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Abstract—In pervasive computing, localizing a user in wire-
less indoor environments is an important yet challenging task.
Among the state-of-art localization methods, fingerprinting
is shown to be quite successful by statistically learning the
signal to location relations. However, a major drawback for
fingerprinting is that, it usually requires a lot of labeled
data to train an accurate localization model. To establish a
fingerprinting-based localization model in a building with many
floors, we have to collect sufficient labeled data on each floor.
This effort can be very burdensome. In this paper, we study how
to reduce this calibration effort by only collecting the labeled
data on one floor, while collecting unlabeled data on other
floors. Our idea is inspired by the observation that, although
the wireless signals can be quite different, the floor-plans in a
building are similar. Therefore, if we co-embed these different
floors’ data in some common low-dimensional manifold, we are
able to align the unlabeled data with the labeled data well so
that we can then propagate the labels to the unlabeled data. We
conduct empirical evaluations on real-world multi-floor data
sets to validate our proposed method.
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I. INTRODUCTION

With the proliferation of wireless technologies, indoor

localization using wireless signal strength has attracted in-

creasing interests from both research and industrial commu-

nities [1], [2]. Based on accurate location information, many

useful services can be provided, such as object tracking,

security control, etc. A number of localization methods have

been proposed. Among them, fingerprinting is shown to be

quite successful. In general, given sufficient labeled data in

some environment, fingerprinting methods statistically learn

the relations between the received signal strengths and the

locations [3], [4]. However, getting a lot of labeled data can

be very expensive. This drawback poses a major difficulty

for fingerprinting methods in real-world applications. For

example, to facilitate the indoor localization for a building

with many floors, we have to collect sufficient labeled data

and train a localization model at each floor. When there

are many floors in the building, it will be very burdensome

to collect labeled data for all the floors. In this paper, we

are interested in studying how to reduce such effort. We

show that, by using our proposed method, we only have to

collect the labeled data on one floor. For the other floors,

we only need to carry a wireless device and walk in an

arbitrary way to collect some unlabeled data. After that, a

sufficiently accurate localization model for the floors without

labeled data can be obtained for the other floors, saving a

significant amount of labeling effort.

Our idea is inspired by the observation that, although

the wireless signals can be quite different, the floor-plans

in a building are usually similar. As an example, a floor

plan for our building is shown in Figure 1. Generally, the

Figure 1. An academic building at HKUST (partial)

wireless signal data are composed of the received signal

strengths (RSS) from various access points (APs) in the en-

vironments. On different floors, we may detect different APs.

Moreover, even for the same APs, we may receive different

signal strength values at different floors. So the collected

signal data from different floors can constitute different

high-dimensional spaces, which can be described as high-

dimensional manifolds [20]. Fortunately, although these

high-dimensional data spaces vary across the floors, they

are all constrained to some common low-dimensional repre-

sentation, such as 2-D locations in a floor-plan. Therefore, if

we can embed these different floors’ data in some common

low-dimensional manifold by using some correspondence-

learning method, we are able to align the unlabeled data

with the labeled data. We will show in Section IV-A that,

by using a maximal-RSS criterion, we can identify such

correspondences well. After that, we can propagate the labels

from the labeled data to the unlabeled data and train a

localization model for the floors with only unlabeled data.

We can save a significant amount of effort in this way in

multi-floor localization.

Our contributions are summarized as follows:

• We describe a new multi-floor indoor localization prob-

lem, and analyze the traditional fingerprinting solutions

on this problem.



• We provide a reduced-effort solution by using the unla-

beled data. Compared to other multi-floor localization

work [11], [12], [13], our method does not require

data labeling at every other floor, thus greatly reducing

the calibration effort. Compared to other localization

methods also using unlabeled data [5], our model is

capable of handling a more difficult case when we

have multiple signal datasets with the received signal

strengths (i.e. data distributions) and the detected access

points (i.e. data feature dimensions) being different.

• We validate our proposed method in real-world multi-

floor environments.

