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Abstract: Real-time location systems (RTLS) record locations of individuals over time and are valuable
sources of spatiotemporal data that can be used to understand patterns of human behaviour. Location
data are used in a wide breadth of applications, from locating individuals to contact tracing or
monitoring health markers. To support the use of RTLS in many applications, the varied ways
location data can describe patterns of human behaviour should be examined. The objective of
this review is to investigate behaviours described using indoor location data, and particularly the
types of features extracted from RTLS data to describe behaviours. Four major applications were
identified: health status monitoring, consumer behaviours, developmental behaviour, and workplace
safety/efficiency. RTLS data features used to analyse behaviours were categorized into four groups:
dwell time, activity level, trajectory, and proximity. Passive sensors that provide non-uniform data
streams and features with lower complexity were common. Few studies analysed social behaviours
between more than one individual at once. Less than half the health status monitoring studies
examined clinical validity against gold-standard measures. Overall, spatiotemporal data from RTLS
technologies are useful to identify behaviour patterns, provided there is sufficient richness in location
data, the behaviour of interest is well-characterized, and a detailed feature analysis is undertaken.

Keywords: computational intelligence; data analytics; digital phenotyping; health monitoring
technologies; human behaviour; real-time location systems; sensor-based assessments

1. Introduction

Real-time location tracking systems (RTLS), or indoor positioning or location systems,
are primarily used for tracking individuals and equipment in indoor environments in real
or near-real time [1]. Over time, these systems accumulate information about the movement
of individuals and are thus a valuable source of longitudinal spatiotemporal data, which
can be used to help understand patterns of human movement and behaviour. RTLS systems
have privacy-preserving advantages over other technologies [2] and are relatively low-
cost and easy-to-use compared to many wearable sensor technologies [3]. An advantage
of indoor location data over outdoor monitoring (such as using GPS) is the ability to
characterize movement through a well-defined target environment and extrapolate insights
about the purpose or pattern of movement in that environment.

RTLS can be realized using various sensor technologies including Bluetooth, ultra-
wideband (UWB), and passive infrared (IR) sensors. Considering that accuracy and sam-
pling rate for each technology is different, the degree of information that can be inferred
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from each RTLS technology varies. In general, RTLS provides two or three dimensions
of spatial movement data over a recorded period of time and can be provided either uni-
formly at a set sampling frequency or through passively triggered events. Location data
from RTLS systems are sometimes collected in conjunction with other sensor data such as
biometric (heart rate, oxygen, galvanic skin response) or movement (inertial measurement
units (IMUs), body joint and angle tracking through video or depth) data. By combining
location information with other sensor data, it is possible to recognize behaviours or events
with higher degree of certainty (i.e., using acceleration plus immobility to identify the
occurrence of a fall). Different types of features extracted from RTLS data can be used
to infer patterns of human behaviour for different applications. For example, walking
distance or speed can be used as an indicator of physical activity level, or proximity to
others as a measure of social interaction. Many existing RTLS monitoring systems used in
healthcare settings already provide location data from which long-term records of patterns
of behaviour can be extracted as objective indicators of health status. The number of studies
that have explored the application of RTLS for health status monitoring has been growing
over the past few years. These studies have focused on the use of RTLS data for assessing
clinical symptoms or measures, such as gait performance [4], mood, apathy, depression [5],
cognitive decline [6], and the onset of dementia [7]. RTLS technologies are widely used
for clinical applications in healthcare settings, including in hospitals and residential care
homes [4–6,8,9]. Current real-time applications for RTLS systems include elopement pre-
vention and for staff to locate patients. These existing sources of RTLS data represent
an important opportunity to develop low-cost and low-effort health status monitoring
technologies for older adults.

Presently, there are a small number of review papers regarding the applications of RTLS
in healthcare [1,10]. However, these papers focus on the feasibility and user-acceptance
of the technology rather than examining approaches to analyzing RTLS data to describe
human movement and behaviour. Moreover, existing technical reviews of RTLS technology
focus on physical implementation challenges or describe configurations and accuracy
of available hardware used [11,12]. Understanding features of spatiotemporal tracking
data and analytic approaches are valuable in describing and assessing patterns of human
behaviours. These descriptions and assessments can help to expand the analytic methods
that can be applied to RTLS and help inform which approaches will best suit each setting
and use case. Given the wide variety of applications of RTLS, there is a need to consolidate
the existing knowledge and outline the potential of RTLS for health status monitoring
among different application domains.

RTLS has growing applications beyond healthcare, in fields where understanding hu-
man behaviour is important, for example, education [13,14], retail [15], transportation [16],
and construction [17,18]. As these domains provide a new set of examples for applications
of RTLS in behavioural assessments, understanding the state of the art in these domains can
potentially lead to the generation of new ideas in the development of RTLS-based health
status monitoring systems. With this in mind, this scoping review will cover literature from
a wide range of domains including healthcare and related fields. We chose a scoping review
approach, as guided by the PRISMA-ScR extension [19], to address our broad research
question by providing an overview of literature in this area and allowing the inclusion of
studies with a variety of different study designs and methods. In this paper, we present
the results of our scoping review with the following research question: How are human
behaviours and their patterns described using real-time indoor location data? In answer-
ing the above question, this paper will describe: (1) the types of behaviours, symptoms,
and measures that have been described using RTLS technologies; (2) approaches to analysis
of RTLS data and categories of features that can be extracted from RTLS measurements;
and (3) how RTLS data and its analysis varies by the type of RTLS technology used.
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2. Methods
2.1. Search Strategy

The Scopus database was used to perform a comprehensive search to find papers
that analysed human behaviours using RTLS technology. The search terms consisted of
three different concepts of location AND indoor AND behaviour as described further in
Table 1. The search was conducted for all research accepted/published in Scopus before 31
March 2021 .

Table 1. Search term concepts used within the Scopus Database.

