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Abstract—This paper presents a comprehensive location scheme in
a rich multipath environment. It is based on the estimation of the
distance between two wireless nodes in line-of-sight (LOS) from the
best statistical estimator of the round-trip time (RTT), assuming a
linear regression as the model that best relates this statistical estimator
to the actual distance. As LOS cannot be guaranteed in an indoor
environment, the effect of non-line-of-sight (NLOS) is mitigated by
a two-step correction scheme. At a first step, the severe NLOS
error is corrected from distance estimates applying the prior NLOS
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measurement correction (PNMC) method. At a second step, a new
multilateration technique is implemented together with received signal
strength (RSS) information to minimize the difference between the
estimated position and the actual one. The location scheme coupled
with measurements in a real indoor environment demonstrates that
it outperforms the conventional time-based indoor location schemes
using neither a tracking technique nor a previous calibration stage of
the environment and no need for time synchronization between wireless
nodes.

1. INTRODUCTION

Indoor positioning is one of the challenging problems being faced today,
which has numerous commercial and government applications [1]. For
areas where there is a line-of-sight (LOS) to satellites, the GNSS
(Global Navigation Satellite System) provides a good estimate (within
a few meters) of a mobile user (MU) location. However, signals coming
from satellites cannot be currently used in most indoor environments
due to the fact that they are not strong enough to penetrate most
materials [2]. Hence, alternative wireless infrastructures which offer
strong signals should be used. Up to date, few wireless infrastructures
which operate in indoor environments are as extensively deployed
and used as IEEE 802.11, a reason that wireless technology is
the best candidate for the development of indoor location schemes.
Moreover, the addition of positioning capabilities to such widespread
communications network could open up interesting markets. In this
paper, a location scheme for indoor environments using the IEEE
802.11 wireless infrastructure is proposed.

Whichever indoor wireless technology is involved, location schemes
can be broadly classified according to the signal information used.
Hence, the latter can be the measured Time of Arrival (TOA) [3, 5],
Time Difference of Arrival (TDOA) [6], Angle of Arrival (AOA) [7] or
Received Signal Strength (RSS) [8] of the MU’s signal at the reference
devices or anchors. Moreover, hybrid location techniques as TDOA and
AOA [9], TOA and RSS [10] or DOA and RSS [11] can be exploited
to improve the accuracy. In this paper, the low-cost printed circuit
board (PCB) that has been presented in [12] is used as a measuring
system. Thus, the TOA information of the wireless signal is obtained to
estimate the distance between two wireless nodes. Specifically, instead
of TOA, round-trip time (RTT) is measured in order to avoid the need
for time synchronization between wireless nodes, which would entail a
major increase in the complexity of the location scheme development.
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Then, as proposed in [12], assuming a simple linear regression as the
model which best relates the statistical estimator of the RTT to the
actual distance between two wireless nodes in LOS, the statistical
estimator that best fits that model is found with the aim of improving
the accuracy achieved in distance estimates with that PCB in a LOS
environment.

Unfortunately, the assumption that a direct sight exists between
two wireless nodes in an indoor environment is an oversimplification
of reality, where the complicated indoor wireless environment imposes
big challenges; for example, the transmitted signal could only reach
the receiver through reflected, transmitted, diffracted, or scattered
paths [13, 14]. Known as the non-line-of-sight (NLOS) problem, that
impairment is the dominant factor that degrades the accuracy of
mobile positioning. From the literature, several solutions have been
proposed to mitigate the effect of NLOS problem but they have been
mainly discussed within cellular networks [4, 15–18]. In this paper,
the prior NLOS measurement correction (PNMC) method [15] is put
into practice in an indoor environment to alleviate the effect of severe
NLOS on distance estimates.

To culminate the location scheme, the MU position estimate is
performed in a real rich multipath indoor environment. Where, if the
distance estimates to anchors were perfect, then three anchors, placed
at any location would be sufficient to unambiguously determine the
MU position in two-dimensions, using a simple multilateration method.
However, as distance estimates are not perfect, a new multilateration
method together with RSS information is proposed to minimize the
difference between the MU position estimate and its actual position.

