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Indolepropionic acid and novel lipid 
metabolites are associated with a 
lower risk of type 2 diabetes in the 
Finnish Diabetes Prevention Study
Vanessa D. de Mello1, Jussi Paananen2, Jaana Lindström3, Maria A. Lankinen1, 

Lin Shi4, Johanna Kuusisto5, Jussi Pihlajamäki1,6, Seppo Auriola7,8, Marko Lehtonen7,8, 

Olov Rolandsson9, Ingvar A. Bergdahl10, Elise Nordin4, Pirjo Ilanne-Parikka11,12, 

Sirkka Keinänen-Kiukaanniemi13,14, Rikard Landberg4,15, Johan G. Eriksson3,16,17,18,19, 

Jaakko Tuomilehto3,20,21, Kati Hanhineva1,8 & Matti Uusitupa1,22

Wide-scale profiling technologies including metabolomics broaden the possibility of novel discoveries 
related to the pathogenesis of type 2 diabetes (T2D). By applying non-targeted metabolomics 
approach, we investigated here whether serum metabolite profile predicts T2D in a well-characterized 
study population with impaired glucose tolerance by examining two groups of individuals who took 

part in the Finnish Diabetes Prevention Study (DPS); those who either early developed T2D (n = 96) 
or did not convert to T2D within the 15-year follow-up (n = 104). Several novel metabolites were 
associated with lower likelihood of developing T2D, including indole and lipid related metabolites. 
Higher indolepropionic acid was associated with reduced likelihood of T2D in the DPS. Interestingly, 
in those who remained free of T2D, indolepropionic acid and various lipid species were associated with 
better insulin secretion and sensitivity, respectively. Furthermore, these metabolites were negatively 

correlated with low-grade inflammation. We replicated the association between indolepropionic 
acid and T2D risk in one Finnish and one Swedish population. We suggest that indolepropionic acid, a 
gut microbiota-produced metabolite, is a potential biomarker for the development of T2D that may 
mediate its protective effect by preservation of β-cell function. Novel lipid metabolites associated with 

T2D may exert their effects partly through enhancing insulin sensitivity.
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Well-established lifestyle, metabolic and genetic factors are currently used for stratifying people at high risk of 
developing type 2 diabetes (T2D). However, the metabolic basis and early molecular events related to the onset 
of the disease are still poorly understood. �erefore, there is a need to utilize novel technologies to broaden this 
understanding, ultimately improving the potential for early prevention and reducing disease incidence.

Metabolomics enables the concomitant measurement of low–molecular weight metabolites such as nutri-
ent intermediates, lipids, hormones and other signaling molecules, and may also provide new insights into 
the pathogenesis of T2D1–4. In particular, the non-targeted metabolite pro�ling, an approach that allows the 
hypothesis-free assessment of a wide spectrum of metabolites resulting from endogenous metabolism, dietary 
intake and gut microbial activity5, has the potential to broaden the possibility of novel discoveries related to the 
pathogenesis of T2D.

In the Finnish Diabetes Prevention Study (DPS) population6, which recruited participants with impaired 
glucose tolerance (IGT), the lower risk of developing T2D was associated with better insulin sensitivity (IS) and 
preserved β -cell capacity probably achieved by changing lifestyles7. �erefore, by applying a non-targeted metab-
olomics approach, our primary aim was to identify novel metabolites that may predict the risk of T2D. Moreover, 
we sought to investigate if these metabolites would modify two basic mechanisms of T2D, i.e. insulin secretion 
capacity or insulin sensitivity.

Results
Characteristics of the DPS participants. Participants who developed T2D (cases) did not di�er in age 
and sex distribution from those who did not develop diabetes (non-cases) (Table 1). However, cases were more 
obese and had more disturbances in insulin and glucose metabolism than non-cases at metabolomics sampling 
(1-year follow-up) (Table 1).

Identified biomarkers and diabetes likelihood. Di�erential metabolic signatures were associated with 
a higher or lower likelihood of developing T2D (Fig. 1, Supplementary Table S1). �e most prominent di�er-
ences were found in several phosphatidylcholine (PC) lipid species and in indolepropionic acid, which were both 
inversely related to likelihood of developing T2D (Fig. 1). In contrast, certain amino acids and bile acids were 
increased in individuals who developed T2D during the �rst years of the DPS study (Fig. 1).

Lipid-related metabolites protect from T2D. Six PCs and four lysoPCs (LPCs), and one lysophos-
phatidylethanolamine (LPE) were among the metabolites signi�cantly inversely associated with diabetes at 
FDR-P <  0.05 (Fig. 1). Most of these lipids contained at least one of the following three fatty acids as part of the 
metabolite: C15:0 (pentadecanoic acid), C17:0 (heptadecanoic acid) or C15:1 (pentadecenoic acid). �e very-long 
chain fatty acid C22:6 (docosahexaenoic acid) and the long chain fatty acid C18:2 (linoleic acid) were also fre-
quently part of these protective lipids (Fig. 1).

Amino acids and bile acid metabolites increase the likelihood of developing T2D. Several amino 
acids were signi�cantly associated with T2D, for example phenylalanine and tyrosine (Fig. 1). �e amino acids 
alanine, proline and isoleucine were also associated with increased risk of developing T2D (FDR-P <  0.05, Fig. 1).

Among the identi�ed bile acids, the ones strongest associated with T2D are described in Fig. 1. �ey all nom-
inally increased the likelihood of developing T2D (Fig. 1).

Sensitive and post-hoc analyses. In sensitivity analyses, we excluded the participants who devel-
oped T2D during the first year of the follow-up. We observed similar chances of developing T2D accord-
ing to each of the metabolites as in the whole study sample, even though the significances were attenuated 
(Supplementary Table S2).

