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Abstract. Indole is a key environmental cue that is used by many organisms. Based 

on its biochemistry, we suggest indole is used so universally, and by such different 

organisms, because it derives from the metabolism of tryptophan, a resource essential 

for many species yet rare in nature. These properties make it a valuable, 

environmental cue for resources almost universally important for promoting fitness. 

We then describe how indole is used to coordinate actions within organisms, to 

influence the behavior of conspecifics and can even be used to change the behavior of 

species that belong to other kingdoms. Drawing on the evolutionary framework that 

has been developed for understanding animal communication, we show how this is 

diversely achieved by indole acting as a cue, a manipulative signal, and an honest 

signal, as well as how indole can be used synergistically to amplify information 

conveyed by other molecules. Clarifying these distinct functions of indole identifies 

patterns that transcend different kingdoms of organisms. 
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Introduction 

With the advent of high-throughput sequencing and other molecular techniques, 

researchers are now able to peer into the microscopic world and determine the 

ecological and evolutionary interactions of single cell organisms in more detail than 

ever before, yielding new insights into the way in which microbial cells interact with 

each other and with other organisms such as plants and animals. Recent reviews have 

highlighted that microbes, and particularly bacteria, are adept at influencing the 

behavior of animals [1-3]. Furthermore, researchers from across a multitude of 

disciplines have discovered a number of molecules produced by microbes that 

mediate changes in animal behavior. However, one molecule in particular, indole, 

seems to be ubiquitous in nature across the organismal scale from microbes and plants 

to invertebrates and vertebrates [4,5] (Table 1). The goal of this review is to describe 

the diverse ways in which indole mediates interactions between organisms, and to 

map the extraordinary natural history that has recently been uncovered onto long-

established evolutionary concepts from the study of animal communication [6]. The 

purpose is to understand more about the evolution and function of indole in the 

natural world, and to identify gaps in understanding that might be profitably filled by 

future research.  

The initial portion of the review covers the biochemistry of indole, to identify 

special properties that might explain its ubiquity in mediating interactions among 

organisms. We then review the types of interactions between organisms that are 

regulated by indole, and attempt to classify them using existing concepts from the 

theory of animal communication. To make sense of what follows, we therefore begin 

with a brief primer in the terminology and concepts from evolutionary communication 

theory. This lays the foundation for our understanding of the function of indole in 
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mediating interactions within and among kingdoms. 

 

Setting the stage- a signaling primer 

Evolutionary theory of animal communication makes important distinctions between 

the different ways that animals can collect information from one another, and their 

wider world. The animal collecting information is often referred to as the receiver. In 

the simplest case, receivers can use the behavior of others as a source of information. 

For example, bees (Hymenoptera: Apidae) are able to gain information about the 

nectar content of flowers on a plant simply by the presence of other bees – the 

presence of conspecifics is a “cue” to the potential availability of a resource. 

Importantly, the cue conveys useful information to the receiver but it has not evolved 

specifically for that purpose. Honeybees, Apis sp., (Hymenoptera: Apidae) also have 

famously sophisticated ways of actively transmitting information about the location of 

nectar-producing flowers to one another through the waggle dance. In this case, the 

location of a resource is being “signaled” and the individual imparting that 

information is known as the signaler. The key distinction between a signal and a cue 

is that the signal has evolved for the purpose of imparting information, because the 

signaler benefits in some way as a result of the receiver acting on the information 

conveyed.  

An animal will only respond to a cue if to do so is of benefit to that receiver – 

otherwise it will be selected to ignore it. An animal that responds to a signal could 

benefit too, if the information sent by the signaler is accurate and useful to the 

receiver – in other words, if it is an ‘honest signal’. The conditions that enforce the 

evolution of honest signaling are still the subject of some debate [6], but one 

suggestion is that honesty evolves when the nature of the signal is intimately 
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connected to the information it conveys, making it harder to fake. The depth of a 

toad’s croak is tightly associated with its body size, for example, and so accurately 

conveys the competitive ability of the sender [7].  

