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ABSTRACT Fingerprinting (FP) significantly improves the indoor localization performance in non-line-of-
sight-dominated areas. However, its deployment and maintenance is cost-intensive as it needs ground-truth
reference systems for both the initial training and the adaption to environmental changes. Recently, channel
charting (CC) has been investigated because it is an unsupervised method that does not need labeled
measurement data. CC uses pairwise-distance metrics to estimate the physical distance between channel-
state-information (CSI) measurements in the proximity. CC can then learn the underlying manifold of the
channel measurements. While CC has shown promising results in modelling the local geometry of the radio
environment, a deeper insight into CC for localization using multi-anchor large-bandwidth measurements
is still pending. We therefore contribute a novel distance metric for CC that approaches a global linear
correlation to the physical distance based on time-synchronized single-input/single-output (SISO) CSIs.
This allows to learn the environment’s global geometry in a channel chart without annotations. We leverage
a Siamese network, which enables CC-assisted FP only using a linear transformation from the chart to the
real-world coordinates. We compare our approach to the state-of-the-art of CC on two different real-world
data sets recorded with a 5G and UWB radio setup. Unlike FP-based localization which needs a large
number of labeled data points to achieve a superior localization accuracy, our approach outperforms FP
when only a few labeled data samples are available.

INDEX TERMS Channel charting, machine learning, fingerprinting, localization, 5G, UWB, time-based
measurements.

I. INTRODUCTION

INDOOR localization techniques are a key enabler for sev-
eral downstream tasks in health care, industrial production

or networking [1]. Although several localization techniques
based on camera images [2], lidar sensors [3] or visible light
communication [4] already exist, radio-based localization is
still one of the most promising technologies [5]. Approaches
such as angle-of-arrival (AoA) [6], [7] or time-of-arrival
(ToA) [8] localization can achieve accuracies in the centimeter
range given a line-of-sight (LoS) path between transmitters
and receivers. However, this requirement can often not be
met due to the complexity of indoor environments. While

there are methods that can mitigate the non-line-of-sight
(NLoS) effects [9] by identification and exclusion [10] or
error estimation [11], a majority of radio units still need
LoS for localization. To anyway achieve highly accurate
localization in NLoS-dominated areas, FP methods can be
used. FP exploits the CSI collected in a radio environment.
The CSI contains location-specific radio information caused
by reflections, scattering and absorptions [12]–[18]. To train
a FP model, CSI measurements have to be labeled using a
ground-truth reference system, which is often very expensive,
while another common problem of FP is that environmental
changes can alter the location-specific fingerprints, making
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regular updates inevitable, which again requires labeled
data [13], [16].

Recently, a new concept called CC has been proposed. CC
generates a chart on collected CSI measurements to reflect
the (local) geometry of the environment in an unsupervised
manner, i.e., no ground-truth labels are needed [19]. CC
exploits the fact that many sensor modalities lie on a
manifold, which allows to model the physical geometry of
the environment for localization [20], [21]. CC focuses on
CSI measurements that have a clear spatial correlation as
radio signals follow the electromagnetic wave propagation
model, which is a smooth function over space. Environmental
influences like absorption and reflection do not disrupt this
smoothness. What is observed at the receiver is a sum of the
different impinging waves which again results in a smooth
function over space. This resulting function, which gradually
changes in space, then lies on a differentiable manifold that
can be exploited for channel charting.

Most channel-charting approaches only exploit the local
distance in the manifold, which lead to charts that does not
represent the global coordinates of the environment. Instead, it
resembles only the relative geometry of the radio environment.
To use CC for positioning, some semi-supervised approaches
[22]–[25] use few labeled data points to unroll the manifold
into the physical domain and enhance its consistency. It is
mainly used to leverage several downstream tasks for multiple-
input/multiple-output (MIMO) communications, which do not
necessarily need accurate global coordinates. They improve
tasks like pilot assignment [26], UE grouping [27], radio
resource management [28] or beam forming [29]–[31].

However, all of the existing work on CC is based solely on
MIMO systems with either single or multiple unsynchronized
base stations with mostly less than 50 MHz bandwidth. Due
to the low bandwidth and the lack of synchronization, the
networks are less suited for localization and are rather
optimized for communication. This renders current CC
approaches inappropriate for high-precision positioning tasks.

Thus, this paper proposed the following contributions.
First, we investigate the abilities of CC for high-precision
indoor localization employing time-synchronized SISO radio
systems with large bandwidths. Second, we contribute a novel
geodesic CSI distance metric and its mathematical derivation
that provides a linear correlation to the physical distance.
This allows to unroll the manifold and represent the global
structure of the CSI data in the physical space, which is
necessary for localization. Third, we introduce a positioning
framework, which utilizes a Siamese network to estimate a
channel chart with global consistence, that only needs a linear
transformation for positioning. Such parametric models allow
to efficiently predict on unseen data, which is necessary for
positioning. Fourth, we compare all the relevant methods for
CC with ours on two real-world data sets using UWB and
5G radio systems. We also show that supervised FP needs
50 times more labeled data points to achieve similar results

as CC-assisted FP, rendering CC-assisted FP a competitive
candidate for indoor localization.

The remainder of this article is structured as follows.
Section II discusses related work. Next, Section III pro-
vides details about local CIR distances and global geodesic
distances. Section IV describes how we approximate them
using a Siamese neural network, and how we preprocess
the data. Section V describes our experimental setup. The
numerical results are presented in Section VI and discussed
in Section VII. Section VIII concludes.

II. RELATED WORK
Studer et al. [19] first described the concept of CC for multi-
antenna systems, e.g., MIMO architectures, to embed the
local radio geometry. As channel charts only yield poor
geometries using a single base station (BS), Deng et al. [32]
proposed a multi-point CC approach that fuses the channel
information of multiple BSs to achieve a better spatial
consistency of the channel charts. CC typically consists
of two components, (i) a distance metric, which reflects
the physical distance between two channel measurements
and (ii) the dimensionality reduction, which encodes the
high dimensional channel information into a 2D embedding
reflecting the position.

As a distance metric, Studer et al. [19] propose to use
the free-space path loss between two measurements, which
is proportional to the physical distance if the translation is
collinear and the path-loss coefficient is constant. Moreover,
Magoarou et al. [33] enhanced the proposed metric by making
it insensitive to fast fading effects by putting the channel
measurements into phase. As the distance metric is only valid
for collinear measurements, Agostini et al. [34] proposed
a grouping of collinear measurements by exploiting the
angular information encoded in the CSI measurements of fully
digital MIMO setups. To achieve channel charts with higher
quality, in fully digital MIMO setups, multipath components
(MPCs) can be extracted using MUltiple Signal Identification
Classification (MUSIC) [35], which allows to cluster MPCs
and apply the path-loss model for every component providing
an improvement of the original metric. However, MUSIC
needs a known number of MPCs, which is often difficult
to obtain especially under low signal-to-noise ratio (SNR)
situations [36]. Moreover, a data association of MPCs after
extraction is necessary, which is non-trivial especially in
complex environments with dense multipath propagation with
varying MPCs.