II. RELATED WORK

In recent years, there have been many studies on how

to utilize the radio frequency values of wireless signals

for indoor localization. In general, the proposed wireless

localization methods fall into two main categories: Propaga-

tion Models and Fingerprinting Models. Propagation Models

can benefit from the knowledge of radio propagation and

also the access points’ locations. By using trilateration or

triangulation techniques, propagation models can compute

the position for the mobile target [6], [7]. A drawback for

such models is that, they cannot well handle the signal un-

certainties. Fingerprinting models, also known as learning-

based models, aim to use some data mining techniques,

to discover the signal-location patterns [8]. Typical pattern

descriptions include histogram [9], mixture of gaussian[10],

or simply the mean value of signal strength at different

locations [1]. As fingerprinting models can take the signal

uncertainties into consideration, they are usually shown to

have rather satisfying performance in localization. However,

there are still some drawbacks for such models; and one

main drawback of them is that they usually require much

human calibration effort to build a localization model for

a given environment. When the environment changes, the

learned signal-location patterns may change as well, thus the

already-built localization model may not work well anymore.

Our work belongs to the category of fingerprinting models,

but it goes beyond the standard fingerprinting methods by

handling the environmental changes caused by the effects of

multiple floors with reduced effort.

Some previous works also considered multiple floors in

wireless localization. For example, Otsason et al. studied

the GSM-based indoor localization by using wide signal-

strength fingerprints [11]. They tested their model on three

multi-floor buildings, and showed that it can effectively dif-

ferentiate between floors and achieve a satisfying accuracy

for within-floor localization. Letchner et al. proposed to

use hierarchical Bayesian network for large-scale wireless

localization [12]. For an indoor environment, they tested

their model in a 7-floor building. Varshavsky et al. designed

a system based on a GSM fingerprinting-based localization

system know as SkyLoc, to identify which floor a mobile

phone user is on in multi-floor buildings [13]. They studied

several feature-selection methods for their system, and tested

them in three multi-floor buildings. However, the above

works required users to collect labeled data (i.e. fingerprints)

at all the floors, thus are quite expensive for human calibra-

tion. In contrast, we only need to collect labeled data on a

single floor, and collect unlabeled data on all other floors.

It will greatly reduce the labeling cost. There is also some

other work on studying how to track a user in a multi-floor

building such as [14], but they typically require some other

specific sensors instead of using only the wireless adapters.

Besides, there are some works discussed how to reduce the

human labeling effort in wireless localization. For example,

[15] and [16] only asked for unlabeled data to do local-

ization; however, both of them required the access points’

locations to be known in advance, which is not always

available in practice due to security control. In contrast,

we don’t need to know the APs’ locations. [17] and [18]

addressed the environmental changes with time and devices

in WiFi localization with minimal effort; however, both

of them required at least some labeled data in the new

environments (i.e. either time or devices), while in our

current model, we don’t need to collect any labeled data

in the new environments (i.e. floors).

III. LOCALIZATION FOR MULTI-FLOOR ENVIRONMENTS

In our proposed localization method, we only require the

users to collect the labeled data (i.e. fingerprints) on one

floor, and collect unlabeled data on other floors. Then, we

will build a localization model for the floors with unlabeled

data. For clarity, we will use two floors as an example to

demonstrate our idea in the following sections1. In particular,

we will take as input a source floor having sufficient labeled

data and a target floor having only unlabeled data. After

training, we assign labels for the unlabeled data in the target

floor, and thus build a localization model (such as nearest

neighbor [1], etc.). Finally, we will test the model on some

held-out test data (labeled) on the target floor. In applying

the localization model in real time, for a multi-floor building

environment, when a query signal vector is sent to our

localization system, we will compare its detected APs with

each floor’s AP list (as each floor’s AP list is different) and

thus determine which floor the real-time signal vector may

belong to. After that, we will use that floor’s localization

model to output the predicted location.

Assume that, in some floor A, we carry a wireless device

and collect a set of fingerprints from DA access points.

Therefore, we will have the labeled data (XA
trn, YA

trn) in

floor A for training. We call A the source floor. Here, XA
trn

is a N1 × DA matrix with each row as a received signal

strength (RSS) vector and each column corresponding to an

1Our model can also naturally extend to cope with more than two floors at
a time, but in our real-world experiments, we didn’t find that it necessarily
brings any performance improvement.



access point. YA
trn is a N1× 2 matrix, with each row as the

2-D location where the corresponding RSS vector in XA
trn is

collected. Similarly, in a target floor B, we will collect some

unlabeled signal data from DB access points for training.

