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Abstract—In this paper, we propose a fingerprint-based lo- such a system contributes only one dimension to the fingerprint

calization scheme that exploits the location dependency of the vector, the resulting fingerprint vector may be too low in

channel impulse response (CIR). We approximate the CIR by gimension to distinguish locations over a large area.
a}pplylng Inverse Fpurler Transform to .the receiver's channel es- In this paper. we pronose a novel location fingerprint based
timation. The amplitudes of the approximated CIR (ACIR) vector paper, we prop gerp

are further transformed into the logarithmic scale to ensure that 0N the amplitudes of the approximated channel impulse re-
elements in the ACIR vector contribute fairly to the location sponse (ACIR) vector, which has much higher dimension with
estimation, which is accomplished through Nonparametric Kernel the same number of APs compared to the RSS fingerprint. The
Regression. As shown in our simulations, when both the number ;04 jimension and the strong location dependency have given
of access points and density of training locations are the same, our h hiah . disti ish | .
proposed scheme displays significant advantages in localizationth® ACIR higher capacity to distinguish locations. However,
accuracy, compared to other fingerprint-based methods found as our analysis will show, those elements of the decimal-
in the literature. Moreover, absolute localization accuracy of scale ACIR vector that correspond to larger delays inherently
the proposed scheme is shown to be resilient to the real time contribute less to the location estimate because of propagation
environmental changes caused by human bodies with random 4 1555, We therefore transform the ACIR into logarithmic
pOSItIOﬂS and orientations. L . .
o _ o _ scale to ensure that each element within the fingerprint vector
Index Terms—Indoor localization, fingerprinting, channel im-  contributes fairly to the location estimation. Nonparametric
pulse response, nonparametric kemel regression. Kernel Regression (NKR) method with a generalized band-
width matrix formula is then applied for location estimation.
|. INTRODUCTION The rest of the paper is orggnized as follows. Section |l
. . . summarizes the related work in localization systems. Sec-
~ The ability to accurately locate a mobile device in thg,, | presents the research methodology in detail, including
indoor environment has many applications in retail, healthc:’;\ﬁ;\"3 proposed fingerprint, the localization algorithm, and the
and entertainment industries. Although the Global PositionirpggarithmiC transform. Performance of the proposed method
System (GPS) does not work well indoors, the proliferatiofyqer gifferent conditions are simulated and discussed in

of various mobile devices and their associated wireless infr@éction IV. Finally, we conclude our work and point out future
tructures have created new opportunities for the realization cﬂfections in Secti,on V.

effective indoor localization systems.
Fingerprint-based schemes are widely adopted for indoor
localization purpose. In a typical fingerprint-based system, Il. RELATED WORK

a set of “training locations” are chosen in the service area.\jost of the localization methods proposed in the literature
During an off-line “training phase”, location-dependent signgan pe classified into two categories, namely, trilateration and
parameters, most commonly received signal strength (R§@herprinting.

values, are measured by several access points (APs) for eacthe resolution of Time-of-Arrival (ToA) based trilateration
training location. The measured RSS values for a trainingethods are dominated by the system bandwidth [1], [2].
location are concatenated into a vector, known as the fifrthough Ultra-Wide-Band (UWB) receivers [3] and wideband
gerprint vector, for that particular location. During the onlingaceivers with enhanced sampling rates [4] can achieve high
localization phase, various methods can be applied to estimgg@\ resolution, their operating ranges are usually limited to
the target device’s location when the online RSS values of thejyce interference. In addition, Non-Line-of-Sight (NLoS)
device are collected. However, in order to reduce hardware cgghgitions are very common indoors. Methods that utilize
and interference, it is desirable to construct the localizatigf) oS arrival signals directly (i.e. without prior measure-
system based on the existing indoor wireless infrastruct_uyﬁents) for localization [5], [6] require accurate knowledge
in which a small number of APs are deployed to providgf pigirectional ToA, Angle-of-Arrival (AoA), and Angle-of-
communication coverage over a large area. Since each ARygparture (AoD). Algorithms for estimating these parameters

in heavy multipath environment, such as MUSIC [7] and
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Fig. 2. Simulation testbed.

scenarios, as proposed in [19], [20], and [21]. Although
collecting prior measurements for a large outdoor area is more
Fig. 1. ACIR vectors with transmitters locatédm apart, at50 MHz. labor and time consuming, such systems have clear advantages
in outdoor urban areas where NLoS conditions are common.