For indoor localization, multiple (synchronized) SISO
radio setups are usually preferred in order to fully cover
the environment. MIMO-capable base stations, in contrast,
are more expensive than their SISO counterparts, due to their
higher hardware complexity mostly useful for communication
tasks. Compared to MIMO setups, SISO base stations have
a simple hardware concept as they have only one receiving
antenna but therefore cannot estimate any AoA information
for positioning. Therefore, ToF or TDoA estimations are typ-
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ically used for positioning [8]. However, this also means that
for SISO setups, the angular-based distance metrics presented
in the literature cannot be used. We therefore contribute a
novel distance metric based on raw CSI measurements in the
time-domain exploiting ToF and TDoA information dedicated
for low cost SISO positioning systems.

The second component of CC is its dimensionality re-
duction, which can be accomplished using both parametric
approaches and non-parametric approaches. Studer et al. [19]
investigated non-parametric approaches such as principal
component analysis (PCA) or Sammon mapping to CC.
Ponnada et al. [37] proposed an approach based on Laplacian-
Eigenmaps with an extension to prediction also on unseen
data, which is the main intention of CC. This is also done
implicitly by mapping the high-dimensional channel informa-
tion to 2D embeddings using parametric deep learning (DL)
approaches. Methods such as autoencoders [38], constrained
autoencoders [39], Siamese networks [22], and triplets [23],
[40]–[43] have shown very promising results in modelling the
local geometry of the channel information. Also, a combined
algorithm is proposed, which first compresses the CSI using
a convolutional autoencoder to efficiently apply uniform
manifold approximation and projection (UMAP) on the lower-
dimensional representation of the CSI [44]. While CC only
models the local geometry of the area, there are also semi-
supervised approaches that learn the mapping from the local
to the global coordinate frame. This can either be achieved by
an affine transformation after optimizing the local map [45],
or as a constraint in the optimization loss [22]–[25]. While
the objective of the aforementioned approach is to minimize
the local distance between adjacent points, Magoarou et
al. [33] used Isomap to optimize the channel chart between
all CSIs on global distances, which are created as sum of
local distances on the shortest path between two points. This
allows to generate a chart with global instead of only local
similarity.

III. CSI DISTANCES
To estimate a globally consistent channel chart, we need
both a locally and globally valid distance metric for CSI. In
the following we derive a local CSI distance in the time-
domain and our approximation of the global distance, which
is necessary for CC-assisted localization.

A. LOCAL CIR DISTANCE
The idea of CC is that CSI measurements are spatially
correlated as the CSIs are similar at the same position and
become more and more dissimilar with their physical distance
in space. Hence, the goal of CC is to find a metric which (for
any measurement instance i and j) resembles the physical
distance so that

dphy(xi,xj) ∝ dcsi(H̃i, H̃j) , (1)

where xi and xj are two real-world coordinates and H̃i and
H̃j their approximated channel impulse responses (CIRs)
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FIGURE 1. Schematic view of a radio environment with two base stations
B1 and B2 showing the geometric context of ToF measurements w.r.t. the
physical distance of a displacement of a radio unit from x1 to x2. The
above-shown quantities are the (time-)lengths of the described vectors.

between all base base stations and the UE, measured at the
receiver. The channel model of a radio signal can be defined
as

h(t) =

Np−1∑
n=0

anδ(t− Tn) , (2)

where Np is the total number of arriving signal paths from
the transmitter at the receiver, n is the index of the current
path, an is the complex gain of the nth MPC, δ(·) is the
Dirac delta function, and Tn the delay of the component. To
measure the CIR, a bandwidth-limited measurement signal
s(t) is first transmitted and

y(t) = h(t) ∗ s(t) , (3)

defines the (noise-free) signal received at the base station,
where ∗ is the convolution operator. The approximate CIR is
then obtained from the autocorrelation:

h̃(τ) =

∫ ∞

−∞
y(t)s∗(t− τ) dt . (4)

The CIR of length T for a measurement snapshot i for base
station k is given in vector form as

h̃
(k)
i

def
=

[
h̃
(k)
i (0), . . . , h̃

(k)
i (T − 1)

]
. (5)

In the following, we will base the derivation on the time of
flight (ToF). For the time-difference-of-arrival (TDoA) case,
the differences in the derivation can be found in Appendix A.
For two measurements that share the same MPCs in the same
order, we define the ToF as

∆t
(k)
n,ij

def
=

∣∣T (k)
n,i − T

(k)
n,j

∣∣ , (6)

for the positions xi and xj of the CSI measurements h̃i and
h̃j obtained at base station Bk. T (k)

n,i and T
(k)
n,j are the time

delays of the nth MPC from base station Bk at position i
and j. If the displacement of the position xj is collinear to
both the position xi and the position of the base station xb,
then

dphy(xi,xj) = c∆tn,ij , (7)

where c is the speed of light. However, if they are not collinear
the distance approximation is erroneous and can be defined
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as

dphy(xi,xj)
def
= c

√(
∆t

(k)
n,ij

)2

+
(
ϵ
(k)
n,ij

)2

, (8)

where the error ϵ(k)n,ij is assumed to be orthogonal to the time
difference ∆t

(k)
n,ij , as shown in Fig. 1.1 Following the example

case with two base stations shown in Fig. 1, base station B1

has a delay of the first direct path T
(1)
0,1 to position x1 and

a delay of T (1)
0,2 to position x2. The vector difference of the

delay ∆t(1) to the expected delay dphy/c can be expressed
as the error ϵ(1):(

ϵ(1)
)2

=
d2phy
c2

−
(
∆t(1)

)2
. (9)

As we do not know the direction of movement, we assume to
have the similar likelihood for every direction, which leads to
a arcsine distribution with a boundary of [0, dphy/c] for the
error ϵ(1). The standard deviation depends on the physical
distance

σϵ(dphy) =
1√
8

dphy
c

, (10)

which means that the standard deviation of the error
monotonically increases with the distance between the two
measurements. If we have multiple base stations, e.g., B1

and B2, the errors ϵ(1) and ϵ(2) are geometrically related

ϵ(2) =
dphy
c

cos

(
π − α∓ cos−1(c ϵ(1)

dphy
)
)

, (11)

where the sign in front of the cos(·)−1 depends on whether
B1 and B2 lie on opposite sides of the line of motion of the
UE (i.e., the green line between x1 and x2 in Fig. 1) or on
the same side. This means that for every α > 0, the sum of
the errors ϵ(1) and ϵ(2) have a lower bound on the the sum
of distances

2 dphy > c (ϵ(1) + ϵ(2)) . (12)