Denote the data as XB
trn, which is a N2 ×DB matrix. We

also collect another set of test data (XB
tst, Y

B
tst) for the target

floor. Here, XB
tst is a N3×DB matrix and YB

tst is a N3×2
matrix. These test data are held out for evaluation.

In practice, the signal data for two different floors are

generally different in both received signal strengths and

detected access points. In other words, the columns in XA
trn

and XB
trn are generally different as the floor is changed, such

that the labeled data XA
trn and their labels YA

trn cannot be

directly used by putting them together. This is the difficulty

for the multi-floor localization problem. Fortunately, we

find that, although the signal data can be different, the

underlying floor-plans are usually similar. Furthermore, in

a building, different floors usually share some access points

in the practical scenarios. The correspondences between

these shared access points can be established by examining

the MAC addresses of the access points recorded by the

receiving devices. We will manage to make use of both

observations to facilitate our reduced-effort localization in

the multi-floor environment.

*signal from two access points is shown here

Signal Space for Floor B (n-dimension)Signal Space for Floor A (m-dimension)
F1

F1

F2 F3

0

0 0

Legend signal vector

signal boundary

grid point

grid boundary

Low-dimensional Space (2-D)

Y

X

L1

L2

S1

S2

S
′

1

S
′

3

S
′

2

S3

L3

Figure 2. Multi-manifold to some latent space (e.g. 2-D location space)

As shown in Figure 2, the two sets of signal vectors

XA
trn and XB

trn can constitute two manifolds in two high-

dimensional spaces; at the same time, they are constrained

to some low-dimensional space such as a 2-D location floor-

plan in our case. For example, the signal vector S1 for

floor A and the signal vector S′
1 for floor B, although

in different signal spaces ({F1, F2} vs. {F1, F3}), they

both correspond to a 2-D location L1. Because we do not

have any labels on floor B, we cannot align the signal

S′
1 to location L1. Similarly, we cannot align S′

2 to L2.

Fortunately, we find that signal vector S3 and S′
3 have some

inherent correspondences, i.e. they both have the maximal

signal strengths from the access point F1 in their own

Figure 3. A flowchart of our proposed method.

datasets. As the signal strengths will attenuate as the distance

from the device to the access point increases, we may infer

that their 2-D locations are very close, or sometimes even the

same. By using such a correspondence, we can propagate the

label (i.e. L3) from S3 to S′
3 (in a sophisticated way as we

will shown in the following sections). Therefore, by using

the neighborhood information, we can further propagate the

needed label information to S′
1 and S′

2, finally aligning them

to L1 and L2. The above procedure constitutes our idea to

co-embed both the labeled and unlabeled signal data from

the two floors into a common latent space (such as the 2-D

floor-plan) for label propagation. Our algorithm flowchart is

shown in Figure 3. First, we embed XA
trn and XB

trn into a

common latent space, so as to infer the labels ŶB
trn for XB

trn.

Then, we learn a localization model from XB
trn and ŶB

trn,

which is readily used for localization in floor B (evaluated

on test data XB
tst in our experiments).

IV. LOW-COST LOCALIZATION BY CO-EMBEDDING

To make the co-embedding possible, we will introduce

two intra-manifold graphs and one inter-manifold graph,

given the data on two floors2. Recall that each floor’s

signal data naturally constitute one manifold in some high-

dimensional space. To describe such a manifold, we build an

intra-manifold graph encoding the connections (or distances)

among the RSS vectors. Hence, for two floors, we can

formally describe them as two intra-manifold graphs. As our

aim is to co-embed these two manifolds in some common

low-dimensional space for label propagation, we will need

to build some connections between these two manifolds. We

achieve this by modeling an inter-manifold graph, which can

be initialized by some correspondences between the RSS

vectors on both manifolds. As discussed above, we will

assign such a correspondence for two RSS vectors having the

maximal signal strengths from some shared AP respectively

on both floors. After that, we will further refine the inter-

manifold graph by making used of the intra-manifold graphs.

Having the inter-manifold graph and two intra-manifold

graphs, we are now ready to co-embed both floors’ data.

2Hence, if we want to deal with m floors (m > 2) at a time, we will
have m intra-manifold graphs and (m

2
) inter-manifold graphs.



