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Abstract 

Corynantheine alkaloids with a tetracyclic indole[2,3-a]-quinolizidine motif are an important 

issue in academia and in the life science industries due to their broad bioactivity profile ranging 

from antiarthritic, analgesic, anti-inflammatory, antiallergic, antibacterial, to antiviral activities. 

For that reason, in the last decades, numerous efforts have been invested in the development of 

novel synthetic strategies to obtain the indole[2,3-a]-quinolizidine system. This review focuses 

on the synthetic methodologies developed to target the most important alkaloids of this family, 

and highlights the potential use of these alkaloids or analogs to treat several diseases, ranging 

from cancer to neurodegenerative disorders. 
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Introduction 

Corynantheine alkaloids with a tetracyclic indole[2,3-a]-quinolizidine motif are of great interest 

for academia and pharmaceutical companies due to their broad bioactivity profile. In fact, this 

type of indole alkaloids have been described with different biological activities, ranging from 

antiarthritic, analgesic, anti-inflammatory, to anti-cancer activities. For this reason, in the last 

decades, numerous efforts have been invested in the development of novel synthetic strategies 

to obtain the indolo[2,3-a]quinolizidine system present in numerous monoterpenoid-derived 

alkaloids.[1-3] Since the chirality of the corynantheine alkaloids is crucial for the expression of 

bioactivity, there is a huge interest in the development of new enantioselective synthesis to 

obtain indolo[2,3-a]quinolizidine alkaloids. In particular, several research studies (development 

of novel synthetic strategies and biological evaluation) have been conducted with corynantheine 

alkaloids, such as dihydrocorynantheine (1), corynantheine (2), dihydrocorynantheol (3), 

hirsutine (4), hirsuteine (5), and geissoschizine methyl ether (6) (Figure 1). This review focus on 

the pharmacological and therapeutic interest of indolo[2,3-a]quinolizidines and the most recent 

advances in asymmetric synthetic strategies to obtain the main skeleton of these indole 

alkaloids. All the papers described in this review were found using Scifinder, PubMed, and Web 

of Science databases.  

  

 

Figure 1 – Examples of corynantheine alkaloids. 

 



4 

 

1. Biological activities of indolo[2,3-a]quinolizidine alkaloids 

 

1.1 Arborescidine A and desbromoarborescidine A 

In 1966, it was described the isolation of 1,2,3,4,6,7-hexahydro-12H-indolo[2,3-a]quinolizine 

alkaloid (latter called desbromoarborescidine A) from Dracontomelum mangiferum.[4] The 

cardiovascular activities of desbromoarborescidine A (7) and five natural product analogs 8-12 

(Figure 2) were evaluated by studying the effect of these alkaloids in blocking Alpha-1 and 

Alpha-2 adrenoceptors. Desbromoarborescidine A (7) showed a strong blocking activity of the 

adrenoceptors compared with the other 5 alkaloids. In fact, the presence of a hydroxyl group at 

position 1 led to loss of activity.[5] 

In 1993, it was described the isolation of the brominated indole alkaloid arborescidine A (13) 

from the marine tunicate Pseudodistoma arborescens.[6] The antiproliferative activity of 

desbromoarborescidine A (7) and arborescidine A (13) (Figure 2) was evaluated in vitro against 

several tumor cell lines (lung fibroblasts, gastric adenocarcinoma, leukemia and others). 

Arborescidine A (13) showed an IC50 value of 34.5 µM for leukemia, while 

desbromoarborescidine A (7) was weakly active in all tumor cell lines tested (IC50 higher than 

50 µM).[7]  

  

 

Figure 2 – Chemical structure of desbromoarborescidine A (7), indoloquinolizidines 8-12, and 

arborescidine A (13). 
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1.2 Dihydrocorynantheine (1), corynantheine (2), and derivatives  

In the late 80’s Chang et al. reported the effects of dihydrocorynantheine (1) (see Figure 1) in 

arterial pressure. The alkaloid was extracted from the dried leaves and stems of Uncaria 

Callophylla and the studies demonstrated that dihydrocorynantheine (1) can effectively lower 

the arterial pressure in both anaesthetized and conscious normotensive rats.[8] 

Later, Masumiya et al. described that dihydrocorynantheine (1) showed direct effects on the 

potential action of cardiac muscle through inhibition of multiple ion channels, which could 

explain their negative chronotropic and antiarrhythmic activity.[9] 

In 2000, dihydrocorynantheine (1), corynantheine (2), and corynantheidine (14) were isolated 

from bark of Corynanthe pachyceras K. Schum. (Rubiaceae). These alkaloids, and two 

corynantheidine racemic synthetic derivatives 15-16 (Figure 3), were tested against Leishmania 

major promastigotes. All compounds were active for Leishmania, presenting IC50 values 

between 0.7 and 2.8 µM. The three alkaloids were also evaluated for antiplasmodial and 

cytotoxic activities but revealed to be inactive.[10] 

 

 

Figure 3 – Chemical structure of corynantheidine (14) and two synthetic derivatives 15-16. 

 

1.3 Dihydrocorynantheol (3) and derivatives 

In 2011, Fröde’s research group reported for the first time the anti-inflammatory effects of 

dihydrocorynantheol (3) (see Figure 1), an alkaloid isolated from Esenbeckia leiocarpa. 

Dihydrocorynantheol (DHC) (3) was shown to play a pivotal role in the anti-inflammatory 

effect exercised by this herb by preventing the IκB α ubiquitination and consequent degradation, 

inhibiting thus the NF-κB cascade and, consequently, the production of several pro-

inflammatory mediators, such as IL-1β and TNF-α.[11]  
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A series of ester dihydrocorynantheol derivatives (DHC-acetyl 17, DHC-p-methylbenzoyl 18, 

DHC-benzoyl 19, DHC-p-methoxybenzoyl 20 and DHC-p-chlorobenzoyl 21) (Figure 4) were 

also tested as anti-inflammatory agents. It was observed that protection of the hydroxyl group 

resulted in a decrease of activity, which indicates that the presence of a hydroxyl group in the 

chemical structure of dihydrocorynantheol (3) is important for the activity of this alkaloid 

against inflammation.[12] 

 

Figure 4 - Chemical structure of dihydrocorynantheol (3) and indoloquinolizidines 17-21. 

 

1.4 Hirsutine (4), hirsuteine (5), geissoschizine methyl ether (6) and derivatives 

Hirsutine (4), hirsuteine (5) and geissoschizine methyl ether (6) (see Figure 1) are the primary 

constituents of Uncaria sp. Hirsutine (4), isolated from Uncaria rhynchophylla (traditional 

Chinese herb medicine), was described to possess antihypertensive and antiarrhythmic activities 

through modulation of the intracellular Ca2+ levels in rat thoracic aorta[13] and action potential 

in cardiac muscle[9]. Moreover, hirsutine (4) was shown to be effective in the protection of rat 

cardiomyocytes from hypoxia-induced cell death.[14] Moreover, the effects of hirsutine (4), 

hirsuteine (5) and geissoschizine methyl ether (6) (Figure 1), extracted from Uncariae Ramulus 

et Uncus, were evaluated on vascular responses. Geissoschizine methyl ether (6) proved to be 

14 times more active (EC50 = 0.744µM) than hirsutine (4), in norepinephrine-induced 

vasocontractive response. Also, geissoschizine methyl ether (6) was shown to have two 

different mechanisms of action: endothelium dependency with nitric oxide and endothelium 

independency with voltage-dependent Ca2+ - channel blocking. Therefore, geissoschizine 

methyl ether (6) might be a candidate for vasodilative or antihypertensive medicines.[15]  

In 2011, villocarine A (Figure 5) was isolated from the leaves of Uncaria villosa (Rubiaceae). 

In that report, the authors describe villocarine A as a new indole alkaloid, however the structure 
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is identical to the indole alkaloid 3-epi-geissoschizine methyl ether (22). Villocarine A showed 

potent vasorelaxant effects at 30 µM in rat aortic ring assays, revealed some inhibition effect on 

vasocontraction of depolarized aorta with high concentration potassium, and showed inhibition 

effect on phenylephrine (PE)-induced contraction in the presence of nicardipine in a Ca2+ 

concentration-dependent manner.[16, 17]  

In 2011, T. Ueda et al. demonstrated that geissoschizine methyl ether (6) is a partial agonist at 

the serotonin 5-HT1A receptor, a partial agonist/antagonist at the dopamine D2L receptor and an 

antagonist at the serotonin 5-HT2A, 5-HT2C and 5-HT7 receptors. The pharmacological profiles 

of geissoschizine methyl ether (6) were similar to aripiprazole (commercial drug used for the 

treatment of schizophrenia and related disorders), however, geissoschizine methyl ether (6) was 

less potent than aripiprazole at dopamine D2L receptors (EC50=4.4 μM for geissoschizine methyl 

ether (6) vs. EC50=56 nM for aripiprazole).[18] Moreover, in 2012, gissoschizine methyl ether 

(6) was described as a potential acetylcholinesterase inhibitor. In this study, hirsutine (4), 

hirsuteine (5), and vallesiachotamine (23) (Figure 5), extracted from the hooks of Uncaria 

Rhynchophylla, were also tested. The results showed an inhibition of 50% of 

acetylcholinesterase activity at concentrations of 3.7±0.3 μg mL-1 for geissoschizine methyl 

ether (6). Hirsutine (4), hirsuteine (5), and vallesiachotamine (23) were weakly active against 

acetylcholinesterase.[19] Moreover, turbinatine (24) (Figure 5),[20] a corynanthean-type indole 

alkaloid, with a similar structure with geissoschizine methyl ether (6), inhibited 

acetylcholinesterase with an IC50 of 0.99 μg mL-1.[19]  

The efficacy of hirsutine (4) on neuroinflammation control was also explored. It was shown that 

hirsutine (4) reduces the production of several neurotoxic factors in activated microglial cells 

and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity. In 

particular, in organotypic hippocampal slice cultures, hirsutine (4) blocked lipopolysaccharide-

related hippocampal cell death and production of nitric oxide, prostaglandin E2 and interleukin-

1β.[21] 

In 2014, a new alkaloid, 4-geissoschizine N-oxide methyl (25) (Figure 5), was isolated from the 

hook-bearing branch of Uncaria rhynchophylla. The neuroprotective effects of this compound, 
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and 5 other alkaloids [hirsutine (4), hirsuteine (5), 4-hirsuteine N-oxide (26), geissoschizine 

methyl ether (6), 3-epi-geissoschizine methyl ether (22)] were evaluated against 3mM 

glutamate-induced HT22 cell death. The 4-geissoschizine N-oxide methyl ether (25) and 4-

hirsuteine N-oxide (26) compounds revealed to be weak neuroprotective agents. On the other 

hand, the remaining compounds showed potent neuroprotective effects against glutamate 

induced HT22 cell death.[22] 

 

 

Figure 5 – Chemical structure of 3-epi-geissoschizine methyl ether (22), vallesiachotamine (23), 

turbinatine (24), 4-geissoschizine N-oxide methyl ether (25), 4-hirsuteine N-oxide (26). 

 

Hirsutine (4) was also identified as an anti-metastatic by targeting nuclear factor-kB activation 

from a screening of 56 natural product derivatives. In particular, hirsutine (4) strongly 

suppressed NF-kB activity in murine 4T1 breast cancer cells, reducing the metastatic potential 

of 4T1 cells. Moreover, hirsutine (4) reduced the in vivo lung metastatic potential of 4T1 cells. 