This relation also holds for every MPC arriving at the receiver
and allows us therefore to define a distance metric

ds(H̃i, H̃j)
def
=

Nb−1∑
k=0

Np−1∑
n=0

∆t
(k)
n,ij , (13)

which has a monotonically increasing mean and standard
deviation, and a lower bound of the error. Here, the matrices
H̃i and H̃j collect all vector-form CIRs, i.e.,

H̃i
def
=

 h̃
(0)
i
...

h̃
(Nb−1)
i

 and H̃j
def
=


h̃
(0)
j
...

h̃
(Nb−1)
j

 . (14)

∆t
(k)
n,ij in (13) denotes the time-difference observed at the

kth BS. To calculate the distance metric, the estimation of
the time delays of every arriving path is necessary. However,
as the extraction of the delay of the MPCs from measured
CIRs is very challenging due to the bandwidth limited signal

1In the figure and derivations, n = 0, i = 2 and j = 1 are assumed
whenever not explicitly given, e.g., ϵ(k)0,21 ≡ ϵ

(k) and ∆t
(k)
0,21 ≡ ∆t

(k).

s(t) [46], we consider a simple approximation by subtracting
the time-aligned CIRs:

d′s(H̃i, H̃j)
def
=

Nb−1∑
k=0

T−1∑
t=0

∣∣|h̃(k)
i (t)| − |h̃(k)

j (t)|
∣∣ , (15)

where k is the index of the Nb base stations and t is the
time-index of the CIR of total length T .

Proposition 1: The limited window of every CIR includes
the absolute position of the paths w.r.t. their ToF or TDoA,
where the window is aligned by the first direct path of arrival
(FDPoA). If the CIRs are recorded at the same position,
the distribution of power within the CIRs is equal, which
leads to d′s(H̃i, H̃i) = 0, whereas measurements at different
positions have a time-shift of the paths within the CIR and
therefore also a shift of the power. This leads to less overlap
within the CIRs and hence to a higher absolute difference
that is proportional to the sum of time differences of the
arriving paths.

Proposition 2: As long as the main lobes of the bandwidth-
limited signals are overlapping in the CIRs, the physical
distance and the CIR distance have a non-linear relationship,
and have a linear one if the displacements between two CIR
measurements is small. (The detailed derivation of this linear
relationship can be found in Appendix B.) We therefore have

dphy(xi,xj) ∝ ds(H̃i, H̃j) ∝ d′s(H̃i, H̃j) (16)

for small distances between CSI measurements, which means
that our metric is locally restricted to its spatial neighborhood.

B. GLOBAL GEODESIC DISTANCES
The distance metric d′s(H̃i, H̃j) between CSIs is restricted
to short distances between two CSI measurements. Hence,
our optimization is restricted to each sample’s neighborhood.
This only yields a local similarity and consistency of the
channel chart. However, to use CC for localization we have
to learn a channel chart reflecting the global geometry of the
environment. To achieve this, we use the idea of Isomap [47]
which creates global distances as the sum of local distances
on the shortest paths on the manifold, i.e., geodesic distances.
Here, we estimate a matrix of pair-wise distances

Dpw
def
=

 d′s(H̃0, H̃0) · · · d′s(H̃0, H̃N−1)
...

. . .
...

d′s(H̃N−1, H̃0) · · · d′s(H̃N−1, H̃N−1)

 ,

(17)
Dpw ∈ RN×N , to create a neighborhood graph. The
shortest paths between each coordinates of the channel
chart d′s(H̃i, H̃j) are then estimated using a shortest-path
estimator, e.g., via the Dijkstra algorithm [48].2 As the
computational complexity of shortest-path algorithms grows
with the number of neighbors, the number of edges has to

2Note that we do not need to run the estimator for each of the pairs in
the matrix separately as due to the principle of optimality [49], any pairs
of points on a sub-path of a shortest path themselves constitute an optimal
path.

4 VOLUME ,

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3256964

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



be minimized while keeping the accuracy high. We found
that in our case, choosing 5 neighbors already leads to valid
geodesic distances.

This allows us to define valid distances for all points, also
for far points, on the manifold

Dgeo
def
=

 d′geo(H̃0, H̃0) · · · d′geo(H̃0, H̃N−1)
...

. . .
...

d′geo(H̃N−1, H̃0) · · · d′geo(H̃N−1, H̃N−1)

 ,

(18)
Dgeo ∈ RN×N , by summing up the local distances on the
shortest path between two points

d′geo(H̃i, H̃j)
def
=

∑
p∈P

d′s(H̃p, H̃p+1) , (19)

where p and p+1 are the indices of all neighboring pairs of
points on the shortest path P . As our CIR distance is linear
with a constant slope for small displacements, we also have
a linear geodesic distance if the spatial density of neighbors
is high, as the sum of linear elements with the same slope
will also be linear.

IV. CHANNEL-CHARTING-ASSISTED LOCALIZATION
Intentionally, Isomap performs dimensionality reduction on
an enclosed data set, which therefore restricts the method
to predict the embedding on unseen data. The full geodesic
distance matrix has to be calculated including the previous
and new data to predict on unseen data, which is both time-
consuming and impractical for real-time locating systems.
Hence, at first glance, Isomap is inappropriate for CC, that
predicts on unseen data. While there are extensions of the
original Isomap algorithm, such as the landmark Isomap [50],
which can interpolate the embedding on unseen data, Dimal
et al. [51] have shown that Siamese networks outperform
the classical approaches in terms of generalization. In this
approach the multidimensional scaling (MDS) is replaced by
a Siamese network [52], which encodes the input data into
the 2D space and then learns the distance between two inputs
in the embedding given a distance metric. The goal of the
Siamese network is to learn the proposed geodesic distance
d′geo(H̃i, H̃j) with the objective

L =
∣∣d′geo(H̃i, H̃j)− ∥zi − zj∥2

∣∣ , (20)

where zi and zj are the two-dimensional outputs of the
neural network for the inputs H̃i and H̃j . Instead of utilizing
all data like in the Isomap algorithm, we sample randomly
from the available geodesic data until the Siamese network
has converged. After optimization, the neural network has
learned the global geometry of the radio environment. Since
the neural network uses the CSI measurements as input data,
the network learns a transformation from the manifold of the
input data to a 2D embedding. This allows the network to
interpolate and therefore also to efficiently process unseen
data without recalculating the geodesic distance matrix.

TABLE 1. Parameters of the Siamese network architectures for the UWB

and 5G radio setups.