applicable. Instead, we have to resort to algorithms which are
much more expensive in terms of computation and hardware i .
[9], [10], [11], [12]. A. Channel Impulse Response Based Fingerprint

One of the earliest fingerprinting methods, theNearest  Channel impulse response, which completely characterizes
Neighbor (KNN) scheme [13], returns the location estimathe multipath channel and preserves the location dependency
as the average of the coordinates of #etraining locations [22], is a good choice for location fingerprint. In order to make
whose fingerprint vectors have shortest Euclidean distanthe localization service more cost-effective and accessible
to the online RSS vector. In [14], th& nearest neighbors for users of both existing and upcoming wideband OFDM
are weighted by the reciprocal of their signal space Euclidetathnologies with different system bandwidths, we propose to
distance to the online RSS vector. Both [15] and [16] hawpproximate the CIR from the receiver’s channel estimation
taken the probabilistic approach, in which the training datasult. In OFDM systems, channel estimation can be seen
are used to construct probability density functions (pdf) fas a vector ofN complex elements describing the channel
the location and the fingerprint vectors. Their mathematical the frequency domain, wher& is the number of sub-
expressions of the location estimates are equivalent to ieriers [23]. The time domain CIR is approximated by taking
Nadaraya-Watson Kernel Regression estimator [17]. Howevte Inverse Fourier Transform (IFT) of the frequency domain
both [15] and [16] assume that the elements of the fingerpridiscrete channel estimation vector. Our proposed fingerprint
vector are statistically independent from each other for tlie this paper is based on tr@mplitudesof the approximate
simplicity of computation, which may not be true in generalCIR vector. Fig. 1 shows the resemblance between two ACIR

In [18], fine resolution indoor channel impulse responseectors collected from two transmitters locafieth apart from
(CIR) has been collected using a channel sounder and a spgeszh other in our simulation testbed, at a system bandwidth
trum analyzer, operating at a very high bandwidib(MHz). of 60 MHz. (The map of the testbed is shown in Fig. 2 with
A vector of features concerning the power delay characteristit®e coordinate axes, dimensions, and the origin indicated).
are extracted from the CIR as the location fingerprint. An As shown also in Fig. 1, the time range of the ACIR vector
Artificial Neural Network (ANN) is trained using the train-is inefficiently large. The bandwidth of the systentis MHz
ing data to predict location when given an online feature this case, yielding a time resolution @65.67 ns. In this
vector. Although it has achieved good localization accuragyaper, we have used/ = 128 for the IFT. Therefore the
this scheme has its own limitations. First, the cost, physicaverall time range i€133.7 ns. However, the maximum excess
size and weight, and system bandwidth of the devices atelay of indoor channekay, is usually smaller thaf00 ns,
unacceptable in a ubiquitous computing context. Secondiyhich corresponds to at most the fifgt time samples in this
after the fine resolution measurement is obtained, sevetake. Therefore, the remainif®§ samples are irrelevant for
features were extracted, which is not an efficient utilizatiolocalization purpose. When the Signal-to-Noise-Ratio (SNR) is
of resources devoted to obtain the fine resolution CIR in tm®t high enough, the receiver Additive White Gaussian Noise
first place. Moreover, some features, such as mean excE®4/GN) at these time samples will only make the accuracy
delay, root mean square of excess delay, and overall gaiorse. As system bandwidth goes higher, the time resolution
of channel, are parameters regarding the entire delay sprda@tomes better and the number of irrelevant time samples
In order to acquire such features, a lower bandwidth may becomes smaller. Therefore, based on the system bandwidth, a
sufficient. However, [18] has not conducted performance studgasonable number of relevant time samples should be chosen

IIl. PROPOSEDMETHOD

with varying system bandwidth. for the sake of computation efficiency and accuracy. In this
Note that, two-phase localization methods involving trainingaper, we preserve the firsﬂ%J samples in the ACIR

or other prior measurements are also applicable in the outdeectors for localization purpose, whetg,, can be determined



by experimental measurement or simulation for each specifiication with a fingerprint vector more/less similar to the
testbed, and3 is the system bandwidth in Hz. online ACIR vector receives a higher/lower weight.

