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Abstract—In this paper, we propose a fingerprint-based lo-
calization scheme that exploits the location dependency of the
channel impulse response (CIR). We approximate the CIR by
applying Inverse Fourier Transform to the receiver’s channel es-
timation. The amplitudes of the approximated CIR (ACIR) vector
are further transformed into the logarithmic scale to ensure that
elements in the ACIR vector contribute fairly to the location
estimation, which is accomplished through Nonparametric Kernel
Regression. As shown in our simulations, when both the number
of access points and density of training locations are the same, our
proposed scheme displays significant advantages in localization
accuracy, compared to other fingerprint-based methods found
in the literature. Moreover, absolute localization accuracy of
the proposed scheme is shown to be resilient to the real time
environmental changes caused by human bodies with random
positions and orientations.

Index Terms—Indoor localization, fingerprinting, channel im-
pulse response, nonparametric kernel regression.

I. I NTRODUCTION

The ability to accurately locate a mobile device in the
indoor environment has many applications in retail, healthcare,
and entertainment industries. Although the Global Positioning
System (GPS) does not work well indoors, the proliferation
of various mobile devices and their associated wireless infras-
tructures have created new opportunities for the realization of
effective indoor localization systems.

Fingerprint-based schemes are widely adopted for indoor
localization purpose. In a typical fingerprint-based system,
a set of “training locations” are chosen in the service area.
During an off-line “training phase”, location-dependent signal
parameters, most commonly received signal strength (RSS)
values, are measured by several access points (APs) for each
training location. The measured RSS values for a training
location are concatenated into a vector, known as the fin-
gerprint vector, for that particular location. During the online
localization phase, various methods can be applied to estimate
the target device’s location when the online RSS values of the
device are collected. However, in order to reduce hardware cost
and interference, it is desirable to construct the localization
system based on the existing indoor wireless infrastructure,
in which a small number of APs are deployed to provide
communication coverage over a large area. Since each AP in
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such a system contributes only one dimension to the fingerprint
vector, the resulting fingerprint vector may be too low in
dimension to distinguish locations over a large area.

In this paper, we propose a novel location fingerprint based
on the amplitudes of the approximated channel impulse re-
sponse (ACIR) vector, which has much higher dimension with
the same number of APs compared to the RSS fingerprint. The
high dimension and the strong location dependency have given
the ACIR higher capacity to distinguish locations. However,
as our analysis will show, those elements of the decimal-
scale ACIR vector that correspond to larger delays inherently
contribute less to the location estimate because of propagation
path loss. We therefore transform the ACIR into logarithmic
scale to ensure that each element within the fingerprint vector
contributes fairly to the location estimation. Nonparametric
Kernel Regression (NKR) method with a generalized band-
width matrix formula is then applied for location estimation.

The rest of the paper is organized as follows. Section II
summarizes the related work in localization systems. Sec-
tion III presents the research methodology in detail, including
the proposed fingerprint, the localization algorithm, and the
logarithmic transform. Performance of the proposed method
under different conditions are simulated and discussed in
Section IV. Finally, we conclude our work and point out future
directions in Section V.

II. RELATED WORK

Most of the localization methods proposed in the literature
can be classified into two categories, namely, trilateration and
fingerprinting.

The resolution of Time-of-Arrival (ToA) based trilateration
methods are dominated by the system bandwidth [1], [2].
Although Ultra-Wide-Band (UWB) receivers [3] and wideband
receivers with enhanced sampling rates [4] can achieve high
ToA resolution, their operating ranges are usually limited to
reduce interference. In addition, Non-Line-of-Sight (NLoS)
conditions are very common indoors. Methods that utilize
NLoS arrival signals directly (i.e. without prior measure-
ments) for localization [5], [6] require accurate knowledge
of bidirectional ToA, Angle-of-Arrival (AoA), and Angle-of-
Departure (AoD). Algorithms for estimating these parameters
in heavy multipath environment, such as MUSIC [7] and
ESPRIT [8], require antenna arrays with a large number of
array elements on transceivers, which greatly increases the
cost of the system. More importantly, in the presence of
indoor near-field propagation and coherent multipath signals,
efficient methods such as MUSIC and ESPRIT are not directly
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Fig. 1. ACIR vectors with transmitters located1 m apart, at60 MHz.

applicable. Instead, we have to resort to algorithms which are
much more expensive in terms of computation and hardware
[9], [10], [11], [12].