Search terms include three different concepts of location, indoor, and behaviour:

Location: real-time locating system and RTLS, geographic locations, location monitoring,
geographic monitoring. indoor position, indoor positioning, sensor network, sensor data,
sensor technology, motion sensor, motion density, motion mapping, motion tracking,
tracking device, location management, motion density map

Indoor: indoor, school, childcare, long-term care, nursing home, residential facilities,
community-dwelling, nursing facilities, hospital, shopping center, mall, site, retail store,
school, classroom, warehouse, house, home, inside, inpatient, healthcare environment,
daycare, living environment

Behaviours: task analysis, behavior analysis, behavior research, behavior pattern, digital
phenotyping, shopper behavior, health status, smart health, agitation, wandering behaviors,
ambulation, depression, life-space assessment, operations research, provider scheduling,
pathways, lean management, production control, value adding time, walking path, stay
time, spatiotemporal, dementia, behavior assessment, behavior monitoring, health assess-
ment, health monitoring, health analysis, health pattern, task assessment, task pattern,
task monitoring

2.2. Study Selection

Results from the Scopus search were imported to Covidence, a literature review
tool [20], for initial screening and deduplication of database results. Two reviewers (RF, TB)
independently screened article titles and abstracts and a third reviewer (AI) resolved any
disagreements. This process was repeated for full-text screening. In keeping with a scoping
review methodology, no formal quality assessment of the studies was undertaken.

Papers were included if they were found to contain the following criteria: (1) written
in or translated into English, (2) containing experimental datasets from human participants,
and (3) using location data from RTLS technologies to describe a facet of human behaviour.

Papers that focused on RTLS implementation or were proof of concept without present-
ing any data were excluded. Additionally, papers were excluded if they were reviews, were
not peer-reviewed, only used location of joints relative to the human body, performed only
technological validation of location tracking or analyzed the accuracy of the localization
technology, included only outdoor or vehicular tracking, or examined the flow of move-
ment in a location without linking this movement to a behaviour, symptom, or measure
from a single individual.

2.3. Data Extraction

We extracted study population information (e.g., sample size, clinical population
characteristics, inclusion criteria), technical device details (e.g., sensor type, accuracy,
vendor), study behaviours/symptoms and measures, RTLS features, analysis methods,
and findings. Six reviewers (RF, TB, SK, SM, HN, SS, AI) extracted data from the selected
papers, with each paper reviewed twice, and three key authors (RF, TF, LS) resolving any
conflicts that occurred between the two rounds of review for each paper. For the purposes
of this study, a feature was defined as a distinct individual property or characteristic [21]
measurable using a set of recorded locations from RTLS data.
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An iterative approach to reporting results was taken: two key authors (TF, LS) con-
solidated results and reported to the study team for insights, revisions, and refinement.
The results from data extraction were then discussed and a framework was developed for
key foci: general study population and description, focal areas of study outcome measures,
common features extracted from RTLS data, and technical aspects surrounding the different
RTLS technology used with the selected papers. Through discussion and consensus with a
third author (AI), the selected papers were categorised based on their study field.

3. Results
3.1. Search Results

The database search yielded a total of 1140 papers. After removing 123 duplicates
detected with the Covidence tool, paper and title abstracts were screened using the study
selection criteria presented in Section 2.2. An initial 114 papers were included in the full
text review, and an additional 103 papers were later added from citation and reference
searching of these included papers. A total of 218 full-texts were thus reviewed to confirm if
they met the inclusion or exclusion criteria used for abstract screening. A total of 79 papers
met these criteria and were included in the data extraction and analysis. Figure 1 describes
the flow of papers collected for screening.

Duplicate records removed
(n = 123)

Records excluded
(n = 902)

Full-texts selected 
for screening

(n = 114)

Reports excluded
Exclusion Criteria (n = 124)
Missing Information (n = 15)

Id
en
ti
fi
ca
ti
o
n

S
cr
ee
n
in
g

In
cl
u
d
ed

Records identified from:
Citations/References (n = 103)
Additional Searching (n = 1)

Papers used for 
data extraction

(n = 79)

Records identified from 
searching SCOPUS database

Initial Search (n = 855)
Updated Search (n = 285)

Records identified
(n = 1140)

Full-texts assessed 
for eligibility

(n = 218)

Abstracts screened
(n = 1021)

Figure 1. Flow of sources of literature through the paper screening process.

3.2. Application Sectors and Study Populations

The included papers were sorted into four categories of study application: health
status monitoring and assessment (60.8%), consumer behaviours for marketing and shop-
ping applications (26.6%), safety and operational efficiency (10.1%), and developmental
behaviours in children (2.5%). In order to explore the types and patterns of behaviours
that have been described using RTLS technologies, general information such as the stud-
ies’ population sizes and demographics were consolidated. Table 2 presents basic study
information for the final 79 papers.
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Table 2. Details of the 79 studies included in scoping review analysis.

Reference Objective Environment Population Sensor Feature Categories

Health Status Monitoring

Judah 2017 [22]
To develop and test a reliable RTLS system that can recognize
various bathroom activities and behaviours of multiple
individuals

Bathroom Not Given Combo (Elpas) Trajectory,
Proximity

Kaye 2012 [23] To examine the relation between measures of walking activity
and function Private Home Adults IR Activity Levels

Hayes 2008 [24] To find distinguishable differences in the motor activity of
healthy and cognitively impaired elders Private Home Older Adults IR Activity Levels

Lymberopoulos
2011 [25]

To develop a model that describes and determines a person’s
routine based on their spatiotemporal activity Private Home Older Adults IR Dwell, Trajectory

Petersen 2014 [26]
To describe and validate a method for detecting time spent
out-of-home using a logistic regression-based classifier with
inputs derived from passive sensor data.

Private Home Older Adults IR Activity Levels

Fiorini 2017 [27]
To describe and define groups of behavioural patterns starting
from unannotated data analysis and a “blind” approach for
activity recognition

Private Home Older Adults IR Activity Levels

Enshaeifar
2018 [28]

To develop an algorithm that identifies daily routines, detects
unusual patterns and possible agitation events Private Home Older Adults Pressure Activity, Trajectory

Akl 2015 a [6]
To explore the feasibility of autonomously detecting mild
cognitive impairment (MCI) using various features of
location-tracked data

Private Home Older Adults IR Activity Levels

Akl 2015 b [29] To detect mild cognitive impairment using differences in walking
speed distributions Private Home Older Adults Not Given Activity levels

Akl 2016 [30] To automatically detect MCI in older adults using the distribution
of activity in different rooms of the home Private Home Older Adults IR Activity levels

Akl 2017 [31] To develop models of home activity that can support early
detection of dementia Private Home Older Adults IR Dwell, Trajectory

Dodge 2012 [32]
To test if the assessment of walking speed and its variability can
distinguish those with mild cognitive impairment (MCI) from
those with intact cognition

Private Home Older Adults IR Activity, Dwell

Yahaya 2019 [33]
To develop a method of finding thresholds for abnormalities in
Activities of Daily Living (ADL) correlated to changes in sleeping
behaviour

Private Home Adults IR; CASAS Activity Levels
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Table 2. Cont.