However, signals need not be honest, and signalers can potentially use their 

signals to manipulate others [8]. A manipulative signal is one, which brings a fitness 

benefit to the signaler, but at some fitness cost to the receiver. Any receiver that is 

routinely manipulated in this way is then placed under intense selection to ignore the 

manipulative signal, because it will instantly gain fitness as a result. Nevertheless, 

some receivers remain vulnerable to manipulation by signalers. They may be caught 

in a sensory trap, for example. This could happen when it is sometimes – though not 

always - adaptive for receivers to respond to a particular signal, and the receiver 

cannot distinguish the contexts when it should and should not respond. Manipulative 

signalers can further exploit receiver uncertainty here by sending signals that mimic 

the credible signal to which the signaler is attuned. This is how cuckoo nestlings 

succeed in manipulating their host parents into feeding them, for example [7].  

 Finally, whether or not a signal is honest, it is under selection to be salient and 

detectable by the receiver. Signals therefore often comprise multiple elements [9]. 

More than one element might convey the same information, and this redundancy of 

information might ensure that the message gets across even if it is partially degraded 

during transmission [10]. Other elements might convey no information at all, but 

serve simply to amplify information conveyed by other elements of the display [11]. 

Or each element of the display might convey different information, transmitting 

multiple messages simultaneously to the receiver [10]. The different parts of a 

nestling’s begging display probably serve each of these functions, for example 

[12,13]. 
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Indole biochemistry and production 

We now return our attention specifically to indole and apply these concepts to 

understanding its many functions in the natural world. Since its initial discovery in the 

mid-twentieth century, a tremendous amount has been determined about indole’s 

chemistry, relevance in ecology, and more recently its inter-kingdom interactions. A 

key point is that indole is a by-product from the metabolism of tryptophan (L-

tryptophan (Trp; α-amino-β-3-indolepropionic acid)), a large neutral amino acid 

containing an aromatic ring [14]. Trp is a relatively rare but nutritionally essential 

(indispensable) amino acid for mammals and it is generally more abundant in animal- 

than in plant-source foods. Importantly, Trp can be degraded by free-living bacteria, as 

well as plants and bacterial flora in animals to yield indole or indole-based compounds. 

In monogastric animals (e.g. pigs and rats), ~15% of dietary Trp is degraded by 

intestinal bacteria, while in animal cells, three pathways are responsible for degrading 

Trp in a highly cell- and tissue-specific manner: the kynurenine, serotonin, and 

transamination pathways [15]; however, these paths do not produce indole from 

tryptophan, so animals acquire indole from the bacteria which colonize them.  

 The biochemistry of indole provides some clues to explain its ubiquity in 

mediating interactions among organisms in nature. First, as previously mentioned, it 

can be readily produced by plants, by bacteria in animals and by free-living microbes 

simply through the metabolism of tryptophan. This means that in principle any of 

these organisms can produce indole. Second, tryptophan is a rare and valuable 

resource, and the production of indole, its metabolite, provides useful information 

about its potential location. In other words, the rarity yet importance of tryptophan 

makes indole a valuable cue for diverse organisms. Accordingly, cells are able to 

detect and respond to Trp metabolites such as indole and can quickly change their 
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patterns of gene expression as a result. This is well illustrated by detailed analyses of 

the action of indole (and other Trp metabolites) in animal cells (Figure 1). Here Trp 

metabolites are natural ligands and activators of the aryl hydrocarbon receptor (AhR; 

also known as dioxin receptor) [16], which is a cytosolic ligand-activated 

transcription factor. AhR is normally present in a dormant state but upon ligand 

binding, AhR undergoes a conformational change leading to the exposure of a nuclear 

localization signal. Thereafter, the ligand-activated AhR translocates into the nucleus, 

dissociates from the complex, and forms a heterodimer with the closely related Arnt 

protein in the nucleus.  This in turn enhances expression of target genes.  

A final key point is that indole closely resembles human and plant hormones 

such as serotonin and indole-3-acetic acid, respectively. This has also led to 

speculation that indole is the archetype for cell hormones [17]. It might also explain 

how indole can mediate interactions among kingdoms, ranging from bacteria 

stimulating seed germination in orchids [18], microalga [19] and diatom division [20] 

to fungi causing wilt in chickpeas [21], and increasing chlorophyll content and root 

growth in rice [22]. In short, the biochemistry of indole explains why it is a valuable 

cue for many diverse organisms and shows how cells are organized to detect and 

respond quickly to fluctuations in indole concentrations. However, as we now show, 

the function of indole has moved beyond a simple cue in many contexts and now 

plays a key role in regulating complex intra- and inter-specific interactions. 