There can be two alternatives to do this: (1) Co-embedding

with location constraints, in which we will use the known

locations YA
trn as constraints and co-embed the two floors’

data into a 2-D space. In this case, the label information

YA
trn will be used in both co-embedding and label prop-

agation. (2) Co-embedding without location constraints, in

which we will ignore YA
trn and co-embed the two floors’

data into some arbitrary high dimensional space (thus can

be higher than 2-D). In this case, the label information YA
trn

will only be used in label propagation.

A. Build Graphs for Co-embedding

In order to constrain the embedding of the RSS vectors,

we build graphs within each of the datasets XA
trn and XB

trn

as well as between them. For the intra-dataset graphs, the

distances between the RSS vectors in XA
trn (as well as XB

trn)

can be readily computed (e.g. by the Euclidean distance).

Thus we can simply connect each RSS vector with its K

nearest neighbors (which results in a binary graph matri-

ces WA
N1×N1

and WB
N2×N2

. For the inter-dataset graph,

distances between the RSS vectors across XA
trn and XB

trn

cannot be directly computed due to different feature spaces.

To build the connections between the datasets, we propose

to use a maximal-RSS criterion to get the correspondences

for initializing the inter-dataset graph.

• Maximal-RSS Criterion: For each shared access point,

we connect the two RSS vectors (from XA
trn and XB

trn

respectively) with maximum received signal strength

from that access point.

The resulted graph (with binary graph matrix WAB
N1×N2

) is

generally too sparse to effectively relate the embedding of

two datasets, because the number of shared access points is

usually much less than number of RSS vectors in a densely

sampled dataset. We therefore use the following iterative

rule to enhance the inter-dataset graph by incorporating the

intra-dataset graphs:

WAB ←WAWABWB. (1)

Each such update essentially propagates and enhances the

inter-dataset connections according to the intra-dataset con-

nections. In practice, (1) is executed a sufficient number of

times to allow WAB effectively relate the two datasets.

Let {p(k)}Kk=1 ⊂ R
N1+N2 denote the embedding coordi-

nates of the source and target training set (in K-dimensional

latent space). For i = 1, · · · , N1, p(k)(i) is the k-th coordi-

nates of the i-th RSS vector in XA
trn, and for j = 1, · · · , N2,

p(k)(N1 + j) is the k-th coordinates of the j-th RSS vector

in XB
trn. The co-embedding should be constrained by the

following regularization term in order to be smooth with

respect to the inter- and intra-dataset graphs:

N1∑

i=1

N2∑

j=1

(p(k)(i)−p(k)(N1+j))2 WAB(i, j) = p(k)⊤LABp(k),

(2)

where LAB is a graph Laplacian matrix, defined as

LAB
(N1+N2)×(N1+N2)

=

(
DAB

N1×N1
−WAB

N1×N2

−(WAB)⊤N2×N1
DBA

N2×N2

)
.

(3)

Here, DAB
N1×N1

is a diagonal matrix with diagonal elements

{
∑

j WAB(i, j)}N1

i=1, and DBA
N2×N2

is a diagonal matrix with

diagonal elements {
∑

i W
AB(i, j)}N2

j=1.

In co-embedding, the inter-dataset graph is combined with

the intra-dataset graphs with some relative weight µ. Finally,

the composite graph Laplacian is

L =

(
LA 0
0 LB

)
+ µ LAB

(N1+N2)×(N1+N2)
(4)

where LA and LB are the graph Laplacian of the intra-

dataset graphs, defined similarly with (3). So the con-

straint imposed by the graphs on the co-embedding can be

summarized in one term p(k)⊤Lp(k) for each dimension

k ∈ {1, · · · , K}.

B. Co-embedding with Location Constraints

Given the 2-D location labels YA
trn, we can use the 2-

D floor-plan as the common low-dimensional embedding

space, and the image of each RSS vector in XA
trn is

constrained by its 2-D location [19] (as given in YA
trn).

Specifically, the optimal embedding should satisfy:

p̂(k) = arg min
p(k) [(p(k) − y

(k)
P )⊤JP (p(k) − y

(k)
P )

+ γ p(k)⊤Lp(k)], k = 1, 2
(5)

where

JP =

(
IN1×N1 0

0 0

)

(N1+N2)×(N1+N2)

, (6)

and for k = 1, 2, we define y
(k)
P ∈ R

N1+N2 whose first

N1 elements are the known coordinates given in YA
trn, and

the next N2 elements can be arbitrary values. The user-

specified parameter γ controls the relative strength of the

graph regularization and the known location constraints. We

will study its impact in the experiments.