Reference Objective Environment Population Sensor Feature Categories

Tan 2018 [34] To develop a novel DCNN classifier to recognize different
activities in a smart home Private Home Adults CASAS DCNN Classifier

Gochoo
2019 [35]

To develop an unobtrusive activity recognition classifier using
deep convolutional neural network (DCNN) Private Home Adults CASAS DCNN Classifier

Xu 2020 [36] To compare different classification algorithms in their ability to
recognize the at-home activity of elderly people Private home Older Adults CASAS Activity Levels

Eisa 2017 [37]
To detect unusual changes in regular mobility behaviour by
monitoring daily room-to-room transitions and
permanence habits

Private Home Older Adults CASAS Activity, Dwell,
Trajectory

Gochoo 2017
b [38]

To classify walking/travel patterns of elderly people living alone
using a Deep Convolutional Neural Network classifier (DCNN) Private Home Older Adults CASAS Activity, Dwell,

Trajectory
Gochoo 2017
c [39]

To develop a Deep Convolutional Neural Network (DCNN)
classifier for elderly activity recognition Private Home Older Adults CASAS Activity Levels

Zhang 2017 [40]
To propose an unsupervised learning approach that can
determine movement patterns and daily activities without
event annotations

Private Home Older Adults CASAS Trajectory

Fang 2020 [41] To locate and predict the position of the elderly, helping to detect
the abnormal behaviours or irregular life routines Private Home Adults State-change

Sensors Trajectory

Fahad 2013 [42] To monitor the change in the repeated group of activities that
make up the daily routine of a person living in a smart home Private Home Adults State-change

Sensors Activity, Trajectory

Su 2018 [43]
To build an activity recognition system for elder persons with
dementia via the classification of hand movements and indoor
position data

Smart Home Not Given Bluetooth Random Forest
Model

Li 2017 [44] To test a system for screening elders who are likely to have
dementia from performing eight activities from IADL Smart Home Older Adults CASAS Activity, Trajectory

Aramendi
2018 [45]

To evaluate the correlation of different behavioural features
derived from daily activities to IADL-C scores and their
effectiveness in detecting change in functional health decline

Smart Home Older Adults CASAS Activity Levels

Rantz 2011 [46]
To investigate the use of passive monitoring of residents to detect
early signs of illness, functional decline, and/or urinary
tract infection

Retirement
Community Older Adults IR Activity Levels
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Table 2. Cont.

Reference Objective Environment Population Sensor Feature Categories

Skubic 2015 [47]
To exploring behavioural features that are more or less useful in
detecting early changes in health status across different chronic
health conditions and home layouts

Retirement
Community Older Adults IR Activity, Dwell,

Proximity

Galambos
2013 [7]

To investigate whether visual features from motion density maps
are sensitive enough to detect changes in mental health over time

Retirement
Community Older Adults IR Activity, Dwell

Alberdi 2018 [48]
To evaluate use activity behaviour data to detect the multimodal
symptoms that are often found to be impaired in Alzheimer’s
Disease (AD) and predict related clinical scores

Retirement
Community Older Adults CASAS Activity Levels

Dawadi
2016 [49]

To evaluate the effectiveness of an algorithm that can model daily
activity routines and detect changes in behavioural routines

Retirement
Community Older Adults CASAS Activity, Trajectory

Gochoo 2017
a [50]

To develop an algorithm that determines what activity is
occurring at the front door and detect memory lapses (forget
events from brief-return-and-exit at door)

Retirement
Community Older Adults CASAS Activity, Dwell,

Trajectory

Tan 2017 [51] To classify front-door events (exit, enter, visitor, other,
and brief-return-and-exit) of a resident in the smart house

Retirement
Community Older Adults CASAS Activity, Dwell,

Trajectory

Cheng 2019 [52] To estimate dementia conditions based on graph representations
of daily locomotion Assisted Living Older Adults UWB Trajectory

Bellini 2020 [53] To assesses both the degree of relations among residents and the
popularity of the facility spaces as an indicator of accessibility Assisted Living Older Adults Bluetooth Proximity

Kearns 2010 [54] To explore whether elders with greater path tortuosity (irregular
movement) was associated with greater cognitive impairment Assisted Living Older Adults UWB Trajectory

Kearns 2012 [55]
To investigate whether variability in voluntary movement paths
would be greater in the week preceding a fall compared
with non-fallers

Assisted Living Older Adults UWB Activity, Trajectory

Bowen 2016 [9] To examine how intraindividual changes in ambulation
characteristics may be used to predict falls. Assisted Living Older Adults UWB Activity Levels

Bowen 2018 [8] To determine the influence of cognitive impairment (CI), gait
quality, and balance ability on walking distance and speed Nursing Home Older Adults UWB Activity Levels

Bowen 2019 [56] To examine the characteristics of wandering associated with
preserved versus worsened ADL function. Nursing Home Older Adults UWB Activity Levels
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Table 2. Cont.

Reference Objective Environment Population Sensor Feature Categories
Grunerbl
2011 [57]

To develop and evaluate a system for coarse assessment of the
health status of dementia patients in a nursing home Nursing Home Older Adults UWB Activity, Dwell

Jansen 2017 [5]
To provide descriptive analysis of life-space movement patterns
in nursing home residents and to identify associated factors of
different patterns

Nursing Home Older Adults Not Given Activity, Dwell

Yang 2020 [58]
To classify probable social interaction patterns and identify
mobility patterns and associated levels of privacy with both
social and movement patterns

Nursing Home Older Adults Bluetooth Activity, Dwell,
Trajectory

Okada 2019 [59]
To predict scores on the dementia scale using behavioural
features as observed through human–robot interactions and
indoor daily activity

Nursing Home Older Adults Bluetooth Dwell Time

Ramezani
2019 [60]

To examine the ability of combination of physical activity and
indoor location features to discriminate subacute care patients
who are re-admitted to the hospital

Inpatient Unit Older Adults Bluetooth Activity, Dwell

Vuong 2014 [61] To determine an automated system for detecting and classifying
travel patterns in people with dementia using movement data Inpatient Unit Older Adults RFID Trajectory