 

Indole as an honest intraspecific signal 

The clearest evidence that indole functions as a signal comes from analyses of its role 

in mediating quorum-sensing (QS): the ability of microbial cells to measure 

population size and modulate their activities accordingly (Figure 2) [23]. QS systems 
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are important for multicellular bacterial behavior such as sporulation, 

bioluminescence, and virulence factor production [24-26]. QS is used for sensing the 

same species, but it can also be used to sense populations of other bacteria [27], 

sometimes known as “eaves-dropping”. In the former case, indole is most likely being 

used as a signal, but in the latter it is more likely a cue (because the consensus is that 

it is unlikely that one bacterial species evolved a QS signal specifically to 

communicate with another bacterial species [23]).  

 The Escherichia coli volatile metabolic product indole is emerging as a signal 

that is important in QS interactions. Indole is produced by at least 27 different 

bacterial genera that produce tryptophanase (TnaA) [17], the enzyme that converts 

tryptophan into indole. Indole was first discovered as a signal in E. coli in which it 

activates gabT and astD [28]. Using enterohemorrhagic E. coli (EHEC) and E. coli K-

12, it was then shown that indole is a QS signal [29] since it satisfies the four criteria 

for compounds to be called cell-to-cell signals [30]: (i) the putative signal must be 

produced during a specific stage (indole is produced primarily in the stationary-phase 

[28]), (ii) the putative signal must accumulate extra-cellularly and be recognized by a 

specific receptor (indole is a known extracellular signal [28,31] that is exported by 

AcrEF [32] and is imported by Mtr [33] although it may pass through the membrane 

at a slower rate [34]), (iii) the putative signal must accumulate and generate a 

concerted response (indole has been shown to delay cell division [35]), and (iv) the 

putative signal must elicit a response that extends beyond the physiological changes 

required to metabolize or detoxify the signal (indole has been shown to control 

biofilms [17] and cell division [35,36] which are not related to indole metabolism).  E. 

coli appears to have at least two QS systems when it lives in the mammalian 

gastrointestinal tract. At low temperatures, indole is the primary signal, while 
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autoinducer 2 (AI-2) fills this role at higher temperatures [37].  

 

Indole as a manipulative interspecific bacterial signal  

Indole also mediates interactions with other species of bacterial cells. It reduces the 

pathogenicity of cells that do not synthesize it [38-40] and influences the biofilm 

formation of other cells [17]. For example, indole reduces the virulence of 

Pseudomonas aeruginosa in guinea pigs (Figure 3) by repressing the mexGHI-opmD 

multidrug efflux pump and the genes involved in the synthesis of pyocyanin (phz 

operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin 

(pch operon) and pyoverdine (pvd operon) which results in reduced levels of 

pyocyanin, rhamnolipid, PQS and pyoverdine [38]. Each of these effects on other 

bacterial species is likely to be to the advantage of the signaler but to the detriment of 

the receiver. In this context, therefore, indole probably represents a form of coercion 

between species, mediated by manipulative signaling. 

 

Indole as an honest inter-kingdom bacterial signal with animals 

Remarkably, indole also mediates interactions between E. coli and the mammalian 

host in which it resides since it is one of the first compounds made by commensal 

bacteria in the mammalian gastrointestinal tract and has been shown to be beneficial 

by tightening gut epithelial cell junctions, thereby preventing invasion by pathogens 

[41,42]. Here we can consider indole to be an honest signal because the exclusion of 

pathogenic microbes is to the benefit of both the mammalian host and the commensal 

gut bacteria. Indole serves a similar defensive function in other animals that also have 

intimately associated microbiomes. For example, the indole derivative indole-3-

carboxaldehyde produced by microbes associated with the frog Smilisca phaeota [43] 
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or the red-backed salamander, Plethodon cinereus [44], has been shown to repel or 

inhibit infection by fungal pathogens. These examples are slightly different to the 

honest signaling outlined above: they involve indole acting as an apparently 

manipulative signal to pathogenic fungi, to the detriment of their fitness, but to the 

benefit of the commensal microbes and their amphibian hosts. 