One of the earliest fingerprinting methods, theK Nearest
Neighbor (KNN) scheme [13], returns the location estimate
as the average of the coordinates of theK training locations
whose fingerprint vectors have shortest Euclidean distances
to the online RSS vector. In [14], theK nearest neighbors
are weighted by the reciprocal of their signal space Euclidean
distance to the online RSS vector. Both [15] and [16] have
taken the probabilistic approach, in which the training data
are used to construct probability density functions (pdf) for
the location and the fingerprint vectors. Their mathematical
expressions of the location estimates are equivalent to the
Nadaraya-Watson Kernel Regression estimator [17]. However,
both [15] and [16] assume that the elements of the fingerprint
vector are statistically independent from each other for the
simplicity of computation, which may not be true in general.

In [18], fine resolution indoor channel impulse response
(CIR) has been collected using a channel sounder and a spec-
trum analyzer, operating at a very high bandwidth (200 MHz).
A vector of features concerning the power delay characteristics
are extracted from the CIR as the location fingerprint. An
Artificial Neural Network (ANN) is trained using the train-
ing data to predict location when given an online feature
vector. Although it has achieved good localization accuracy,
this scheme has its own limitations. First, the cost, physical
size and weight, and system bandwidth of the devices are
unacceptable in a ubiquitous computing context. Secondly,
after the fine resolution measurement is obtained, several
features were extracted, which is not an efficient utilization
of resources devoted to obtain the fine resolution CIR in the
first place. Moreover, some features, such as mean excess
delay, root mean square of excess delay, and overall gain
of channel, are parameters regarding the entire delay spread.
In order to acquire such features, a lower bandwidth may be
sufficient. However, [18] has not conducted performance study
with varying system bandwidth.

Note that, two-phase localization methods involving training
or other prior measurements are also applicable in the outdoor

Fig. 2. Simulation testbed.

scenarios, as proposed in [19], [20], and [21]. Although
collecting prior measurements for a large outdoor area is more
labor and time consuming, such systems have clear advantages
in outdoor urban areas where NLoS conditions are common.

III. PROPOSEDMETHOD

A. Channel Impulse Response Based Fingerprint

Channel impulse response, which completely characterizes
the multipath channel and preserves the location dependency
[22], is a good choice for location fingerprint. In order to make
the localization service more cost-effective and accessible
for users of both existing and upcoming wideband OFDM
technologies with different system bandwidths, we propose to
approximate the CIR from the receiver’s channel estimation
result. In OFDM systems, channel estimation can be seen
as a vector ofN complex elements describing the channel
in the frequency domain, whereN is the number of sub-
carriers [23]. The time domain CIR is approximated by taking
the Inverse Fourier Transform (IFT) of the frequency domain
discrete channel estimation vector. Our proposed fingerprint
in this paper is based on theamplitudesof the approximate
CIR vector. Fig. 1 shows the resemblance between two ACIR
vectors collected from two transmitters located1 m apart from
each other in our simulation testbed, at a system bandwidth
of 60 MHz. (The map of the testbed is shown in Fig. 2 with
the coordinate axes, dimensions, and the origin indicated).