Jeong 2017 [4] To assess the feasibility of using an infrared-based RTLS for
measuring patient ambulation in a 2-min walk test (2MWT) Inpatient Unit Adults IR Activity Levels

Kearns 2016 [62]
To determine if improvements in cognitive function during
traumatic brain injury treatment can be measured using
movement path tortuosity in everyday ambulation

Inpatient Unit Adults UWB Trajectory

Jeong 2020 [63]
To evaluate novel ambulation metrics in predicting 30-day
readmission rates, discharge location, and length of stay of
postoperative cardiac surgery patients

Inpatient Unit Cardiac Patients IR Activity, Dwell

Consumer Behaviour

Dogan 2019 [64]
To show the potential of process mining techniques to
understand customer needs and behavioural trends based on
gender differences

Shopping Mall Shoppers Bluetooth Trajectory

Liu 2020 [65] To produce a method to infer customer profiles, mainly gender
and age, using indoor location data Shopping Mall Shoppers WiFi Activity, Dwell,

Trajectory
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Table 2. Cont.

Reference Objective Environment Population Sensor Feature Categories

Dogan 2020 [66]
To use process mining to determine customer visit time
and describe different customer flows between customers who
purchase and those who do not

Supermarket Shoppers Bluetooth Dwell, Trajectory

Kholod 2011 [67] To examine grocery shoppers’ moving direction within the store
and its influence on their buying behaviour Supermarket Shoppers RFID Trajectory

Popa 2013 [68]
To develop a framework for automatic assessment of customers’
behaviours to categorize them into different shoppers’ types
by goal

Supermarket Shoppers Camera Trajectory

Paolanti
2017 [69]

To model and predict shopper’s behaviour in retail environments
to predict the shopper’s trajectory Supermarket Shoppers UWB Activity, Dwell,

Trajectory

Yang 2019 [70] To define the relationship between the layout of the shelves,
and shopping behaviour and product sales Supermarket Students UWB Activity, Dwell

Takai 2010 [71] To describe the relation between the time customers spend in a
store section and the probability they will make a purchase Supermarket Shoppers RFID Dwell Time

Takai 2011 [72]
To correlate the number of purchased items by stationary time
and find a two-category model that groups shopper behaviours
using this correlation

Supermarket Shoppers RFID Dwell Time

Takai 2012 [73] To capture dependencies among variables that describe
purchasing behaviour based on section of stores Supermarket Shoppers RFID Dwell Time

Takai 2013 [74]
To find homogeneous groups of customers based on the number
of purchased items and determine whether time period that the
customer shops influences this group classification

Supermarket Shoppers RFID Dwell Time

Kaneko 2018 [75] To build a purchase behaviour model of customers and predict
whether the customer will make a purchase or not Supermarket Shoppers RFID Dwell Time

Nakahara
2012 [76]

To propose models that clarify the relationship between product
zone visit sequences and shopping behaviour and use them to
characterize high-value purchasing customers and low-value
purchasing customers

Supermarket Shoppers RFID Activity, Dwell,
Trajectory

Zuo 2015 [77] To improve methods of predicting whether a customer will make
a purchase or not Supermarket Shoppers RFID Dwell Time

Li 2016 [78]
To study relationships between different variables derived from
the amount of time spent in different areas of the store, how
much was purchased from each area, and the area type

Supermarket Shoppers RFID Activity, Dwell
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Table 2. Cont.

Reference Objective Environment Population Sensor Feature Categories

Gu 2019 [79]
To measure differences in product search behaviour and search
benefits depending on the customer and their varying levels of
self-control

Supermarket Shoppers RFID Dwell Time

Yoshimura
2014 [80]

To identify aspects of visitor behaviour that could explain
museum overcrowding Museum Museum Visitors Bluetooth Activity, Dwell,

Trajectory
Yoshimura
2019 [81]

To compare museum visitor movements when more or fewer
choices are offered Museum Museum Visitors Bluetooth Dwell, Trajectory

Kanda 2007 [82] To estimate visitor trajectories to analyse space, visiting patterns,
and relationships Museum Museum Visitors RFID

Activity, Dwell,
Trajectory,
Proximity

Lanir 2013 [83] To compare the movement of museum visitors who used a
mobile multimedia location-aware guide to those who did not Museum Museum Visitors RFID Activity, Dwell,

Proximity
Martella
2017 [84]

To understand the behaviour of museum visitors and the
attraction power of different displays Museum Museum Visitors RFID Dwell, Trajectory,

Proximity
Safety and Operational Efficiency

Booth 2019 [85]
To develop a technique for clustering room purpose based on
patterns in human movement data and to predict mental
wellness levels of hospital staff

Hospital Primary Care Staff Bluetooth Dwell, Trajectory

Feng 2020 a [86]
To detect and discover location-driven routines and physiological
data to understand the movement intensity of nurses at different
times in a work shift

Hospital Nurses Bluetooth Dwell, Trajectory

Feng 2020 b [87]

To develop a method to quantify the relations between
physiological signals and indoor locations at a real-world
workplace. The method is validated on individuals’ workplace
performance in a large hospital setting.

Hospital Nurses Bluetooth Dwell Time

Lopez-de-Teruel
2017 [88]

To provide a method to differentiate location data of employees
from non-employees and generate clusters related to the different
working teams

Office Workers
Custom wireless
network + cell
phones

Activity Levels
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Table 2. Cont.

Reference Objective Environment Population Sensor Feature Categories

Cheng 2013 [89]

To design and validate a new method to analyse the
spatio-temporal conflicts between workers and automatically
defined hazard, and define an indicator that can measure the
safety performance of workers

Construction Workers UWB Activity, Dwell

Arslan 2018 [90] To develop a model that uses worker mobility patterns to identify
unsafe worker behaviours Construction Workers Bluetooth Activity, Trajectory

Arslan 2019 [91]
To test if semantic trajectories can visualize site-zone density to
avoid congestion and provide proximity analysis to prevent
collisions, accidents, and unauthorized access

Construction Workers Bluetooth Activity, Dwell,
Trajectory

Hwang 2019 [92] To monitor pedestrian flow in a subway station and use
sensor-based insights to improve pedestrian flow Subway Station Subway

Commuters Bluetooth/ Wi-Fi Activity Levels

Developmental Behaviour

Jorge 2019 [93] To develop and validate an algorithm that detects unusual social
behaviour and finds significant subgroups within the population School Playground Children Set 1—IMU GNSS,

Set 2—UWB Proximity

Messinger
2019 [94]

To investigate differences in social interaction and movement
within a classroom based on gender and describe the classroom
social network

Classroom Children UWB Activity, Trajectory,
Proximity
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The study population varied greatly based on application. The health status monitor-
ing category included sample sizes from 1 to 154 participants, with a median sample size of
15. The consumer behaviour category produced the largest sample sizes, ranging from 180
to 24,452 participant samples. Older adults were the focus of 37 studies, making up 77%
of the health monitoring studies. In particular, 21 of the health status monitoring studies
(43.8%) examined individuals with cognitive impairment or dementia.