In this paper, we adopt the popular Gaussian kernel function,
B. System Implementation Issues 1 1

K(y-2z)= s—prexpl-5 y—2) - (y-2). (4)
Currently, the receiver channel estimation result is not ac- (2m)P/2 2

cessible in off-the-shelf products. However, hardware/firmwatithe p x D matrix H, is called “bandwidth matrix”. It

modifications can be made in the future to reveal the chang@introls the shape and orientation of the kernel function. Note
estimation result, which is demanded by more and Moggat “bandwidth” here refers to the spread of the kernel. It
localization methods [2], [18]. Alternatively, the raw sampleghould not be confused with the system bandwidth in the RF
of the received signal at the output of the receiver Analog-tgpectrum. The choice of bandwidth matrix is critical to the ac-
Digital Converter (ADC) can be used for CIR approximatiogyracy of the kernel estimator. For simplicity of computation,
through special hardware interfaces. The latter approachpisih [15] and [16] have chosen a diagonal bandwidth matrix so
adopted in [24] experimentally. However, the authors of [24hat only D kernel bandwidth parameters need to be selected.
have used the debug version of the Intel Pro/Wireless adaptgis is implicitly assuming that the elements in the fingerprint
which is restricted for their internal debugging and resear¢actor are independent from each other. In this paper, we

purpose and not commercially available. drop this assumption of independence between the fingerprint
vector elements and use the multivariate generalization of the
C. Localization by Nonparametric Kernel Regression Scott’s Rule of Thumb for bandwidth selection [26],
Assume that there aréd/ APs installed in the service H, = L~ Y/P+)cl/2) (5)

area, andL training locations with2-D location coordinates, . . _ o _ _ _
¢, =1,2,..., L. During the off-line training phase, the ACIRIN which L is the size of training data sel) is the dimension
vectors collected by tha/ APs at the training location; are Of the concatenated fingerprint vector, a@dis the sample
concatenated and denotedsasDuring the online localization covariance matrix. This formula of bandwidth matrix computa-
operation, the ACIR vectors collected by tHe APs are tion takes into consideration the general statistical dependence
concatenated in the same order and denoted.akset » Dbetween the fingerprint vector elements by first transforming
denote the dimension of the concatenated ACIR vector. LM using the|r. sample covariance mgtnx. .
the D x D matrix, C, denote the sample covariance matrix of More information on the NKR techniques can be found in
the fingerprint vectorss;, so, ..., sr. [17], [26], and [27].

The localization task is to find an estimatrfor the actual
location ¢, based on the observed online signal parametgr Regional Smoothing

vector s. Probabilistic localization methods, such as thoseW | ol ional hi hni . d
in [15] and [16], normally use the conditional expectation, € apply a simple regional smoothing technique in order

¢ = E{c|s}, as the estimator, which minimizes the condition P smooth out the individual variations among fingerprint
mean square error [25]. Notice that vectors collected within close proximity while preserving

their common location dependency. For each training loca-
Jcf(c,s) de ) tion ¢;, the smoothed ACIR fingerprint vector is obtained
[ f(e,s) de by taking the average of training ACIR vectors in the set,

. . {sk| llex — ci]] < 7o}, where the constant, determines the
.The computation OE{C|.S} requires exact knowle_dge of _therange of the smoothing region. We have found experimentally
joint pdf, f(c,s), which is usually not available in practice

o . ~~““'that a good choice for, is to make it equal to the trainin
However, from the training phase, we have obtaidegairs : 9o 0 9 9
- .~ grid spacing.
of training data,(c;,s;),! = 1,2,...,L. When the online
user signal parameter vecteris collected, E{c|s} can be
approximated by the Nadaraya Watson Kernel estimator [1H, Logarithmic Scale Transformation

E{c|s} =

Zr1 K (s — s1) In order to understand the effect of transforming the decimal
E{c|s} ~ Z—Ll - , (2) scale ACIR vector into logarithmic scale, consider an online
2t K. (s —s1) ACIR vector,h = [hy, ho, ...hx]T, which is the discrete time
where, domain description of the multipath channel’s amplitude gain
1 at delay time instantspTy, n = 1,2,...,N, where Ty is
Ku. (s—s;) = WK[H;1 (s —s1)]. (3) symbol duration. For any:, the amplitude gaim,, can be

expressed as the product of two terms, which will be described
The function K(y — z) is known as the kernel function. below.