The paper is organized as follows. Section 2 proposes the best
statistical estimator of the RTT assuming a linear regression model to
relate that estimator with actual distance in LOS. Section 3 describes
the mitigation of the severe NLOS effect on those distance estimates
using the PNMC method. Section 4 presents a new multilateration
method that smooths even more the effect of NLOS directly on the
MU position to better estimate the actual one. Section 5 evaluates
the performance of the new location scheme in a rich multipath indoor
environment, and Section 6 summarizes the main conclusions.

2. RELATION BETWEEN ROUND-TRIP TIME
MEASUREMENTS AND DISTANCE IN LINE-OF-SIGHT

According to [19], the distance resolution of a location system is
determined by the bandwidth of the transmitted signal, 6.8m in
the IEEE 802.11b standard. High-precision location would require
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large transmission bandwidths and thus the use of multiple frequency
channels. Moreover, if a PCB governed by a frequency clock is used to
measure the RTT between two wireless nodes, the distance resolution
is also hampered by that frequency clock. Additionally, even in a
LOS environment, RTT measurements have a random behavior due
to the error introduced by the standard noise from electronics in the
measurement (which is always present). Therefore, to overcome the
limitations in distance resolution and the effect of electronic errors,
several statistical estimators of the RTT are going to be analyzed.

The PCB presented in [12] is used as measuring system to perform
RTT measurements between an anchor and an MU device (the MU
carries the PCB) for several distances from 2 to 40 m in a LOS
environment, where both wireless nodes are placed on a cardboard box
1m high each to guarantee the First Fresnel zone clearance. Therefore,
a statistical value from a group of RTT measurements taken between
two wireless nodes at a given distance is selected based on the estimator
used. The latter will be representative of that distance between both
nodes.

If a simple linear regression model is assumed to relate the
statistical estimator with the actual distance [12], the way in which
several statistical estimators of the RTT can be compared is by using
the correlation coefficient (r2). The latter indicates the percentage
variation in the statistical estimators explained by the simple linear
model. Therefore, the easiest method for dealing with actual distance
is simply to take the statistical estimator with the highest correlation
coefficient. Thus, r2

d,d̂
is used to compare the different statistical

estimators, where d is the actual distance while d̂ is the estimated
distance after having applied the linear regression model to the
statistical estimator.

Thus, assuming LOS, the linear regression used is as follows,

d̂ = β0 + R̂TTLOSβ1 (1)

d̂ = d + εLOS (2)

where R̂TTLOS is the statistical estimator of the RTT hampered by
measuring errors; β0 and β1 are the intercept and slope of the linear
regression model respectively; and εLOS is the error introduced by
the used estimator. The term εLOS can be modeled as a Gaussian
random variable with zero mean and standard deviation σLOS since
the estimators are asymptotically Gaussian, so

εLOS Ã N(0, σLOS ) (3)

where the value of σLOS depends on the statistical estimator used.
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In [12], due to the flexibility of the Weibull distribution when it
models the RTT measurements distribution, it has been shown that
the scale parameter of Weibull distribution (scale-W) provides better
fit to the actual distance than the sample mean. In this paper, a better
statistical estimator of the RTT performed in LOS is found through
an analysis of the expression of the maximum likelihood estimator
(MLE) of the scale-W. Thus, assuming that the shape parameter of
the Weibull distribution (shape-W) is known, the scale-W can be easily
estimated by using the MLE method as follows:

If f(x; k, λ) is the probability density function of a Weibull (two-
parameter) random variable x, then

f(x; k, λ) =
k

λk
· xk−1 · e−( x

λ)k

x ≥ 0 (4)

where k > 0 is the shape-W and λ > 0 is the scale-W. Let
X1, X2, . . . , Xn be a random sample of random variables with two-
parameter Weibull distribution, k and λ. The likelihood function is