These results indicate that hirsutine (4) can be an attractive lead compound for reducing the 

metastasis potential of cancer cells.[23]  

 

 

1.5 Arboricinine and arboricine 
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Arboricinine (27) and arboricine (28) (Figure 6) were isolated from stem-bark extract of the 

Malayan Kopsia arborea. These indoloquinolizidines revealed moderate cytotoxicity against 

KB/VJ300 cell lines, a vincristine-resistant human oral epidermoid carcinoma, with IC50 values 

around 30 µM.[24] 

 

Figure 6 – Chemical structure of arboricinine (27) and arboricine (28). 

 

1.6 Vallesiachotamine 

In 1981, Z-vallesiachotamine (29) (Figure 7), a monoterpene indole alkaloid, isolated from 

Rhaza stricta, was reported to have anticancer properties on a carcinoma cell line.[25] Latter, 

the in vitro antiproliferative activity of vallesiachotamine isolated from the leaves of Policourea 

rigida was investigated on human melanoma cells. The compound presented an IC50 value of 

14.7 µM in SK-MEL-37 melanoma cells (two times more active than doxorubicin), induced 

accumulation of melanoma cells in the G0/G1 growth phase and increased the proportion of 

sub-G1 hypodiploid cells (at 11 µM and 22 µM). Moreover, at 50 µM, vallesiachotamine 

caused extensive cytotoxicity and necrosis.[26]  

Vallesiachotamine was also tested for therapeutic targets involved in neurodegeneration. In 

particular, extracts obtained from Psychotria laciniata containing Z-vallesiachotamine (29), and 

E-vallesiachotamine (30) (Figure 7) as major compounds, showed high potency against 

monoamine oxidase A (MAO-A) and only moderate potency against monoamine oxidase B 

(MAO-B).[27] Moreover, Z-vallesiachotamine (29), E-vallesiachotamine (30), and 

vallesiachotamine lactone (31) (Figure 7) were shown to inhibit butyrylcholinesterase (BChE) 

and MAO-A with IC50 values ranging from 7.08 to 14 µM for BChE inhibition and from 0.85 to 

2.14 µM for MAO-A inhibition.[28] Finally, using a computational structure-based approach, it 

was investigated if these three alkaloids bind sirtuin 1 and sirtuin 2. The compounds 
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demonstrated a SIRT1 inhibitory profile comparable to that of sirtinol (nonspecific SIRT 

inhibitor). Opposite to Z-vallesiachotamine (29) and E-vallesiachotamine (30), 

vallesiachotamine lactone (31) demonstrated no apparent toxicity on Hek 293 and on rat 

astrocyte primary cells.[29] These findings are in line with the study of Z-vallesiachotamine 

(29) on human melanoma cells.[26] 

 

 

Figure 7 – Chemical structure of Z-vallesiachotamine (29), E-vallesiachotamine (30), and 

vallesiachotamine lactone (31). 

 

1.7 Mitragynine and derivatives 

In 2005, Matsumoto et al. have studied the effect of mitragynine (32) (Figure 8), a major indole-

alkaloid founded in Thai medicinal herb Mitragyna speciosa, on neurogenic contraction of 

smooth muscle. The results demonstrated that mitragynine (32) inhibited the contraction of 

guinea-pig vas deferens produced by electrical transmural stimulation. More precisely, 

mitragynine (32) was found to block T- and L-type Ca2+ channel currents and reduced KCl-

induced Ca2+ influx in N1E-115 neuroblastoma cells.[30]  

One year later, 7-hydroxyspeciociliatine (33) (Figure 8) was isolated, for the first time, from the 

fruits of Malaysian Mitragyna speciosa Korth. The opioid agonistic activity of this alkaloid and 

7-hydroxymitragynine (34) was investigated in guinea-pig ileum experiments. The results 

demonstrated that 7-hydroxyspeciociliatine (33) had a weak stimulatory effect on µ-opioid 

receptors,[31] while 7-hydroxymitragynine (34) had moderate opioid agonist activity, as 

reported previously.[32, 33]  

Also, 9-demethyl analogue of mitragynine, 9-hydroxycorynantheidine (35) (Figure 8), 

synthesized from mitragynine, was reported as a partial agonist of opioid receptors. The 
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receptor binding assays revealed that 9-hydroxycorynantheidine (35) has affinity for three 

opioid receptor types. In particular, 9-hydroxycorynantheidine (35) (Figure 8) presented pKi 

values of 7.92, 4.51 and 5.53, for µ-, δ- and κ-opioid receptors, respectively. The results show 

that 9-hydroxycorynantheidine (35) has a high affinity and selectivity for µ-opioid 

receptors.[34]  

Also, recently Shamima et al. investigated the action of mitragynine (32) as antinociceptive 

agent. The goal of this study was to understand if mitragynine (32) acts on Cannabinoid 

receptor type 1. The results demonstrated that mitragynine (32) doesn’t act on Cannabinoid 

receptor type 1 but through activation of opioid receptor system, more precisely on μ- and δ-

opioid receptors.[35] 

More recently, two derivatives of 7-hydroxymitragynine (compounds 36 and 37, Figure 8), were 

synthesized in order to develop dual-acting μ- and δ-opioid agonists. Compound 37 was shown 

to be more potent, in vitro and in vivo, than compound 36 and 7-hydroxymitragynine (34). 

Compound 37 exhibited a high affinity for μ- and δ-opioid receptors, with Ki values of 2.1 and 

7.0 nM, respectively, while compound 36 reveled Ki values of 6.4 nM (μ-opioid receptor) and 

16.0 nM (δ-opioid receptor). Moreover, the antinociceptive effect of compound 37 was 

approximately 240 times more potent than that of morphine in a mouse tail-flick test and, for 

this reason compound 37 could be used as potential therapeutic agent for treating neuropathic 

pain.[36] 
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Figure 8 – Chemical structure of mitragynine (32), 7-hydroxyspeciociliatine (33), 7-

hydroxymitragynine (34), 9-hydroxycorynantheidine (35) and indoloquinolizidines 36-37. 

 

1.8 Non-natural indolo[2,3-a]quinolizidine derivatives 

Takanawa et al., reported the synthesis of 10 mitragynine derivatives in order to perform a 

structure-activity relationship study. The rational was based on the fact that mitragynine (32) 

has analgesic activity. The effects of corynantheidine (14) (Figure 3), mitragynine (32) (Figure 

8), synthetic derivatives 35, 38-46, and speciociliatine (47) (Figure 9) were evaluated on opioid 

receptors, using electrically stimulated contraction in isolated guinea pig ileum. Seven 

compounds (compounds 32, 35, 42-43, and 45-47) revealed an interesting potency against 

opioid receptors (Graph 1).  

 

Figure 9 – Chemical structure of mitragynine derivatives 38-46 and speciociliatine (47). 
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The potency of mitragynine (32) revealed to be one-fourth of morphine (standard compound 

that has a relative potency of 100%). The 9-demethoxy analogue of mitragynine, i.e. 

corynantheidine (14), did not show any opioid agonistic activity. However, analysis of its 

effects on twitch contraction inhibited by morphine, atropine, and verapamil in electrically 

stimulated guinea pig ileum, showed that corynantheidine (14) inhibits the effect of morphine 

via functional antagonism of opioid receptors. On the other hand, 9-hydroxycorynantheidine 

(35) inhibited electrically induced twitch contraction in guinea pig ileum and revealed relative 

potency higher than mitragynine (32). The introduction of the acetoxy group on the indole ring 

(compound 42), led to marked reduction in both intrinsic activity and potency as compared with 

those of mitragynine (32) (Graph 1). Mitragynine derivative 41 did not show any opioid agonist 

activity, which indicates that the functional groups at the C9 position are very important for the 

activity of these compounds. 

Speciociliatine (47), a C-3 stereoisomer of mitragynine (32), could be found as a minor 

constituent on Mitragyna speciosa. This compound reveled to be 14-fold weaker than 

mitragynine (32). The introduction of a methoxy or an ethoxy group at the C-7 position, 

respectively, compounds 45 and 46, led to a dramatic reduction in potency for opioid receptors 

and, which indicates that the hydrogen atom at the C-7 position in mitragynine (32) has an 

important role for the activity. Finally, compound 44, showed a relative potency 13- and 46-fold 

higher for opioid receptors than those of derivative 39 and mitragynine (32), respectively. 

Compound 44 demonstrated affinity also for δ- and κ-receptors. 

The relative affinities of compounds 14, 32, 35 and 44, for the three opioid receptors (µ, δ and 

κ), were determined using receptor binding assay (Graph 2) using morphine as comparison 

standard. The results show that these compounds have relatively high selectivity for µ-receptors. 

Moreover, mitragynine (32) revealed some affinity for δ-receptor, while compound 44 

demonstrated affinity for both δ- and κ-receptors.[37]  
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Graph 1 - Relative potency of seven compounds with interesting activities for opioid receptor. 

 

 
 

Graph 2 - Relative affinity of indoloquinolizidines 14, 32, 35, 44 for µ, δ, and κ receptor types. 

 

Waldmann et al. evaluated a collection of approximately 11000 natural-product derived and 

inspired compounds as apoptosis inducers. From that library, seven indoloquinolizidine 

derivatives 48-54 (Figure 10) were considered potential apoptosis inducers in three human 

tumor cell lines, presenting values of IC50 around 2 µmol L-1 in HeLa (cervix), MCF-7 (breast) 

cell lines and in HepG2 (liver, with slightly lower efficiency) cell lines.[38]  
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Figure 10 - Chemical structure of indoloquinolizidine derivatives 48-54. 

 

A series of 20 indolo[2,3-a]quinolizidine-peptide hybrids was synthesized and evaluated for D1 

dopamine receptors (D1R) and D2 dopamine receptors (D2R). Two diastereomeric indolo[2,3-

a]quinolizidines were coupled with tripeptides in order to enhance the affinity of the 

indoloquinolizidine moiety for the dopamine receptors. Several compounds presented higher 

affinities than dopamine. Furthermore, it was shown that trans (C-3 and C-12b) 

indoloquinolizidine derivatives had stronger effect in the interaction with the receptors than cis 

indoloquinolizidine derivatives (Figure 11).[39] The functional characterization of the hybrid 

compound 61 by means of kinetic assays and competition experiments in radioligand binding, 

demonstrated that indoloquinolizidine-peptide 61 behaves as an orthosteric ligand of dopamine 

D2, D3, D4 and D5 receptors, but as a negative allosteric modulator of agonist and antagonist 

binding to striatal dopamine D1 receptors. In addition, compound 61 decreased receptor 

potency, while preserving agonist-induced maximal cAMP production.[40]  
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Figure 11 – Most active indoloquinolizidine-peptide hybrids. 

 

In 2015, a novel indoloquinolizidine derivative 62 (Figure 12) was synthesized and evaluated as 

an anti-hypertension agent. The compound showed remarkable antihypertensive and dilating 

effect both in vitro and in vivo. Moreover, it was shown that compound 62 induced 

vasodilatation by both endothelium-dependent and-independent manners, blocked Ca2+ influx 

through L-type Ca2+ channels and inhibited intracellular Ca2+ release while not affecting K+ 

channel.[41] 
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Figure 12 – Chemical structure of indoloquinolizidine derivative 62. 