Layer type Output dimensions Kernel size Activation

UWB 5G UWB 5G

Conv 8×6×200 8×6×49 3×3 3×3 ReLU
Conv 8×6×200 8×6×49 5×5 5×5 ReLU
Conv 8×6×200 8×7×50 15×15 8×8 ReLU
Conv 16×7×200 16×8×49 30×30 10×10 ReLU

Avg. Pooling 1×6×200 1×6×49 — — —
Fully Con. 300 200 — — ReLU
Fully Con. 2 2 — — —

A. ARCHITECTURE
As CC is very similar to FP, we employ a similar efficient
architecture as proposed in [13]. The network consists of 4
convolutional layers and 2 dense layers. Batch normalization
stabilizes the training and we apply Rectified Linear Units
(ReLU) as activation functions except for the last layer,
where we applied no activation function. We have no local
pooling layers between the convolutional layers to keep the
dimension of time, which has shown good results in time
series downstream tasks [53]. Instead, we use a global average
pooling of the channels before the dense layers. The kernel
sizes of the convolutional layers are increased with the depth
of the model to enhance the receptive field of the network.
The kernel sizes being used depends on the effective input
resolution of the CIRs. As we have two different radio systems
with different resolutions of the CIRs, we have different
kernel sizes of the neural network adapted for the respective
bandwidth:

(i) for the UWB data, we have kernel sizes of [3× 3] for
the first, [5× 5] for the second, [15× 15] for the third,
and [30× 30] for the last layer;

(ii) for the 5G data, we have [3× 3] for the first, [5× 5]
for the second, [8× 8] for the third, and [10× 10] for
the last layer.

The parameters of both architectures are summarized in
Table 1.

B. PREPROCESSING
For data preprocessing, we follow the idea from [13] to exploit
both the raw CIR in the time domain and the corresponding
ToF/TDoA using a CNN. We generate a 2D tensor of
dimensions [NA×Lw], with NA anchors and Lw time-steps in
the temporal resolution of the CIR. In our case, the CIRs are
discrete-valued and of a fixed length. The CIRs are padded
by the corresponding ToF/TDoA within the tensor to model
the unique relative shift of the FDPoA for every position in
the area.

An example of this process for a tensor with NA = 6
anchors is shown in Fig. 2. Each CIR is shifted by its
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Input Tensor

T6

T3

T1

FIGURE 2. Exemplary illustration of the data preprocessing for the CIRs:
they are padded with their respective ToFs within the tensor to model
relative shift.

corresponding ToF Tk, which not only preserves the MPC
information but also its relative time-shift, which is unique
for the environment. Note that Lw must be selected large
enough to ensure that even after padding with the largest
ToF/TDoA the CIRs MPC information is contained in the
input tensor.

C. COORDINATE TRANSFORMATION
After training, the channel chart reflects only the local
geometry of the environment, which means that the physical
distances are preserved, but the channel chart might be
rotated, translated or scaled (as the geodesic distance is
only proportional to the physical distance). To exploit the
estimated channel chart for localization, we therefore have
to estimate an affine transformation from the local channel
chart coordinate frame to the global real-world coordinate
frame. Theoretically, we only need 3 points to define an affine
transformation between two coordinate systems in the 2D
space. However, as a chart will always have imperfections, we
cannot select the optimal points in it to do the transformation.
We therefore use several points to estimate a transformation
matrix with a least-squares solution

Â
def
= argmin

A
∥Az − xref∥22 , (21)

where Â is the estimated transformation matrix, z are the
points of the channel chart, and xref are the coordinates in the
real-world frame. Once the matrix is at hand, the estimated
positions in the real-world frame x̂ are obtained as

x̂
def
= Âz . (22)

An evaluation on the effect of the number of selected reference
points xref for the transformation on the performance is shown
in Section D.

D. END-TO-END POSITIONING PIPELINE
Our end-to-end positioning pipeline is shown in Fig. 3. First,
the CIRs h̃ are estimated at the Nb base stations. Next,
they are preprocessed as described in Section B and are
collected in H̃ . We use H̃ to estimate a distance matrix
Dpw of geodesic distances as described in Section B. The
input tensor is also fed to the neural network to learn a unique
mapping to the channel-chart position. During the training, the

∗

∗

H̃

Dpw

Â

h̃
(Nb)

h̃
(1)

xref

z x̂

FIGURE 3. End-to-end model of our positioning pipeline. After the CIRs are
estimated, they are first preprocessed and collected to form the input to the
neural network for training and to estimate the geodesic-distances matrix.
Once the chart is learned, a transformation is applied to obtain position
estimates using the real-world frame.

distance matrix Dpw is used to enforce the Siamese network
to preserve the pair-wise distances between corresponding
input tensors in the 2D embedding. After training, a few
labeled reference data samples xref are used estimate an
affine transformation from the local channel-chart coordinate
frame to the global real-world frame. Finally, the Siamese
network can be used to estimate local channel-chart positions
z on unseen data and with a linear transformation, i.e., Â,
to transform them to the real-wold coordinate frame (i.e., to
calculate x̂) for localization.

V. EXPERIMENTAL SETUP
A. MEASUREMENT DATA
To show the capabilities of CC for positioning, we compare
the performance with two different radio setups. The first
setup is a 5G downlink TDoA setup and the second is a
UWB ToF radio setup.

5G Data. For our first experiment, we use a 5G downlink
TDoA setup with six commercial off-the-shelf software-
defined-radio BS. The radio system has a bandwidth of
100 MHz and a center frequency of 3.7 GHz. The BS transmit
power is set to 20 dBm. All BSs are highly synchronized by
means of a common signal generator. The recording frequency
is 6.6 Hz. Fig. 4 shows a schematic view and the real-world
environment. The transceivers (green) are placed at the edges
of the recording area at a height of 6-7 m. We created a typical
industrial setup with reflective walls (red), an industrial truck
(orange), a forklift (gray), and small (blue) and large shelves
(purple) to block the LoS to the receiver and to create dense
multipath propagation. The receiver is placed at a height of
1.95 m on a handcart, which is moved by a person. Also for
the 5G setup, we record a training data set with 18,722 bursts
and a test data set with 15,721 bursts on different trajectories
within the same environment.

UWB Data. For our second experiment, we use a UWB
radio setup with 6 transceivers acting as base station (BS)
and one recording robot platform with a maximum velocity
of vmax = 0.2ms−1. We configured the system for ToF
acquisition as a two-way ranging setup with a bandwidth of
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FIGURE 4. Schematic top view (left) of the environment (right). The
environment consists of reflective walls (red), an industrial truck (orange),
a fork lift (gray), large shelves (purple), and a small shelf (blue). The BSs
are indicated as green dots and are placed at a height of 6–7 m. The
recording area has a size of 25m × 16m.

499.2 MHz at a center frequency of 4 GHz with a recording
frequency of 3 Hz. We designed a complex environment
with walls, that reflect radio signals on the inner side (iron
surface) and absorb them at the outside (black surface). Fig. 5
shows a schematic view and the real-world environment. The
transceivers, indicated as green dots, are placed at the edges
of the recording area, shown as blue rectangles. The reflective
walls, indicated in red, are placed to block the LoS between
the anchors and the robot platform, which causes ranging
errors of the UWB radio system leading to high localization
errors using classical positioning approaches. We recorded
two different data sets: a training data set with 18,027 bursts,
where one burst includes the 6 synchronized CIRs and ToF
measurements, and a test data set with 3,382 bursts. Both
data sets are recorded independently on different trajectories
within the same area.