L(x1, . . . , xn; k, λ) =
n∏

i=1

f(xi; k, λ) (5)

Therefore,

ln L(x1, . . . , xn; k, λ) =
n∑

i=1

ln f(x1, . . . xn; k, λ)

=
n∑

i=1

(
ln

(
k

λ

)
+ (k − 1) · ln

(xi

λ

)
−

(xi

λ

)k
)

= n · ln
(

k

λ

)
+ (k − 1) ·

n∑
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ln
(xi

λ

)
−

n∑
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(xi

λ

)k

= n · (ln(k)− ln(λ)) + (k − 1) ·
[
−n · ln(λ) +

n∑
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ln(xi)

]
−

n∑

i=1

(xi
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)k

= n · ln(k) + (k − 1) ·
n∑

i=1

ln(xi)− n · k · ln(λ)− λ−k ·
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xk
i (6)

thus,
∂ lnL

∂λ
= −n · k · 1

λ
+ k · 1

λk+1
·

n∑

i=1

xk
i (7)
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in order to find the maximum, ∂ ln L
∂λ = 0 hence, the MLE of the scale-W

is

λ̂ =

[
1
n

n∑

i=1

xk
i

] 1
k

(8)

This expression is known as the Hölder mean [20]. This mean is a
generalized mean of the form,

Mp(x1, x2, . . . , xn) =

[
1
n

n∑

i=1

xp
i

]1
p

(9)

where the parameter p is an affinely extended real number; n is the
number of samples and xi are the samples with xi ≥ 0. Therefore, the
MLE of the scale-W (λ̂) is the Hölder mean (Mk) with the shape-W
as p parameter. Some common named means that are special cases
of the Hölder mean are the minimum (M−∞), harmonic mean (M−1),
geometric mean (M0), arithmetic mean (M1), quadratic mean (M2) or
maximum (M∞).

From RTT measurements performed in a LOS environment, any
of the estimators of the form Mp with p ∈ {−∞,−1, 0, 1, 2,∞}
has a correlation coefficient higher than Mk, where k is the shape-
W. But, if an analysis of the correlation coefficient is performed
among statistical estimators of the form Mr·k and M k

r
with r ∈ Z

in [1, 10], it is easy to see that the correlation coefficient reaches its
maximum value with M3k as statistical estimator, specifically for M3k,
r2
d,d̂

= 0.977, which indicates that the linear regression model nearly
fits that statistical estimator perfectly. Similarly, Fig. 1 shows how
the cumulative probability of errors in terms of distance estimation
reaches its minimum value at M3k. Therefore, it can be concluded
that M3k is the statistical estimator which provides the best fit to
actual distance if a simple linear regression model is used to relate the
statistical estimator to the actual distance.

Once M3k is found as the statistical estimator of the RTT that
best fits actual distance, its performance is compared to other solutions
cited for distance estimation to evaluate the goodness of the proposed
one (Fig. 2). The same two wireless nodes have been used in the same
LOS environment for all the solutions analyzed.

As it is well known, the distance between two wireless devices
causes an attenuation in the RSS values. This attenuation is known as
path loss, and it is modeled to be inversely proportional to the distance
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in terms of distance estimation performed for different statistical
estimators of the form Mr·k and M k
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between both devices raised to a certain exponent [21]. Thus, according
to [8] the distance between two wireless nodes can be estimated by

d̂ = 10
Pref −P

10α (10)

where Pref is the RSS measured in logarithmic units at 1 m; P is the
RSS measured in logarithmic units at the actual distance and α is the
path loss exponent. According to [22], for any distance under 20 m in
LOS, α is recommended to be 2. Therefore, having taken this value for
the path loss exponent and from the RSS value measured between both
devices, the distance between the two wireless nodes can be estimated
by (10). Fig. 2 shows the cumulative distribution function (CDF) of
the error in distance estimated. As it could be expected, this is a good
RSS-based distance estimation in LOS, where an error lower than 3 m
for a cumulative probability of 75% is achieved for this particular LOS
environment. But, as shown in Fig. 2, when it is compared to other
distance estimation methods, propagation delays correlate more closely
with distance than RSS-based.