 

In tables 1 and 2 the reader can find a summary of the main biological properties described to 

date for Indolo[2,3-a]quinolizidines and derivatives. 
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Table 1 – Biological properties of Indolo[2,3-a]quinolizidines and derivatives. 

Compound Species isolated from Effects Refs 

 

UncariaCallophylla 

 

Corynanthepachyceras 

- lowers the arterial pressure in both anaesthetized and conscious normotensive rats 

- inhibition of multiple ion channels 

- active for Leishmania 

[8-10] 

 

 

 

Corynanthepachyceras - active for Leishmania [10] 

 

Esenbeckialeiocarpa - anti-inflammatory effects [11] 
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Uncaria rhynchophylla - antihypertensive and antiarrhythmic activities 

- reduces the production of several neurotoxic factors in activated microglial cells and 

possesses neuroprotective activity in a model of inflammation-induced neurotoxicity 

- potent neuroprotective effects against glutamate induced HT22 cell death 

anti-metastatic 

[9, 13-14, 

21-23] 

 

 - potent neuroprotective effects against glutamate induced HT22 cell death [22] 

 

Uncariae Ramulus et 

Uncus 

- Active in norepinephrine-induced vasocontractive response 

partial agonist at the serotonin 5-HT1A receptor, a partial agonist/antagonist at the 

dopamine D2L receptor and an antagonist at the serotonin 5-HT2A, 5-HT2C and 5-

HT7 receptors 

- potential acetylcholinesterase inhibitor 

- potent neuroprotective effects against glutamate induced HT22 cell death 

[15, 18-19, 

22] 
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Corynanthepachyceras - active for Leishmania 

- affinity for opioid receptors 

[10, 37] 

 

Dracontomelum 

mangiferum 

- blocking of Alpha-1 and Alpha-2 adrenoceptors 

 

[5] 

 

Pseudodistoma arborescens - IC50 value of 34.5 µM for leukemia [6-7] 

 

Uncaria villosa - potent vasorelaxant effects at 30 µM in rat aortic ring assays 

- potent neuroprotective effects against glutamate induced HT22 cell death 

[16-17, 22] 
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Uncaria rhynchophylla - acetylcholinesterase inhibitor [19] 

 

Malayan Kopsiaarborea - moderate cytotoxicity against KB/VJ300 cell lines (IC50 values around 30 µM) [24] 

 

Malayan Kopsiaarborea - moderate cytotoxicity against KB/VJ300 cell lines (IC50 values around 30 µM) [24] 

 

Rhazastricta 

 

Policourearigida 

- anticancer properties on a carcinoma cell line 

- inhibit butyrylcholinesterase (BChE) 

Mixture of isomers Z and E: 

- IC50 value of 14.7 µM in SK-MEL-37 melanoma cells 

- high potency againstmonoamine oxidase A (MAO-A) 

[25, 28] 

 

[26-27-28] 
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Psychotrialaciniata - inhibit butyrylcholinesterase (BChE) [28] 

 

Mitragynaspeciosa - analgesic activity in N1E-115 neuroblastoma cells [30, 37] 

 

Mitragynaspeciosa - moderate opioid agonist activity [32, 33] 
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Table 2 – Biological properties of Indolo[2,3-a]quinolizidine derivatives. 

 

Compound Effects Refs 

 

- partial agonist of opioid receptors, high affinity and selectivity for µ-opioid receptors [34] 

 

- high affinity for μ- and δ-opioid receptors [36] 

 

- affinity for opioid receptors [37] 
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- affinity for opioid receptors [37] 

 

- potential apoptosis inducers in three human tumor cell lines (HeLa, MCF-7 and HepG2 cell 

lines) 

[38] 

 

- orthosteric ligand of dopamine D2, D3, D4 and D5 receptors; negative allosteric modulator of 

agonist and antagonist binding to striatal dopamine D1 receptors. 

[39-40] 

 

- blocked Ca2+ influx through L-type Ca2+ channels and inhibited intracellular Ca2+ release [41] 
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2 Synthesis of indolo[2,3-a]quinolizidine alkaloids 

The aim of this part of the review is to present the state of the art of the different strategies 

developed in enantioselective indolo[2,3-a]quinolizidine alkaloid synthesis, illustrated with 

representative examples. It is divided in three sections, namely, use of chiral pool resources, 

non-catalytic cascade/tandem sequences; and asymmetric metalcatalysis/organocatalysis 

approaches. From a synthetic point of view, construction of the fused-ring system of the 

indolo[2,3-a]quinolizidine alkaloids with control of the relative and absolute stereochemistry of 

the quinolizidine core represents a significant challenge that makes these natural products 

attractive synthetic targets. Traditionally, the majority of reported strategies for the asymmetric 

total synthesis of indolo[2,3-a]quinolizidine alkaloids have required a multistep synthesis that 

relies on starting materials from the chiral pool. These strategies often include several functional 

group transformations and tedious protection/deprotection steps, often providing a low overall 

yield of the target alkaloid. In the last decades cascade reactions have been applied in 

indoloquinolozidine alkaloids synthesis. Although extremely demanding, the well stablished 

advantages of these reactions include atom economy, as well as economies of time, labor, 

resources management, and waste generation. In this section we have include a significant 

racemic synthesis. Most recently there have been a few reports of efficient syntheses of 

optically active indoloquinolizidine natural products based on asymmetric catalysis. This 

approach is highly efficient and productive. However, the majority of the developed synthetic 

strategies is target-specific with respect to the relative configuration of the quinolizidine 

stereocenters and only allows for selective formation of one specific epimer of the alkaloid.  

 

2.1. Use of chiral pool resources 

Chiral pool synthesis makes use of chiral natural products by incorporating part of them into the 

target structure. As either enantiomer of the desired final product can be potentially generated, 

compounds from the chiral pool are extremely valuable and versatile in asymmetric synthesis. 

For many decades, it was the only source of enantiomerically pure compounds, but nowadays 
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many of the most effective chiral agents described in the literature have been designed and 

synthesized by organic chemists. 

 

2.1.1. Lactim ether route: Enantioselective synthesis of ()-dihydrocorynantheol (3) 

Prof. Tozo Fujii has published several papers on fused quinolizidine ring systems, including the 

total synthesis of ()-dihydrocorynantheine (1) in 1991.[42] The "lactim ether route" requires 

the coupling of the 3-(chloroacetyl)indole with the lactim ether 65, prepared from cincholoipon 

ethyl ester (64, obtainable from commercially available (+)-cinchonine (63) by the classical 

degradation procedure[43]). Subsequent treatment of the resulting keto derivative 66 with 

POC13 afforded the corresponding oxazolium chloride, which was then reduced by catalytic 

hydrogenation to furnish the lactam 67. The conversion into the tetracyclic ester 68 was carried 

out in 91% overall yield by means of Bischler-Napieralski cyclization followed by catalytic 

hydrogenation. Final LiAlH4-reduction of 68 afforded ()-dihydrocorynantheol (3) in 

quantitative yield (Scheme 1).  

 

Scheme 1  Enantioselective synthesis of ()-dihydrocorynantheol (3). 
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The usefulness of the "lactim ether route" in the asymmetric synthesis of Corynanthe-type 

indoloquinolizidine alkaloids is demonstrated by the application of this methodology to the 

synthesis of ()-ochromianine (73), ()-ophiorrhizine (74), and ()-ochropposinine (75), 

employing the lactim ether 65 as starting material (Scheme 2). 

 

 

Scheme 2  Enantioselective synthesis of of ()-ochromianine (73), ()-ophiorrhizine (74), and 

()-ochropposinine (75). 

 

2.1.2. Stereoselective Mannich reaction from a (R)-tryptophan derivative: Enantioselective 

synthesis of (+)-geissoschizine (76) 

A concise synthesis of (+)-geissoschizine (76) (Scheme 3), a biosynthetic precursor of a variety 

of monoterpenoid indole alkaloids,[1] from (R)-tryptophan was performed by Stephen F. Martin 

in 2003.[44] 

The synthesis started with a vinylogous Mannich reaction involving the iminium ion 78, which 

was prepared from (R)-tryptophan (77). The corresponding adduct was then treated directly with 

isobutylene in the presence of sulfuric acid to give 80 as the only isolable product. The 

nucleophilic attack of the vinyl ketene 79 on 78 occurred with high diastereoselectivity from the 

si face, establishing the correct absolute stereochemistry at C-3 of geissoschizine. Nb-Acylation 
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of 80 with diketene furnished an intermediate -keto amide that underwent facile cyclization via 

an intramolecular Michael reaction upon addition of potassium tert-butoxide to give 81. This 

reaction, which presumably proceeded under thermodynamic control to establish the correct 

relative stereochemistry at C-3 and C-5, completed the assembly of the corynantheane 

framework. 

Toward the introduction of the E-ethylidene side chain, hydride reduction of the C-19 carbonyl 

function in 81, followed by a stereoselective dehydration, led to the stereoselective elimination 

to give the ester 82. The subsequent selective reduction of the lactam function according to the 

Borch protocol[45] furnished 83 in 92% yield. Cleavage of the tert-butyl ester moiety was 

achieved using trifluoroacetic acid in the presence of thioanisole, as an essential cation 

scavenger. The cleavage of the carboxyl group at C-5 was accomplished by a radical 

decarbonylation of an acyl selenide intermediate. A final formylation by Winterfeldt's 

procedure[46] afforded (+)-geissoschizine (76) in 48% yield. 

 

Scheme 3  Enantioselective synthesis of (+)-geissoschizine (76). 

 

Three years later, this author described the total synthesis of the corynanthe alkaloid (±)-

dihydrocorynantheol (3) and the formal synthesis of (±)-hirsutine (4).[47] Two different 
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strategies for assembling the indoloquinolizidine system involving the use of the ring-closing 

metathesis for the construction of the piperidines D ring, followed by a 1,4-addition to introduce 

the requisite side chain at C-15, are the key steps of this new racemic approach (Scheme 4). 

 

Scheme 4  Total synthesis of the corynanthe alkaloid (±)-dihydrocorynantheol (3) and the 

formal synthesis of (±)-hirsutine (4). 

 

2.1.3. Pictet-Spengler cyclization from a (S)-tryptophanol-derived lactam: Asymmetric 

synthesis of both enantiomers of (+)-deplancheine (90) 

(+)-Deplancheine (90), an alkaloid with an unusual Corynantheine-type structure, was isolated 

from the New Caledonian plant Alstonia deplanchei. After its structure elucidation,[48] a 

number of total syntheses were reported for this alkaloid.[49-52]  

In 2005, Steven M. Allin,[51] reported the asymmetric synthesis of both enantiomers of the 

indole alkaloid deplancheine (Scheme 5) in an approach involving as the key intermediates the 

tryptophanol-derived lactams 93, which are easily accessible from (S)-tryptophanol (S-91) by a 

cyclocondensation process with the aldehyde-ester 92. Treatment of the mixture of bicyclic 

lactams with 2 M HCl in ethanol led to the formation of the indolo[2,3-a]quinolizine system by 
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Pictet-Spengler cyclization, affording 94 as a single compound. The hydroxymethyl chain 

underwent cleavage by oxidation to a carboxylic acid derivative through the corresponding 

aldehyde, followed by the generation of an acyl selenide and subsequent tin-mediated 

deacylation. The construction of the ethylidene moiety was achieved through a three-step 

procedure involving generation of the lithium enolate from 95 and a subsequent aldol reaction 

with acetaldehyde, activation of the hydroxyl group by mesylation, and finally, DBN-induced 

elimination to give the target 96. Deprotection of the indole nitrogen atom with TBAF, followed 

by the reduction of the lactam carbonyl group, as described by Martin and co-workers,[53] 

satisfactorily afforded ()-deplanchine (90).  