 Honest inter-kingdom signaling also occurs between microbes and animals in 

the context of dispersal. Here selection has resulted in close relationships between the 

one seeking the ride and the one providing it, and indole has been shown to play an 

important role in mediating the provision of this service. For example, the fetid 

fungus, Lysurus mokusin, relies upon the dispersal of its spores via fecal deposition of 

mycophagous insects. Insects are attracted to the scent of the fungus, of which indole 

is a key constituent, and feed upon the fungus. Consumed spores then pass through 

the insect alimentary tract, enhancing their ability to germinate and increasing their 

dispersal range [45]. Bioassays using a synthetic mixture of the characterized scent, 

which included about 7.5% indole (95-99% pure), found that the odor of the fungus is 

attractive to the earwig, Anisolabis maritima (Bonelli) (Dermaptera: Anisolabididae) 

as well as flies belonging to 10 different genera from five families (Sarcophagidae, 

Calliphoridae, Muscidae, Sepsidae and Drosophilidae) [45]. Here indole is an 

important part of the honest signaling system that mediates dispersal.  

However, not all instances of dispersal mediated by indole are so obviously 

part of an honest signaling system. For example, the Hippelates eye gnat (genus 

Tricimba (Lioy)) (Diptera: Chloropidae)) feeds on the mucous and sebaceous 

secretions around the eye of vertebrates and is capable of spreading microbial 

organisms that cause diseases, such as conjunctivitis (pink eye), anaplasmosis, and 

bovine mastitis in the vertebrate host, and which themselves produce indole during 
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infections. Hwang et al. [46] found that gnats were especially attracted to odors that 

included indole or skatole – presumably because this environmental cue potentially 

guides them to a profitable feeding location. However, it is unknown whether gnats 

are more attracted to feeding locations infested with microbes, and unclear that these 

microbes produce indole for the purpose of attracting insects. Therefore we cannot 

conclude that indole is an honest inter-kingdom signal in this example. 

The same problem exists for understanding dispersal of microbes mediated by 

the house fly Musca domestica L. (Diptera: Muscidae) and E. coli. In a study of 

chemical attractants to house flies, indole was determined to be a primary attractant 

[47].  When indole was compared with the closely related skatole or an indole-skatole 

mixture, it was determined that house flies respond more specifically to indole than 

skatole or the combination [47,48]. Indole is produced by E. coli, which is associated 

with vertebrate feces [49], which is an ephemeral resource, which lasts a few days or 

less depending on conditions [50]. As such, house flies must locate this resource 

quickly in order to maximize their use of it. Therefore, house flies utilize indole, 

which is a signature of feces and present in high concentrations, as a means to locate 

and colonize these resources. Adult flies attracted to the waste are then contaminated 

with E. coli and disperse it from this ephemeral resource to new locations [51]. 

Furthermore, adults that develop as larvae feeding on the manure are also 

contaminated with the bacteria and can disperse it into the surrounding areas [52], 

often resulting in the contamination of resources consumed by vertebrate hosts [53]. 

Nevertheless, it is unlikely that house flies and E. coli have evolved an honest indole 

signaling system to mediate E. coli dispersal. We should more conservatively 

conclude that flies are drawn to indole-rich resources because indole is a cue that 

conveys information about the value of the resource to the fly. Until further evidence 
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is produced to indicate otherwise, the dispersal of E. coli is an incidental part of this 

process.  

Similar processes of cue-mediated incidental dispersal probably also occur 

within the vertebrate carrion system where indole serves as a mediator of fly (Diptera) 

and beetle (Coleoptera) (Figure 4) attraction and utilization of associated resources. 

blow flies (Diptera: Calliphoridae) are attracted by indole to decomposing remains as 

a means to locate mates and provide resources to resulting offspring [54-57]. 