Another solution cited to estimate distances is proposed in [23]
where it uses a measuring system similar to the one proposed in
this paper. The estimation of the distance is made by halving the
∆RTT, which corresponds to the pure propagation portion of the RTT.
Specifically,

∆RTT =
(
η − σ

3

)
− η0 (11)

where η and σ are the sample mean and standard deviation of the
RTT measurements respectively, and η0 is the sample mean of RTT
measurements at distance 0 m. This solution highly depends on
the specific environment where the RTT measurements have been
performed, which is the reason that its performance shown in Fig. 2 is
not so good as the one presented in [23].

Finally, the CDF of errors in terms of distance estimation for
the scale-W estimator (Mk) that was considered in [12] as better
statistical estimator than the sample mean is also plotted in Fig. 2.
As it can be seen, for a cumulative probability lower than 98%, the
M3k achieves a better accuracy than the Scale-W. But, for higher
cumulative probabilities, due to a few outliers, the accuracy achieved
by the M3k is worse than the Scale-W.



Progress In Electromagnetics Research B, Vol. 15, 2009 293

3. MITIGATION OF THE NON-LINE-OF-SIGHT
EFFECT FROM DISTANCE ESTIMATES

The assumption that LOS propagation conditions are present in
an indoor environment is an oversimplification of reality. In such
environments the transmitted signal could only reach the receiver
through reflected, transmitted, diffracted, or scattered paths. Hence,
these paths could positively bias the actual distance caused mainly
by the blocking of the direct path or due to experiencing a lower
propagation speed through obstacles [24]. Known as the NLOS
problem, this positive bias has been deeply considered through
the literature with the aim of mitigating its effect on distance
estimates [15, 17, 18], but, in all of them the NLOS is mainly discussed
within the cellular networks. Note that such techniques usually assume
that the bias for the NLOS range measurements changes over time and
has larger variances than LOS range measurements [25], assumptions
that could not be assured in an indoor environment [26]. In this paper,
the feasibility of the PNMC method presented in [15] is analyzed in
an indoor environment, taking the PCB proposed in [12] as measuring
system, M3k as statistical estimator of the RTT and the simple linear
regression as the model to relate M3k to the actual distance.

The PNMC method relies on the statistical distribution of NLOS
errors and on the major variance that NLOS errors present with
respect to LOS. The distribution type of NLOS errors depends on
the particular environment. Hence, it can follow different statistical
distributions such as Gaussian, Exponential, Gamma, etc. [15].
Regarding the distribution, its parameters can be assumed to be
constant in that particular environment. Moreover, those parameters
can be obtained before the process of getting distance estimates [27] or
directly from the estimated delay spread at that moment [28]. In this
paper, those parameters have been obtained beforehand by a campaign
of RTT measurements in NLOS.

Thus, assuming NLOS, let d̂ be the estimated distance between
two wireless nodes

d̂ = d + εLOS + εNLOS (12)

where d is the actual distance; εLOS describes the measuring error and
the term εNLOS is the error due to the lack of direct sight between both
nodes. Once M3k has been chosen as the best statistical estimator of
the RTT when both nodes are in LOS, the terms which define the
linear model, β0 and β1, are fixed, and the term εLOS is observed
to be Gaussian distributed with zero mean and a standard deviation
σLOS = 1.5m. As said before, the random variable εNLOS depends
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on the particular environment where the MU is going to be located.
In this paper, that environment is the second floor of the Higher
Technical School of Telecommunications Engineering, University of
Valladolid (Spain), a real rich multipath indoor environment with
several offices, laboratories and people walking around (see Fig. 3).
From an exhaustive campaign of RTT measurements in NLOS, the
term εNLOS is considered to be exponentially distributed, thus