 

 

Scheme 5  Asymmetric synthesis of (+)-deplancheine [(+)-90]. 

 

To demonstrate the potential synthetic utility of the methodology, Allin and co-workers have 

also undertaken an asymmetric synthesis of the enantiomer of the natural product using (R)-

tryptophanol as the starting material (Scheme 6). 
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Scheme 6  Access to ()-deplancheine [()-90]. 

 

The stereochemical outcome of the Pictet Spengler cyclizations of tryptophanol-derived lactams 

was later thoroughly investigated by Amat-Bosch’s research group, describing the 

stereocontrolled generation of C-12b epimeric indolo[2,3-a]quinolizidine derivatives using the 

appropriated reactions conditions (Scheme 7).[54-56]  

 

Scheme 7  Stereocontrolled cyclizations from (S)-tryptophanol-derived oxazolopiperidone 
lactams. 

 

2.1.4. Modified Bischler-Napieralski reaction from a (S)-tryptophanol-derived lactam: 

Enantioselective formal synthesis of (+)-dihydrocorynantheine (1) and ()-

dihydrocorynantheol (3) 

Starting from an appropriately substituted tryptophanol-derived lactam bearing an ethyl 

substituent and an acetate chain at piperidine 3 and 4-positions,[54] respectively, an 

enantioselective access to indolo[2,3-a]quinolizidine alkaloids (+)-dihydrocorynantheine (1) 

and ()-dihydrocorynantheol (3) (Scheme 8) was developed by the Amat/Bosch research group 

in 2009.[57] The synthesis requires the cyclization at the indole 2-position to take place 

regioselectively from the lactam carbonyl moiety, which is accomplished using a modified 

Bischler-Napieralski reaction. 

The initial lactam 101 was prepared in 62% yield by cyclocondensation of (S)-tryptophanol (91) 

with racemic δ-oxo diester 100 in a process that involves a dynamic kinetic resolution and the 
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differentiation of diastereotopic ester chains, with generation of three stereogenic centers with a 

well-defined configuration in a single synthetic step. The regio- and stereoselective cyclization 

on the lactam carbonyl group, leading to an indolo[2,3-a]quinolizidine derivative, took place 

under modified Bischler-Napieralski conditions. Thus, alkylation of thiolactam (obtained by 

treatment of lactam 101 with Lawesson’s reagent) using benzyl bromide generated a 

(benzylsulfanyl)-substituted iminium ion, which can be considered as a sulphur analogue of a 

Bischeler-Napieralski chloro-substituted iminium salt. Sodium borohydride reduction of the 

iminium intermediate, arising from the subsequent cyclization on the indole 2-position, afforded 

pentacyclic compound 102 as a single isomer. The indole nitrogen was protected as an N-Boc 

derivative and the oxazolidine ring of the resulting pentacyclic compound was subjected to 

reductive ring-opening with borane to give 103. The synthesis of the target alkaloids was 

completed by cleavage of the hydroxymethyl appendage, which was satisfactorily accomplished 

by reductive decyanation of an -amino nitrile intermediate. Finally, deprotection of the indole 

nitrogen led to the tetracyclic ester 104,[58, 59] a known synthetic precursor of the alkaloids 

(+)-dihydrocorynantheine (1) and ()-dihydrocorynantheol (3). 

 

 

Scheme 8  Enantioselective formal synthesis of (+)-dihydrocorynantheine (1) and ()-

dihydrocorynantheol (3). 
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2.1.5. Access to 9-methoxyindole alkaloids: Total synthesis of 9-methoxygeissoschizol 

(105), 9-methoxy-Nb-methylgeissoschizol (106) and ()-mitragynine (32). 

Cook, in 2007, described an enantiospecific method for the synthesis of (R)-4-

methoxytryptophan (107) via a regiospecific Larock heteroannulation. This was a key reaction 

for the total synthesis of 9-methoxygeissoschizol (105), 9-metroxy-Nb-methylgeissoschizol 

(106), and mitragynine (32) using a asymmetric Pictet-Spengler strategy (Scheme 9).[60]  

 

Figure 13   Chemical structure of 9-methoxygeissoschizol (105), 9-methoxy-Nb-

methylgeissoschizol (106) and ()-mitragynine (32). 

 

Before Cook’s synthesis, the preparation of these alkaloids was hampered by the unavailability 

of 4-methoxytryptophan (107), which could only be obtained in high optical purity using the 

enzymatic kinetic resolution reported by Ley.[61, 62] The Larock heteroannulation,[63, 64] a 

palladium-catalysed heteroannulation reaction of substituted o-iodoanilines with internal 

alkynes, is a powerful method for the synthesis of substituted indole derivatives and has been 

satisfactorily employed for the regiospecific synthesis of both 11- and 12-methoxy-substituted 

indole alkaloids.[65-68] The strength of the Larock process stems from the regioselectivity that 

can be achieved when a bulky silyl-substituted alkyne is employed as a substrate. The internal 

alkyne chosen in this example (109) can be easily prepared by alkylation of Schöllkopf’s 

auxiliary, which in turn is available from L-valine.[69, 70] The heteroannulation between 2-

iodo-3-methoxy-N-Boc-aniline 108 and TMS-alkyne 109 gave 4-methoxy-Na-H indole 110 in 

82% yield. The subsequent hydrolysis of the Schöllkopf chiral auxiliary was accomplished by 

concomitant loss of the silyl group of 110, providing 4-methoxy-D-tryptophan ethyl ester 111 in 

a single step in 91% yield (Scheme 9). 
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Scheme 9  Preparation of the 4-methoxy-D-tryptophan ethyl ester 111. 

 

The monoalkylation of benzyl ester 112, obtained by hydrolysis and esterification of 111, with 

the allylic bromide 113 afforded the secondary amine 114 in 85% yield. The enantioselective 

construction of the stereocenter at C-3 was achieved by a modified asymmetric Pictet-Spengler 

reaction between 114 and the aldehyde 115 to furnish the tetrahydro--carboline system. The 

,-unsaturated ester moiety was generated via standard transformations, including removal of 

1 equivalent of thiophenol, followed by an oxidation and sulfoxide elimination sequence, 

affording compound 116. The ,-unsaturated ester 116 was then subjected to the Ni-(COD)2-

mediated cyclization to provide the desired Corynanthe skeleton 117 in 75% yield. Removal of 

the benzyl group was achieved when 117 was treated with PdCl2 in the presence of Et3SiH and 

TEA, and the corresponding carboxylic acid was converted into tetracyclic ester 118 via the 

Barton-Crich decarboxylation process (Scheme 10).  

Scheme 10  Synthesis of the key intermediate 118. 
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The ester 118 was envisaged as an advanced precursor for the synthesis of three 9-methoxy-

substituted indole alkaloids. Thus, the ester carbonyl moiety present in 118 was reduced with 

LiAlH4 to give 9-methoxygeissoschizol (105) in 90% yield, and 9-methoxy-Nb-

methylgeissoschizol (106) was then synthesized via Nb methylation with methyl iodide, 

followed by an iodide exchange using AgCl. To prepare mitraginine (32), reduction of the 

olefin bond in 118 was required. The reduction of this double bond with Crabtree’s catalyst, 

followed by treatment with (Boc)2O in the presence of a catalytic amount of DMAP, provided 

the Boc derivative 119 in 64% overall yield. The ester 119 was then subjected to formylation 

and Boc deprotection. The final acetal formation and t-BuOK-mediated elimination of MeOH, 

analogous to the final steps reported by Takayama,[71] provided ()-mitragynine (32) (Scheme 

11). 

 

Scheme 11  Total synthesis of 9-methoxygeissoschizol (105), 9-methoxy-Nb-

methylgeissoschizol (106) and ()-mitragynine (32). 

 

Starting from (R)-tryptophan [(R)-91] as a chiral pool reagent, this methodology allows the 

enantiospecific total synthesis of ()-corynantheidine (14), ()-corynantheidol (122), ()-

geissoschizol (123), and (+)-geissoschizine (76) via the common key intermediate 119 (Scheme 

12).[72] For the construction of the all-D-ring system present in corynantheidol and 

corynantheine, an intramolecular Heck coupling of ,-unsaturated ester 119 and subsequent 
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NaBH4-reduction in presence of a catalytic amount of NiCl2·6H2O was performed. In turn, to 

construct the molecular framework of geissoschizol and geissoschizine from 119, a 

stereoselective Michael reaction consecutively using Ni[COD]2-Et3N and Et3SiH was employed. 

 

 

Scheme 12 - Enantiospecific total synthesis of ()-corynantheidine (14), ()-corynantheidol 

(122), ()-geissoschizol (123), and (+)-geissoschizine (76). 

 

2.1.6 Regioselective reduction of an imide carbonyl followed by an intramolecular 

stereoselective cyclization: Enantioselective formal synthesis of ()-deplancheine (90). 

The enantioselective formal synthesis of ()-deplancheine (90), in a 9-step sequence from 

glutamic acid in good overall yields and high enantiomeric purity, was recently reported by 

Argade (Scheme 13).[52]  

A carbodiimide-induced coupling reaction of Boc-protected tryptamine 124 with 

enantiomerically pure (S)-tetrahydro-5-oxo-2-furancarboxylic acid (125), prepared from (S)-

glutamic acid furnished amidolactone 126 in 86% yield and 96% enantiomeric purity. 

Subsequent treatment with t-BuOK afforded the base-catalysed rearrangement of 126 to the 

hydroxyglutarimide 127 in 65% yield. The hydroxyl group in compound 127 was then 

transformed to the corresponding acetate using acetic anhydride and triethylamine. The 



37 

 

regioselective sodium borohydride reduction of the more reactive imide carbonyl group, 

followed by chemoselective trifluoroacetic acid-induced intramolecular cyclization, afforded 

indoloquinolicidine derivative 128 as a 23:2 mixture of isomers in very good yield. The 

diastereoisomers 128a/b were quantitatively separated by flash column chromatography and the 

major isomer (128a) was treated with K2CO3/MeOH to undergo one-pot deacylation and N-

Boc-deprotection to provide 129 in 92% yield. Subsequent chemoselective reaction with an 

excess of phenyl chlorothionoformate in the presence of diisopropylethylamine provided a 

xanthate intermediate, which was submitted to Barton−McCombie deoxygenation using 

tributyltin hydride in the presence of AIBN. The resulting lactam 130 was obtained in 54% 

yield and 94% ee (by HPLC) and it was transformed in ()-deplancheine in a seven-step 

synthetic sequence.[51]  

 

Scheme 13  Enantioselective formal synthesis of ()-deplancheine. 

 

2.2. Non-catalytic cascade/tandem sequences 

Cascade reactions have received considerable attention within organic chemistry, as reflected by 

the high number of reviews covering this field.[73-75] A variety of terms, including "cascade", 

"domino", "tandem" and "sequential", are used in the literature, often apparently 

interchangeably, although efforts have been made to restore order to this area of reaction 

terminology.[76] Nevertheless, we shall maintain the term used by each author in the original 

publication. This type of reaction in structurally complex molecule synthesis has several 

intrinsic advantages: multiple bond formation, time and cost efficiency, atom economy, 
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environmental sustainability as well as applicability to diversity-oriented high-throughput 

synthesis. Since the synthetic effort toward natural products and other interesting compounds 

usually requires the introduction of several stereogenic centers, the design of cascades to 

provide specific targeted molecules of structural and stereochemical complexity constitutes a 

significant intellectual challenge.  