Research prior to Liu et al. [54] also determined that inhibiting behavioral responses 

by bacteria associated with carrion [58], specifically swarming by Proteus mirabilis, 

which is regulated by a quorum sensing pathway, resulted in reduced blow fly 

attraction and oviposition [59]. Furthermore, responses by flies to these bacteria were 

regulated by sex, age, and adult nutrition history [60]. As with the house fly example, 

resulting contaminated adults [61] disperse into the surrounding environment 

allowing for microbial colonization of other resources. Likewise, mosquitoes 

(Diptera: Culicidae) also utilize indole as a means to locate hosts for blood-meals [62] 

or oviposition sites [63]. However, any microbial dispersal that also ensues is likely to 

be a secondary part of their search for food and egg-laying sites. 

 

Indole as an honest inter-kingdom bacterial signal with plants 

Just as indole mediates interactions between microbes and animals, it similarly 

mediates interactions between bacteria and plants. Soil microbes are integral to plant 

health and influence root architecture [64]. In fact, over 80% of land plants are able to 

establish mutualistic interactions with soil microbes [65]. Signaling between soil 

microbes and plants, with indole serving as the medium through which this interaction 

occurs, has been well documented. Indole produced by microbes often stimulates 
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plant growth directly [66] and in a dose-dependent manner, such as with the 

rhizobacterium Proteus vulgaris, whose production of indole accelerates cabbage and 

cress growth [67,68]. In many instances, the associated microbes release mineral 

nutrients to the plant and in return the plant releases carbon that is then utilized by the 

microbes [65].  

Indole stimulates plant growth through the interplay of the auxin, cytokinin 

and brassinosteroid hormonal pathways [67]. When produced by soil bacteria, it is 

specifically able to promote early lateral root development by modulating the plant 

secondary root network via interference with the auxin-signaling machinery, an 

essential local signal for lateral root growth [66,69].  Indole-3-acetic acid (IAA) is 

among the most common natural auxin growth regulators found in plants and exerts a 

positive influence on root growth and length, thus increasing the total root surface 

area [70].  However, as mentioned above, a dose-dependent, plant-growth-promoting 

property exists and long-term exposure to high concentrations of indole can have 

negative effects on growth and development, as demonstrated with the rockcress, 

Arabidopsis thaliana (L.) [69].  The bacterium Pseudomonas putida and the fungus 

Trichoderma atrovirid both produce IAA, which can increase the weight of the shoots 

and roots of tomato plant seedlings, but these microbes were also determined to have 

the capacity to reduce the deleterious effect of excess IAA by microbial degradation 

[71].  Therefore, microbes may help plants in two ways: by stimulating growth 

through production of an indole derivative and by helping to degrade harmful 

excesses in concentrations of these indole-related compounds. Whether these 

compounds are functioning as cues or signals in this context remains to be formally 

determined. However, it is conceivable that indole is an honest signal in this context 

because the microbes potentially benefit by closely regulating plant growth to 
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optimize the levels of carbon the plant then releases back to them. 

 

Indole signaling between plant cells 

Indole also plays an important role in regulating plant defense mechanisms. In the 

case of rice Oryza sativa, GH3-8, an auxin-responsive gene responds to indole-3-

acetic acid and activates disease resistance via jasmonic acid and salicyclic acid 

signaling-independent pathways [72]. Here this variant of indole serves a signaling 

function within the plant, to coordinate its defense mechanisms. In addition, following 

attack by herbivores, plants can release a suite of volatile organic compounds, 

including indole, which can induce nearby plants of the same species to enhance their 

defensive mechanisms [73]. This phenomenon, called priming, triggers increased 

transcription of defense-related genes thus allowing nearby plants to respond more 

rapidly and robustly to an imminent assault [74]. For example, in a study by Erb et al. 

[75], maize was injured and treated with African cotton leafworm, Spodoptera 

littoralis Boisduval (Lepidoptera: Nocuidae) regurgitate.  The authors found that 

indole was produced within 45 min and peaked after about 2 h. They also determined 

that in the presence of indole the production of volatiles and terpenoids by plants that 

were subsequently injured was enhanced as a result of priming. The simplest 

interpretation here is that plants are eavesdropping on indole cues produced by their 

neighbors, to adaptively modulate their defense mechanisms against the likelihood of 

herbivore attack. However, it is possible that indole is used as a signal in this context 

if neighboring plants are closely related, or if collectively unrelated neighboring 

plants can more effectively repel attack by herbivores. If these conditions are met, 

then the indole-producing plant gains fitness benefits by producing indole, either by 

helping to defend relatives against attack or by reducing its own future vulnerability 
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to attack by herbivores.  