As shown also in Fig. 1, the time range of the ACIR vector
is inefficiently large. The bandwidth of the system is60 MHz
in this case, yielding a time resolution of16.67 ns. In this
paper, we have usedN = 128 for the IFT. Therefore the
overall time range is2133.7 ns. However, the maximum excess
delay of indoor channel,τmax, is usually smaller than500 ns,
which corresponds to at most the first30 time samples in this
case. Therefore, the remaining98 samples are irrelevant for
localization purpose. When the Signal-to-Noise-Ratio (SNR) is
not high enough, the receiver Additive White Gaussian Noise
(AWGN) at these time samples will only make the accuracy
worse. As system bandwidth goes higher, the time resolution
becomes better and the number of irrelevant time samples
becomes smaller. Therefore, based on the system bandwidth, a
reasonable number of relevant time samples should be chosen
for the sake of computation efficiency and accuracy. In this
paper, we preserve the firstb τmax

1/B c samples in the ACIR
vectors for localization purpose, whereτmax can be determined
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by experimental measurement or simulation for each specific
testbed, andB is the system bandwidth in Hz.

B. System Implementation Issues

Currently, the receiver channel estimation result is not ac-
cessible in off-the-shelf products. However, hardware/firmware
modifications can be made in the future to reveal the channel
estimation result, which is demanded by more and more
localization methods [2], [18]. Alternatively, the raw samples
of the received signal at the output of the receiver Analog-to-
Digital Converter (ADC) can be used for CIR approximation
through special hardware interfaces. The latter approach is
adopted in [24] experimentally. However, the authors of [24]
have used the debug version of the Intel Pro/Wireless adapter,
which is restricted for their internal debugging and research
purpose and not commercially available.

C. Localization by Nonparametric Kernel Regression

Assume that there areM APs installed in the service
area, andL training locations with2-D location coordinates,
cl, l = 1, 2, ..., L. During the off-line training phase, the ACIR
vectors collected by theM APs at the training locationcl are
concatenated and denoted assl. During the online localization
operation, the ACIR vectors collected by theM APs are
concatenated in the same order and denoted ass. Let D
denote the dimension of the concatenated ACIR vector. Let
theD×D matrix, C, denote the sample covariance matrix of
the fingerprint vectors,s1, s2, ..., sL.

The localization task is to find an estimatorĉ, for the actual
location c, based on the observed online signal parameter
vector s. Probabilistic localization methods, such as those
in [15] and [16], normally use the conditional expectation,
ĉ = E{c|s}, as the estimator, which minimizes the conditional
mean square error [25]. Notice that,

E{c|s} =
∫

cf(c, s) dc∫
f(c, s) dc

. (1)

The computation ofE{c|s} requires exact knowledge of the
joint pdf, f(c, s), which is usually not available in practice.
However, from the training phase, we have obtainedL pairs
of training data,(cl, sl), l = 1, 2, ..., L. When the online
user signal parameter vectors is collected,E{c|s} can be
approximated by the Nadaraya Watson Kernel estimator [17],

E{c|s} ≈
∑L

l=1 clKHs
(s− sl)∑L

l=1 KHs(s− sl)
, (2)

where,

KHs
(s− sl) =

1
det(Hs)

K[H−1
s · (s− sl)]. (3)

The function K(y − z) is known as the kernel function.
Generally, its value is larger wheny − z is smaller in all
dimensions. In other words, the more similary and z are,
the larger the resulting kernel function’s value. Intuitively, the
Nadaraya-Watson kernel estimator is the normalized weighted
average of the training locations’ coordinates. A training

location with a fingerprint vector more/less similar to the
online ACIR vector receives a higher/lower weight.

In this paper, we adopt the popular Gaussian kernel function,

K(y − z) =
1

(2π)D/2
exp [−1

2
(y − z)T · (y − z)]. (4)

The D × D matrix Hs is called “bandwidth matrix”. It
controls the shape and orientation of the kernel function. Note
that “bandwidth” here refers to the spread of the kernel. It
should not be confused with the system bandwidth in the RF
spectrum. The choice of bandwidth matrix is critical to the ac-
curacy of the kernel estimator. For simplicity of computation,
both [15] and [16] have chosen a diagonal bandwidth matrix so
that onlyD kernel bandwidth parameters need to be selected.
This is implicitly assuming that the elements in the fingerprint
vector are independent from each other. In this paper, we
drop this assumption of independence between the fingerprint
vector elements and use the multivariate generalization of the
Scott’s Rule of Thumb for bandwidth selection [26],