 

2.2.1 Stereoselective addition of a chiral -sulfinyl ketamine anion to methyl acrylate: 

Asymmetric synthesis of 1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizidine (131). 

One of the first examples of enantioselective synthesis of indoloquinolizidine alkaloids using a 

tandem reaction was reported by Hua in 1991, and it was based on the asymmetric 1,4-

addition/ring-closure procedure (Scheme 14).[77] 

The chiral sulfinyl ketimine 134 was prepared from harmalan (132) and ()-menthyl p-

toluenesulfinate (133), and subsequently used in the stereoselective conjugate addition with 

methyl acrylate, followed by in situ cyclization. The resulting lactam 135, formed in 77% yield, 

was then submitted to NaCNBH3-reduction of the double bond. In contrast with previous results 

of this author, the reduction in this case was not stereoselective and a 1.9:1 mixture of 

diastereomers was formed. After separation in column chromatography, desulfuration of 136b 

with Raney Nickel, followed by reduction with LiAlH4, afforded 1,2,3,4,6,7,12,12b-

octahydroindolo[2,3-a]quinolizidine (131). 
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Scheme 14  Asymmetric synthesis of 1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizidine 

(131). 

 

2.2.2 A domino Knoevenagel-hetero-Diels-Alder reaction strategy: Enantioselective total 

synthesis of (+)-hirsutine (4) and (+)-dihydrocorynantheine (1) 

The enantioselective synthesis of corynanthe indole alkaloids (+)-hirsutine (4) and (+)-

dihydrocorynantheine (1) by a domino Knoevenagel-hetero-Diels-Alder reaction, using 

enantiomerically pure tetrahydro--carboline carbaldehydes as starting material, was described 

in 1999 by Tietze.[78]  

Aldehydes 140 (Nind-Boc) and 141 (Nind-H) were prepared on a large scale by separation of the 

diastereomeric amides 138, which were prepared from rac-137 and ()-camphanic acid as 

shown in scheme 15. 

 

Scheme 15  Preparation of chiral non-racemic tetrahydro--carboline carbaldehydes 140 and 

141. 

 

Condensation of the aldehyde 140 with Meldrum’s acid (142) and 4-methoxybenzyl butenyl 

ether 143, in an ultrasonic bath and in the presence of ethylenediamine diacetate (EDDA), led to 

cycloadduct 145 in 84% yield and with an asymmetric induction greater than 20:1. Direct 

solvolysis without further purification, followed by hydrogenation, afforded the tetracycle 148a 

in 67% yield as a single product. 
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Similarly, the domino Knoevenagel-hetero-Diels-Alder reaction of 141 with 142 and the enol 

ether 144 gave the diastereomeric cycloadducts 146 in very good yield, although with somewhat 

lower asymmetric induction of 4.8:1. The mixture of cycloadducts was converted into the tert-

butoxycarbonyl derivatives 147, which were then treated with methanol/K2CO3 and 

hydrogenated. Chromatographic separation gave the enantiomerically pure diastereomer 148b in 

62% overall yield from 147. Cleavage of the tert-butoxycarbonyl group in 148a and 148b, 

followed by condensation with methyl formate and treatment with diazomethane by known 

procedures,[71] gave the desired enantiomerically pure indole alkaloids (+)-hirsutine (4) and 

(+)-dihydrocorynantheine (1) (Scheme 16).  

 

Scheme 16  Enantioselective total synthesis of (+)-hirsutine (4) and (+)-dihydrocorynantheine 

(1). 

 

2.2.3 Tandem retro-aldol-Pictet-Spengler: Total synthesis of ()-dihydrocorynantheol (3) 

The diastereocontrolled synthesis of the ()-dihydrocorynantheol (3) alkaloid was accomplished 

by Ogasawara and Iwabuchi[79] employing a cascade sequence consisting of a BrØnsted-acid-

promoted retro-aldol reaction of the key intermediate 153 and a subsequent stereocontrolled 

Pictet-Spengler reaction. 

Amide 153 was prepared in 62% overall yield (Scheme 17) from the bicyclo[3.2.1]octenone 

chiral building block ()-149[80] in a four-step sequence involving the regioselective and 
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convex-face selective introduction of a nitromethyl group, ketalization under Noyori’s 

conditions,[81] reduction of the nitro group to the primary amine, and condensation with indole-

3-acetic acid (152). 

 

 

Scheme 17  Preparation of the key intermediate 153. 

 

The treatment of amide 153 with methanesulfonic acid in boiling dioxane afforded a yohimbine-

type derivative 154a in 52% yield, together with pseudoyohimbane (154b) in 23% yield, by a 

tandem retro-aldol-Pictet-Spengler reaction and C-3 epimerization. The recovered 154b was 

subjected to the above-mentioned acidic conditions to obtain 154a in 59% yield and unreacted 

154b in 29% yield. For the transformation of the E-ring moiety to the seco form present in the 

dihydrocorynantheol (3) alkaloid, the ketal moiety was deprotected, and the resulting ketone 

was reacted with pyrrolidine to form an enamine, which was immediately treated with 

trimethylene dithiotosylate to generate 155. Upon exposure to potassium hydroxide in boiling 

tert-butyl alcohol, the dithioketone moiety was cleaved and the resulting acid was esterified to 

obtain methyl ester 156. Treatment of this compound with iodomethane in aqueous acetonitrile, 

followed by the reduction of the resulting aldehyde with sodium borohydride, afforded the 

corresponding alcohol, which was protected as TBS ether to give compound 157. After 

subsequent treatment with lithium aluminium hydride and mesylation, the resulting mesylate 

was subjected to reduction using LiAlH4 in boiling dioxane to furnish, with the concomitant 

reduction of the amide moiety, as well as deprotection of the TBS group, completed the 

synthesis of the target alkaloid (–)-dihydrocorynantheol (3) (Scheme 18).  
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Scheme 18  Total synthesis of ()-dihydrocorynantheol (3). 

 

2.2.4. One-pot asymmetric azaelectrocyclization: Enantioselective synthesis of (–)-

corynantheidol (122) and formal synthesis of (–)-corynantheidine (14). 

Soon after the publication of the one-pot asymmetric azaelectrocyclization procedure for the 

synthesis of chiral 2,4,5-trisubstituted tetrahydropyridines,[82] Katsumura demonstrated the 

usefulness of his methodology with an enantioselective synthesis of the indole alkaloids ()-

corynantheidol (122) and (–)-corynantheidine (14).[83]  

The one-pot azaelectrocyclization requires an initial mixture of the tetrasubstituted vinyl iodide 

158 and the aminoindanol derivative 159, and the subsequent addition of indolyl vinyl stannane 

160, and catalytic amounts of Pd2(dba)3, trifurylphosphine and LiCl. Four new bonds and three 

stereocenters were generated in a single operation, affording aminoacetal 161 as a single 

diastereomer in 77% yield (Scheme 19).  
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Scheme 19  Preparation of the chiral non-racemic piperidine 161. 

 

The reduction of the ester group and aminoacetal moiety with DIBAL-H, followed by 

conversion of the resulting alcohol into a carbonate moiety, allowed the one-carbon elongation 

at the four position of the tetrahydropiridine ring by CO insertion, affording the ester 163. 

Elimination of the indanol chiral auxiliary was accomplished by oxidation with lead tetraacetate 

in the presence of n-propylamine, leading to the corresponding secondary amine. The tetracyclic 

ring system was constructed from the amine intermediate by Bosch’s Pummerer cyclization 

sequence,[84] via the generation of sulfoxide intermediate 164 and subsequent cyclization with 

trimethylsilyl triflate in the presence of diisopropylethylamine. The removal of the resulting 

thiophenyl substituent and the phenylsulfonyl group at the indole nitrogen in 165 was carried 

out using the Birch reduction, and the stereoselective reduction of the double bond in the 

tetrahydropyridine ring was accomplished by hydrogenation with platinum dioxide, affording 

()-corynantheidol (122) (Scheme 20).  

The formal synthesis of ()-corynantheidine (14) from the intermediate 165 was achieved by 

Ba(OH)2 hydrolysis of the ester moiety to afford carboxylic acid 166. The subsequent Birch 

reduction to remove the thiophenyl and benzenesulfonyl groups, esterification, and catalytic 

hydrogenation provided Cook’s intermediate 167, from which the synthesis of ()-

corynantheidine (14) could be completed in two steps (Scheme 20).[72] 
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Scheme 20  Enantioselective synthesis of (–)-corynantheidol (122) and formal synthesis of (–)-

corynantheidine (14). 

 

2.2.5 Stereodivergent synthesis of (±)-geissoschizol (123), (±)-corynantheidol (122), (±)-

dihydrocorynantheol (3) from a single synthetic intermediate. 

Traditionally, indoloquinolizidine alkaloids have been approached by individual strategies that 

have given access to a small number of structurally similar synthetic targets. In 2010, Robert M. 

Williams envisioned a approach based on a large-scale synthesis of a functionalized lactone 

intermediate 171, via a tandem Michael cyclization and Horner-Wadsworth-Emmons 

olefination, which can be rapidly modified to obtain different alkaloids of this group, as well as 

secologanin dopamine alkaloids.[85]  

Assembly of lactone 171 (Scheme 21) [86] begins with the condensation of aldehyde 168 with 

commercially available trimethyl acetophosphonate under Masamune-Roush conditions, 

affording the unsaturated ester 169 as a single isomer in good yield. Deprotection and 

subsequent esterification gave the desired substrate 170, which upon treatment with Cs2CO3 and 
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acetaldehyde underwent sequential intramolecular Michael cyclization and HWE-olefination to 

yield lactone 171 as a 1.6:1 mixture of E/Z isomers.  

 

Scheme 21  Preparation of the intermediate 171. 

 

Reduction of the lactone carbonyl of 171 with DIBAL-H, followed by a one-step reductive 

amination/lactam cyclization with tryptamine, afforded lactam intermediate 172. Protection of 

the hydroxyl functionality as an acetate ester, followed by Bischler-Napieralski cyclization, 

gave acetate 173, which was deprotected to yield (±)-geissoschizol in good yield (Scheme 22). 

Alternatively, catalytic hydrogenation of the olefin of lactone 171 exclusively generates the 

corresponding cis- lactone 174a, presumably due to the delivery of hydrogen to the least 

sterically hindered face of the olefin. Conversely, conjugate reduction leads solely to the 

thermodynamically favored trans-isomer of the disubstituted lactone 174b. Following a 

sequence similar to the above, corynantheidol and dihydrocorynantheol (3) were obtained from 

lactones 174a and 174b, respectively (Scheme 22). However, pure lactone 174b led to a 1.3:1 

mixture of isomers, which were separated by column chromatography after the formation of the 

indoloquinolizidine system.  
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Scheme 22  Stereodivergent synthesis of (±)-geisssoschizol (123), (±)-corynantheidol (122), 

(±)-dihydrocorynantheol (3). 

 

2.3. Asymmetric metalcatalysis/organocatalysis approaches 

Catalysis has grown to play a prominent role in chemistry as it enables compounds to be 

prepared efficiently with atom economy. As well as producing far less waste is produced, new 

selective catalytic processes facilitate short-cuts in total synthesis. In recent years, asymmetric 

syntheses using organic compounds as catalysts have attracted considerable attention [87] as 

they are environmentally friendly compared with conventional transition metal catalysts. 

