3-540-15299-7.