In post-hoc analyses, adjustments for confounding factors such as BMI, fasting and post-load glucose and 
insulin at metabolomics sampling, or sex in the logistic regression models did not change the direction of the 
associations, even though, except for models including sex, the FDR-P values lost signi�cance for most of the 
metabolites (Supplementary Tables S3–S5).

Impact of lifestyle intervention on key metabolites. We also looked at the interaction between each 
metabolite and DPS study group (lifestyle or control) in the logistic regression models for the metabolites most 
strongly associated with T2D likelihood at FDR-P <  0.05. Interestingly, the group-wise strati�cation strengthened 
the protective role of the odd-chain lipids in the intervention group, while the branched-chain amino acids were 
linked with a higher chance of developing T2D only in the control group (Table 2). However, we only found an 
interaction between the study group for two lipids, PC(18:1/22:6) and LPC(19:0), whose inverse association with 
T2D risk was stronger in the intervention group, and between the study group with both tyrosine and proline, 
whose direct association with T2D risk remained signi�cant only in the control group (Table 2). For any of the 
other metabolites, including indolepropionic acid, we did not �nd any interaction with the study group that could 
modify its association with the chance of developing T2D (Table 2).

Indolepropionic acid associates with the course of insulin secretion during the follow-up in the 
DPS non-T2D cases. A�er identifying the 17 strongest putative metabolites associated with T2D (Fig. 1), we 
examined whether these compounds may exert their e�ects by modulating IS (Matsuda ISI) or insulin secretion 
(DI30). Among non-cases, indolepropionic acid was directly associated with a better DI30 (β  =  0.25 [0.06–0.44], 
P =  0.011) independently of the study group. However, indolepropionic acid was not associated with DI30 in study 
participants who developed T2D during the follow-up (Fig. 2).
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Among study participants who remained non-diabetic (non-T2D cases), higher LPC(15:1), LPC(17:0), 
LPC(20:1), PC(22:6/18:2) and PC(15:1/18:2) were directly associated with better insulin sensitivity (Matsuda 
ISI) during the follow-up (β  =  0.21 to 0.32, P =  0.039 to 0.001; Table 2), whereas higher isoleucine, phenylalanine 
and tyrosine were associated with lower Matsuda ISI (β  =  − 0.23 to − 0.36, P =  0.020 to 0.0003; Table 3). All above 
mentioned associations were independent of study group.

Among T2D cases, none of the metabolites were statistically signi�cantly associated with DI30, but isoleucine, 
phenylalanine and tyrosine were inversely associated with Matsuda ISI during the follow-up (β  =  − 0.26 to − 0.40, 
P <  0.05; Table 3).

We next investigated whether insulin secretion, IS or their changes would modify the likelihood of devel-
oping T2D according to each of the metabolite mentioned above. Overall, the direction of the associations 
remained similar, but not all statistically signi�cant, e.g. indolepropionic acid when adjusted for insulin secretion 
at follow-up (P =  0.09) and the amino acids tyrosine and isoleucine when adjusted either for IS (P =  0.27 and 
P =  0.40, respectively) or insulin secretion (P =  0.72 and P =  0.83, respectively).

Indolepropionic acid and lipid metabolites are associated with high sensitive C-reactive protein 
(hsCRP) levels. Due to the interrelation among gut microbiota, low-grade in�ammation and T2D, we exam-
ined if circulating levels of hsCRP would be related with indolepropionic acid or the lipid metabolites associated 
with T2D risk and either DI30 or Matsuda ISI during the follow-up.

Serum hsCRP was negatively correlated with indolepropionic acid at the time of sampling (r =  − 0.23, 
P =  0.006), independently of BMI (P =  0.03), both fasting (P =  0.009) and 2-h glucose (P =  0.02) and study group 
(P =  0.006). Nevertheless, adjustment for hsCRP in the statistical analyses did not modify the association of 
indolepropionic acid with insulin secretion in non-T2D cases (β =  0.31 [0.09–0.51], P =  0.004).

Cases (N = 96) Non-cases (N = 104) P*

Study group (N, lifestyle/control) 37/59 62/42 0.003

Age (years) 55.3 ±  7.2 56.3 ±  6.6 0.29

Sex (male/female) 35/61 37/67 0.90

Body weight (kg) 90.0 ±  16.9 80.2 ±  12.1 < 0.001

BMI (kg/m2) 31.8 ±  4.8 28.6 ±  4.0 < 0.001

Plasma glucose, mmol/l

 fasting 6.6 ±  0.9 5.8 ±  0.5 < 0.001

 2-hour 9.9 ±  2.1 7.5 ±  1.5 < 0.001

Serum insulin, pmol/l

 fasting 104.2 (76.4; 152.8) 69.5 (55.6; 90.3) < 0.001

 2-hour 535 (363; 839) 347 (229; 514) < 0.001

Matsuda ISI 2.50 (1.69; 3.00) (N =  43) 4.26 (33.0; 5.72) (N =  40) < 0.001

DI30 71 (58.8; 86.5) (N =  43) 131 (105; 156) (N =  40) < 0.001

Table 1.  Characteristics of the participants at metabolomics sampling. Data are mean ±  SD or median 
(IQR). Matsuda ISI: Matsuda insulin sensitivity index DI30: disposition index *P for the di�erence between 
groups using one-way ANOVA for continuous variables or χ 2 test for categorical variable.