Hs = L−1/(D+4)C1/2, (5)

in which L is the size of training data set,D is the dimension
of the concatenated fingerprint vector, andC is the sample
covariance matrix. This formula of bandwidth matrix computa-
tion takes into consideration the general statistical dependence
between the fingerprint vector elements by first transforming
them using their sample covariance matrix.

More information on the NKR techniques can be found in
[17], [26], and [27].

D. Regional Smoothing

We apply a simple regional smoothing technique in order
to smooth out the individual variations among fingerprint
vectors collected within close proximity while preserving
their common location dependency. For each training loca-
tion cl, the smoothed ACIR fingerprint vector is obtained
by taking the average of training ACIR vectors in the set,
{sk| ‖ck − cl‖ ≤ r0}, where the constantr0 determines the
range of the smoothing region. We have found experimentally
that a good choice forr0 is to make it equal to the training
grid spacing.

E. Logarithmic Scale Transformation

In order to understand the effect of transforming the decimal
scale ACIR vector into logarithmic scale, consider an online
ACIR vector,h = [h1, h2, ...hN ]T , which is the discrete time
domain description of the multipath channel’s amplitude gain
at delay time instants,nTs, n = 1, 2, ..., N , where Ts is
symbol duration. For anyn, the amplitude gainhn can be
expressed as the product of two terms, which will be described
below.

The first term is the amplitude gain purely caused by
propagation path loss and antenna characteristics. Assume that
a signalx(t) is transmitted at time instant0. The multipath
version of the transmitted signal received at time instantnTs

will be, a(nTs) · x(t− nTs), wherea(nTs) is the gain purely
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caused by propagation path loss. If the transmitted power is
P0, we have,

P0 =
1
T

∫ T

0

|x(t)|2dt, (6)

whereT is the time over which the power is measured. The
power of the signal received at time instantnTs will be,

Pn =
1
T

∫ nTs+T

nTs

|a(nTs) · x(t− nTs)|2dt

= |a(nTs)|2 · 1
T

∫ nTs+T

nTs

|x(t− nTs)|2dt

= |a(nTs)|2 · P0 (7)

On the other hand, the overall distance travelled by the signal
received atnTs seconds after transmission isd = v · nTs,
where v is the propagation speed of the RF signal in the
medium. Here, we assume that the differences in propagation
speeds among different media are negligible. Since we are
only considering the pure effects of propagation path loss
and antenna characteristics here, by Friis transmission formula
[28], we have,

Pn = GaGb(
λ

4πd
)2P0, (8)

where Ga and Gb are the gains of transmitter and receiver
antennas respectively, andλ is the wavelength. Using (7) and
(8), the amplitude gain at delay instantnTs purely caused by
propagation path loss and antenna characteristics is therefore,

|a(nTs)| =
√

GaGbλ

4πv
· 1
nTs

. (9)

The second term is the amplitude gain caused by the
penetrations, reflections, and diffractions experienced by the
signal travelling through the indoor environment. The location
dependency is mainly caused by this term. We model the
aggregated result of these phenomena byα(nTs) for the
multipath version of the signal received atnTs. Note that if
there is no multipath signal received atnTs, α(nTs) = 0.
Therefore, the overall amplitude gain caused by the indoor
channel on a signal that is received at timenTs is,

hn = α(nTs) ·
√

GaGbλ

4πv
· 1
nTs

, (10)

for n = 1, 2, ..., N in the online ACIR vectorh.
The location estimation in (2) involves computing kernel

functions using the online ACIR vector and every fingerprint
ACIR vector. Consider any fingerprint ACIR vector,g =
[g1, g2, ...gN ]T , whosenth element can be expressed as,