B. BASELINES
In the following, we describe all relevant state-of-the-art CC
methods that we compare our solution with.

1) Non-parametric Approaches
We compare our approach with PCA, Sammon mapping
[19], and Isomap [33]. For the pair-wise distances used in
Sammon mapping, we applied the CIR distance defined in
Section A. For Isomap, we used the geodesic distance defined
in Section B.

2) Parametric Approaches
In general, we investigate three different parametric baseline
methods, as follows.

First, we apply the two stage approach from Agostini et
al. [44]. They used a convolutional autoencoder to compress
the CSI to the quintessential information and used UMAP to
create the channel chart. As autoencoder architecture, we use
two convolutional layers with kernel size 3 for the first and
5 for the second layer. Both layers have 8 channels. As the
decoder we use a fully connected layer to restore the input
size with 2 consecutive transposed convolutional layers with
kernel size 3 and 5 and also 8 channels. For all layers except
the last layer, we used ReLU activation functions and for the

FIGURE 5. Schematic top view (left) of the environment (right). The red
rectangles indicate reflective walls and the green dots are the stationary
UWB transceiver modules. The recording area has a size of 18m × 11m.

convolutional layers batch normalization. The mean squared
error (MSE) is used to evaluate the reconstruction error. We
compressed the input data to 5 % of its size and applied
UMAP on the latent variables with the physical distance as
metric.

The second approach is the constrained autoencoder
proposed by Huang et al. [39]. They used a fully connected
autoencoder to compress the input to the size of two,
which are the coordinates of the channel chart. Besides the
reconstruction error (MSE), they added a constraint which
minimizes the pair-wise distances between two compressed
input instances. As pair-wise distances, we use the CIR
distance defined in Section A between the raw input vectors.
The architecture consists of 4 fully connected layers with
[500, 100, 50, 20] neurons, while the encoder is the mirrored
structure.

The third approach is proposed by Ferrand et al. [23]
and uses triplets. The triplets are built using the recording
time of the signals assuming that CSIs close in time are
also close in space, due to the physical constraints of the
movement, whereas samples that are farther in time are more
distant in space. Hence, for the triplets, samples that are
close in time (i.e., in our case within a window of ±3 s)
are assigned as positive, and negative samples are assigned
within a window of ±2,400 s but not within the positive
window. These parameters are estimated experimentally and
depend on the movement pattern. As architecture, we use the
same model as for our geodesic Siamese network defined in
Section A.

C. PERFORMANCE METRICS
To measure the performance of a generated channel chart, we
apply continuity (CT) and trustworthiness (TW) to measure its
local similarity [19]. CT measures whether a chart introduces
wrong nearest neighbors in the embedding and penalizes
them proportional to the rank of the nearest neighbors

CT(K) = 1− 2

K(2N − 3K − 1)

N−1∑
i=0

∑
j∈VK(vi)

(
r̂(i, j)−K

)
.

(23)
VK(vi) are the K nearest neighbors in the original space, N
is the total number of samples and r̂(i, j) is the rank among
the pair-wise distances in the embedding. Conversely, TW
measures whether the original space has different nearest
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FIGURE 6. The proposed local CIR distance (blue) and the global geodesic
distance (orange) for random combinations of positions in the 5G
environment.

neighbors as modelled in the channel chart

TW(K) = 1− 2

K(2N − 3K − 1)

N−1∑
i=0

∑
j∈UK(ui)

(
r(i, j)−K

)
.

(24)
Here, UK(ui) are the K nearest neighbors in the chart and
r(i, j) is the rank among the pair-wise distances in the original
space. As proposed in [19], we use K = 0.05N as the number
of nearest neighbors to calculate TW and CT. Both metrics
have a value range of [0, 1], where 1 means that the local
geometry is perfectly preserved and 0 that the local geometry
is not preserved.

As we mainly investigate CC for localization, we also
estimate the positioning error after the affine transformation
described in Section C. As the selection of points for
the affine transformation affects the localization error, we
use all reference positions to estimate the least squares
solution. However, the effect of using different numbers
of points for the affine transformation is investigated in
Section D. We calculate the mean absolute error (MAE), with
the error being the physical distance between the channel-
chart points and ground truth and the 90th percentile of the
cumulative distribution function (CDF) of the error (CE90)
as performance metric.

VI. EVALUATION
We first evaluate the proposed global geodesic distance metric.
Next, we compare the geodesic Siamese network with the
relevant state-of-the-art of CC for different radio setups
w.r.t. positioning. Finally, we compare CC-assisted FP with
supervised FP. The CC algorithms are trained only on the
training data set and are tested on both the training and test
data to show their generalization capabilities on unseen data.

To ensure the reproducibility of our results, we have made
both the source code and the data sets used in our experiments
publicly available.3

3https://github.com/mutschcr/cc_tmcn

FIGURE 7. The proposed local CIR distance (blue) and the global geodesic
distance (orange) for random combinations of positions in the UWB
environment.

A. DISTANCE METRIC EVALUATION
For the evaluation of the proposed geodesic distance metric
described in Section B, we use the UWB and 5G data sets,
where we randomly sample measurements and calculate the
distance metrics and the corresponding physical distance in
space. Fig. 7 shows the local CIR distance (blue) and the
global geodesic distance (orange) for the UWB data set,
where the physical distance between two positions is shown
on the x-axis and the proposed distances are shown on the
y-axis. As described in Section A, we can clearly see that
the CIR distance is only (linearly) correlated to the physical
distance for points that are close in space. From the CIR
distance we can neither reliably (as the relation is constantly
changing) nor unambiguously (as the CIR distance is not
invertible) derive an physical distance for two points that are
farther apart.

The mean and the standard deviation of the error increases
monotonically with the physical distance until about 6 m. For
physical distances larger then 6 m, the CIR distance has no
more correlations to the physical distance, which restricts
the measurements to their neighbors. We can see a similar
behaviour for the 5G data set shown in Fig. 6. The CIR
distance is correlated to the physical distance until about
10 m. Due to the lower bandwidth of the 5G signals, the lobe
of the received signals are wider, which leads correlations
of signals for higher physical distances compared to signals
with lower bandwidths.

However, this also leads to a higher noise level due to power
variations in the CIR because of fast fading effects, which is a
violation of our distance metric model. To have a correlation
of the radio signals also for larger distances, we propose
to create geodesic distances from a linear combination of
local CIR distances as described in Section B. For both radio
systems, the geodesic distance shows a high linear correlation
to the physical distance, shown in orange in Fig. 7 and Fig. 6.
This means that the spatial density of CSI measurements is
high enough to provide a linear correlation of the CIR distance
to the physical distance in its neighborhood. This also means
that the geodesic distance, i.e., a sum of locally linear CIR
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TABLE 2. Results of CC methods on the 5G data set, tested on both the

training and test data sets. The unit of CE90 and MAE is meter.