Figure 1. Identi�ed metabolites and their association with the development of T2D in the DPS (N = 200). 
Closed bars: FDR-P <  0.05 Opened bars: P <  0.05. Phe: phenylalanine GCA: Glycocholic acid TCDC: 
Taurochenodeoxycholic acid GCDC: Glycochenodeoxycholic acid GDC: Glycodeoxycholic DC: Deoxycholic 
acid CA: Cholic acid.
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Study group OR Lower 95% CI Higher 95% CI P* P**

Indolepropionic acid 0.19

Lifestyle 0.46 0.28 0.76 0.002

Control 0.62 0.40 0.95 0.029

PC(18:1/22:6) 0.02

Lifestyle 0.34 0.19 0.59 2 ×  10−4

Control 0.69 0.45 1.05 0.086

LPC(19:0) 0.01

Lifestyle 0.25 0.13 0.47 2 ×  10−5

Control 0.65 0.42 1.01 0.058

LPC(17:0) 0.19

Lifestyle 0.33 0.19 0.58 1 ×  10−4

Control 0.50 0.32 0.80 0.004

LPC(20:1) 0.05

Lifestyle 0.32 0.18 0.57 1 ×  10−4

Control 0.66 0.43 1.02 0.059

PC(22:6/18:2) 0.59

Lifestyle 0.46 0.28 0.75 0.0021

Control 0.50 0.32 0.80 0.0037

LPC(15:1) 0.09

Lifestyle 0.41 0.24 0.69 7 ×  10−4

Control 0.67 0.44 1.03 0.066

PC(20:4/17:0) 0.38

Lifestyle 0.41 0.24 0.70 0.001

Control 0.61 0.39 0.95 0.029

PC(22:6/17:0) 0.95

Lifestyle 0.57 0.36 0.91 0.019

Control 0.51 0.32 0.82 0.005

PC(15:1/18:2) 0.87

Lifestyle 0.58 0.37 0.92 0.020

Control 0.56 0.36 0.88 0.012

LPE(16:0) 0.95

Lifestyle 0.60 0.38 0.94 0.027

Control 0.56 0.36 0.87 0.011

PC(18:2/15:0) 0.62

Lifestyle 0.62 0.39 0.97 0.035

Control 0.53 0.34 0.84 0.006

Tyrosine 0.01

Lifestyle 1.38 0.89 2.12 0.15

Control 3.48 1.95 6.22 3 ×  10−5

Proline 0.001

Lifestyle 0.99 0.65 1.50 0.96

Control 3.24 1.84 5.69 4 ×  10−5

Isoleucine 0.19

Lifestyle 1.31 0.85 2.01 0.22

Control 2.20 1.36 3.55 0.0013

Alanine 0.59

Lifestyle 1.80 1.02 3.17 0.04

Control 2.45 1.33 4.54 0.004

L-Phenylalanine 0.06

Lifestyle 1.79 1.13 2.85 0.01

Control 3.26 1.85 5.74 4 ×  10−5

Table 2.  Top ranking metabolites associated with T2D in lifestyle and groups* and their interaction with 
study group**. *Refers to the association of the respective metabolite with T2D in the unadjusted logistic 
regression in each of the study group (Lifestyle; control). **Refers to the interaction of study group (lifestyle or 
control) vs. metabolite in the logistic regression testing the association of the respective metabolite with T2D 
adjusted for the study group.
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Similarly, hsCRP was negatively correlated with LPC(17:0): r =  − 0.42, P =  2 ×  10−7; PC(22:6/18:2): r =  − 0.29, 
P =  3 ×  10−4; LPC(15:1): r =  − 0.37, P =  5 ×  10−6; LPC(20:1): r =  − 0.43, P =  5 ×  10−6 and PC(15:1/18:2): r =  − 0.42, 
P =  2 ×  10−7, mostly independent of BMI, fasting and 2-h glucose and study group (Supplementary Table S6). 
Even though hsCRP did not signi�cantly modify the association of either LPC(15:1) or PC(15:1/18:2) with insu-
lin sensitivity in non-T2D cases (β  =  0.24 [0.04–0.45], P =  0.02 and β  =  0.27 [0.02–0.52], P =  0.035, respectively), 
the e�ect of LPC(17:0), PC(22:6/18:2) and LPC(20:1) on Matsuda ISI was blunted by the inclusion of hsCRP in 
the models (P >  0.05 for all).

Indolepropionic acid is associated with fiber intake. We next examined the association between 
the identi�ed metabolites and the intake of relevant nutrients cross-sectionally at the time of serum sampling. 
Indolepropionic acid was the metabolite most signi�cantly and consistently related to both total carbohydrate and 
�ber intakes (r =  0.28, P =  9.1 ×  10−5 and r =  0.23, P =  0.001; respectively). Overall, the majority of the lipids were 
negatively correlated with the intake of saturated fatty acids (Fig. 3 and Supplementary Table S7).

Additionally, we found that serum total alkylresorcinols and C17:0/C21:0 ratio, biomarkers of whole grain 
wheat and rye intake and the proportion of whole grain rye intake, respectively, were correlated with indolepro-
pionic acid (r =  0.22, P =  0.003 and r =  0.23, P =  0.001; respectively), total �ber (r =  0.21, P =  0.003 and r =  0.28, 
P =  0.00006) and rye bread (r =  0.25, P =  0.0004 and r =  0.29, P =  0.00003) intakes.

Indolepropionic acid and T2D in two other independent population-based studies. In order 
to test if the observed protective association of indolepropionic acid with the development of T2D could be 
repeated, we examined it in two population-based studies, METSIM8(Metabolic Syndrome in Men), and VIP 
(Västerbotten Intervention Program)9.