Generally, its value is larger whep — z is smaller in all The first term is the amplitude gain purely caused by
dimensions. In other words, the more similarand z are, propagation path loss and antenna characteristics. Assume that
the larger the resulting kernel function’s value. Intuitively, tha signalz(¢) is transmitted at time instarit The multipath
Nadaraya-Watson kernel estimator is the normalized weightegrsion of the transmitted signal received at time instdfit
average of the training locations’ coordinates. A trainingill be, a(nTs) - (t — nT), wherea(nT) is the gain purely



caused by propagation path loss. If the transmitted powerHer a given SNR and bandwidth condition, as long as the ACIR

P,, we have, . vector length is still within the relevant range, thénT;)
1 2 and B(nT;) values for alln should be treated with equal
Py== |z(t)]*dt, 6) . TR : .
T Jo importance for distinguishing locations. However, as seen in
whereT is the time over which the power is measured. The2), simply taking the difference between the corresponding
power of the signal received at time instarit, will be, vector elements in the decimal scale ACIRs leavedn
T4+ T the denominator. This means that the contribution from the
P, = T/ la(nTy) - z(t — nTy)|?dt channel amplitude gains with larger delays, corresponding to

those elements with larger indices in the ACIR vector, is
nTs+T

= TP g e e o ACIR vectors (0 he logarithmic scale, we
— Ja@T-Ry (m have
On the other hand, the overall distance travelled by the signal 108 hn — log g, = [log a(nT) + log (¥GeG22 . L]
o S i s o+ R )
= log a(nTy) — log B(nTy). (13)

medium. Here, we assume that the differences in propagation
speeds among different media are negligible. Since we &g can be seen in (13), the difference betwéemh, and
only considering the pure effects of propagation path lossz g, is not scaled by the time index anymore. In other
and antenna characteristics here, by Friis transmission formulards, all elements in the ACIR vector within the relevant
[28], we have, time range contribute evenly to the kernel computation and the
location estimation. It should be noted that, the cancellation

Pn =G Gb(4 d) Po, of the time index factor can also be achieved by directly
where G, and G, are the gains of transmitter and receive@ividing A, by g,. The two methods are equivalent in this case.
antennas respectivew’ andis the Wave|ength_ Using (7) andHOWGVGT, in order to be consistent with the kernel function
(8), the amplitude gain at delay instaef’, purely caused by computation, we take the logarithmic transformation approach.
propagation path loss and antenna characteristics is therefore,

VGG 1 IV. SIMULATIONS AND DISCUSSIONS
la(nTs)l = — =~ (9 Since the channel estimation results are currently not ac-
S

The second term is the amplitude gain caused by tﬁgSSIb|e in off-the-shelf wireless adapters, the localization

penetrations, reflections, and diffractions experienced by thrformance of the proposed method is evaluated through
zmulatlons in our paper as a first step. We have chosen a

signal travelling through the indoor environment. The locatio
dependency is mainly caused by this term. We model t D ray-tracing based simulator, the Radiowave Propagation
aggregated result of these phenomena diyT,) for the |mulator (RPS) [29], in order to closely emulate the indoor
multipath version of the signal received =&f;. Note that if pro'paggtlons. R.PS 'S. able to generate fine- resolut.|on CIR,
there is no multipath signal received at., a(nT,) — taklng into consldera_tlon the ef_“fects of the penetr_atlons, re-
Therefore, the overall amplitude gain caused by the lndo+] ct|ons and diffractions experienced by an RF signal, after
channel on a signal that is received at tinig, is, e environment model, transmitter-receiver locations, antenna
5 characteristics, and carrier frequency are specified by the

hy = a(nT}) - VGG 1 (10) user. The accuracy of RPS simulator has been verified via
4o nT,’ comparison with real indoor experimental measurements in
forn =1,2,...,N in the online ACIR vectoth. [30]. Transceiver operations such as sampling and channel

The location estimation in (2) involves computing kernetstimation are simulated using MATLAB.
functions using the online ACIR vector and every fingerprint We have constructed th&D model for one part of our