Training Test

Method CT TW CE90 MAE CT TW CE90 MAE

Ours 0.986 0.986 2.35 1.40 0.983 0.982 2.48 1.46
Isomap [33] 0.985 0.986 2.46 1.42 0.984 0.984 2.58 1.47
C. UMAP [44] 0.966 0.961 3.87 2.12 0.958 0.947 4.55 2.37
Triplet [23] 0.920 0.824 6.90 4.17 0.919 0.842 6.69 3.89
Con. AE [39] 0.919 0.895 8.19 4.66 0.919 0.895 7.71 4.37
Sammon [19] 0.899 0.880 7.41 4.04 0.897 0.890 6.68 3.77
PCA [19] 0.918 0.860 7.59 4.16 0.921 0.869 7.27 4.02

distances, is linearly correlated to the physical distance. We
therefore have a globally valid distance, which correlates to
the physical distance for arbitrary large distances. This allows
us to optimize channel charts with a global similarity to the
real-world radio geometry, which is necessary for CC-assisted
localization.

B. 5G SETUP
Table 2 lists the results of CC methods on the 5G setup, where
training means that the models are evaluated on training
data set and test that the models are evaluated on the test
data set. Our method shows along with Isomap the highest
local similarities of TW > 0.98, CT > 0.98 and a global
similarity of CE90 < 2.46m, MAE < 1.42m, while our
approach achieves a slightly better global accuracy. The
main difference of our approach to the Isomap is mainly
the runtime improvement, as Isomap has to recalculate the
geodesic distance matrix for every unseen data point, while
our approach learned a transformation function enabling
efficient prediction on unseen data. The combination of
a convolutional autoencoder and UMAP (C. UMAP) still
achieves reasonable results of TW and CT = 0.96 for the
local similarity, while the global similarity is low with a
CE90 = 3.87m and MAE = 2.12m. We also tested UMAP
on the raw input embeddings with the CIR distance as pair-
wise distance and achieved CT = 0.947 and TW = 0.972 for
the local similarity and CE90 = 8.74m and MAE = 5.26m
for the global similarity.

However, as already investigated in [44], we could not
achieve higher results especially for the global similarity. The
worst performance is achieved by PCA, Sammon mapping and
the triplets approach with a local similarity TW < 0.89 and
CT < 0.93 and a global similarity of CE90 > 6.90m and
MAE > 4.00m. The PCA only learns a linear transformation
and Sammon mapping considers the distances between all
points, including the points that are far away. However, as
distances between two CSI measurements are only valid
in the proximity of two points, considering also far points
introduces errors in the channel chart generation. The worse
performance of the triplet approach can be explained by the
assumption that far points in time are also far in space. This

TABLE 3. Results of CC methods on the UWB data set, tested on both the

training and test data sets. The unit of CE90 and MAE is meter.

Training Test

Method CT TW CE90 MAE CT TW CE90 MAE

Ours 0.997 0.997 1.30 0.69 0.997 0.996 1.28 0.72
Isomap [33] 0.997 0.997 1.33 0.72 0.996 0.996 1.34 0.80
C. UMAP [44] 0.996 0.996 1.37 0.72 0.995 0.994 1.24 0.68
Triplet [23] 0.975 0.951 3.98 2.29 0.973 0.948 3.94 2.25
Con. AE [39] 0.965 0.928 4.76 2.55 0.966 0.939 4.38 2.30
Sammon [19] 0.943 0.880 5.49 2.98 0.943 0.888 5.49 2.98
PCA [19] 0.934 0.825 7.41 3.73 0.941 0.874 6.18 3.46

assumption depends highly on the movement pattern, and is
therefore error prone, especially in the 5G data set as the
receiver is moved by a person. The constrained autoencoder
(Con. AE) faces the same problem as Sammon mapping,
as also distances from far points are considered during
optimization. However, we think due to the unique mapping
from the input space into the embedding, the autoencoder
identifies wrong distance labels implicitly and mitigates the
effect of wrong distance approximations, which leads to
slightly better results as in Sammon mapping.

Fig. 8 visualizes the channel charts for the 5G data set.
Graph (a) shows the reference radio environment with a color
gradient, while the Graphs (b)–(f) show the results of the
channel charts for different methods. We can clearly see that
our method, cf. 8b, and the Isomap, cf. 8e, preserve the global
structure of the environment very well. However, it overlaps
slightly on the left-hand side and drifts away on the right-hand
side on the top. As both methods rely on the nearest neighbors
to create the geodesic distances, only vertical neighbors are
available on the tail on the upper right-hand side, which leads
to a overestimation of the physical distance and therefore to
a horizontal drift therein. The channel chart of the C. UMAP
algorithm, cf. Fig. 8c, does not reflect the global similarity
very well, as its shape is curved. However, the local similarity
is still reasonable as the color gradient is valid in most areas.
The other algorithms have a much lower quality of the channel
charts: The triplet approach, cf. Fig. 8d, and the constrained
autoencoder, cf. Fig. 8f, fail in recovering the geometry.

The generalization abilities are good for all the algorithms,
showing no significant differences in performance using
the test data set. This indicates that the algorithms are not
overfitting to the training trajectories and can predict also
well for unseen data in the same environment.

C. UWB SETUP
Table 3 lists the results of the CC methods on the UWB
data set. The majority of the state-of-the-art CC methods
show high accuracy for the local similarity with TW and
CT > 0.95 for our approach, Isomap, C. UMAP and the
Triplet approach. Interestingly, C. UMAP achieves similarly
high local similarity of TW and CT = 0.996 and global
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FIGURE 8. Results CC methods on the 5G data set. Graph (a) shows the recorded training data in the real-world environment. The color gradient is used to
to show the relation of the positions of the channel charts to the real positions. Graphs (b)–(f) show the channel charts after the affine transformation to
the global coordinate frame.

similarity of CE90 = 1.37m and MAE = 0.72m to ours
and the Isomap. Also the triplet based algorithm achieves
higher local accuracies of TW = 0.951 and CT = 0.975. We
think the improvement comes from the slow and consistent
movement of the robot platform with less dynamics in the
movement pattern, which leads to a more valid time based
triplet selection. However, recovering the global structure
of the environment is still not possible with a weak global
accuracy of CE90 = 3.98m and MAE = 2.29m. Like in the
5G evaluation, Con. AE, Sammon mapping and PCA achieve
the worst results in local and global similarity of TW < 0.93,
CT > 0.97, CE90 > 4.70m and MAE > 2.50m.