METSIM is a prospective population-based study in Finnish men. We analysed samples from baseline and 
follow-up of 110 randomly selected participants free of T2D at baseline from which 55 were diagnosed with T2D 
at the 5-year follow-up. At baseline, there was no cross-sectional association between indolepropionic acid and 
T2D risk (P =  0.72), but during the 5-year follow-up indolepropionic acid was lower in subjects who developed 
T2D than in those who remained non-diabetic (P =  0.027) and they had decreased level of indolepropionic acid 
during the follow-up whereas in non-cases it was increased (Fig. 4A). Moreover, an increase in indolepropionic 
acid during the 5-year follow-up was inversely associated with the likelihood of developing T2D (OR: 0.31 [0.12–
0.76], P =  0.01). Both associations, however, did not remain a�er controlling for BMI at baseline or at follow-up 
(P =  0.06 for the association of indolepropionic at follow-up with T2D in both models) or a�er controlling for 
BMI changes (P =  0.20 for the association of changes in indolepropionic and T2D).

A�er �nding a suggestive, yet signi�cant inverse association between the change in indolepropionic acid level 
and the likelihood of developing T2D in Finnish men, we wanted to further analyse it in a larger independ-
ent Swedish population including both genders. VIP is a Swedish population-based prospective cohort, within 
which the diabetes registry DiabNorth has identi�ed individuals with diabetes. A case-control study, BioDIVA 
(Biomarker Discovery and Validation) within this cohort, comprises 503 incident T2D cases and their individu-
ally matched healthy controls. In BioDIVA indolepropionic acid was about 15% lower in T2D cases than in their 
matched healthy controls at baseline (P =  0.0032) and it was negatively associated with T2D incidence (OR: 0.80 
[0.70, 0.93], P =  0.003, Fig. 4B) in a crude model, and more importantly even a�er adjustment for BMI (OR: 0.74 
[0.62.0.89], P =  0.001) and further adjustment for fasting glucose (OR: 0.73 [0.61.0.88], P =  0.001). Moreover, 
ORs were re-calculated a�er excluding 95 pairs where participants had abnormal fasting glucose (≥ 5.9 mmol/L) 
or 2-h glucose at OGTT (2-h >  11.1 mmol/L) at baseline, or where cases developed diabetes during the �rst two 
years a�er baseline sampling. �is did not substantially a�ect the associations between indolepropionic acid and 
T2D risk. Furthermore, similarly as in DPS, indolepropionic acid was positively correlated with dietary �bre 
intake at baseline (r =  0.16, P =  5.4 ×  10−7).

Figure 2. Association of indolepropionic acid with insulin secretion (DI30) in DPS. Descriptive �gure of 
the course of DI30 during the follow-up according to the median cut-o� point in indolepropionic acid in non-
T2D cases. FU1: �rst post follow-up. FU2: second post follow-up. Solid line =  above median cut-o�; broken 
lines =  below median cut-o�. P =  0.04 for the di�erence between cut-o� point groups.
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Discussion
As summarized in Fig. 5, our �ndings show that indolepropionic acid, a gut microbial metabolite10–12, is associ-
ated with a reduced likelihood of progression to T2D in overweight individuals with IGT. In persons who did not 
develop diabetes within a 15-year follow-up, serum indolepropionic acid was associated with better preservation 
of β -cell function during the initial 7-year follow-up. Additionally, indolepropionic acid was directly associated 
with dietary �ber intake, suggesting a link between diet, intestinal microbiota, insulin and glucose metabolism 
and T2D risk. �e suggestive protective role of indolepropionic acid was found also in another Finnish study, 
Metsim. Furthermore, these observations were replicated in a Swedish healthy population, as the baseline indole-
propionic acid levels were associated with lower likelihood of future T2D, and likewise were correlated with 
dietary �ber intake. Interestingly, several novel PC species were also inversely associated to the development of 
T2D. Most of these lipids were associated with better insulin sensitivity in persons who did not develop T2D. 
Moreover, several amino acids and bile acids were associated with early development of T2D in line with previous 
studies1,2,13,14.

�e putative protective e�ect of serum indolepropionic acid on the development of T2D may be explained 
�rstly by its role in modulating incretin secretion from enteroendocrine L cells, more speci�cally, glucagon-like 
peptide (GLP)-115. Incretin hormones, especially GLP-1, may play a critical role in the pathogenesis of T2D16. 
Secondly, indolepropionic acid has been shown to exert potent anti-oxidative stress capacity17,18, suggesting a 

Metabolite
Traits (dependent 

variable)

Non-T2D cases (N = 104) T2D cases (N = 96)