ACIR vector. Consider any fingerprint ACIR vectag, = campus. It isl6 mx35 m in dimension, including two labo-
(91,92, ...gn]T, whosen!" element can be expressed as, ratory rooms on one side, eight staff offices on the other, and
Nienen 1 a corridor between them. This indoor simulation testbed is a
gn = B(nTs) - o AL (11) mixture of both LoS and NLoS propagation conditions. The

material characteristics of the testbed elements affecting the

where §(nT,) accounts for the aggregated amplitude gaiRE fi Table I, h
other than propagation path loss, introduced by the mdoo propagation are summarized in Table |, in whigg and

€im are the real and imaginary parts of the relative permittivity
channel on th(.a multipath version of the SIQnaI recel\_/eaﬂat of the material respectively. As shown in Fig. 2, the two shaded
When computingh — g for the kernel function, the difference

t then™™ vector el ti circles at the bottom correspond to the locations of the actual
at then™ vector element Is, Wi-Fi APs deployed in the building for wireless communi-

hn = gn = a(nTy) - Y . L cation coverage, while the two on the top are added to the
VGLGHA | 1 testbed to study the effects of varying the number of APs on

the localization accuracy. The APs and the user mobile device
= [a(nTy) — B(nTy)] - Vﬁ;fb* . ﬁ (12) are placed2 m and1.2 m above the ground, respectively. We




TABLE | 7 —7# RSS-Kernel
MATERIAL CHARACTERISTICS FORTESTBED —E— ACIR-NKR
—*¥— ACIR-GRNN
—6— LOG-ACIR-NKR

Object €Re €Im Thickness (m)
Floor and Ceiling| 4 -0.2 0.5 .rf
Wall 4 -0.4 0.15 !
Human Body 11 | -2.04 0.25 ar

Average Error (m)
w
T

assume that all the transmitters and receivers are equipped
with omni-directional antennas. The carrier frequency is set
to 5 GHz and the transmission power is set2tbdBm. 1

Training grid spacing ofl m [18] or 2 m [15], [16] are
commonly chosen for indoor fingerprint-based systems. In this % 40 0 8 100 120 140 160 180 200

.. . . Bandwidth (MHz)

paper, we usel.5 m training grid spacing to evaluate the
localization accuracy of the proposed system under varyipg 3. | ocalization accuracy vs. system bandwidth (using only AP 1 and
factors such as system bandwidth, number of APs, and numher2).
of people in the testbed which create random environmental
changes. We also study the effect of changing the training
density by setting the training grid spacing frdnm to 2.5 m,
with a 0.5 m step size. There argr3 testing locations picked 08f !
in the testbed. Twenty testing samples are taken at each testing  ,,|
location, resulting iB460 testing samples overall in each set ;
of simulations. Note that, in order to compare the performance |
of the schemes under the variations of different factors, the
average localization error of the$d60 testing samples are 04l
used as the metric. Whenever applicable, 36% confidence

interval [31] for each data point is also shown in the figures. ! ;;.
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A. Performance with Varying System Bandwidth o 2 4 6 & 10 12 14 16 1

Error (m)

The Iocali_zation accuracy of the prpposed |Ogal’ithm_i(.‘p-,g_ 4. Cumulative error probability (using only AP 1 and AP 2).
scale ACIR fingerprint with Nonparametric Kernel Regression

(LOG-ACIR-NKR) is first compared with three other methods,
namely, RSS fingerprint with Kernel distance method (RS®: Cumulative Error Distribution

Kemel), as described in [16], decimal-scale ACIR finger- Fig. 4 shows the cumulative error distribution functions

print with Nonparametric Kernel Regression (ACIR-NKR)Of RSS-Kernel, ACIR-GRNN, and the proposed LOG-ACIR-

and decimal-scale ACIR fingerprint with General Regressicm(R when two APs, a training grid spacing o6 m, and a

Neural Networl_<s (ACIR'GRNN)’ generalized from [18], W'thsystem bandwidth 060 MHz are used. As can be seen, the
system bandwidth increasing frog® MHz to 200 MHz, at

. . . proposed scheme achieves a localization error udgr m
a step size 020 MHz, when two APs,1.5 m training grid r 80% of the testing samples, which is significantly smaller

spacing are used. In order to implement the ACIR-GRN ) ) 1
scheme, five features are extracted from the ACIR vector,an those of ACIR-GRNNA09 m) and RSS-KemeR15 m).