Fig. 9 visualizes the channel charts for the UWB data set.
Graph (a) shows the reference radio environment with a color
gradient, while the Graphs (b)–(f) show the results of the
channel charts for different methods. We can clearly see that
our method and Isomap model the global structure of the
environment well. There is no overlap of the gradients and
the majority of the empty areas in the original environment
are also present. However, due to the empty areas in the
environment, the geodesic distances are overestimated as no
direct physical connection via the neighborhood is possible
for all data points, which leads to several over-estimations
of the geodesic distance to the physical distances. The effect
can be seen in the area at x = 15m and y = 15m, where the

channel-chart coordinates are pushed towards the left-hand
side.

The channel chart generated by C. UMAP is similarly
accurate as the one generated by our approach and Isomap.
The chart is smoother but maps near datapoints on similar tra-
jectories, with some discontinuities. In contrast, our geodesic
Siamese network shows no discontinuities of the trajectories.
While C. UMAP can achieve a globally consistent map in
the UWB scenario UMAP does not ensure this behaviour
as shown in the 5G evaluation, cf. 8c. We therefore think
that C. UMAP is not ideal for CC-assisted localization,
which needs a continuous globally consistent chart. The other
channel charts, i.e., triplet and Con. AE, cannot recover the
global geometry well, while the triplet algorithm provides
more structure of the environment. This may be caused by
the restrictive assumptions of the triplet generation and the
limitations of the distance metric for far points for Con. AE.

Also here, the generalization abilities are good for all of
the algorithms, showing no significant differences of the
performance using the test data set. This indicates that the
algorithms are not overfitting to the training trajectories and
can predict also well for unseen data in the same environment.

D. SUPERVISED FP vs. CC-ASSISTED FP
In this section, we compare CC-assisted FP with supervised
FP. We employed the supervised FP approach proposed in
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FIGURE 9. Results of CC for the UWB data set. Graph (a) shows the recorded training data in the real-world environment, whereas the color gradient
indicates the relation of the positions of the channel charts to the real positions. Graphs (b)–(f) show the channel charts after the affine transformation to
the global coordinate frame.

[13], which uses the same data and preprocessing as described
in Section B. As a neural-network architecture, we exploit
the same as for the Siamese network described in Section A.
In this evaluation, all models are trained on the training data
set and tested on the test data set. For our CC-assisted FP, we
used labeled data samples to estimate the linear transformation
of the channel chart to the real-world coordinate frame.

The results for the 5G radio system are shown in Fig. 10
(left), where the supervised FP is shown in blue and the
CC-assisted FP is depicted in orange. The x-axis shows the
employed number of labeled training samples, whereas the
y-axis shows the CE90. The training was repeated for 5 times
to avoid any bias from the sample selection. The mean results
are shown as a solid line, and the upper and lower limit of
the estimations are also given. It can clearly be seen that
CC-assisted FP outperforms supervised FP for a low number
of labeled samples. Only 20 labeled samples are needed to
achieve the maximum accuracy, while also noteworthy, 10
samples are sufficient such that the accuracy is very close
to the optimal performance. With only 3 and 5 samples, the
estimation of the affine transformation is very sensitive to
errors in the selected points in the channel chart. In contrast to
CC-assisted FP, supervised FP can achieve higher accuracies
of a CE90 = 1.03m with a high amount of samples (10,240).
However, with only a few samples, the supervised FP accuracy
is very low with, e.g., an CE90 = 11.0m for 20 samples.

About 1,500 samples are needed at least to achieve similar
results as CC-assisted FP.

We can see similar results for the UWB radio setup,
see Fig. 10 (right). CC-assisted FP is more stable with 3
and 5 labeled data samples, as the channel chart is less
noisy compared to the 5G experiment. This leads to a lower
likelihood for the selection of erroneous channel-chart points.
However, similarly, 10 samples are sufficient to achieve
a stable linear transformation to the real-world coordinate
frame. The supervised FP shows the same behaviour as in
the 5G experiment. Higher accuracies of a CE90 = 0.42m
can be achieved with a high number of labeled training
samples (10,240), while the localization fails with only very
few annotated training data. To achieve similar results with
supervised FP about 1,000 labeled samples are needed. In
contrast to the 5G radio system, fewer samples are needed
in this case as the environment is smaller.

VII. DISCUSSION & FUTURE WORK
The experiments have shown that neighborhood-graph-based
algorithms, e.g., C. UMAP, Isomap, and the proposed
geodesic Siamese network, are superior in the generation
of channel charts compared to the other algorithms. We
think that this is due to the fact that they only consider
local distances, which is advantageous as the CSI distance
is proportional to the physical distance in the proximity of
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FIGURE 10. CE90 error of supervised FP and CC-assisted for the 5G (left) and the UWB (right) experiment with different amount of labeled training
samples.

two CSI measurements. This leads to the optimization of the
channel chart considering only the valid local connections
between CSIs. However, this also means that, ideally, a
uniform distribution of high data density should be available
to create a valid global neighborhood graph. As the idea of
CC is that every user in the environment can contribute to
the underlying data set, the amount of collected data will
grow rapidly, which leads to a high data density. However,
this does not necessarily imply that the density of data has a
uniform distribution in the radio environment. While this is
not a problem, as long as the data density is high, methods
that rely on proximity distances, such as nearest-neighbor
approaches, have to calculate a distance matrix, which has a
complexity of O(n2).

While there are good approximations for neighborhood
graphs [54] the complexity is still non-linear, which restricts
the most promising algorithms to small data sets. The
selection of the most necessary information of the recorded
data is therefore important, but a non-trivial problem, as a
random selection of samples might lead to redundant CSIs
at high density regions of the environment and therefore
also to a under representation of low-density regions. As the
collection of data is unsupervised, a spatial selection of data
is impossible, which makes the sample selection challenging.

Another challenge is to exploit CC for positioning. As
the channel chart only reflects the local geometry, a trans-
formation into the global real-world coordinate frame is
necessary. In Section D, we have shown that a simple affine
transformation, estimated using only 10 to 20 reference-
coordinates samples, is already enough to provide high
localization accuracies, while supervised FP needs 50 times
more labeled data samples to achieve similar results. However,
supervised FP can achieve an even higher localization
performance if a high number of labeled data samples is
available. As shown in [13], supervised FP needs a good
coverage of labeled data samples in the radio environment
due to the restricted interpolation abilities. This means that for
larger areas the numbers of needed labeled training samples
also increases, which is not the case for CC-assisted FP
as only an alignment of coordinates frames is needed. We

therefore think that CC-assisted FP is especially useful when
only a low amount of labeled data samples is available and
in large areas, as the linear transformation only requires a
small amount of annotated data, which does not scale with
the size of the environment.