β
Lower 
95% CI Higher 95% CI P† β

Lower 
95% CI

Higher 95% 
CI P†

Indolepropionic acid
Matsuda ISI 0.13 − 0.17 0.43 0.39 0.03 − 0.22 0.27 0.83

DI30 0.25 0.06 0.44 0.01 − 0.04 − 0.30 0.21 0.73

LPC(17:0)
Matsuda ISI 0.21 0.01 0.41 0.04 0.23 − 0.02 0.47 0.07

DI30 0.05 − 0.15 0.25 0.60 0.15 − 0.11 0.40 0.26

LPC(19:0)
Matsuda ISI 0.13 − 0.07 0.33 0.20 0.12 − 0.13 0.36 0.35

DI30 − 0.04 − 0.24 0.16 0.69 0.07 − 0.18 0.33 0.56

LPC(20:1)
Matsuda ISI 0.23 0.03 0.43 0.02 − 0.01 − 0.28 0.27 0.97

DI30 − 0.01 − 0.21 0.19 0.91 0.15 − 0.13 0.43 0.28

PC(22:6/18:2)
Matsuda ISI 0.21 0.01 0.40 0.04 − 0.12 − 0.36 0.12 0.31

DI30 0.02 − 0.18 0.22 0.82 0.05 − 0.20 0.30 0.69

PC(18:1/22:6)
Matsuda ISI 0.15 − 0.05 0.35 0.14 − 0.05 − 0.29 0.20 0.71

DI30 − 0.17 − 0.36 0.03 0.10 0.19 − 0.06 0.44 0.13

LPC(15:1)
Matsuda ISI 0.26 0.07 0.46 0.01 0.08 − 0.17 0.32 0.54

DI30 0.09 − 0.11 0.30 0.37 0.05 − 0.24 − 0.34 0.73

PC(20:4/17:0)
Matsuda ISI − 0.04 − 0.24 0.16 0.68 − 0.02 − 0.27 0.22 0.85

DI30 0.03 − 0.17 0.23 0.75 0.01 − 0.24 0.27 0.92

PC(22:6/17:0)
Matsuda ISI − 0.07 − 0.27 0.13 0.48 0.01 − 0.23 0.26 0.91

DI30 − 0.16 − 0.35 0.04 0.12 0.17 − 0.09 0.42 0.19

PC(15:1/18:2)
Matsuda ISI 0.32 0.13 0.51 0.001 0.25 − 0.01 0.51 0.06

DI30 0.17 − 0.03 0.36 0.10 0.00 − 0.27 0.27 0.99

LPE(16:0)
Matsuda ISI 0.06 − 0.14 0.26 0.57 − 0.11 − 0.36 0.15 0.40

DI30 0.03 − 0.17 0.23 0.79 − 0.07 − 0.33 0.20 0.61

PC(18:2/15:0)
Matsuda ISI 0.09 − 0.11 0.30 0.37 0.14 − 0.12 0.40 0.29

DI30 0.15 − 0.05 0.36 0.14 0.19 − 0.08 0.45 0.16

L-Phenylalanine
Matsuda ISI − 0.23 − 0.42 − 0.04 0.02 − 0.26 − 0.49 − 0.02 0.04

DI30 − 0.07 − 0.27 0.13 0.48 0.04 − 0.22 0.29 0.78

Tyrosine
Matsuda ISI − 0.36 − 0.55 − 0.17 2.7 ×  10−4 − 0.40 − 0.63 − 0.16 0.001

DI30 − 0.12 − 0.32 0.08 0.23 0.06 − 0.20 0.32 0.66

Alanine
Matsuda ISI − 0.08 − 0.27 0.12 0.45 − 0.03 − 0.31 0.25 0.82

DI30 0.17 − 0.02 0.37 0.08 0.13 − 0.15 0.42 0.35

Proline
Matsuda ISI − 0.18 − 0.38 0.02 0.08 − 0.08 − 0.32 0.17 0.53

DI30 − 0.14 − 0.34 0.06 0.18 0.09 − 0.15 0.34 0.45

Isoleucine
Matsuda ISI − 0.27 − 0.46 − 0.08 0.006 − 0.28 − 0.53 − 0.03 0.03

DI30 − 0.01 − 0.21 0.19 0.90 0.02 − 0.24 0.29 0.87

Table 3.  �e e�ect of top ranking metabolites signi�cantly associated with T2D on insulin sensitivity and 
insulin secretion during follow-up. *Non-T2D cases mean of 7 years (up to 14 years). T2D cases up to 5 years. 
†For ANCOVA models testing the e�ect of each metabolite on either one of the traits (dependent variable), 
adjusted for study group (�xed factor). Averaged measurements are calculated as: mean of years 2,3,4 and 5 in 
T2D cases and mean of years 2, 3, 4, 5 and 7 in non-T2D cases. ISI: insulin sensitivity index DI30: disposition 
index.
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possible role of this metabolite on protecting β -cell from damage associated with metabolic and oxidative stress, 
and possibly from amyloid accumulation19,20.

Diet is a major factor in�uencing the composition and metabolism of the colonic microbiota, which can elicit 
a wide range of systemic e�ects21–23. In our study, higher serum indolepropionic acid was directly associated with 
the intake of total �ber, mainly originated from whole grains. We con�rmed this observation by serum alkylre-
sorcinol measurements24. Indolepropionic acid is a microbiota-produced deamination product of the amino acid 
tryptophan. �e type of carbohydrate ingested and pH level can a�ect the production of metabolites as indole 
compounds by the intestinal micro�ora10,11. We hypothesize that high intake of dietary �ber and whole grain 
cereal products may change gut microbiota towards a higher production of indolepropionic acid, thereby promot-
ing preservation of insulin secretion capacity. �is hypothesis �ts well with previous observational �ndings on 
the protective role of �ber25 and low-fat high-complex carbohydrate diet for T2D21. �e role of microbiota in e.g. 
e�cient conversion of complex indigestible dietary carbohydrates into short-chain fatty acids and maintenance 
of gut microbiome carbohydrate fermentation seem to be important to maintain gut and systemic health22,26.

We identi�ed several LPCs and PCs that were inversely associated with T2D incidence. �e PCs are the major 
glycerophospholipids in eukaryotic cells and an essential component of cellular membranes. In animal models, 
LPCs have been reported to induce insulin secretion from pancreatic β -cells27, to directly activate glucose uptake 
by adipocytes and to lower blood glucose levels in models of Type 1 diabetes and T2D28. About half of the PCs 

Figure 3. Correlation matrix (Pearson correlation coe�cients) of identi�ed top ranking metabolites with 
energy-adjusted dietary intake. CHO: carbohydrates; SAFA: saturated fat; MUFA: monounsaturated fat; 
PUFA: polyunsaturated fat.