gn = β(nTs) ·
√

GaGbλ

4πv
· 1
nTs

, (11)

where β(nTs) accounts for the aggregated amplitude gain
other than propagation path loss, introduced by the indoor
channel on the multipath version of the signal received atnTs.
When computingh−g for the kernel function, the difference
at thenth vector element is,

hn − gn = α(nTs) ·
√

GaGbλ
4πv · 1

nTs

−β(nTs) ·
√

GaGbλ
4πv · 1

nTs

= [α(nTs)− β(nTs)] ·
√

GaGbλ
4πv · 1

nTs
. (12)

For a given SNR and bandwidth condition, as long as the ACIR
vector length is still within the relevant range, theα(nTs)
and β(nTs) values for all n should be treated with equal
importance for distinguishing locations. However, as seen in
(12), simply taking the difference between the corresponding
vector elements in the decimal scale ACIRs leavesn in
the denominator. This means that the contribution from the
channel amplitude gains with larger delays, corresponding to
those elements with larger indices in the ACIR vector, is
unnecessarily reduced due to a largern. If we transform the
elements of the two ACIR vectors to the logarithmic scale, we
have,

log hn − log gn = [log α(nTs) + log (
√

GaGbλ
4πv · 1

nTs
)]

−[log β(nTs) + log (
√

GaGbλ
4πv · 1

nTs
)]

= log α(nTs)− log β(nTs). (13)

As can be seen in (13), the difference betweenlog hn and
log gn is not scaled by the time indexn anymore. In other
words, all elements in the ACIR vector within the relevant
time range contribute evenly to the kernel computation and the
location estimation. It should be noted that, the cancellation
of the time index factor can also be achieved by directly
dividing hn by gn. The two methods are equivalent in this case.
However, in order to be consistent with the kernel function
computation, we take the logarithmic transformation approach.

IV. SIMULATIONS AND DISCUSSIONS

Since the channel estimation results are currently not ac-
cessible in off-the-shelf wireless adapters, the localization
performance of the proposed method is evaluated through
simulations in our paper as a first step. We have chosen a
3-D ray-tracing based simulator, the Radiowave Propagation
Simulator (RPS) [29], in order to closely emulate the indoor
propagations. RPS is able to generate fine-resolution CIR,
taking into consideration the effects of the penetrations, re-
flections, and diffractions experienced by an RF signal, after
the environment model, transmitter-receiver locations, antenna
characteristics, and carrier frequency are specified by the
user. The accuracy of RPS simulator has been verified via
comparison with real indoor experimental measurements in
[30]. Transceiver operations such as sampling and channel
estimation are simulated using MATLAB.

We have constructed the3-D model for one part of our
campus. It is16 m×35 m in dimension, including two labo-
ratory rooms on one side, eight staff offices on the other, and
a corridor between them. This indoor simulation testbed is a
mixture of both LoS and NLoS propagation conditions. The
material characteristics of the testbed elements affecting the
RF propagation are summarized in Table I, in whichεRe and
εIm are the real and imaginary parts of the relative permittivity
of the material respectively. As shown in Fig. 2, the two shaded
circles at the bottom correspond to the locations of the actual
Wi-Fi APs deployed in the building for wireless communi-
cation coverage, while the two on the top are added to the
testbed to study the effects of varying the number of APs on
the localization accuracy. The APs and the user mobile device
are placed2 m and1.2 m above the ground, respectively. We
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TABLE I
MATERIAL CHARACTERISTICS FORTESTBED

Object εRe εIm Thickness (m)

Floor and Ceiling 4 -0.2 0.5

Wall 4 -0.4 0.15

Human Body 11 -2.04 0.25

assume that all the transmitters and receivers are equipped
with omni-directional antennas. The carrier frequency is set
to 5 GHz and the transmission power is set to20 dBm.