It turns out that (5) can be solved in closed form:

p̂(k) = (JP + γL)−1JP y
(k)
P , k = 1, 2 (7)

Hence, the signal data from floors A and B are embedded

in a common low-dimensional space. Then we can propa-

gate the labels by assigning each RSS vector in XB
trn the

location label of its nearest neighbor from XA
trn in the low-

dimensional space.

C. Co-embedding without Location Constraints

One possible concern for co-embedding with location

constraints can be that, it may unnecessarily restrict the

embedding in a 2-D space, and thus unclear whether other

embeddings in higher-dimensional spaces could be better to

recover the relations between the RSS vectors. So we also



study the case of co-embedding without location constraints.

Similar to the co-embedding method introduced in the last

section, we now leave alone the locations YA
trn and the

objective function becomes:

p̂(k) = arg min
p(k)

p(k)⊤Lp(k). (8)

In order the prevent this objective function value from going

arbitrarily small, we will impose some scale constraint on

the embedding

p(k)⊤p(k) = 1. (9)

Fortunately, this optimization problem is well known to

have the solution as smallest eigenvalues (excluding the zero

eigenvalue) [20]. In other words, if we want to find a K

dimensional embedding, we simply take the second to the

(K + 1)-th eigenvectors of L. As in the last section, we

can assign each RSS vector in XB
trn the location label of its

nearest neighbor from XA
trn in the low-dimensional space.

D. Algorithm and Complexity Analysis

Here we summarize our multi-floor localization algorithm:

Offline Phase: Densely sampled labeled data is collected

in one floor (source floor).

Online Calibration and Learning: When we move to

another floor (target floor) in the same building with almost

identical layout, we carry a wireless device and walk around

in an arbitrary manner to collect unlabeled data. Then we

co-embed the labeled data collected in the offline phase

and the unlabeled data collected in online calibration phase.

There can be two ways for co-embedding: co-embedding

with location constraints in Equation (5) or without location

constraints in Equation (8). After co-embedding, we can

propagate the labels to the unlabeled data by finding the

nearest neighbors in the common low-dimensional space.

Finally, we have labeled data for the target floor.

Online Localization: We learn a localization model with

the newly obtained labeled data for the target floor. Various

techniques can be used to learn such a localization model.

For example, we can use a nearest neighbor method: given

a RSS vector from the target floor for testing, we find its

nearest neighbor in the obtained labeled dataset for the target

floor, and assign the corresponding location label to it.

Most computation cost of the procedure lies in computing

the eigen-decomposition and inversion of the matrices in

co-embedding with/without location constraints respectively,

which are generally in the order of O(n3), where n is the

number of RSS vectors in our situation.

V. EXPERIMENTS

A. Datasets

To validate our approaches, we collected three sets of

wireless signal data in an academic building at our univer-

sity3, where each dataset was collected in one floor with a

size of around 60m×40m as shown in Figure 1. Each floor

is discretized into 118 1.5m× 1.5m grids on the hallways.

The dataset descriptions can be found in the following table.

We note that, dataset 2 shares 91 APs with dataset 1; dataset

3 shares 51 APs with dataset 1 and 55 APs with dataset 2.

# OF DIFFERENT APS # SAMPLES

DATASET 1 118 2080
DATASET 2 120 1864
DATASET 3 114 2513

Among these datasets, we can take any dataset as a source

floor and another one as a target floor, thus simulating 6

calibration tasks. The target dataset is (randomly) divided

into several halves, where one half is used as unlabeled

training data and the other half is used as held-out test

data for evaluating the localization accuracy. The following

results are all based on an average of 10-trial experiments.

B. Impact of the Maximal-RSS criterion

In order to relate the source and target datasets, we exploit

the assumption (i.e. the Maximal-RSS criterion) that, for

a given access points, maximal RSS are received at close

locations in different datasets. In this way, we can connect

the data vectors with maximal RSS values from two datasets

for each shared AP. To see how such a criterion performs on

real-world datasets, we plot the learned inter-dataset graphs

(denoted as WAB) by using Eq.(1). As shown in Figure 4,

the underlying (nearly) rectangle shapes are the experimental

areas where we collected data (in different floors though).