Participants’ private homes were the most common location for data collection at
26.6% of all the papers analysed. Of the largest application type (health status monitoring,
n = 48 studies), 21 studies (43.8%) installed devices in private homes, followed by 18 studies
(37.5%) in nursing homes, assisted living and retirement communities, and 5 studies (10.4%)
in hospital inpatient units.

Papers that analysed behaviours in hospital environments made up 10.4% (five stud-
ies) of health status monitoring studies and 37.5% (three studies) of workplace safety
and efficiency studies. Consumer behaviours were analysed in supermarket (14 studies),
shopping mall (2 studies), and museum (5 studies) environments. Both developmental
behaviour studies collected data in school playground and classroom settings.

Half of the studies included older adult participants, all of which were in the health
status monitoring sector. Of the 48 papers on health status monitoring, 21 (43.8%) included
individuals with cognitive impairment.

3.3. Types of Symptoms and Measures

Categorizing the study goals and outcome measures provides important descriptive
information about the types of behaviour patterns commonly observed when using RTLS
data. Across all studies, 28 (35.4%) were found to have at least one “classification” objec-
tive in which the study populations’ behaviours were classified or grouped into defined
categories of behaviour types. Within the Health Status Monitoring group, 14 studies
(29.2%) had a component of classification, such as the classification of cognitive impair-
ment as mild to severe. Classification approaches were found in 11 studies of Consumer
Behaviours (e.g., classifying shoppers as impulse or scheduled shoppers) and 3 studies of
Operation Efficiency studies (e.g., classifying behaviours as risky/unsafe or safe). Other ob-
jectives included (1) a characterization of a population based on their location or movement,
e.g., [24,93]; (2) correlation of an environmental or external context-based variable [53,83,86];
(3) support of an observational measure or standard [23]; and (4) development a system
that predicts future events or behaviours [63,69]. A notable sub-group (11 studies) of
classification-type objectives within the health status monitoring studies was the classi-
fication of groups based on risk of specific health deficits, such as cognitive impairment
or dementia.

Measures of behaviour or outcomes extracted from health status monitoring studies
were categorized and presented in Figure 2. Within this group, 13 studies (27.1%) did not
pursue outcomes beyond activity recognition. These papers focused on using RTLS data to
categorize the specific activity the study subject was performing, with the long-term goal of
being able to track patterns in activities for health status monitoring. More studies focused
on measuring cognitive health (n = 22, 43.8%) over physical (n = 11, 20.8%) or mental health
(n = 7, 12.5%). Of the nine studies that examined a combination of two or more of these
health statuses, all contained a cognitive health status component. The detection of changes
in behaviour patterns based on participants’ previous RTLS data-generated routines was
examined in seven studies (14.6%). Of these seven studies, two [28,49] also attempted to
assess physical, cognitive, or mental health status, as shown by the minimal two-paper
overlap of “Change in Routine/Pattern” and other health assessment categories in Figure 2.
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Health Status-related Measures
(overlap and areas not to scale)

Cognitive 
Health

43.8% (21)

Physical 
Health

20.8% (10)

Mental
Health

12.5% (6)

(2) (3)

(1)

(1)

Change in 
Routine/Pattern

14.6% (7)

(1)

Activity 
Recognition
31.2% (15)

(1)
Incident 

Prediction
10.4% (5)

(1)

(2)

Figure 2. Behavioural outcomes in studies using RTLS for health status monitoring. The percent
(number) of studies in each outcome category are provided, and the number of overlapping studies
are provided in brackets in the areas of overlap.

Within the health status monitoring studies, 21 (43.8%) referenced correlating or
validating RTLS-based measures with standardized clinical assessments, such as [23] using
the mini-mental state exam (MMSE) as a measure of cognitive impairment. Outside of
the health status monitoring category, one Safety and Operational Efficiency study used
a standardized assessment (Positive and Negative Affect Schedule (PANAS)) to correlate
RTLS data with staff wellness [85] and one Consumer Behaviour study used the RTLS data
as a ground truth for generating simulated walking pattern models [81].

All of the consumer behaviour studies (n = 16) either used location tracking with the
goal of improved visitor experience (n = 6) or improved sales (n = 15), 12 of which used
sales as their primary outcome while varying either store layout or comparing different
groups of customers. The remaining four papers studying behaviours in shoppers used
the location data of shoppers to develop “shopper type” profiles [68], predict customers’
path [69], and infer information of shopping styles based on population demograph-
ics [64,65]. The five studies collecting RTLS data from museum visitors focused on exhibit
engagement and/or overcrowding.

The two developmental behaviour studies in children focused on social behaviour
outcomes, specifically measuring levels of social interaction between children, and in par-
ticular, differences based on gender, and sociability. As these two studies analysed mostly
interactions between multiple participants, the results focused on trends of behaviours
for predefined groups of participants—in contrast to using models to define the groups or
social levels themselves. Of the workplace safety studies, two measured the prediction of
hazards based on pre-defined risk factors, three measured work intensity and stress level
based on location and time of day, two measured congestion and collisions, and one used
behavioural patterns from RTLS data to identify individuals as employees.

3.4. Location-Based Features and Analyses

Choosing key features to extract from the location data is an important process that
allows the data to be used in a contextually meaningful manner. This review examined
existing approaches used in studies and how different kinds of features are used to describe
different types of human behaviours. The features of RTLS data used in the analysis of
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human behaviours in the included papers were categorized into four main groups in a
framework based on the complexity and number of components of space and time used:

• Proximities—features using spatial placement of multiple study subjects and how
long they were in a measured proximity to each other (two or more locations at a
time);

• Trajectory—features indicating direction of movement or generate vectors in 2D space
based on a combination of recorded locations (two dimensions of space in time);

• Activity Level—features measuring amount and/or intensity of movement during a
period of time (e.g., time spent walking, count of total spaces in which time was spent,
number of motion events) (multiple measures of time);

• Dwell Time—features measuring a period of time in specified locations or comparison
of duration in pre-defined activities (one measure of time).