namely, the mean excess delay, the root mean square (rms)
of the excess delay, the overall power gain of the channel, @s Effect of Varying Training Location Density
well as the power gain and delay of the first arrival path. A The effect of varying training location density can be ex-
GRNN [32] is used to map features to location coordinatesamined by choosing different subsets of the training locations
As shown in Fig. 3, the proposed LOG-ACIR-NKR schemwith different training grid spacing. The localization error of
has achieved much higher localization accuracy comparedR8S-Kernel, ACIR-GRNN, and LOG-ACIR-NKR &) MHz
the RSS-Kernel scheme and the ACIR-GRNN scheme for alith two APs are shown in Fig. 5. When training grid spacing
the system bandwidths tested. It is important to note that, tilereases froml m to 2.5 m, with a step size of.5 m,
logarithmic transformation is critical to the superior advantagthe performance of all the three methods becomes worse.
as can be shown by the huge difference in performance Iéewever, it should be noted that, the error of the proposed
tween LOG-ACIR-NKR scheme and the ACIR-NKR schemd.OG-ACIR-NKR scheme with2.5 m training grid spacing,
As explained earlier, this is because the elements in thdich corresponds t@8 training locations, is smaller than
logarithmic scale ACIR vector now have fair contributions tthat of ACIR-GRNN scheme with m training grid spacing,
the location estimation. which corresponds t644 training locations. This means that
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the proposed LOG-ACIR-NKR scheme is much more efficient —6—LOG-ACIR-NKR

in utilizing the available training data.
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D. Effect of Varying the Number of Access Points
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Next, we keep the training grid spacing B m, system
bandwidth at60 MHz, and vary the number of APs. As
shown in Fig. 6, all the three algorithms benefit from an
increase in the number of APs. When there are four APs, the
average localization error for RSS-Kernel 323 m, which
is comparable with the experimental results presented in the o il
literature for RSS fingerprint-based localization. It should be : : :
emphasized that, even with only two APs, the localization K 10 mber of Peoa inthe Testbed 0
error of the proposed LOG-ACIR-NKR scheme is still better
than that of the ACIR-GRNN scheme withAPs. This result Fig. 7. Localization accuracy vs. number of people randomly placed and
implies that, when we have to construct a localization systeffiented in the testbed (using only AP 1 and AP 2).
in an area where there are limited number of APs, the proposed
scheme is a preferred choice.

\

Average Error (m)

\

methods. Even in the random presence®@people, it is still

able to outperform the ACIR-GRNN scheme with no one in
E. Effect of Real Time Variation in Environment the testbed. Note that, for each data point, the worst-g5%e

One major cause of real time changes in the environmentc@nfidence interval among thi€) snapshots is shown.

the random positions and orientations of human bodies. This
is because the human body contains a large amount of wa
which is an excellent absorber of RF radiation. In this sectio
we model the human body bya5 mx0.25 mx1.8 m cuboid The smoothing and logarithmic transformation of the finger-
with the same relative permittivity as pure water. As shown iprint vectors can be pre-computed off-line. During the online
Fig. 7, based on the training data collected when no one islatation estimation, as can be seen from (2), most of the time is
the testbed, the localization accuracy of RSS-Kernel, ACIRpent on computing the kernel function values for thrain-
GRNN, and LOG-ACIR-NKR schemes are tested in cas@sy sample vectors. For each Gaussian kernel computation, the
where different number of people are randomly positionedost time-consuming operation is the matrix multiplication in
in the testbed, which operates witfi MHz bandwidth, two the exponent. Therefore, if the fingerprint vector's dimension
APs, and1.5 m training grid spacing. For each data pointis D, the localization scheme has a complexityD?). For our
the average location errors are computed and plotted (or simulation, we have carried out the localization computation
random snapshots. In each snapshot, the same numbeinoMATLAB, running on a desktop PC with Intel Corg,
people are randomly placed and oriented in the testbed. 283 GHz Quad CPU, an8 GB RAM. The average time (over
can be seen in Fig. 7, the performance of all three methogis0 samples) spent in locating one testing sample38 ms
become worse when there are more people in the environmédat. the proposed fingerprint, when two APs, a training grid
However, the LOG-ACIR-NKR scheme maintains its superi@pacing of1.5 m, and a system bandwidth 66 MHz are
advantage in absolute localization accuracy among the thresd. The absolute overhead incurred in locating a single user

r . .
E? Computation Time
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