Each blue-line circle denotes a connection between two RSS

vectors from both datasets in some location. The smaller a

circle is, the closer the corresponding (2-D) locations where

we collected the two connected RSS vectors are. As we

can see, the graph between dataset 1 and dataset 2 has

more connections/circles, which shows that the learned inter-

manifold graph is better. This coincides with the fact that

these two datasets share more APs and thus may have higher

performance in co-embedding.

C. Impact of the model parameters

There are some parameters in our approach that we need

to set manually, including the weight of inter-dataset graph

versus intra-manifold graph (denoted as µ), the number

of nearest neighbors in building the intra-dataset graphs

(denoted as # NN), and the weight of graph constraints

versus location constraints (denoted as γ) (only in location-

constrained embedding). In all our experiments, we measure

the performance by the percentage of correct predictions (i.e.

accuracy) in the test set within some error distance; here, we

set it as 5 meters, and we will study different error distances

in Section V-D). Here, we use dataset 1 as source and dataset

2 as target for illustration for Figures 6, 7 and 8; we also

3We could not access the other multi-floor datasets used in the previous
works [11], [12], [13] after several requests.
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Figure 4. The qualities of the resulting inter-manifold graphs. The x-axis and y-axis denote the 2-D location coordinates (unit: meter). A circle is placed
at some location where there is an inter-dataset connection for two RSS vectors, and the size of the circle indicates the connection quality.

Table I
RESULTS FOR USING DIFFERENT PAIRS OF FLOORS. WE REPORT THE (ACCURACY ± STANDARD DEVIATION).

# SHARED APS S TO T WITH CONS. WITHOUT CONS. BASELINE-1 [1] BASELINE-2 [5]

91 1 TO 2 65± 3% 69± 2% 11± 1% 7± 1%

91 2 TO 1 64± 3% 66± 3% 6± 2% 7± 1%

51 1 TO 3 55± 5% 57± 4% 8± 4% 8± 1%

51 3 TO 1 51± 3% 55± 5% 9± 3% 8± 1%

55 2 TO 3 53± 4% 52± 4% 3± 1% 9± 1%

55 3 TO 2 56± 5% 54± 3% 9± 1% 8± 1%

get similar results by using other pairs of datasets, but due

to space limit, we will not report them.

In Figure 6, generally we observe simple unimodal be-

haviors of the parameter µ, # NN and γ except that if

we set # NN too small or too large (beyond the scales

in the figure), the method sometimes “crashes” and we get

degenerated embeddings. For clearer illustration, we further

plot the behavior of the co-embeddings with increasing µ

in Figure 7 and increasing γ in Figure 8, respectively. As

we can see from both the figures, as µ and γ approach their

own unimodal points (e.g. µ = 0.1 and γ = 10), the co-

embeddings for two floors’ data can align better.

D. Overall results

We tested our two methods, “co-embedding with loca-

tion constraints” and “co-embedding without location con-

straints”, on the 6 localization tasks generated from the

3 datasets (each task uses 2 datasets). The localization

accuracies are shown in Table I, all under a 5-meter error

distance. We also compare our methods with 2 baselines.

“baseline-1” refers to the RADAR algorithm [1], which is

a k-nearest-neighbor method using only labeled data for

localization. As it cannot be used for handling the data

with different feature dimensions (e.g. two floors’ data are

composed of signals from different sets of APs), we only

used the shared APs as the features in RADAR. In particular,

we use the labeled data from the source floor (XA
trn, YA

trn)

as training data, and train a K-NN classifier (where K is

set as 1 to get the highest accuracies) for the unlabeled test

data from the target floor XB
tst. Besides, “baseline-2” refers

to the LeMan algorithm [5], which is a manifold learning

method and also able to use the unlabeled data. However,

LeMan requires the labeled data and the unlabeled data to

follow the same data distribution and have same feature

dimensions, so that those data can be smoothly distributed in

one manifold for label propagation. Because in multi-floor

environment, different floors’ data can have different feature

dimensions and distributions, LeMan may not work as well

as our method. To use LeMan for comparison, we also only

use the shared APs as the data features. Specifically, we

take the source floor’s labeled training data (XA
trn, YA

trn)

and the target floor’s unlabeled training data XB
trn as inputs

for training a localization model. We then use the model to

predict the labels for the target floor’s test data XB
tst.