Of the 79 papers included, more than half (48, 60.8%) of the studies included activity
level features, closely followed by 38 (48.1%) papers with dwell time features, 35 (44.3%)
with trajectory features, and finally 8 (10.1%) papers with features of proximity. Many
studies (37, 46.8%) used multiple feature types. Figure 3 presents the feature categories and
subgroups of features found within the papers. Of the five studies that include proximity
features, there were three studies monitoring health status, one consumer behaviour study,
and both papers studying developmental behaviours had proximity-type features.

Feature Categories

Proximities (15)

Duration of Contact +

Frequency of Contact 

Number of visitors, Number 
of people detected +

Proximity to objects +

Speed of Contact 

Social Contact Radius 

Radial Distribution(The 
ratio of the observed distance 
between children divided by the 
distance expected by chance. 
Chance is based the expected 
distance between children based 
on their individual location 
distribution.)

Transitivity (the likelihood that 
two individuals have a tie if  they 
have a tie with a third person)

Trajectory (37)

Sequence of Location +*

Path Tortuosity+

Repetition of Path+

Entropy+

Movement Direction ex. 'anti-
clockwise or clockwise', angle of 
movement, curvature, etc.

Pairs of opposite motion+
Clockwise/Anti-Clockwise
Turning Angle*

Movement Direction, Velocity, 
Acceleration *

Activity Level (83)

Motion Sensor Activation+
(number and by location)

Spatial Activity Distribution,
Heatmap *

Activity Duration +

Frequency of Visits +*

Distance Travelled+

Movement Speed, Walking 
Speed +*

Time Spent Walking+

Number of Locations 
Visited +

Number of Transitions Between 
Regions +

Furthest Distance Achieved+

Interruptions to Activity (number 
and length)+

Time of Activity +*

Dwell Time (47)

Time spent in location +*
(by location type)

Time spent in overall 
location +*

Time spent out of overall 
location +

Time spent stationary  +

Time between sensor 
activations +

Space Time

+ Health Status Monitoring

 Consumer Behaviour

* Safety and Efficiency

 Developmental Behaviour

Figure 3. Breakdown of the feature categories and a list of the features observed within each category.
The symbols described in the legend represent a binary indicator of whether one or more papers
from the application sector denoted used the listed feature. Detailed results for each feature category
with study references can be found in supplementary files.
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Two studies [34,35] did not directly define or extract features from the location data,
but instead applied a deep convolutional neural network (DCNN) that included feature
extraction innately within layers of the neural network. Other papers from the same
group also used unique features, such as measuring entropy of movement patterns [38],
and extracting abstract features from a binary “activity image” corresponding to location
maps and whether location was tracked in each point on the map [39,50]. Another study [43]
used RTLS data to provide location context for hand movement accelerometer data, which
was then used to develop Random Forest models for activity recognition.

The number of defined features ranged from 1 to 7 kinds of basic features (i.e., features
described in Figure 3), in which two features was the most common (36.8%) and median
number of features used. Three papers [34,35,43] were excluded in this observation as
they did not include features that were defined as spatiotemporal data describing human
behaviour. A total of 41 of 79 (51.9%) studies further formulated or abstracted ratios
and features derived from their basic spatiotemporal features to analyse outcomes and
build models.

Many different analytic approaches were applied to use the RTLS-based features to de-
scribe human behaviour. It was observed that 41 (51.9%) studies used at least one machine
learning methodology; 22 (27.8%) studies used statistical comparisons; and 6 (7.6%) pro-
vided descriptive results using visualizations of location data. The most common machine
learning models used were support vector machine (SVM), random forest, and various
types of linear and logistic regression modelling. The majority of the machine learning
studies (22 out of 41) had a classification goal. Eight (8) studies used machine learning to
recognize a defined list of daily activities from location data.

While neither developmental behaviour study used classical machine learning, ad-
vanced network science techniques were applied to analyse individual and group be-
haviours and their interactions. By defining participants as nodes and their proximity
features as linked, some techniques used include visualizing social networks and transitiv-
ity, subgroup discovery (data mining technique), centrality, and page rank.

3.5. Types of Sensors and Technological Systems

The type of sensors and systems used in the selected studies is a key determinant
to which features and behaviours can be observed from location-based data. The type of
sensors used can affect the data quality, granularity, and possible information extracted. IR
sensors were the most commonly used (28; 35.4%), and all IR studies were in the health
status monitoring category. Bluetooth (14; 17.7%) and RFID sensors (14; 17.7%) were the
next most common, followed by ultra-wide band (UWB) (12; 15.2%). Of the studies that
used RFID sensors, 13 were studying consumer behaviours and were often attached to
shopping carts and baskets as opposed to directly onto participants. Some sensors systems
unique to a single study include custom smartphone networks in designated workplaces,
Wi-Fi-based meshes in malls hosting guest Wi-Fi, and pressure-sensitive flooring in a smart
home setting.

Almost half (14 of 28) of the studies using IR used the CASAS Project system [95],
which involved a combination of IR sensors and additional switch state sensors on appli-
ances and doors. One study [33] used data from the CASAS Project database to perform
comparison analysis with their own IR-based tracking system. Within studies using IR,
two studies did not specify if they used passive or active infrared [4,63].

Overall, 44 studies (55.7%) used systems such as RFID, passive IR, or state-switch
sensors, which trigger “motion events” to denote the location of the study subject in time
only as they pass through a fixed sensor location to activate a sensor event. Data from these
devices typically have non-uniform sampling times and may have large gaps in recordings,
where it is assumed that no change in location occurs. Eleven of the studies using these
technologies focused on activity recognition (n = 13).