 

Indole in manipulative inter-kingdom signaling by plants 

Indole production by some plants directly prevents fungal infection. For example, 

indole produced by barley, Hordeum vulgare L. cv. Goseshikoku and cv. Morex can 

reduce the likelihood of powdery mildew, Blumeria graminis f.sp. hordei, infection 

[76]. Similarly, rice, Sekiguchi lesion (sl)-mutant produces indole to reduce rice blast 

fungal infection [77], while indole and other associated compounds also reduce the 

likelihood of infection by the fungus responsible for brassica dark leaf spot, 

Alternaria brassicicola [78]. Here indole can be viewed as a manipulative signal, just 

as it is when used by microbes carried by amphibian as a defense against fungi [43]: 

the plant gains fitness from indole production, while the fungi lose fitness. 

Manipulative signaling also apparently occurs between the mouse-ear, Arabidopsis 

thaliana, and the cabbage white butterfly [79]. Here some concentrations of indole 

produced by the plant inhibit oviposition by the butterfly, although at other doses, 

oviposition is enhanced. The dose-dependent response to indole by the butterfly might 

explain why manipulative signaling by the plant can persist in this context and the 

butterfly has not evolved to ignore it: any fitness costs to the butterfly through lost 

fecundity are potentially offset by fitness it might gain in response to other levels of 

indole signaling. 

 

Indole in honest inter-kingdom signaling by plants 

The cocktail of chemicals released by plants in response to damage by herbivores has 

also been implicated in inter-kingdom signaling, with indole serving a key role in this 

function. For example, the release of indole directly attracts parasitoids, which then 
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kill the plant’s insect herbivores. An example comes from Alborn et al. [80] and 

involves the beet armyworm caterpillar Spodoptera exigua (Hübner) (Lepidoptera: 

Noctuidae). This caterpillar secretes volicitin (a fatty acid derivative regurgitate N-

(17-hydroxylinolenoyl)-L-glutamine) while consuming plants, such as maize, Zea 

mays (L.).  Contact between volicitin and the plant elicits the release of a blend of 

volatile terpenoids and indole systemically from the maize plant, not just from the 

damaged maize leaves.  Volicitin selectively activates the formation of free indole 

[81], drawing in parasitoids which lay their eggs in the caterpillar. Here indole is an 

honest signal because it enables both the plant and the parasitoid to gain fitness 

benefits.  

In other cases, indole serves a more indirect function in recruiting natural 

enemies of the arthropod herbivore. The volatiles produced by plants subsequent to 

herbivore feeding are complex blends of compounds resulting from three primary 

biosynthetic pathways: the terpenoid, the shikimate, and the fatty acid degradation 

pathway [82].  Indole produced from the shikimic acid pathway can play a role in 

indirect defense because it facilitates the release of a different volatile signal from a 

damaged plant that attracts natural enemies of the arthropod herbivore inflicting the 

damage [83]. Here, indole’s function is merely to mediate communication within the 

plant, which in turn leads to the release of a second honest signal that is received by 

the animal. 

 

Indole in mating displays by animals 

Indole has been shown to be involved in pheromonal displays that are used for mate 

attraction in animals. For the most part, these are displays by females for attracting 

males. For example, males of the scarab beetle, Holotrichia reynaudi Hope 
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(Coleoptera: Scarabaeidae) rely on a mixture of abdominal exudates, including indole, 

produced by the female to locate a partner [84]. However, in the dung beetle, Kheper 

bonelli (MacLeay) (Coleoptera: Scarabaeidae) males produce and release a 

proteinaceous secretion to attract females for mating.  Within this proteinaceous 

carrier material are putative sex pheromones, among which indole was identified [85].  