Figure 4. (A) Changes in indolepropionic acid (IPA) in cases and non-cases of T2D in METSIM study 
(n =  110). Changes are calculated as measurement at follow-up minus baseline and given as mean and 95% CI. 
�e asterisk denotes P =  0.010 for the association between the changes in IPA and T2D (case or non-case at 
5-year follow-up) a�er applying ANCOVA adjusted for baseline IPA. (B) Association of baseline IPA with T2D 
in BioDIVA study (P =  0.003, a�er applying conditional logistic regression, n =  1006).
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identi�ed in our study were directly associated with IS during the follow-up and inversely correlated with total 
saturated fat intake and circulating levels of hsCRP. �erefore, the protective e�ect of these metabolites on T2D 
might occur at least partly through its in�uence on IS29 and perhaps low-grade in�ammation30,31.

�e protective lipid metabolites in our study had mainly long-chain unsaturated and odd-chain fatty acids 
in their structure, e.g. 15:0 and 17:0. Odd-chain fatty acids in blood phospholipids are considered as biomarkers 
of dairy intake, although inconsistently, and have been related with reduced T2D incidence32–34. Gut microbiota 
is also related to the regulation of lipid homeostasis35, e.g. some lipid species, such as triacylglycerol containing 
odd-chain fatty acids, are linked to certain gut microbiota, and not necessarily to dietary fat intake34. In this 
regard, we found that indolepropionic acid was positively correlated with odd-chain fatty acid containing PCs, 
also suggesting that these metabolites could result from the metabolism of microbiota. Until now, only LPC18:2 
and LPC17:0 have been reported in the literature to predict T2D2,36–38, and therefore our �ndings regarding the 
other lipid species are novel.

We also observed that certain serum amino acid metabolites already shown to be directly associated with T2D, 
insulin resistance and glucose metabolism1–3,39–41, increased the likelihood of T2D. Similarly, several metabolites 
identi�ed as bile acids were related to the development of T2D and, overall, were positively correlated with the 
amino acids associated with T2D, especially with the ones putatively a�ecting IS. Interestingly, when addressing 
the likelihood of T2D separately in the control and lifestyle groups of the DPS, we found that in particular tyros-
ine and proline interacted with lifestyle, indicating that the deleterious metabolism resulting in their increase 
and consequent development of T2D can be diminished by lifestyle intervention that includes changes in body 
weight, exercise and the quality of diet.

Recently, the concept that bile acids can act as metabolic modulators of lipid and glucose metabolism has 
arisen42–44. Even though most of these bile acids lost their association with T2D a�er taking into account the 
e�ect of insulin and glucose metabolism, recent �ndings showed considerably increased values of most of these 
bile acids in plasma of T2D patients compared to healthy subjects13. In addition, the observed di�erences in the 
circulating bile acid levels in individuals at risk of T2D are likely attributed to the altered composition of gut 
microbiota45. Moreover, most of the top signi�cant metabolites containing odd-chain fatty acids in our study were 
inversely associated with the bile acid metabolites related to increased T2D risk, therefore reinforcing that these 
lipid species may result from microbiota activity and not necessarily directly from dietary intake. Taken together, 
our results suggest that T2D is predicted by circulating metabolites re�ecting gut microbiota composition and 
function. �e observed inverse relationship of low-grade in�ammation estimated by hsCRP with protective lipid 
metabolites and indolepropioinic acid support this view46,47.

Our study has some limitations. First of all, we did not have baseline samples available from the DPS study, 
and therefore we had to use the samples collected one year a�er the onset of the study. Additionally, insulin 
secretion and IS were not measured either by the hyperinsulinemic-euglycemic clamp or the intravenous glucose 
tolerance test (IVGTT). Instead, we used an IVGTT for validation of the indices7. Strengths of the present study 
include the well characterized and homogenous study population (obese, middle-aged individuals with IGT), and 

Figure 5. Summary of the study set-up and major �ndings. �e non-targeted LC-MS based metabolite 
pro�ling was conducted within the Finnish Diabetes Prevention Study (DPS) by examining two groups of 
individuals who took part in the (DPS); those who either early (within �ve years) developed T2D (n =  96) or 
did not convert to T2D within the 15-year follow-up (n =  104). Key �ndings included the inverse association of 
indolepropionic acid with T2D risk. �is �nding was replicated in two additional cohorts, Biomarker Discovery 
and Validation (BioDIVA, 503 incident T2D cases and matched healthy controls), and Metabolic Syndrome in 
Men (METSIM, baseline and follow-up samples from 110 participants free of T2D at baseline from which 55 
were diagnosed with T2D at the 5-year follow-up). Indolepropionic acid was associated with dietary �ber intake 
in the DPS and BioDIVA studies, whereas in METSIM such data was not available.
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yearly measurements of insulin secretion and sensitivity estimates during a long period of follow-up of a carefully 
conducted lifestyle intervention study population. A particular strength of our study is that we were able to �nd 
a suggestive association between indolepropionic acid and the incidence of T2D among Finnish men in a small 
sub-sample of the Metsim study and �nally to replicate the inverse association of indolepropionic acid with T2D 
risk in an independent study in a Swedish men and women. Furthermore, in that study indolepropionic acid was 
also associated with �ber intake. �ese results are convincingly suggesting a potential biological role for indole-
propionic acid, and they highlight the importance of the explorative metabolite pro�ling approach in bringing 
out novel �ndings that can subsequently be addressed in focused examinations for replication and eventually 
validation.