However, although this area is under intense study, there are still few reports [88, 89] on the 

application of this methodology for asymmetric total synthesis of natural products. 

 

2.3.1 Asymmetric hydrogen-transfer reaction: Enantioselective Total synthesis of (+)-

arborescidine A 
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A short enantiocontrolled syntheses of (+)-arborescidine A (13), by taking advantage of the 

Noyori asymmetric hydrogen-transfer reaction of appropriately functionalized -carboline 

derivative, was described by Rawal in 2004 (Scheme 23).[90] 

The 6-bromotryptamine (178), which was prepared from 6-bromoindole (177) following the 

Shumaker and Davidson method,[91] reacted with glutamic anhydride affording the 

corresponding amide carboxylic acid, which was then esterificated. Subsequent treatment with 

POCl3 promoted the Bischler-Napieralsky cyclization to produce imine 180 in 86% yield. The 

Noyori reduction[92, 93] of imine 180, to set the required asymmetry, was accomplished with 

preformed (S,S)-TsDPEN-Ru(II) complex, which afforded, after in situ cyclization, lactam 181 

in 89% yield and 96% ee. Finally, alane reduction of the lactam carbonyl afforded (+)-

arborescidine A (13).  

 

Scheme 23  Enantioselective total synthesis of (+)-arborescidine A (13). 

 

2.3.2 A Stereodivergent Strategy for the Preparation of Corynantheine alkaloids 

A general and excellent catalytic asymmetric strategy for the total and formal synthesis of a 

broad number of optically active natural products from the corynantheine and ipecac alkaloid 

families, have been described by Franzén in 2011.[94] The construction of the core alkaloid 

skeletons, with the correct absolute and relative stereochemistry, relies on an enantioselective 
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and diastereodivergent one-pot cascade sequence followed by an additional diastereodivergent 

reaction step. Starting from common and easily accessible starting materials and using a 

common synthetic route this approach gives access to the total synthesis of the indolo[2,3-

a]quinolizidine alkaloids ()-dihydrocorynantheol (3), (+)-hirsutinol (182), ()-corynantheol 

(183), ()-dihydrocorynantheal (184), and ()-corynantheal (185). 

The one-pot stereoselective construction of the quinolizidine carbon skeleton required the ,-

unsaturated aldehyde 186, which was easily accessible through the cross-metathesis of acroleine 

and 3-butenol, and the -ketoamides 187 which was obtained through the condensation of tert-

butyl acetoacetate with the corresponding 2-arylethanamine. In the presence of catalyst 188, -

ketoamides 187 smoothly reacted with the ,-unsaturated aldehyde to give a diastereomeric 

mixture of lactols intermediates and then the reaction was quenched by addition of 

trifluoroacetic acid (TFA) giving a 1:1 mixture of the two ring-junction isomers -189 and -

189, which could be isolated in good yields and high enantioselectivity in a two-step one-pot 

process. Interestingly, when the reaction was quenched with acetyl chloride resulted in the 

formation of the thermodynamically favored indolo[2,3-a]quinolizidine -189 as the only 

observable isomer, whereas when using benzoyl chloride, a switch in diastereoselectivity it 

happened and the kinetically favored product -189 was obtained as the major isomer in 82:18 

diastereoselectivity. It is also worth noting that the kinetically favored -indolo[2,3-

a]quinolizidine -189 could be epimerized to the thermodynamically favored -189 epimer by 

treatment with TFA heated at reflux to give a ratio of 85:15 in favor of the -epimer. 

Subsequent reduction of the crude reaction mixture from the one-pot cascade was accomplished 

by initial alkylation with triethyloxonium tetrafluoroborate, followed by NaBH4-reduction to 

give the corresponding amines 190 in high to moderate overall yields, and at this stage, the - 

and -epimers could be easily separated by flash column (Scheme 24). 
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Scheme 24  Preparation of the - and -epimers of the amine 190. 

 

Subsequent treatment of the -epimer -190 with HCl in water/THF at room temperature gave 

exclusively the trans ring junction of the corresponding lactol -trans-191. The selective 

formation of this stereocenter is due to the thermodynamic stability of the all-equatorial 

quinolizidine structure, and attempts to access the -cis configuration have failed. However, in 

the -series treatment of indolo[2,3-a]quinolizidine with HCl in water/THF at room temperature 

gave a 4:1 mixture of -cis-191 and -trans-191. Interestingly, lactol formation at elevated 

temperatures (HCl in water/THF at 65 ºC) reversed the selectivity and -trans-191 was formed 

with a 5:1 diastereomeric ratio. The resulting lactols were successively treated with acetic 

anhydride to promote the ring opening of the lactol, and with tosyl hydrazide to give the 

corresponding hydrazones 192, which were isolated as a single isomer in good to excellent 

overall yields from amine 190 without purification of synthetic intermediates (Scheme 25). 
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Scheme 25  Preparation of the hydrazones 192. 

 

Hydrazones 12b--trans-192 and 12b--trans-192 were reduced with NaBH3CN in the 

presence of HCl. Final addition of KOH aq. in methanol gave the natural product ()-

dihydrocorynantheol (3) and (+)-hirsutinol (182). On the other hand, treatment of hydrazones -

trans-192 and -trans-192 with n-BuLi resulted in the elimination of the hydrazone and 

deacetylation providing access to ()-corynantheol (183), whereas the oxidation of the 

hydroxyquinolizidines gave ()-dihydrocorynantheal (184) and ()-corynantheal (185) (Scheme 

26). 
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Scheme 26  Preparation of Corynantheine alkaloids. 

 

2.3.3. Organocatalytic Enantioselective total synthesis of ()-arboricine (28). 

A concise and scalable synthesis of ()-arboricine (28) based on an asymmetric organocatalytic 

Pictet-Spengler reaction, followed by a Pd(0)-catalyzed enolate cyclization, was described by 

Maarseveen and Hiemstra in 2009 (Scheme 27).[95] 

The synthesis started with the know tryptamine 194,[96] which was prepared in one step by 

alkylation of tryptamine with Z-2-iodo-2-butene-1-ol mesylate (193) in 84% yield. Pictet-

Spengler condensation of 194 with the dioxolane 195 using catalyst (R)-binol-PA (A), provided 

196 in 92% yield and 78% ee. The acetal protecting group improves the ee of this reaction. The 

best ee was obtained using the sterically slightly more demanding catalyst (R)-H8-binol-PA (B) 

that gave 196 in 86% yield and 89% ee. Treatment of 196 with Boc2O and DMAP followed by 

diluted HCl in acetone gave ketone 197 in 96% overall yield. The closure of the piperidine ring 

was accomplished by a Pd(0)-catalyzed vinyl iodide-enolate coupling using the procedure 

published by Sole and Bonjoch, in which potassium phenoxide avoids the migration of the 

isolated exocyclic double bond[97] affording keto amine 198 as a single diastereoisomer. A 
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single recrystallization from the EtOAc/PE mixture gave enantiometically pure 198. ()-

arboricine was obtained in 81% yield after TFA-mediated removal of the Boc-protecting group 

of 198. 

 

Scheme 27  Organocatalytic enantioselective total synthesis of ()-arboricine (28). 

 

2.3.4. Proline-catalyzed asymmetric addition reaction: Total synthesis of ent-

dihydrocorynantheol (3) 

In the context of Itoh’s research on the synthesis of chiral 1-substituted 1,2,3,4-tetrahydro--

carboline derivatives, using the asymmetric addition of methyl ketones to the -carboline 

system in the presence of (S)-proline,[98] this author envisaged that 3-ethyl-3-buten-2-one as a 

good substrate for the concise asymmetric synthesis of ent-dihydrocorynantheol (Scheme 

28).[99]  

The reaction of N-tosyl-3,4-dihydro--carboline (199) with 3-ethyl-3-buten-2-one (200)[100] in 

the presence of (S)-proline (201) led to the formation of the D ring of the target molecule with 

the correct configuration in a single step, affording the product 202 in a good yield of 85% with 

99% ee. Since there were no intermediates observed in the reaction, it was not possible to 
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conclude whether the reaction proceeded via Mannich-Michael reaction or a Diels-Alder-type 

addition. Alkene 203 was then quantitatively obtained in the ratio of E/Z 1:20 from compound 

202 by Wittig reaction. Subsequent treatment with Red-Al brought about the reductive 

elimination of the tosyl group and the reduction of the ester group to an alcohol. A final 

hydrogenation satisfactorily afforded ent-dihydrocorynantheol. 

 

Scheme 28  Total synthesis of ent-dihydrocorynantheol (ent-3). 

 

Final Remarks 

There has been much progress in the synthesis and biological evaluation of tetracyclic indole 

alkaloids containing an indolo[2,3-a]quinolizidine system. However, we can still find many 

reports describing the biological activity of extracts, instead of describing the activity of the 

pure indole alkaloids. Also, many reports do not describe correctly the stereochemistry of the 

indole alkaloids isolated and/or evaluated.  

Herein, we have made a review about the potential pharmacological applications of indolo[2,3-

a]quinolizidines and derivatives (see Table 1), as well as about the most important asymmetric 

approaches developed for the construction of the indolo[2,3-a]quinolizine ring system. 

Although, to our knowledge, there are no alkaloids in the market or in clinical assays containing 

an indolo[2,3-a]quinolizidine system, compounds containing a tetracyclic indole[2,3-a]-

quinolizidine scaffold seem to be a potential starting point for the development of effective 

drugs.  
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Abbreviations 

Ac, acetyl; Boc, tert-Butyloxycarbonyl; DHC, dihydrocorynantheol; Me, methyl; Nuclear 

factor-kB, NF-kB; OGlu, O-β-D-glucosyl; SIRT, sirtuin; DIBAL-H, diisobutylaluminium 

hydride; HWE, Horner-Wadsworth-Emmons; THF, tetrahydrofuran; DMAP, 4-

dimethylaminopyridine; PPTS, Pyridinium p-toluenesulfonate; TBSCl, tert-Butyldimethylsilyl 

chloride;  

 

Acknowledgements 

Fundação para a Ciência e a Tecnologia (FCT, Portugal) through iMed.ULisboa 

(UID/DTP/04138/2013), MINECO (Spain, project CTQ2012-35250), and AGAUR 

(Generalitat de Catalunya, Grant 2014SGR-0155) are gratefully acknowledged. 

 

References 

[1] Brown RT. Indoles. The Monoterpenoid Indole Alkaloids. In: Saxton JE, Ed. The 

Chemistry of Heterocyclic Compounds; Weissberger A, Taylor, EC Eds.;New 

York: Wiley 1983, Vol. 25, Part 4, Chapter 3. 

[2] Szántay C, Blaskó G, Honty K, et al. The Alkaloids. In: Brossi A, Ed. London: 

Academic Press 1986, Vol. 27, Chapter 2. 

[3] Lounasmaa M, Tolvanen A. Monoterpenoid Indole Alkaloids. In: Saxton JE, Ed. 

The Chemistry of Heterocyclic Compounds. Chichester: Wiley 1994, Vol.25, Part 

4, Chapter 3. 

[4] Johns SR, Lamberton JA, Occolowitz JL. 1,2,3,4,6,7-Hexahydro-12H-indolo[2,3-

a]quinolizine an alkaloid from Dracontomelum Mangiferum bl. (family 

anacardiaceae). Aust J Chem 1966; 19: 1951-1954. 