Given that this particular species relies on dung, which typically contains high levels 

of E. coli (which produces indole as previously mentioned), it would be interesting to 

determine whether indole production is truly by the insect or by the E. coli harbored 

within the insect. In general, although indole is present in these pheromonal cocktails, 

its function in luring a mate remains unclear. As is illustrated by the examples we 

consider next, it might function to convey important information to a potential 

partner, or it may simply amplify information conveyed by other compounds in the 

pheromone. It might even play no role at all in mate attraction. More work is required 

to distinguish these different possibilities. 

 

The function of indole in complex displays: information carrier or 

amplifier?  

In many of the examples discussed above, indole is part of a complex cocktail of 

volatiles emitted by a signaler. To understand its specific function in these contexts, 

we must turn to evolutionary theory connected with complex, or multicomponent 

displays (summarized above). One suggestion here is that some elements of a 

complex display serve to amplify other parts of the display [11]. Indole seems to serve 

exactly this function in the signaling that takes place between the gourd family of 

flowering plants (Cucurbitaciae) and diabroticite rootworm beetles (Coleoptera: 

Chrysomelidae: Luperini). These organisms are anciently associated with one another 



 18 

and have likely coevolved through their associated chemical ecology [86,87]. The 

Cucurbita blossom is a source of nectar and pollen for diabroticite beetles, which are 

attracted by its odorous bouquet, and which includes indole as a volatile [88]. Most 

Cucurbitaciae produce a secondary compound called cucurbitacin, a triterpene 

hydrocarbon containing an indole structure [89].  Cucurbitacins are bitter and often 

toxic semiochemicals that serve to protect the plants from attack by invertebrate and 

vertebrate herbivores. Diabroticite beetles, however, use these compounds as 

kairomones for locating the blossom. They are able to feed on the cucurbits and store 

the bitter cucurbitacins in their blood and tissues as allomones to deter predation [87].  

The role of indole in attracting the beetles to the blossom is to act as an 

amplifier. The diabroticite beetles, Acalvmma vitlatum, Diabrotica u. howardi, D. 

virgifera virgifera, and D. barberi, are only weakly to moderately attracted to indole 

as a single compound [90]. However, when combined with other olfactants from 

Cucurbita blossoms, indole increased olfactory responses in diabroticite beetles 

synergistically by 2 to 4 fold [88,90].  Further evidence that indole amplifies the 

attraction of other volatiles to these beetles comes from experiments using insect traps 

for diabroticite rootworm beetles, in bean, Phaseolus vulgaris, and soybean, Glycine 

max, fields.  Traps baited with veratrole + indole + phenylacetaldehyde caught 6.5 

and 3.5 times more beetles than solvent controls in soybean and common bean plots, 

respectively; traps baited with 1,2,4-trimethoxybenzene + indole + trans-cinnamal- 

dehyde) caught 6.7 and 3.5 times more beetles, respectively [91]. Thus indole has 

evolved to be part of the Cucurbita blossom’s odiferous display seemingly because it 

amplifies the response by beetles to other volatiles in the bouquet. 

 Indole might serve a similar amplifying function in the scent profile of other 

plant species, as demonstrated in a study by Friberg et al. [92].  Here it was found to 
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be one of the compounds within the unique floral profiles produced by two different 

woodstar plants, Lithophragma bolanderi and L. cymbalaria (Saxifragaceae), which 

attract the parasitic moth, Greya politella (Walsingham) (Prodoxidae), for pollination. 

Female moths responded most strongly to the uniquely distinctive scents from their 

local host species and were thereby more likely to pollinate the local plants. It would 

be interesting in future work to determine whether this divergent response to floral 

scents has been facilitated by indole.  

In other floral scents, however, indole might be used by the plant as a signal to 

manipulate insects into providing a pollination service. For example, the composition 

of the floral scent of the sapromyiophilous, Periploca laevigata, was investigated 

because of its ability to lure in the common house fly as a pollinator species [93]. The 

most abundant compound identified in the scent disseminated from cultivated 

sapromyiophilous was indole (39%), which attracted both male and female flies [93].  

Presumably the flies use indole as a cue for locating oviposition or food resources and 

the plant has evolved a manipulative signal, in which the insects are sensorily trapped 

into visiting the plant and pollinate it in the process.   