About half (43, 54.4%) of papers only used data from RTLS sensors to achieve their
study goals. The remaining 36 studies were multi-sensor and included sensors such as
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door switch sensors, stove temperature sensors, bed pressure sensors, accelerometers and
IMUs, microphones for audio, and/or heartrate and other biometric sensors. The use of
additional sensors varied based on the RTLS sensor used. For example, door or contact
switches were used exclusively in studies with passive trigger-type sensors to increase the
accuracy of activity recognition and within-room location prediction for RTLS systems with
lower data granularity, resolution, or accuracy. In contrast, only 1 of 11 studies using UWB
sensors used additional sensors, built into a robotic station, for a safety application [89].
Three studies using biometric sensors used Bluetooth for RTLS and were able to have all
of the sensors on the same IoT network [85–87]. The only additional sensor data used
in the consumer behaviour sector studying shopper behaviour were Point-of-Sales data.
There was a gap in the descriptions of sensors used, with 48 studies (60.8%) failing to
provide a sensor vendor name or details about whether the sensor was developed in-house,
with only three vendors occurring more than once: iBeacon in two studies, X10 in three
studies, and Ubisense in nine studies.

While studies specifically focusing on localization accuracy and technological im-
provements to the RTLS systems were excluded in this scoping review’s screening criteria,
very few papers reported system accuracy or sampling rate. Of the 11 studies reporting
accuracy, eight reported UWB accuracy to a range of 10–30 cm; 1 study [5] did not provide
the sensor type but provided a localization error with a mean deviation of 2.28 m. None
of the 42 papers that used passive IR, RFID, or state-switch sensors, which do not have
steady sampling rates, reported accuracy; however, a few specified the resolution of the
location dataset by defining the spacing of sensor placement [63], stating sensor activation
range [83,84], or simply describing the system as having “room-level” accuracy [61]. It
is worth noting that in separate papers on consumer behaviour, e.g., [67,69,72,76,77] and
operational efficiency [89], RTLS systems were attached to shopping carts and parking
structure vehicles, respectively, as opposed to direct tracking of the study participants.

Several of the studies made use of shared or publicly available data (22 studies; 27.8%).
Data from the CASAS datasets were collected or used in 14 studies, with six of these using
the Aruba testbed studies, which contained data from a single participant. A further three
studies used the same dataset gathered in a hospital setting on the location data from
primary care staff participants. Two sets of studies on museum consumer behaviours used
data collected from the same venue: [71–74,80,81].

4. Discussion

This scoping review sought to consolidate existing research on the analysis of human
behaviours using indoor location tracking data and identify common applications and
features of RTLS data. The most common research application of RTLS data for measuring
human behaviours was in the area of monitoring or assessing health status, and in particular,
cognitive impairment in older adults. We were able to categorize features derived from
spatiotemporal RTLS data into four groups: proximities, trajectories, activities, and dwell
time. RTLS data was most often analysed to provide measures of activity level and very
few features used the proximities of two measured locations at once. Many different
location-based sensor types were used to varying success and about half used additional
non-RTLS sensors for more comprehensive datasets.

Overall, we found important gaps and opportunities for improvement in the analysis
of indoor location data for healthcare. Many of the studies are quite preliminary in nature,
only assess feasibility of using RTLS to detect patterns of activity, and without any clinical
validation of their findings. A good portion of studies do not develop models for purposes
beyond activity recognition and present model feasibility results for use in future studies
in their respective field of study (e.g., detecting abnormal behaviours in older adults).
While these systems were successfully implemented in their target end-user environments,
there is a lack of evidence that the measurement of a study’s predefined set of activities
are associated with any clinically meaningful patterns of human behaviour. Furthermore,
in the Health Status Monitoring category, less than half of studies included evaluation
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against gold standard or validated clinical assessments, such as using the mini-mental
state examination (MMSE) [7,23,32,54] to validate a measure of cognitive health status.
Of the studies in which the success of activity recognition was a main outcome measure,
none involved a clinical assessment as a comparison standard. There exists a gap in the
use of RTLS models and their correlation to clinically meaningful and useable indices for
behaviour or health monitoring.

For the purposes of early detection and assessing populations transitioning between
different care environments, clinical validation with more longitudinal studies of inde-
pendent participants with measured health declines or pre/post incidents is warranted.
Few studies used multiple groups of study populations, and even fewer studies provided
external validation in multiple study sites to show transferability of study paradigms.
Feasibility remains an unresolved barrier. Some studies, including some earlier datasets
in the CASAS databank, required participants to relocate to smart homes or apartments
close to the lab adjoined to the study. Studies that investigated populations with existing
health conditions required study settings where participants with acute conditions were
accessible. For example, a group of studies from the University of South Florida classifying
levels of cognitive impairment from trajectory patterns in location data [54,55] collected
data from participants admitted to nursing homes where the sample population had a low
average in MMSE scores. Models developed with subset populations (e.g., all patients
with acute impairments or all healthy participants) may provide skewed predictions when
applied to intermediate cases.

A notable gap in the healthcare RTLS literature is seen in the lack of analyses including
features derived from the proximities between individuals. Nine (9) studies measured
features of proximity, of which 2 only measured proximity to key objects. Only two
studies monitoring health status used proximities between individuals, and a further three
studies attempted to provide measures of “social” behaviours. The authors of [83] used the
proximity of two museum visitors in a group and measured audio levels to estimate social
engagement between groups using or not using mobile device guides. The two papers
studying developmental behaviours used observations made by teaching staff to provide
labels for RTLS data analysis [93,94]. The advanced methods in network science found
in [93] were more complex in algorithms and analyses than any studies observing RTLS
for health monitoring. For example, one group [47] recorded the proximity of participants
to correct the accuracy of their location detection system, one [78] recorded the number
and density people in one area to measure customer flow but not interaction, and one [22]
measured proximity with respect to moveable objects and not other participants. While
some studies [5,58,59] did not use features measuring proximity directly, dwell times in
recreational or common areas were labelled separately from dwell time in private areas. The
authors of Grunerbl et al. [57] recorded location data in recreational and social areas, and
total time duration in these locations was investigated as a possible correlation to cognitive
health status. Yang et al. [58] especially focused on measuring social isolation and privacy
in LTC spaces and was the only paper to use “distance away from bedroom each day” as a
feature to indicate social activity levels of study participants.

A key limitation of the reviewed studies examining social behaviour was the lack of
available “ground-truth” or independent data sources for validation. While the amount of
time spent in each area was measured in [57], no measure of actual engagement between
multiple participants in social areas was recorded to corroborate RTLS data. The authors
of Masciadri et al. [96] proposed various indices of social engagement and social isolation
based on location data, and their continuing study [53] is the only study in this review with
data extracted that analyse behaviours with features of proximity for assessing cognitive
health status. There is a need for further investigation on whether measuring levels of social
engagement solely based on social proximity and dwell time in social areas is meaningful
or ill-defined. The use of multiple participants’ data at one time could be applied to
high-traffic health monitoring environments such as hospitals and long-term care facilities.
The use of microphones triggered when two participants are within a certain proximity to
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each other to measure audio level without recording conversation [83] could be considered
in settings where privacy and continuous monitoring is a concern. RTLS systems could
provide a solution to the lack of objective measures for social engagement in older adults
in aged residential care.