In this study, we observed a link between diet - especially �ber, intestinal microbiota, insulin and glucose 
metabolism and T2D risk. We therefore propose that gut-microbiota derived indolepropionic acid is a compound 
that has a protective role concerning the development of T2D. �e possible role of indolepropionic acid in medi-
ating the association of preservation of β -cell function with lower risk of developing T2D, and of the speci�c lipid 
metabolites exerting their protective e�ects partly through enhancing insulin sensitivity and lowering in�amma-
tion require further investigation.

Methods
Study participants. �e DPS was a randomized, controlled, multicenter study carried out in Finland between 
the years 1993 and 2001 (ClinicalTrials.gov NCT00518167). A total of 522 individuals with BMI >  25 kg/m2,  
age 40–64 years, and IGT based on the mean values of two 75 g glucose oral glucose tolerance tests (OGTT) and 
on WHO 1985 criteria were randomly allocated into either a lifestyle intervention or control group in �ve centers 
during 1993 to 1998 (Supplementary Fig. S1). A�er a mean four-year intervention (active study) period, the 
post-intervention follow-up was carried out with annual examinations. �e DPS study design and methods have 
been reported in detail elsewhere6,48 and are brie�y described in the online supplementary methods. �e study 
protocol was approved by the Ethics Committee of the National Public Health Institute of Helsinki, Finland. �e 
study design and procedures of the study were carried out in accordance with the principles of the Declaration of 
Helsinki. All study participants provided written informed consent.

In the DPS the main end-point was diagnosis of T2D de�ned by the WHO 1985 criteria (plasma fasting glu-
cose ≥ 7.8 or 2-h glucose ≥ 11.1) to be con�rmed by a repeated positive OGTT and veri�ed by a physician. At 
baseline and at annual visits, individuals completed a medical history questionnaire and a 3-d dietary record, and 
underwent physical examination including anthropometric measurements and an OGTT6,48. �e completeness 
of the food records was checked by the study nutritionist during each study visit6. In the present study, we also 
measured total alkylresorcinols and C17:0/C21:0 ratio, biomarkers of whole grain intake or relative whole grain 
rye intake, respectively, according to Wierzbicka et al.49, in serum samples at 1-year follow-up.

A�er the intervention (active study) period, the post-intervention follow-up was carried out with annual 
examinations. �e individuals free of T2D participated in the post-intervention follow-up study at least once6.

Study design. �e present study was designed to include a selected subgroup of 200 participants from DPS 
(Table 1) who had fasting serum samples available from the �rst year visit of the active study period (1-year 
follow-up). �ese participants were either diagnosed with T2D during the �rst �ve years of the follow-up (N =  96; 
“cases”) or remained free of T2D (N =  104; “non-cases”) during the 15-year follow-up since the beginning of 
the DPS (Supplementary Fig. S1). �e purpose of this exploratory design was to separate the extremes in terms 
of development of T2D within the follow-up to best characterize the early metabolic di�erences related to the 
increased risk of the disease.

Laboratory determinations. Glucose and insulin levels were determined as previously described7. In the 
DPS, during 1993 to 1996 a baseline 2h-OGTT was performed (75 g oral glucose load) with fasting and 2-h 
samples for glucose and insulin and during follow-up visits starting from the middle of 1996, samples were also 
taken for 30 min insulin and glucose measurements7. High sensitive C-reactive protein was measured in fasting 
serum at metabolomics sampling using an IMMULITE®  2000 Systems Analyzer according to the manufacturer 
instructions (Siemens Healthcare Diagnostics, Inc. Tarrytown, NY).

Calculations. As surrogate indices of the �rst/early-phase insulin secretion and of peripheral IS we used 
the disposition index30 (DI30) and the Matsuda index of IS (Matsuda ISI), respectively, which were calculated as 
previously validated from an OGTT7,50,51.

In converters to T2D (cases) Matsuda ISI or DI30 annual values were averaged from the available yearly meas-
urements at years 2, 3, 4 and 5, and in non-converters (non-cases), the �rst two post study follow-up measure-
ments were also included.

Non-targeted LC-MS metabolite profiling analysis. An aliquot (100 µ L) of stored (− 80 °C) fasting 
serum samples was mixed with 400 µ L of acetonitrile (ACN; VWR International, Leuven, Belgium), and mixed in 
vortex at maximum speed 15 s, incubated on ice bath for 15 min to precipitate the proteins, and centrifuged at 16 
000 ×  g for 10 min to collect the supernatant. �e supernatant was �ltered through 0.2 µ m PTFE �lters in a 96 well 
plate format. Aliquots of 2 µ L were taken from at least half of the plasma samples, mixed together in one tube, and 
used as the quality control sample in the analysis. Additionally a solvent blank was prepared in the same manner.

�e samples were analyzed by the UHPLC-qTOF-MS system (Agilent Technologies, Waldbronn, Karlsruhe, 
Germany) that consisted of a 1290 LC system, a Jetstream electrospray ionization (ESI) source, and a 6540 UHD 
accurate-mass qTOF spectrometerry. �e samples were analyzed using two di�erent chromatographic tech-
niques, i.e. reversed phase (RP) and hydrophilic interaction (hilic) chromatography. Data were acquired in both 
positive (+ ) and negative (− ) polarity. �e sample tray was kept at 4 °C during the analysis. �e data acquisition 
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so�ware was MassHunter Acquisition B.04.00 (Agilent Technologies). �e quality control and the blank samples 
were injected a�er every 12 samples and also in the beginning of the analysis. �e sample order of the analysis 
of the samples was randomized. Details on the technical procedures and parameters are described in the online 
supplementary methods.