 

Conclusions 

In this review we have attempted to explain why indole is used so ubiquitously in 

nature, and how it functions to modulate interactions among diverse organisms. We 

suggest that indole is used so widely, and by such different organisms, because it 

derives from the metabolism of tryptophan, a resource that is essential for many 

species yet rare in nature. These properties make it a valuable, environmental cue for 

resources that are almost universally important for promoting fitness. By surveying a 

broad literature, we find that indole is used to coordinate actions within organisms, to 
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influence the behavior of conspecifics and can even be used to change the behavior of 

species that belong to other kingdoms. This is variously achieved by indole acting as a 

cue, a manipulative signal, and an honest signal, as well as an amplifier for 

information conveyed by other molecules. Importantly, these distinct functions of 

indole transcend different kingdoms of organisms. These roles across kingdoms for 

indole make it special to the extent it is widely used but not necessarily unique; for 

example, the bacterial QS signal N-acyl-l-homoserine lactone from the opportunistic 

pathogen Pseudomonas aeruginosa represses the mammalian innate immune system 

[94] 

We suggest that future work could profitably build on the conclusions of this 

article by using indole in interventions to manage crop pests and to control vectors of 

pathogens. Existing biology reviewed here suggests that such insect species could be 

surprisingly vulnerable to being manipulated in this way. Finally, we wonder whether 

indole could even be deployed to promote the pollination services provided by insects 

of economically important crop plants, since existing evidence suggests this might 

enhance the attractiveness of the plant to potential pollinators, possibly thereby 

boosting pollination rates. 
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Figure 1. Mechanisms for the physiological actions of indole in animals.   In 
animals, indole can scavenge free radical species and exert anti-oxidative effects [95], 
and can also enhance expression of xenobiotic-metabolizing enzymes (e.g., 
cytochrome P450) and immune response through binding to aryl hydrocarbon 
receptors (ligand-activated transcription factors) [96]. These actions of indole result in 
the amelioration of oxidative stress (such as UV radiation- or oxidant-induced DNA 
damage). Through binding to the serotonin receptor and serving as an α1A-
adrenoceptor antagonist [97], indole modulates animal behavior, the contraction of 
smooth muscle, gut motility, and food intake [98]. By interacting with iron in heme-
containing oxygenases [95], indole plays a role in whole-body aerobic metabolism.  
Indole also regulates the release of secretion of luteinizing hormone, and, therefore 
male and female reproduction [99]. Finally, indole affects the metabolism and activity 
of gut microbes, thereby sustaining intestinal health [100,101]. 
 
Figure 2. The hypothesized function of quorum sensing. Bacterial cells produce 

signal molecules, which can be used as a source of information about the density of 

cells in their environment. It has been shown that cells use this information to control 

the expression of density dependent traits, such as protease production. On the left, 

the diagram shows how beneficial exo-products can be easily lost, providing little or 

no benefit to cells, the right hand side shows how exo-products are more likely to 

benefit surrounding cells at high densities. [102].  

 

Figure 3. Reduction of virulence of P. aeruginosa in guinea pigs by 7-

hydroxyindole (7HI). Colonization and clearance of P. aeruginosa PAO1 pre-treated 

with 7HI or solvent (DMF) prior to infection of guinea pigs by aerosol with ~2 x 105 

cfu.  Average of five replicates, and one standard deviation is shown (A).  Real-time 

analysis of P. aeruginosa PAO1 pre-treated with 7HI or solvent (DMF) in the acute 

guinea pig infection model (representative guinea pigs are shown for each group and 

are imaged laterally) using the Xenogen IVIS CCD camera (B).  Color bar represents 

the intensity of luminescent signal in photons/sec/cm2 from low (blue) to high (red) 

[38].  

 

Figure 4. Arthropods commonly colonizing vertebrate carrion. (a) Beetles (e.g. 

Nicrophorus vespilloides [Coleoptera: Silphidae], photo: Tom Houslay) and (b) flies 

(e.g. Chrysomya rufifacies and Cochliomyia macellaria [Diptera: Calliphoridae], 

photo: C.C. Heo) are the primary invertebrate consumers of vertebrate carrion. Such 

invertebrates use indole and other volatiles to locate such resources essential for mate 

location as well as adult and larval nutrition. 
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