A further problem is that the consistency of the channel
chart mainly depends on the data collected in a certain
scenario. Environmental changes may alter the environment-
specific CSI, which leads to errors in the prediction. This
is a common problem in FP models [13] and makes
an identification of environmental changes and an update
necessary over time. This might also be needed for channel
charts rendering a CC life-cycle management essential for a
robust sage for downstream tasks.

VIII. CONCLUSION
In this work, we propose a CC-assisted localization method
for synchronized multi-base-station SISO radio setups with
high bandwidth, a 5G and a UWB setup. We derived a novel
CSI distance metric, which allows the modeling of globally
consistent channel charts, enabling high precision CC-assisted
FP. Our proposed method, based on a Siamese network can
achieve localization accuracies of 0.69m for the UWB and
1.4m for the 5G setup in challenging NLoS-dominated indoor
environments by only applying a linear transformation after
the generation of the channel chart.

An extensive study has shown that our proposed
method outperforms the state-of-the-art algorithms, since
neighborhood-graph-based algorithms like our method can
achieve the best results. In contrast to CC-assisted FP,
supervised FP needs 50 times more labeled data samples
to achieve similar results. This indicates that CC has a very
high potential for unsupervised FP-based localization methods
to lower the effort for data recording, as only very few ground-
truth data are needed for the coordinate-system transformation
of the chart from the local to the real-world frame.
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APPENDIX A
MODEL FOR TDOA-BASED MEASUREMENTS
The CIR distance for TDoA-based localization system is
derived in the following. Without loss of generality, we
assume Bref as the time-reference base station for TDoA-
based measurements. Moreover, Bref is always chosen such
that it provides the shortest ToA. The difference between
two TDoA measurements (Tbias,ℓ and Tbias,ℓ′ are some
measurement bias) is given by

∆T
(k)
n,ij

def
=

∣∣T (k)
0,i + Tbias,ℓ − (T ref

0,i + Tbias,ℓ)

− (T
(k)
0,j + Tbias,ℓ′ − (T ref

0,j + Tbias,ℓ′))
∣∣

=
∣∣T (k)

0,i − T ref
0,i − (T

(k)
0,j − T ref

0,j)
∣∣

=
∣∣T (k)

0,i − T
(k)
0,j + T ref

0,j − T ref
0,i

∣∣
=

∣∣∆t
(k)
n,ij +∆trefn,ji

∣∣ ,
which can be expressed as

=

∣∣∣∣∣±
√(

d
(k)
phy

)2

/c2 −
(
ϵ
(k)
n,ij

)2

±
√(

drefphy

)2

/c2 −
(
ϵrefn,ij

)2
∣∣∣∣∣ . (25)

When ϵ
(k)
n,ij is maximum, then ∆T ∈ [0, dphy/c] which

implies ϵrefn,ij ∈ [0, dphy/c]. Similarly, when ϵrefn,ij is maximum,
ϵ
(k)
n,ij ∈ [0, dphy/c]. This means that

2 dphy > c
(
ϵ
(k)
n,ij + ϵrefn,ij

)
, (26)

since equality in (26) can only hold when both base stations
are at the exact same coordinates.

Following the same derivation as in Section A, we now
re-define the distance metric (13) using TDoAs, i.e., ∆T

(k)
n,ij :

ds(H̃i, H̃j)
def
=

Nb−1∑
k=0

Np−1∑
n=0

∆T
(k)
n,ij . (27)

Again, we have a monotonically increasing mean and standard
deviation, and a lower bound of the error.

APPENDIX B
LINEARITY OF THE CIR DISTANCE
If we could extract all multipath delay information from
the received CSIs we could apply (13), which would lead
to a linear correlation of the CIR distance to the physical
distance. In this work, we use the approximation defined in
(15), which is non-linear if we use a typical pulse shape like
a sinc function.

However, we can show that the approximated CIR distance
is linear for small time-differences ∆t

(k)
n,ij . Without loss of

generality, we assume to have only one base station, i.e.,
Nb = 1 and a single path arriving at the receiver, i.e., Np =

1.4 By using (15) and the inverse triangle inequality we have

ds(h̃i, h̃j) ≤
T−1∑
t=0

∣∣h̃(1)
i (t)− h̃

(1)
j (t)

∣∣ . (28)

If we assume to have only a single path arriving, e.g., the
LoS component, we can substitute h̃ by the sinc function

ds(h̃i, h̃j) ≤
T−1∑
t=0

∣∣∣sinc(t)− sinc(t−∆t
(1)
0,ij)

∣∣∣ . (29)

Here, we omit the bandwidth of the signal and assume to
have a equal amplitude, which is valid for small ∆t

(1)
0,ij . By

using the Taylor series expansion we get

ds(h̃i, h̃j) ≤
T−1∑
t=0

∣∣∣∣∣
∞∑

n=0

(−1)nt2n

(2n+ 1)!

−
∞∑

n=0

(−1)n(t−∆t
(1)
0,ij)

2n

(2n+ 1)!

∣∣∣∣∣ . (30)

If we have |∆t
(1)
0,ij | ≪ |t| we can use the binomial approxi-

mation defined in Lemma B.1 to get

ds(h̃i, h̃j) ≤
T−1∑
t=0

∣∣∣∣∣
∞∑

n=0

(−1)nt2n

(2n+ 1)!

−
∞∑

n=0

(−1)n(t2n − 2nt2n−1∆t
(1)
0,ij)

(2n+ 1)!

∣∣∣∣∣ (31)

=
∣∣∣∆t

(1)
0,ij

∣∣∣ T−1∑
t=0

∣∣∣∣∣
∞∑

n=0

(−1)n2nt2n−1

(2n+ 1)!

∣∣∣∣∣︸ ︷︷ ︸
=constant

, (32)

which is linear for small ∆t
(1)
0,ij with a constant slope. This

means that also the sum of ∆t
(k)
n,ij for the base stations

k and the received paths n is linear, as long as ∆t
(k)
n,ij is

small. As ∆t
(k)
n,ij is bounded by the displacements of the CSI

measurements h̃i and h̃j , we have a linear CIR distance for
small displacements.

Lemma B.1:
For |∆t| ≪ |t| we can use the following approximation of
the binomial function

f(∆t) = (t−∆t)2n (33)

f ′(∆t) = −2n(t−∆t)2n−1 (34)

f ′(0) = −2nt2n−1 (35)
f(∆t) ≈ f(0) + f ′(0)(∆t− 0) (36)

= t2n − 2nt2n−1∆t . (37)

The error of the approximation is defined as

e(∆t) = (t−∆t)2n − (t2n − 2nt2n−1∆t) , (38)

4The base station index k = 1 is used for the derivation and the same
applies for all indices k.
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Stahlke et al.:

where for small values of ∆t, the error approaches 0, i.e.,

lim
∆t→0

e(∆t) = 0 . (39)
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Based Wireless Channel Charting,” in IEEE Global Communications
Conference (GLOBECOM). Taipei, Taiwan: IEEE, 2020.
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