55 

 

[5] Ito Y, Yano S, Watanabe K, et al. Structure activity relationship of yohimbine 

and its related analogs in blocking alpha-1 and alpha-2 adrenoceptors - a 

comparative-study of cardiovascular activities. Chem Pharm Bull 1990; 38: 

1702-1706. 

[6] Chbani M, Pais M, Delauneux JM, et al. Brominated indole alkaloids from the 

marine tunicate Pseudodistoma arborescens. J Nat Prod 1993; 56: 99-104. 

[7] Santos LS, Theoduloz C, Pilli RA, et al. Antiproliferative activity of arborescidine 

alkaloids and derivatives. Eur J Med Chem 2009; 44: 3810-3815. 

[8] Chang P, Koh YK, Geh SL, et al. Cardiovascular effects in the rat of 

dihydrocorynantheine isolated from uncaria-callophylla. J Ethnopharmacol 

1989; 25: 213-215. 

[9] Masumiya H, Saitoh T, Tanaka Y, et al. Effects of hirsutine and 

dihydrocorynantheine om the action potentials of sino-atrial node, atrium and 

ventricle. Life Sci 1999; 65: 2333-2341. 

[10] Staerk D, Lemmich E, Christensen J, et al. Leishmanicidal, antiplasmodial and 

cytotoxic activity of indole alkaloids from Corynanthe pachyceras. Planta Med 

2000; 66: 531-536. 

[11] Liz R, Pereira DF, Horst H, et al. Protected effect of Esenbeckia leiocarpa upon 

the inflammatory response induced by carrageenan in a murine air pouch 

model. Int Immunopharmacol 2011; 11: 1991-1999. 

[12] Pozzatti P, dos Reis GO, Pereira DF, et al. Relationship of chemical structure and 

anti-inflammatory activity of dihydrocorynantheol and its analogues. 

Pharmacol Rep 2013; 65: 1263-1271. 



56 

 

[13] Horie S, Yano S, Aimi N, et al. Effects of hirsutine, an antihypertensive indole 

alkaloid from uncaria-rhynchophylla, on intracellular calcium in rat thoracic 

aorta. Life Sci 1992; 50: 491-498. 

[14] Wu LX, Gu XF, Zhu YC, et al. Protective effects of novel single compound, 

Hirsutine on hypoxic neonatal rat cardiomyocytes. Eur J Pharmacol 2011; 650: 

290-297. 

[15] Yuzurihara M, Ikarashi Y, Goto K, et al. Geissoschizine methyl ether, an indole 

alkaloid extracted from Uncariae Ramulus et Uncus, is a potent vasorelaxant of 

isolated rat aorta. Eur J Pharmacol 2002; 444: 183-189. 

[16] Matsuo H, Okamoto R, Zaima K, et al. New vasorelaxant indole alkaloids, 

villocarines A-D from Uncaria villosa. Bioorg Med Chem 2011; 19: 4075-4079. 

[17] Pozzatti P, dos Reis GO, Pereira DF, et al. Esenbeckia leiocarpa Engl. inhibits 

inflammation in a carrageenan-induced murine model of pleurisy. J Pharm 

Pharmacol 2011; 63: 1091-1102. 

[18] Ueda T, Ugawa S, Ishida Y, et al. Geissoschizine methyl ether has third-

generation antipsychotic-like actions at the dopamine and serotonin receptors. 

Eur J Pharmacol 2011; 671: 79-86. 

[19] Yang Z-d, Duan D-z, Du J, et al. Geissoschizine methyl ether, a corynanthean-

type indole alkaloid from Uncaria rhynchophylla as a potential 

acetylcholinesterase inhibitor. Nat Prod Res 2012; 26: 22-28. 

[20] Cardoso CL, Silva DHS, Tomazela DM, et al. Turbinatine, a potential key 

intermediate in the biosynthesis of corynanthean-type indole alkaloids. J Nat 

Prod 2003; 66: 1017-1021. 



57 

 

[21] Jung HY, Nam KN, Woo B-C, et al. Hirsutine, an indole alkaloid of Uncaria 

rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial 

activation. Mol Med Rep 2013; 7: 154-158. 

[22] Qi W, Yue S-J, Sun J-H, et al. Alkaloids from the hook-bearing branch of Uncaria 

rhynchophylla and their neuroprotective effects against glutamate-induced 

HT22 cell death. J Asian Nat Prod Res 2014; 16: 876-883. 

[23] Lou C, Takahashi K, Irimura T, et al. Identification of Hirsutine as an anti-

metastatic phytochemical by targeting NF-kappa B activation. Int J Oncol 2014; 

45: 2085-2091. 

[24] Lim K-H, Hiraku O, Komiyama K, et al. Biologically active indole alkaloids from 

Kopsia arborea. J Nat Prod 2007; 70: 1302-1307. 

[25] Mukhopadhyay S, Handy GA, Funayama S, et al. Anticancer indole alkaloids of 

rhazya-stricta. J Nat Prod 1981; 44: 696-700. 

[26] Soares PRO, de Oliveira PL, de Oliveira CMA, et al. In vitro antiproliferative 

effects of the indole alkaloid vallesiachotamine on human melanoma cells. Arch 

Pharm Res 2012; 35: 565-571. 

[27] Passos CdS, Soldi TC, Abib RT, et al. Monoamine oxidase inhibition by 

monoterpene indole alkaloids and fractions obtained from Psychotria suterella 

and Psychotria laciniata. J Enzyme Inhib Med Chem 2013; 28: 611-618. 

[28] Passos CS, Simoes-Pires CA, Nurisso A, et al. Indole alkaloids of Psychotria as 

multifunctional cholinesterases and monoamine oxidases inhibitors. 

Phytochem 2013; 86: 8-20. 

[29] Sacconnay L, Ryckewaert L, Passos CdS, et al. Alkaloids from psychotria target 

sirtuins: in silico and in vitro interaction studies. Planta Med 2015; 81: 517-524. 



58 

 

[30] Matsumoto K, Yamamoto LT, Watanabe K, et al. Inhibitory effect of 

mitragynine, an analgesic alkaloid from Thai herbal medicine, on neurogenic 

contraction of the vas deferens. Life Sci 2005; 78: 187-194. 

[31] Kitajima M, Misawa K, Kogure N, et al. A new indole alkaloid, 7-

hydroxyspeciociliatine, from the fruits of Malaysian Mitragyna speciosa and its 

opioid agonistic activity. J Nat Med 2006; 60: 28-35. 

[32] Matsumoto K, Horie S, Ishikawa H, et al. Antinociceptive effect of 7-

hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from 

the Thai medicinal herb Mitragyna speciosa. Life Sci 2004; 74: 2143-2155. 

[33] Horie S, Koyama F, Takayama H, et al. Indole alkaloids of a Thai medicinal herb, 

Mitragyna speciosa, that has opioid agonistic effect in guinea-pig ileum. Planta 

Med 2005; 71: 231-236. 

[34] Matsumoto K, Takayama H, Ishikawa H, et al. Partial agonistic effect of 9-

hydroxycorynantheidine on µ-opioid receptor in the guinea-pig ileum. Life Sci 

2006; 78: 2265-2271. 

[35] Shamima AR, Fakurazi S, Hidayat MT, et al. Antinociceptive action of isolated 

mitragynine from mitragyna speciosa through activation of opioid receptor 

system. Int J Mol Sci 2012; 13: 11427-11442. 

[36] Matsumoto K, Narita M, Muramatsu N, et al. Orally active opioid µ/δ dual 

agonist MGM-16, a derivative of the indole alkaloid mitragynine, exhibits 

potent antiallodynic effect on neuropathic pain in mice. J Pharmacol Exp Ther 

2014; 348: 383-392. 

[37] Takayama H, Ishikawa H, Kurihara M, et al. Studies on the synthesis and opioid 

agonistic activities of mitragynine-related indole alkaloids: Discovery of opioid 



59 

 

agonists structurally different from other opioid ligands. J Med Chem 2002; 45: 

1949-1956. 

[38] Wehner F, Noeren-Mueller A, Mueller O, et al. Indoloquinolizidine derivatives 

as novel and potent apoptosis inducers and cell-cycle blockers. Chembiochem 

2008; 9: 401-405. 

[39] Vendrell M, Soriano A, Casado V, et al. Indoloquinolizidine-peptide hybrids as 

multiple agonists for D-1 and D-2 dopamine receptors. Chemmedchem 2009; 4: 

1514-1522. 

[40] Soriano A, Vendrell M, Gonzalez S, et al. A hybrid indoloquinolizidine peptide as 

allosteric modulator of dopamine D-1 receptors. J Pharmacol Exp Ther 2010; 

332: 876-885. 

[41] Zhu K, Yang S-N, Ma F-F, et al. The novel analogue of hirsutine as an anti-

hypertension and vasodilatary agent both in vitro and in vivo. PloS one 2015; 

10: e0119477-e0119477. 

[42] Ohba M, Ohashi T, Fujii T. Quinolizidines. XXIX. Preparation of (-)-dihydro-

corynantheol. Heterocycles 1991; 32: 319-328. 

[43] Fujii T, Ohba M, Shimohata K, et al. Quinolizidines. XXIII. An alternative 

synthetic route to benzo[a]quinolizidine-type alangium alkaloids from ethyl 

cincholoiponate. Heterocycles 1987; 26: 2949-2957. 

[44] Deiters A, Chen K, Eary CT, et al. Biomimetic entry to the sarpagan family of 

indole alkaloids: Total synthesis of (+)-geissoschizine and (+)-N-

methylvellosimine. J Am Chem Soc 2003; 125: 4541-4550. 

[45] Borch RF. A new method for reduction of secondary and tertiary amides. 

Tetrahedron Lett 1968: 61-65. 



60 

 

[46] Bohlmann C, Bohlmann R, Rivera EG, et al. Reactions with indole-derivatives 

.53. enantioselective total synthesis of (+)-geissoschizine and (-)-geissoschizol. 

Liebigs Ann Chem 1985: 1752-1763. 

[47] Deiters A, Pettersson M, Martin SF. General strategy for the syntheses of 

corynanthe, tacaman, and oxindole alkaloids. J Org Chem 2006; 71: 6547-6561. 

[48] Besselievre R, Cosson JP, Das BC, et al. Structure and total synthesis of 

deplancheine, a novel indoloquinolizidine alkaloid. Tetrahedron Lett 1980; 21: 

63-66. 

[49] Sydorenko N, Zificsak CA, Gerasyuto AI, et al. Total syntheses of 

enantiomerically enriched R-(+)- and S-(-)-deplancheine. Org Biomol Chem 

2005; 3: 2140-2144. 

[50] Takasu K, Nishida N, Tomimura A, et al. Convenient synthesis of substituted 

piperidinones from alpha,beta-unsaturated amides: Formal synthesis of 

deplancheine, tacamonine, and paroxetine. J Org Chem 2005; 70: 3957-3962. 

[51] Allin SM, Thomas CI, Doyle K, et al. An asymmetric synthesis of both 

enantiomers of the indole alkaloid deplancheine. J Org Chem 2005; 70: 357-

359. 

[52] Mondal P, Argade NP. Enantioselective Total Synthesis of 

Desbromoarborescidines A-C and the Formal Synthesis of (S)-Deplancheine. J 

Org Chem 2013; 78: 6802-6808. 