Training grid spacing of1 m [18] or 2 m [15], [16] are
commonly chosen for indoor fingerprint-based systems. In this
paper, we use1.5 m training grid spacing to evaluate the
localization accuracy of the proposed system under varying
factors such as system bandwidth, number of APs, and number
of people in the testbed which create random environmental
changes. We also study the effect of changing the training
density by setting the training grid spacing from1 m to 2.5 m,
with a 0.5 m step size. There are173 testing locations picked
in the testbed. Twenty testing samples are taken at each testing
location, resulting in3460 testing samples overall in each set
of simulations. Note that, in order to compare the performance
of the schemes under the variations of different factors, the
average localization error of these3460 testing samples are
used as the metric. Whenever applicable, the95% confidence
interval [31] for each data point is also shown in the figures.

A. Performance with Varying System Bandwidth

The localization accuracy of the proposed logarithmic-
scale ACIR fingerprint with Nonparametric Kernel Regression
(LOG-ACIR-NKR) is first compared with three other methods,
namely, RSS fingerprint with Kernel distance method (RSS-
Kernel), as described in [16], decimal-scale ACIR finger-
print with Nonparametric Kernel Regression (ACIR-NKR),
and decimal-scale ACIR fingerprint with General Regression
Neural Networks (ACIR-GRNN), generalized from [18], with
system bandwidth increasing from20 MHz to 200 MHz, at
a step size of20 MHz, when two APs,1.5 m training grid
spacing are used. In order to implement the ACIR-GRNN
scheme, five features are extracted from the ACIR vector,
namely, the mean excess delay, the root mean square (rms)
of the excess delay, the overall power gain of the channel, as
well as the power gain and delay of the first arrival path. A
GRNN [32] is used to map features to location coordinates.

As shown in Fig. 3, the proposed LOG-ACIR-NKR scheme
has achieved much higher localization accuracy compared to
the RSS-Kernel scheme and the ACIR-GRNN scheme for all
the system bandwidths tested. It is important to note that, the
logarithmic transformation is critical to the superior advantage,
as can be shown by the huge difference in performance be-
tween LOG-ACIR-NKR scheme and the ACIR-NKR scheme.
As explained earlier, this is because the elements in the
logarithmic scale ACIR vector now have fair contributions to
the location estimation.
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B. Cumulative Error Distribution

Fig. 4 shows the cumulative error distribution functions
of RSS-Kernel, ACIR-GRNN, and the proposed LOG-ACIR-
NKR, when two APs, a training grid spacing of1.5 m, and a
system bandwidth of60 MHz are used. As can be seen, the
proposed scheme achieves a localization error under2.05 m
for 80% of the testing samples, which is significantly smaller
than those of ACIR-GRNN (4.09 m) and RSS-Kernel (8.15 m).

C. Effect of Varying Training Location Density

The effect of varying training location density can be ex-
amined by choosing different subsets of the training locations
with different training grid spacing. The localization error of
RSS-Kernel, ACIR-GRNN, and LOG-ACIR-NKR at60 MHz
with two APs are shown in Fig. 5. When training grid spacing
increases from1 m to 2.5 m, with a step size of0.5 m,
the performance of all the three methods becomes worse.
However, it should be noted that, the error of the proposed
LOG-ACIR-NKR scheme with2.5 m training grid spacing,
which corresponds to78 training locations, is smaller than
that of ACIR-GRNN scheme with1 m training grid spacing,
which corresponds to544 training locations. This means that
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the proposed LOG-ACIR-NKR scheme is much more efficient
in utilizing the available training data.

D. Effect of Varying the Number of Access Points

Next, we keep the training grid spacing at1.5 m, system
bandwidth at60 MHz, and vary the number of APs. As
shown in Fig. 6, all the three algorithms benefit from an
increase in the number of APs. When there are four APs, the
average localization error for RSS-Kernel is3.23 m, which
is comparable with the experimental results presented in the
literature for RSS fingerprint-based localization. It should be
emphasized that, even with only two APs, the localization
error of the proposed LOG-ACIR-NKR scheme is still better
than that of the ACIR-GRNN scheme with4 APs. This result
implies that, when we have to construct a localization system
in an area where there are limited number of APs, the proposed
scheme is a preferred choice.