εNLOS Ã Exponential(β) (13)

where β = 0.3m−1 is the value that, in general, best fits the
distribution with εNLOS , which means that the standard deviation
of εNLOS is σNLOS = 3.3m, and it is equal to the mean (µNLOS =
3.3m). Once the distribution of εNLOS , σNLOS and σLOS have been
characterized, the feasibility of the PNMC method can be analyzed.
Note that the variance of εNLOS does not show as much deviation from
variance of εLOS as it could be expected in an indoor environment [26],
which is a reason that the feasibility of the PNMC method could be
questionable in an indoor environment. But, as it will be proved, the
PNMC method can improve the distance estimate by mitigating the
effect of severe NLOS even in an indoor environment.

RTT measurements shown in Fig. 3 have been performed between
an anchor fixed in a laboratory and an MU which was moving on the
route shown. Any of the positions on the route has a direct sight
to the anchor, situation that could possibly happen in any indoor
environment with high probability. Therefore, the route followed shows
different degrees of NLOS and no LOS combined with NLOS situations.

The PNMC method is applied to a record of distance estimates
corresponding to a window size of 15 positions, sliding 5 positions
each time, where each estimated distance works out after applying the
linear regression model on the statistical estimators of the RTT, M3k.
The PNMC processing relies on the deviation, S, of distance estimates
within the record. As it is shown in [15] S depends on the NLOS ratio,
r, present in that record. That dependence can be approximated by

r ≈ 2S
√

σ2
LOS

+ 0.5σ2
NLOS +

√
µNLOS − 2σ2

LOS − 0.5σ2
NLOS − 2

√
µNLOS

σ2
NLOS

(14)

whereas εNLOS is considered to be exponentially distributed, µNLOS =
σNLOS .

Thanks to the knowledge of the severe NLOS ratio that is present
in the record, it is known that r ·100% of distance estimates come from
severe NLOS propagation. Such distance estimates will be corrected
based on the way in which εNLOS is distributed. Thus, the r · 100%
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Figure 3. Second floor of the Higher Technical School of
Telecommunications Engineering, University of Valladolid (Spain).
Indoor environment where RTT measurements have been carried out.

distance estimates are classified in segments, according to their values,
and each one of them is corrected by subtracting the expected error in
that segment [15].

Figure 4(a) shows the actual distance from the MU to the anchor
at each position through the route shown in Fig. 3. The distance
estimate, in red, at each position is shown by using M3k as statistical
estimator of the RTT, having applied the linear regression model. As
it is observed in Fig. 4(a), due to the fact that the positions where
the MU is going to be located do not have a direct sight to the
anchor, distance estimates are almost always higher than the actual
one. Therefore, PNMC method is going to correct distance estimates
with severe NLOS. In blue, the distance estimates having applied the
PNMC method on the computed distance estimates are shown. They
are more similar to those that would be obtained in the absence of
severe NLOS propagation.

It can be concluded that although the difference between σLOS

and σNLOS is not so great, the presence of severe NLOS in the record
is detected and corrected. As it is shown in Fig. 4(b) the improvement
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Figure 4. NLOS error mitigation from a record of distance estimates
using a window size of 15 positions sliding 5 positions. (a) M3k distance
estimates before and after applying PNMC method. (b) Comparison
of CDFs errors in distance estimate before and after applying PNMC
method.

of applying the PNMC method can be observed through the CDF of
errors in distance estimates. Generally speaking, the distance estimate
can be improved on approximately 2 m for cumulative probabilities
higher than 30% when applying the PNMC method.

4. FINDING THE BEST MOBILE USER LOCATION
ESTIMATION UNDER NON-LINE-OF-SIGHT
CONDITIONS

After having mitigated the effect of severe NLOS in distance
estimates, those could be taken as inputs to find the MU location by
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multilateration. Multilateration is a common operation to find the MU
location using its distance estimates to three or more known anchors.
And as it is well known, additional capabilities can be included in
multilateration methods to mitigate the effect of NLOS. Therefore, in
this section a new multilateration technique based on the least-squared
method to mitigate the NLOS effect on the MU position based on RSS
information is proposed.