Data collection. Data were collected with “Find by Molecular Feature” algorithm in MassHunter Qualitative 
Analysis B.05.00 so�ware (Agilent Technologies, USA). �e extraction algorithm was set to collect peaks with 
threshold at 200 counts, and the allowed ion species were limited to [M +  H]+  and [M +  Na]+  in ESI(+ ), and 
[M−H]−  and [M+Cl]− , in ESI(− ). Only signals over compound height threshold of 2500 counts contain-
ing least with two ions were included in the compound list. Peak spacing tolerance for isotope grouping was 
0.0025 m/z plus 7 ppm, with isotope model for common organic molecules. Data �les (.cef-format) were exported 
to Mass Pro�ler Professional (Agilent Technologies) for peak alignment. A�er the �rst initial alignment, the data 
were combined in one.cef �le, against which the original raw data was reanalyzed. For this recursive analysis, 
compound mass tolerance was±15 ppm, retention time±0.2 min and symmetric expansion value for chromato-
grams ± 10 ppm. Resulting compounds were re-exported to Mass Pro�ler Professional so�ware for peak align-
ment and data cleanup. �e number of collected metabolite features from RP(+ ), RP(− ), hilic(+ ), and hilic(− ) 
was 2775, 2905, 1871, 1056, respectively.

In the case of the BioDIVA cohort (See “Validation cohorts”), the data collection and deconvolution was per-
formed with XCMS52. �e R program based pipeline, ‘batchCorr’ was used for alignment correction and within- 
and between-batch signal normalization53.

Selection of metabolites to be identified. To account for non-normal distributions, metabolomics 
data were transformed using rank-based inverse normal transformation. Logistic regression for comparisons 
between T2D cases and non-cases as the dependent variable and further adjusted for study group was applied. 
�e P-values were adjusted for multiple testing using Benjamini-Hochberg false discovery rate (FDR) within 
each analytical approach. FDR-P <  0.05 was considered to be statistically signi�cant and a P <  0.05, nominally 
signi�cant.

We �rst ranked the metabolites, according to their statistical signi�cance applying the cut-o� FDR-P <  0.05, 
as explained in the methods above. Additionally, the relative di�erence in average peak area value between cases 
and non-cases had to be at least 5%. In order to further remove noise and insigni�cant signals, only metabolic fea-
tures found in at least 30 cases or controls with relative peak area abundance of > 50000 counts were considered 
relevant. A�er this �ltering procedure, the number of statistically signi�cant metabolite features was 243, 176, 
125, and 56, in RP(+ ), RP(− ), hilic(+ ), and hilic(− ), respectively. Notably, in the hilic(+ ) mode, altogether 53 
signals were related to the hexose sugar, re�ecting the disturbance of glucose metabolism related to T2D risk, and 
were not considered for further study. �e di�erential metabolites were identi�ed based on the MS/MS spectral 
comparison with pure standard compounds, or via search of the candidate compounds in the databases including 
the Human Metabolome database, METLIN, ChemSpider and SciFinder, and the results veri�ed with the MS/
MS spectral features included in the databases or reported in earlier publications. In Supplementary Table 1 we 
present the metabolites associated with T2D that survived correction for multiple comparisons and their corre-
sponding identi�cation level.

For the metabolites that remained signi�cant a�er the adjustments for multiple testing, ANCOVA models 
were applied to examine the e�ect of each metabolite on the averaged subsequent study follow-up years Matsuda 
ISI or DI30 by T2D conversion group. Cases at 1-year follow-up were excluded for this purpose.

We also investigated the associations between metabolites and T2D by logistic regression models where we 
adjusted for the characteristics that di�ered signi�cantly between cases and non-cases at serum sampling in order 
to control for confounding. Conditional logistic regression was used for testing the association between indole-
propionic acid and T2D in BioDIVA study.

Cross-sectional correlations were calculated using Pearson’s product (r) between metabolites and dietary 
intake or hsCRP. For the correlation analyses, the mean daily nutrient intakes were previously energy-adjusted54 
due to the high correlation between the intake of energy and each individual nutrients. A two-sided P value of < 
0.05 was considered statistically signi�cant for all described secondary analyses.

Validation cohorts. In order to test if the results obtained in relation to indolepropionic acid could be rep-
licated, two dietary studies were examined.

A random selection of 110 subjects participating in the prospective population-based METSIM cohort, which 
includes 10,197 Finnish men aged 45–73 years and examined in 2005–2010 (See Supplementary Methods online)8 
were analysed for the relationship between the metabolite indolepropionic acid and T2D development found 
in DPS. From these 110 participants who were free of T2D at baseline, 55 developed T2D (cases) and 55 
remained free of T2D (control) during a mean of 5.9-year follow-up. Indolepropionic acid data derived from 
the non-targeted metabolomics analyses were available from baseline and follow-up. A written informed con-
sent was obtained from all study subjects. �e study was approved by the Ethics Committee of the University of 
Eastern Finland and Kuopio University Hospital. �e study design and procedures of the study were carried out 
in accordance with the principles of the Declaration of Helsinki.

Additionally, a total number of 503 matched case-control pairs were included in the study BioDIVA, utiliz-
ing the DiabNorth diabetes registry to form a study nested within the Västerbotten Intervention Programme 
(VIP) cohort, which is one of the sub-cohorts of the Northern Sweden Health and Disease Study (NSHDS)9. 
Cases had a median follow-up time of 7-year before T2D diagnosis and were individually matched to healthy 
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controls at baseline. A written informed consent was obtained from all study subjects. �e study was approved 
by the regional ethical review board in Uppsala. �e study design and procedures of the study were carried out in 
accordance with the principles of the Declaration of Helsinki.
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