As we can see from Table I, our methods can greatly

outperform both baselines, because we use co-embedding to

carefully align two floor’s data and meanwhile the baseline

methods suffer a lot from signal variations over different

floors. Moreover, we also find that, for the localization task

between datasets 1 and 2, which share more access points,

the performance is better, validating our motivation of co-

embedding with shared APs.

We also compared the performances of our co-embedding

methods using 2 datasets and using 3 datasets. The co-

embeddings with 2 datasets follow the same settings with

Table I, while the co-embeddings with 3 datasets works as



follows: for the task i→ j (e.g. i = 1, j = 2), we also use

the unlabeled data from another dataset k (e.g. k = 3) for

co-embedding. As shown in Table II, co-embedding with

2 datasets consistently outperforms co-embedding with 3

datasets. This can be because the floors’ data are quite

different and adding one more extra unlabeled dataset for

co-embedding may distract the attention of label propagation

between the labeled dataset and the target unlabeled dataset.

Moreover, according to our experience, the model using 3

datasets tends to be more sensitive to the parameters and

easier to crash. We will study how to better incorporate

extra unlabeled datasets in the future. Note that the results

in Table II are based on co-embedding without location con-

straints, and we obtained similar results for co-embedding

with location constraints.

Table II
COMPARISON FOR CO-EMBEDDING WITH 2 DATASETS VS. 3 DATASETS,

USING CO-EMBEDDING WITHOUT LOCATION CONSTRAINTS.

S TO T CO-EMBED W/ 2 SETS CO-EMBED W/ 3 SETS

1 TO 2 69± 2% 59± 5%

2 TO 1 66± 3% 58± 3%

1 TO 3 57± 4% 50± 5%

3 TO 1 55± 5% 49± 7%

2 TO 3 52± 4% 44± 7%

3 TO 2 54± 3% 44± 4%

We further studied our model’s performances (in form

of cumulative probabilities) under varying error distances

in Figure 5. Due to the space limit, we do not plot all 12

sets of results for the combinations of different dataset pairs

and co-embedding strategies (with or without constraints).

Instead, we only plot a set of results for a typical run of the

“co-embedding without constraint” method using dataset 1

as source and dataset 2 as target. We observe similar patterns

for the remaining 11 sets of results under varying error

distances. Note that to get the results in Table I and Figure 5,

we simply use the nearest neighbor method after using co-

embedding to propagate labels to the target floor’s unlabeled

training data. We may expect that, using more sophisticated

methods such as [3], [4], [8], we can further improve the

localization accuracy. We also plot the corresponding co-

embeddings in Figures 9, 10 and 11. The color in these

figures denotes the location of each RSS vector, so it is more

desirable that points with similar color are embedded closely.

As we can see from these figures, in general, when the

different data manifolds are better aligned by co-embedding,

the localization results will be better (w.r.t. Table I).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we put forward a multi-floor indoor local-

ization problem and a solution that can effectively estimate

a user’s locations from his/her received signal strengths with

much reduced effort. Our method is motivated by the daily

life observations that, the floor-plans in a building are usually
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Figure 5. Accuracies under varying error distances, where the x-axis
denotes error distance (unit: meter) and y-axis denotes localization accuracy.

almost identical, and although the signals can be quite

different in different floors, there can be some correspon-

dences between them. To make use of such observations, we

proposed to co-embed different floors’ data in some common

low-dimensional space, where we can align the unlabeled

data with the labeled data and further propagate the labels.

In this way, we only need to collect the labeled data on one

floor, and collect unlabeled data on other floors.

We believe that, our general methodology deserves further

investigation, whereby the graph embedding methods can

be used to help reduce calibration effort for more general

types of sensor network data. In the future, we will study to

use more sophisticated learning methods coupled with our

co-embedding method to further improve the localization

performance. Also, although different floors in the same

building have similar floor plans, some floors follow more

complicated structures. We are interested in extending our

method to cope with such more complex situations. We also

expect to test and improve our methods on more datasets in

larger-scale environments.
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Figure 9. The co-embedding results for localization task between datasets 1 and 2.
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Figure 10. The co-embedding results for localization task between datasets 1 and 3.
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