4.1. Least-squared Multilateration

In two-dimensions, multilateration is defined as the method to
determine the intersections of M circles (M ≥ 3) with centers the
anchors position (Oxi , Oyi), and radius the distance estimate from the
MU to each anchor in range (d̂i), where both i = 1, 2, . . . ,M . Assuming
that the number of distance estimates is greater than the minimum
required (M > 3), an over-determined system of quadratic equations
has to be solved to find the MU position. But in the common case,
as d̂i is impacted by noise, bias, and measurement error, it does not
usually match the actual distance. Thus, the circles will not cut each
other in a single point, which is a reason that the solution of that over-
determined system can be found in the least-squared sense. Hence, the
MU position x = [x, y]T can be estimated by finding x̂ satisfying:

x̂ = arg min
x,y

M∑

i=1

[√
(Oxi − x)2 + (Oyi − y)2 − d̂i

]2

(15)

Solving (15) problem requires significant complexity, and it is difficult
to analyze. Therefore, instead of using the circles as the equations to
determine the MU location, the radical axes of all pairs of circles can
be used. The radical axis of two circles is the locus of points at which
tangents drawn to both circles have the same length. It can be easily
obtained by subtracting the two involved circles’ equations. In this
way, the complex problem of solving an over-determined system of M
quadratic equations is reduced to solve an over-determined system of
M(M−1)

2 linear equations.
Let

Ax=b (16)

be the linear equation system with

A =




2(Ox1 −Ox2) 2(Oy1 −Oy2)
...

...
2(OxM−1 −OxM ) 2(OyM−1 −OyM )


 (17)
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and

b =




d̂2
2 − d̂2

1 − (O2
x2
−O2

x1
)− (O2

y2
−O2

y1
)

...
d̂2

M − d̂2
M−1 − (O2

xM
−O2

xM−1
)− (O2

yM
−O2

yM−1
)


 (18)

where A is a matrix of M(M−1)
2 rows and 2 columns described only by

the anchors coordinates, while b is a vector of M(M−1)
2 rows represented

by the distance estimates together with the anchor coordinates. In the
least-squared sense the solution for (16) is done via

x̂ = (ATA)−1ATb (19)

where x̂ is an estimate of the actual MU position, assuming known
anchors positions and having estimated the distance from the MU to
each anchor in range. Note that as b depends on d̂i and, in general, d̂i

does not match the actual distance; the solution of (19) has to be found
in the least-squared sense. In this paper, Equation (19) is denoted as
the least-squared multilateration method (LSM).

4.2. Weighting Least-squared Multilateration Based on
Received Signal Strength

As in the previous subsection, it is assumed that the number of distance
estimates is greater than the minimum required to determine a two-
dimensional MU location (M > 3). Therefore, it is possible to perform
C groups of those distance estimates in various ways subject to the
constraint that the number of distance estimates involved in each group
is no less than 3. Mathematically,

C =
M∑

i=3

(
M
i

)
(20)

Applying the LSM method proposed in the previous subsection (19)
for each of these combinations, C MU position estimates could be
obtained, which are denoted as intermediate position estimates x̂j,
j = 1, 2, . . . , C. Thus, the final MU position estimate could be obtained
by a linear combination of weighted intermediate position estimates.

The quality of the final MU position estimate (x̂) depends on the
quality of the intermediate position estimates (x̂j, j = 1, 2, . . . , C) and
these depend on the quality of the distance estimates performed to
each anchor in range (d̂i, i = 1, 2, . . . , M). The bias error caused by
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severe NLOS in distance estimates is mitigated by applying the PNMC
method. Thus, the final MU position estimate could be improved
even more if it is performed by taking the best linear combination of
weighted intermediate position estimates based on a certain criterion.
This second step that mitigates the NLOS effect and finds the best
MU location estimation is denoted as the weighted least-squared
multilateration method (WLSM).