Studies that are not explicitly focused on health monitoring provide some important
insights that can be applied in the health monitoring space. Clinician and care staff’s
perspective of the health care environment were studied in papers within the operational
safety and efficiency sector [85–87], and insights into staff efficiency can be used to examine
the quality of care received. Health monitoring algorithms that incorporate RTLS data
from both healthcare staff and patients is one area of future opportunity. Behaviour
prediction models developed for predicting consumer behaviours based on environmental
changes provides important examples of experimental designs for assessing effectiveness
of environmental interventions. This concept was introduced briefly in the long-term
care home in [53]; however, there are few studies focusing on health status monitoring
that compare different environments, or where the environment is manipulated in some
way, and its effect on behaviours evaluated. Some studies, such as Frascella et al. [97],
were excluded for lack of RTLS technology used in place of manual observation in a
museum setting, but insights could still be drawn from the behaviour-analysis techniques
used. These observations accentuate the necessity for exploring the wide scope of RTLS
technologies used to observe human behaviours across many use cases.

One sector of RTLS applications mostly excluded during our scoping review was
geographical analysis of movement outdoor locations and geographical information sys-
tems (GIS). Papers studying human behaviour from RTLS during social events [98,99] and
vehicular travel [100] were identified in the Scopus search; however, as they used outdoor
locations, they were excluded from final paper selection. Visualisation of spatiotemporal
data in more advanced manners than simple heatmaps and binary sensor activation maps is
used commonly in the GIS field [101]. Complex analyses of these visualizations present the
potential to identify unique patterns of human behaviour from large datasets. Reviews of
papers in the application of GIS also investigate different methods of categorizing features
of RTLS data such as in [102,103], which examines parameters, properties, and factors
of spatiotemporal data by complexity (primitive—e.g., distance and direction, derived—
e.g., velocity, and second derivatives—e.g., spatial distribution). While some scaling may
be required, techniques used in this field are relevant to describing patterns of human
behaviour and could be applied to, and should be investigated in, the indoor applications
identified in this scoping review.

There are a number of technologies that have location data with important meaning
to health care; however, the ability to extract clinically meaningful data depends largely
on how the data are collected. A number of differences in study outcomes, features,
and sensor systems were found between systems using passive trigger RTLS sensor types
and their higher-resolution, active-tracking counterparts. A question is raised of whether
passively triggered RTLS technologies are sufficient for more complex behavioural analysis
or whether the precision levels of these kinds of devices are lacking. In particular, RFID
and IR technologies provide a lower level of granularity in location tracking (despite being
accurate and less costly [11]), which may detract from precisely extracting within-region
behaviours or continuous movement patterns such as those extracted from trajectory-
type features such as path tortuosity. Conversely, UWB and other active sensors required
wearable devices that need battery or recharging, whereas passive trigger-based sensors
are typically wall mounted with little maintenance [11]. It is suggested that, when feasible
to implement at a fair cost, using higher granularity, active sensors with a continuous data
stream will provide more opportunity for complex analysis of human behaviours from
RTLS data. Additionally, where lower-granularity RTLS sensors are used, it may be helpful
to combine passive sensor modalities that do not interfere with daily living (e.g., door
sensors) to augment the quality of the data and increase the depth of analyses that can
be performed. Previous review literature reinforces the existence of a trade-off between
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implementation costs and data precision and richness [10,11]. The level of in-depth or
basic analysis varied widely between studies and subsequently creates a variation in the
applicability of study results to their target use case.

Alternatively, one method observed for increasing information gained from passive
sensors was to map the spatial relation between each of the RTLS sensors in a floor plan.
Four (4) of the 17 papers that used a feature defined as activity level measured by the
“number of raw sensor activation triggers” developed “binary motion density maps” or
“heat maps” along with their trigger-type sensors: three [7,46,47] used only levels of sensor
activation in a similar manner to indicate changes in health status and provide alerts,
and one [50] used DCNN with the maps but only to recognize different activities based
on location as a method of remote monitoring. By using maps correlated to the floor plan
of the study sites, these papers were able to re-incorporate the otherwise lost relationship
between the location of each sensor with respect to the distance between them.

Limitations and Future Work

The findings of this review may be limited by use of the Scopus database as the sole
source for feasibility reasons given the broad scope of the search. Scopus was chosen due
to its size, comprehensive and multi-disciplinary nature, and its inclusion of peer-reviewed
conference papers. Scopus encompasses the MEDLINE and EMBASE indices and provides
a citation searching feature that was useful to identify further papers. A preliminary
examination of other indices did not reveal any systemic gaps in our search, but it is
possible that some studies were missed.

With 79 papers, the variation between all components of the papers made statistical
meta-analysis unfeasible to perform and was beyond the remit of a scoping review. Results
and findings from the selected papers could not be numerically compared due to the vast
differences in goals, metrics, sensor types, and methods of representation. The varying
number of studies in each application sector and analysis methodology limited the inter-
pretation of these findings. While the purpose of this work was to provide a scoping review
of RTLS systems for analysing behaviour in any application, and transferable knowledge
was gained from non-health-based fields, future work might focus on a narrower research
question followed by meta-analysis.

5. Conclusions

In this scoping review, we identified 79 studies examining the use of RTLS data to
describe aspects of human behaviour, with the most common application goal to mon-
itor health status, followed by analysing consumer behaviours, increasing safety and
operational efficiency, and investigating developmental child behaviours. Activity level,
dwell time, trajectory, and proximity features were used to help describe these behaviours,
with the level of complexity of analysis dependent on the types of sensors used. We iden-
tified a need for the collection of validated measures to serve as gold standards and a
need to move beyond correlation to predictive modelling of these behaviours. While it
is evident that RTLS technologies provide valuable longitudinal spatiotemporal data and
can be a useful tool in analysing patterns of human behaviours, it is necessary for future
studies to incorporate more complex feature analysis methods to extract the richness of
location-based datasets.
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