E. Effect of Real Time Variation in Environment

One major cause of real time changes in the environment is
the random positions and orientations of human bodies. This
is because the human body contains a large amount of water,
which is an excellent absorber of RF radiation. In this section,
we model the human body by a0.5 m×0.25 m×1.8 m cuboid
with the same relative permittivity as pure water. As shown in
Fig. 7, based on the training data collected when no one is in
the testbed, the localization accuracy of RSS-Kernel, ACIR-
GRNN, and LOG-ACIR-NKR schemes are tested in cases
where different number of people are randomly positioned
in the testbed, which operates with60 MHz bandwidth, two
APs, and1.5 m training grid spacing. For each data point,
the average location errors are computed and plotted for10
random snapshots. In each snapshot, the same number of
people are randomly placed and oriented in the testbed. As
can be seen in Fig. 7, the performance of all three methods
become worse when there are more people in the environment.
However, the LOG-ACIR-NKR scheme maintains its superior
advantage in absolute localization accuracy among the three
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oriented in the testbed (using only AP 1 and AP 2).

methods. Even in the random presence of40 people, it is still
able to outperform the ACIR-GRNN scheme with no one in
the testbed. Note that, for each data point, the worst-case95%
confidence interval among the10 snapshots is shown.

F. Computation Time

The smoothing and logarithmic transformation of the finger-
print vectors can be pre-computed off-line. During the online
location estimation, as can be seen from (2), most of the time is
spent on computing the kernel function values for theL train-
ing sample vectors. For each Gaussian kernel computation, the
most time-consuming operation is the matrix multiplication in
the exponent. Therefore, if the fingerprint vector’s dimension
is D, the localization scheme has a complexityO(D2). For our
simulation, we have carried out the localization computation
in MATLAB, running on a desktop PC with Intel Core2,
2.83 GHz Quad CPU, and3 GB RAM. The average time (over
3460 samples) spent in locating one testing sample is3.33 ms
for the proposed fingerprint, when two APs, a training grid
spacing of1.5 m, and a system bandwidth of60 MHz are
used. The absolute overhead incurred in locating a single user
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can be very small if a powerful, dedicated localization server
is used to implement the proposed scheme.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new localization fin-
gerprint based on the ACIR. Compared to other channel-
related fingerprints, which require dedicated devices and high
bandwidth, this new fingerprint is more cost-effective because
it can be efficiently derived from channel estimation results
that exist in most modern wireless communication devices. We
transform the fingerprint into the logarithmic scale to ensure
that the elements of the fingerprint vector contribute fairly
to the location estimation. By simulations, we have shown
that the combination of logarithmic-scale ACIR fingerprint
with NKR displays superior performance advantage when
compared to traditional RSS fingerprint based methods, and
also the scheme which combines neural network and extracted
features from ACIR. The significance of improvement in
accuracy is verified under different bandwidth conditions.
Simulation results have also shown that, our proposed scheme
is not only robust to real time channel variations caused by
random positions and orientations of human bodies, but is also
more efficient in utilizing hardware infrastructure and training
effort, compared to other schemes proposed in the literature.

We suggest several future directions based on this work.
First of all, since channel estimation results are currently
not accessible in off-the-shelf products, we aim to search
or implement transceiver modules with suitable size and RF
specifications, in order to verify our proposed method in a
realistic and extended testbed. Secondly, the computations of
kernel function with all fingerprint vectors in the training
database introduce major overhead in the localization process,
especially when more than one user needs to be located simul-
taneously. We therefore need an intelligent database searching
technique to reduce the time spent on searching. Moreover, our
work in this paper focuses on the task of locating static users.
In practice, the users are moving from time to time. Making
use of the real time variation of the channel based information
for mobile user tracking will be a challenging task.
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