In [29], the criterion used to assign weights to intermediate
position estimates is based on the sum of the residual squares, referred
to as residual weighting algorithm (RWGH). Taking the residual as
the difference between the distance estimation and the range between
the intermediate position estimate and the anchor position. In this
paper, the criterion chosen is based on giving more relevance to the
distance estimations from anchors which are closer to the MU position.
Generally speaking, the closer the anchor is, the lower the path length
the signal has to travel, and thus, the lower the bias error in distance
estimation is. Although the correlation between RSS and distance
is difficult to predict in an indoor environment due to the unwieldy
and dynamic nature of RSS, RSS information can give an idea about
how close the anchor is. The fact that the criterion is based on using
RSS information has the main advantage that no statistical models on
NLOS channel conditions are needed, and it can be easily measured at
the same time as the RTT measurements are being performed.

Let

Wght(x̂j, Sj) =

(∑

i∈S

[Pref − Pi]2
)−1

(21)

be the weight of the intermediate position estimate x̂j performed over
the anchors set Sj with j = 1, 2, . . . , C. Where Pref is the RSS
measured in logarithmic units at 1 m, and Pi is the RSS measured
in logarithmic units to the anchor i with i ∈ Sj , the higher Wght,
the closer the anchor and thus, the better the intermediate position
estimate. However, the number of distance estimates in the C groups
is different. Therefore, the normalized weight is defined to remove the
dependence on the size of the group as:

W̃ght(x̂j, Sj) =




C∑
j=1

[Pref − Pi]2

Size of Sj




−1

(22)

In consequence, the final MU position estimation is the linear
combination of the intermediate position estimations weighted to their
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W̃ght as follows:

x̂ =

C∑
j=1

x̂j · W̃ght(x̂j, Sj)

C∑
j=1

W̃ght(x̂j, Sj)
(23)

5. PERFORMANCE EVALUATION

The location scheme is evaluated through the RTT measurements
performed into the second floor of the Higher Technical School of
Telecommunications, having taken the PCB proposed in [12] as
measuring system. In that rich multipath environment the proposed
WLSM method is compared to other two multilateration methods
cited, LSM and RWGH, with the purpose to illustrate the accuracy
improvement of the one proposed.

As shown in Fig. 5, the campaign of measurements has been
carried out following a route among offices, laboratories and few people
walking around. As anchors, 8 identical wireless access points have
been used with two omnidirectional rubber duck antennas vertically
polarized to each other in diversity mode. Anchors were configured
to send a beacon frame 100 ms each at constant power on frequency
channel 1 (2.412 GHz). As MU, an IEEE 802.11b WLAN cardbus
adapter has been used with two on-board patch antennas in diversity
mode. Diversity circuitry determines which antenna has better
reception and switches it on in a fraction of a second while it turns off
the other antenna. Therefore, both antennas are never on at the same
time. The PCB was connected to the WLAN cardbus. Both, anchors
and cardbus adapter, can be found on most IEEE 802.11 WLANs.

At a first approach, LSM method is applied at each actual position
to estimate the MU position. The distance after having applied the
linear model to the M3k estimator (1) is taken as the estimation of
the distance to each anchor in range. Thus, the estimation of the MU
position is the one that minimizes (in least-squared sense (19)) the
distance to each one of the radical axis performed among all pairs of
circles, which center the anchors position and radius of the estimated
distance. As a direct sight between the MU and anchors cannot
be assured in an indoor environment, the effect of NLOS positively
biases the distance estimates. Hence, PNMC method is applied to
correct the effect of the severe NLOS on distance estimates. Thus,
implementing LSM method together with PNMC method the accuracy
on finding the MU position is improved. Finally, assuming the number



Progress In Electromagnetics Research B, Vol. 15, 2009 301

of distance estimates is greater than the minimum required, a second
step to mitigate the effect of NLOS can be implemented by applying
the WLSM method. That method relies on assigning weights to
intermediate position estimates based on RSS information (23). The
effect of applying two-step NLOS mitigation works out in an accuracy
improvement of the MU position estimate. The WLSM method is
compared to the LSM and RWGH methods cited through the CDF
of errors in terms of the estimation of the MU position in order to
illustrate the performance improvement of the one proposed.