[53] Martin SF, Chen KX, Eary CT. An enantioselective total synthesis of (+)-

geissoschizine. Org Lett 1999; 1: 79-81. 



61 

 

[54] Amat M, Santos MMM, Bassas O, et al. Straightforward methodology for the 

enantioselective synthesis of benzo[a]- and indolo[2,3-a] quinolizidines. J Org 

Chem 2007; 72: 5193-5201. 

[55] Pérez M, Arioli F, Rigacci G, et al. Stereocontrolled generation of benzo[a]- and 

indolo[2,3-a]quinolizidines from (S)-Tryptophanol and (S)-(3,4-

dimethoxyphenyl)alaninol-derived lactams. Eur J Org Chem 2011: 3858-3863. 

[56] Amat M, Santos MMM, Gómez AM, et al. Enantioselective spirocyclizations 

from tryptophanol-derived oxazolopiperidone lactams. Org Lett 2007; 9: 2907-

2910. 

[57] Amat M, Gómez Esqué A, Escolano C, et al. Enantioselective formal synthesis of 

(+)-dihydrocorynantheine and (-)-dihydrocorynantheol. J Org Chem 2009; 74: 

1205-1211. 

[58] Lounasmaa M, Hanhinen P. Studies on the biomimetic preparation of the 

sarpagan ring system. Attempts to apply the spontaneous ''biogenetic-type 

cyclization'' of van Tamelen to bond formation between C-5 and C-16 in the 

corynantheine series. Tetrahedron 1996; 52: 15225-15242. 

[59] Lounasmaa M, Jokela R, Tirkkonen B, et al. Syntheses of (±)-Z-geissoschizol, (±)-

3-epi-Z-geissoschizol, (±)-corynantheidol, (±)-dihydrocorynantheol, (±)-3-epi-

dihydrocorynantheol and the corresponding corynan-17-oic acid methyl-esters. 

Heterocycles 1992; 34: 321-339. 

[60] Ma J, Yin W, Zhou H, et al. Total synthesis of the opioid agonistic indole alkaloid 

mitragynine and the first total syntheses of 9-methoxygeissoschizol and 9-

methoxy-Nb-methylgeissoschizol. Org Lett 2007; 9: 3491-3494. 



62 

 

[61] Ley SV, Priour A. Total synthesis of the cyclic peptide argyrin B. Eur J Org Chem 

2002: 3995-4004. 

[62] Ley SV, Priour A, Heusser C. Total synthesis of the cyclic heptapeptide argyrin B: 

A new potent inhibitor of T-cell independent antibody formation. Org Lett 

2002; 4: 711-714. 

[63] Larock RC, Yum EK. Synthesis of indoles via palladium-catalyzed 

heteroannulation of internal alkynes. J Am Chem Soc 1991; 113: 6689-6690. 

[64] Larock RC, Yum EK, Refvik MD. Synthesis of 2,3-disubstituted indoles via 

palladium-catalyzed annulation of internal alkynes. J Org Chem 1998; 63: 7652-

7662. 

[65] Liu XX, Deschamp JR, Cook JM. Regiospecific, enantiospecific total synthesis of 

the alkoxy-substituted indole bases, 16-epi-Na-methylgardneral, 11-

methoxyaffinisine, and 11-methoxymacroline as well as the indole alkaloids 

alstophylline and macralstonine. Org Lett 2002; 4: 3339-3342. 

[66] Castle SL, Srikanth GSC. Catalytic asymmetric synthesis of the central 

tryptophan residue of celogentin C. Org Lett 2003; 5: 3611-3614. 

[67] Zhou H, Liao XB, Cook JM. Regiospecific, enantiospecific total synthesis of the 

12-alkoxy-substituted indole alkaloids, (+)-12-methoxy-Na-methylvellosimine, 

(+)-12-methoxyaffinisine, and (-)-fuchsiaefoline. Org Lett 2004; 6: 1187-1187. 

[68] Yu JM, Wearing XYZ, Cook JM. Stereocontrolled total synthesis of (-)-

vincamajinine and (-)-11-methoxy-17-epivincamajine. J Am Chem Soc 2004; 

126: 1358-1359. 

[69] Schollkopf U, Groth U, Deng C. Enantioselective synthesis of (R)-amino acids 

using L-valine as chiral agent. Angew Chem Int Ed Engl 1981; 20: 798-799. 



63 

 

[70] Ma CR, Liu XX, Li XY, et al. Efficient asymmetric synthesis of biologically 

important tryptophan analogues via a palladium-mediated heteroannulation 

reaction. J Org Chem 2001; 66: 4525-4542. 

[71] Takayama H, Maeda M, Ohbayashi S, et al. The first total synthesis of (-)-

mitragynine, an analgesic indole alkaloid in Mitragyna speciosa. Tetrahedron 

Lett 1995; 36: 9337-9340. 

[72] Yu S, Berner OM, Cook JM. General approach for the synthesis of indole 

alkaloids via the asymmetric Pictet-Spengler reaction: First enantiospecific total 

synthesis of (-)-corynantheidine as well as the enantiospecific total synthesis of 

(-)-corynantheidol, (-)-geissoschizol, and (+)-geissoschizine. J Am Chem Soc 

2000; 122: 7827-7828. 

[73] Nicolaou KC, Edmonds DJ, Bulger PG. Cascade reactions in total synthesis. 

Angew Chem Int Ed 2006; 45: 7134-7186. 

[74] Tietze LF. Comprehensive chirality. Elsevier 2012. 

[75] Pellissier H. Asymmetric domino reactions. Part A: Reactions based on the use 

of chiral auxiliaries. Tetrahedron 2006; 62: 1619-1665. 

[76] Tietze LF, Beifuss U. Sequential transformations in organic-chemistry - A 

synthetic strategy with a future. Angew Chem Int Ed Engl 1993; 32: 131-163. 

[77] Hua DH, Bharathi SN, Panangadan JAK, et al. Stereoselective additions of chiral 

α-sulfinyl ketimine anions to ene esters - asymmetric syntheses of indolo 2,3-a 

quinolizidine and yohimban alkaloids. J Org Chem 1991; 56: 6998-7007. 

[78] Tietze LF, Zhou YF. Highly efficient, enantioselective total synthesis of the active 

anti-influenza A virus indole alkaloid hirsutine and related compounds by 

domino reactions. Angew Chem Int Ed 1999; 38: 2045-2047. 



64 

 

[79] Tosaka A, Ito S, Miyazawa N, et al. Total synthesis of (-)-dihydrocorynantheol 

using bicyclo[3.2.1]octenone chiral building block. Heterocycles 2006; 70: 153-

159. 

[80] Miyazawa N, Ogasawara K. A concise enantiocontrolled route to yohimbones 

using a bicyclo]3.2.1] octane chiral building block. Tetrahedron Lett 2002; 43: 

4773-4776. 

[81] Tsunoda T, Suzuki M, Noyori R. A facile procedure for acetalization under 

aprotic conditions. Tetrahedron Lett 1980; 21: 1357-1358. 

[82] Kobayashi T, Takeuchi K, Miwa J, et al. Efficient synthesis of 2,4,5-trisubstituted 

2,5-chiral tetrahydropyridines using a one-pot asymmetric azaelectrocyclization 

protocol. Chem Commun 2009: 3363-3365. 

[83] Li Y, Kobayashi T, Katsumura S. Synthesis of indole alkaloid (-)-corynantheidol 

and formal synthesis of (-)-corynantheidine via one-pot asymmetric 

azaelectrocyclization. Tetrahedron Lett 2009; 50: 4482-4484. 

[84] Amat M, Hadida S, Pshenichnyi G, et al. Palladium(0)-catalyzed heteroarylation 

of 2- and 3-indolylzinc derivatives. An efficient general method for the 

preparation of (2-pyridyl)indoles and their application to indole alkaloid 

synthesis. J Org Chem 1997; 62: 3158-3175. 

[85] English BJ, Williams RM. A divergent strategy for the synthesis of secologanin 

derived natural products. J Org Chem 2010; 75: 7869-7876. 

[86] English BJ, Williams RM. Synthesis of (±)-oleocanthal via a tandem 

intramolecular Michael cyclization-HWE olefination. Tetrahedron Lett 2009; 50: 

2713-2715. 



65 

 

[87] Dalko PI, Moisan L. In the golden age of organocatalysis. Angew Chem Int Ed 

2004; 43: 5138-5175. 

[88] Kumar P, Dwivedi N. Proline Catalyzed α-Aminoxylation Reaction in the 

Synthesis of Biologically Active Compounds. Acc Chem Res 2013; 46: 289-299. 

[89] Gomez C, Betzer J-F, Voituriez A, et al. Phosphine Organocatalysis in the 

Synthesis of Natural Products and Bioactive Compounds. Chemcatchem 2013; 

5: 1055-1065. 

[90] Santos LS, Pilli RA, Rawal VH. Enantioselective total syntheses of (+)-

arborescidine A, (-)-arborescidine B, and (-)-arborescidine C. J Org Chem 2004; 

69: 1283-1289. 

[91] Schumacher RW, Davidson BS. Synthesis of didemnolines A-D, N9-substituted 

β-carboline alkaloids from the marine ascidian Didemnum sp. Tetrahedron 

1999; 55: 935-942. 

[92] Kobayashi S, Ishitani H. Catalytic enantioselective addition to imines. Chem Rev 

1999; 99: 1069-1094. 

[93] Yamakawa M, Ito H, Noyori R. The metal-ligand bifunctional catalysis: A 

theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between 

alcohols and carbonyl compounds. J Am Chem Soc 2000; 122: 1466-1478. 

[94] Zhang W, Bah J, Wohlfarth A, et al. A Stereodivergent Strategy for the 

Preparation of Corynantheine and Ipecac Alkaloids, Their Epimers, and 

Analogues: Efficient Total Synthesis of (-)-Dihydrocorynantheol, (-)-

Corynantheol, (-)-Protoemetinol, (-)-Corynantheal, (-)-Protoemetine, and 

Related Natural and Nonnatural Compounds. Chem Eur J 2011; 17: 13814-

13824. 



66 

 

[95] Wanner MJ, Boots RNA, Eradus B, et al. Organocatalytic Enantioselective Total 

Synthesis of (-)-Arboricine. Org Lett 2009; 11: 2579-2581. 

[96] Takayama H, Watanabe F, Kitajima M, et al. A radical cyclization strategy for 

the concise total synthesis of (±)-geissoschizine. Tetrahedron Lett 1997; 38: 

5307-5310. 

[97] Sole D, Urbaneja X, Bonjoch J. Palladium-catalyzed intramolecular coupling of 

amino-tethered vinyl halides with ketones, esters, and nitriles using potassium 

phenoxide as the base. Adv Synth Catal 2004; 346: 1646-1650. 

[98] Itoh T, Yokoya M, Miyauchi K, et al. Proline-catalyzed asymmetric addition 

reaction of 9-tosyl-3,4-dihydro-β-carboline with ketones. Org Lett 2003; 5: 

4301-4304. 

[99] Itoh T, Yokoya M, Miyauchi K, et al. Total synthesis of ent-dihydrocorynantheol 

by using a proline-catalyzed asymmetric addition reaction. Org Lett 2006; 8: 

1533-1535. 

[100] Faulkner DJ, Petersen MR. Application of claisen rearrangement to synthesis of 

trans trisubstituted olefinic bonds - synthesis of squalene and insect juvenile-

hormone. J Am Chem Soc 1973; 95: 553-563. 

 

 