Figure 5 shows the MU position estimates having used the
LSM, PNMC & LSM, PNMC & RWGH and PNMC & WLSM
methods. The actual positions of the MU correspond to the black
dots. Those positions describe a route along the corridors where
the distance between each pair of continuous ones is approximately
0.75m. The multilateration positions obtained by using the LSM and
PNMC & LSM methods are shown in cyan and red, respectively,
PNMC & RWGH multilateration positions in blue, while the
PNMC & WLSM method positions have been shown in green.
Whichever the multilateration method is used, all of the MU position
estimates are close enough to the actual ones. Therefore, any of the
multilateration methods together with the PNMC method could be
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Figure 5. Multilateration obtained in the second floor of the Higher
Technical School of Telecommunications Engineering, University of
Valladolid (Spain). Black dots represent actual positions, cyan ones
are LSM positions without PNMC, red, blue and green ones are LSM,
RWGH and WLSM positions respectively after having applied PNMC
method on distance estimates.
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Figure 6. CDFs of errors in terms of MU position estimation
performed with two different multilateration methods cited (LSM and
RWGH) and the one proposed in this paper (WLSM). LSM method is
proved taking as distance estimates those after having and not having
applied the PNMC method. The other ones have been proved with the
PNMC method.

used as an accurate indoor location scheme taking into account that
neither a previous calibration stage nor any radio-map information
about the environment has been used.

Figure 6 shows the CDF of errors in terms of the difference
between the actual MU positions and the estimated ones to compare
the accuracy achieved with the different solutions. As it could be
expected, the LSM method presents the worst behavior due to that the
NLOS effect is not mitigated from distance estimates. LSM method
together with PNMC method improves the CDF because the severe
NLOS effect is corrected from distance estimates. Finally, although
RWGH and WLSM methods are based on different criteria, any of them
with the PNMC method presents a slight improvement as compared
to LSM together with PNMC, because both methods implement a
second step to mitigate the NLOS effect. From results shown in Fig. 6,
it can be concluded that the WLSM method, which uses the criterion
based on RSS information, obtains better results than RWGH method,
which uses the criterion based on residuals. Therefore, as it is shown in
Fig. 6, the best choice would be the WLSM method together with the
PNMC method which reaches an error lower than 4 m for a cumulative
probability of 85%.
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6. CONCLUSION

In this paper, a complete location scheme based on RTT measurements
is proposed, analyzed and put into practice in a rich multipath indoor
environment. The PCB proposed in [12] has been taken as RTT
measuring system, and an IEEE 802.11 wireless infrastructure, already
deployed, has been used as indoor wireless technology.

At a first step, distance estimation between two wireless nodes in
LOS has been analyzed. Thus, assuming a simple linear regression as
the model which relates the statistical estimator to actual distance,
the M3k has been found as the best statistical estimator of the RTT.
M3k is characterized by a correlation coefficient of 0.977, thus, it can
be concluded that M3k nearly fits the actual distance perfectly. At a
second step, distance estimation between two wireless nodes has been
analyzed in the NLOS indoor environment. Hence, the PNMC method
has been applied to correct the effect of severe NLOS. An improvement
of about 2 m for cumulative probabilities higher than 30% has been
achieved after applying the PNMC method. At a final step, the
MU position has been estimated using a new multilateration method,
WLSM, which implements an NLOS mitigation technique based on
RSS information.

The performance of that indoor location scheme has been
evaluated in a real rich multipath indoor environment. The error
achieved in the estimation of the MU position has been lower than 2 m
for a cumulative probability of 50%. Note that the feasibility of using
the location scheme has been proposed without any tracking technique
or a previous calibration stage about the environment which could
improve the positioning accuracy. For the WLSM method, the only
premise it has been assumed is that the number of distance estimates
is greater than the minimum required.
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