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ABSTRACT This paper describes research toward a tracking system for locating persons indoor based

on low-cost Bluetooth Low Energy (BLE) beacons. Wireless fingerprinting based on BLE beacons has

emerged as an increasingly popular solution for fine-grained indoor localization. Inspired by the idea of

mobility tracking used in the cellular network, this paper proposes a BLE-based tracking system, designated

as BTrack, to learn the location area (LA) of an indoor user based on the reported wireless fingerprinting

combined with statistical analysis. We propose a new particle Markov chain model to evaluate the LA-level

performance regarding the visibility area in an environment with large obstacles. In the presence of sight

obstructions, BTrack is evaluated using a real-world test bed built in a library with tall bookshelves. The

performance of the proposed system is evaluated in terms of the mean distance error and the LA prediction

accuracy considering the direct line-of-sight. Compared with the existing methods, BTrack reduces the

average localization error by 25% and improves the average prediction accuracy by more than 16% given a

random mobility pattern.

INDEX TERMS People tracking, resampling, position accuracy, Bluetooth, beacons, machine learning,

particle filter, Markov chain.

I. INTRODUCTION

Indoor Location-based Services (ILBS) have attracted much

attention in recent years due to the growing commercial

demand [1], [2]. With the absence of Global Positioning

System (GPS) signal [3], many other solutions have been

proposed for indoor positioning. The majority of previ-

ous indoor localization approaches utilizes Received Sig-

nal Strength (RSS) as a metric for location determination.

This approach estimates the target location by matching

online measurements of RSS with the closest offline features

(i.e., the location fingerprints) composed of sample loca-

tion coordinates and respective RSS vectors, based on algo-

rithms such as K-Nearest Neighbor (KNN), Support Vector

Machine (SVM) [4], [5] and so on. The most commonly-

used RSS-based localization isWi-Fi fingerprinting approach

because 802.11 access points and routers are widely available

and deployed in most buildings [6], [7].

Due to the signal fluctuation, Wi-Fi-based localization

methods have limitations and unpredictable performance in

environments with the presence of large obstacles. A small

localization error is important to some ILBS, e.g., a few

meters of error in estimated location can place someone in

a different room within a building. Therefore, high localiza-

tion accuracy (within meter range) is still expected in order

to offer satisfactory ILBS. In 2013, Apple Inc. introduced

a new technology known as iBeacon to deliver proximity

services to users. iBeacon is established upon Bluetooth

Low Energy (BLE) technology [8], [9], which is both more

energy-efficient and far cheaper than traditional Bluetooth

andWi-Fi technologies. BLE transmissions have a very short

range (typically several meters, or less). Thus, in practice,

the estimation errors obtained using BLE-based techniques

are generally much lower than those obtained in Wi-Fi-based

systems.
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Although originally envisaged for proximity purposes [10],

BLE technology also offers an intriguing opportunity for

indoor localization and tracking applications [11]. Due to

the increasing deployment of BLE beacons and easy acces-

sibility to users, the feasibility of BLE beacon-based indoor

localization systems is extensively investigated in [12]–[16].

Meanwhile, the Internet of Thing (IoT) concept is employed

to realize localization and tracking services [17], [18]. For

example, kid tracking applications based on BLE interface

and wearable tracking devices (e.g., tags, straps or watches)

becomes common nowadays [19], [20]. To assist the parent

in locating the child, the app paired with a BLE beacon

worn or carried by the child to monitor the signal received

from the beacon and trigger an alarm if the beacon moves

beyond a certain predefined range. Therefore, the use of

BLE beacons is an alternative for ILBS [21]. However, such

app reports the location of the child at the moment the signal

was previously connected. It is of only limited use in actually

finding the child; particularly in busy environments where the

child is easily lost from sight among crowds of people, retail

displays, promotional stands, and so on. Advanced tracking

system is still needed.

In the literature, most existing WiFi fingerprint based

indoor positioning system focuses on techniques that match

the vector of RSS values reported by a mobile device

to the fingerprints collected at predetermined reference

points (RPs) by comparing the similarity between them.

Existing Wi-Fi fingerprinting based solutions can achieve

meter-level or room-level accuracy depending on the service

requirement [22], [23]. Most recent studies mainly evaluate

the localization performance in terms of the mean distance

error, i.e., the average distance between the predicted posi-

tion of the tracking user and the ground truth data. On the

other hand, some works focus on region-based or room-

based positioning that estimates the specific region/room a

user resides in. To support the positioning requirement with

different kinds of ILBS, both metrics are essential in building

a location management system. This paper studies location

tracking for ILBS with BLE beacons. The goal is to track the

user location on both fine-grained level (i.e., typically less

that 1 m2) as well as coarse-grained level (i.e., typically less

than 5 m2).

Mobility management is the key functionality that has been

utilized in the cellular networks for many years. Inspired by

this idea, the present study proposes a BLE-based tracking

system, designated as BTrack, to manage the user position

with the scale of cell as well as location area (LA). It is the

first work to consider both coarse-grained and fine-grained

indoor positioning accuracy, in the form of a general and

hierarchy-level (i.e., LA-level and cell-level inspired by the

location management in cellular networks [24]–[27]) for

location tracking and management. We note that the new

metric LA-level accuracy can support ILBS such as the one

mentioned in [28].

In our proposed system, we introduce a hierarchical

database architecture for location management to support

IBLS, where both cell (i.e., RP) and LA (a set of neighboring

cells with the presence of direct path) are recorded. The user

continuously monitors the signals of the surrounding BLE

beacons and periodically reports the wireless fingerprinting

(RSS vectors) to the BTrack server. The BTrack system

learns the user location (i.e., the cell and the LA) and acts

as a mediator that provides user location to other advanced

ILBS. According to [29] and [30], the widely used cell-level

localization algorithm is mainly based on particle filtering

by combining the well-known KNNmajority voting strategy.

However, the LA-level localization is more complicated since

a cell can belong to multiple LAs. Also, the reasons why a

user resides in a specific LA can be interpreted from both

human behavior and the geographical environment. Existing

indoor positioning methods only give the estimated cell for

a user; however, when a cell is included in more than one

LA, it is necessary to further determine which LA is the best

considering the sight obstruction problem. Therefore, it is

challenging to build a LA learning model based on the LA

transition statistics. Recently, some studies [31], [32] employ

the particle filter along with the Markov chain Monte Carlo

method to build a dynamic system for data assimilationmodel

in earth science. In this work, we develop a particle Markov

chain model to build the LA-level transition model, and to

solve it by finding the stationary probability for each LA.

Specifically, the study provides three main contributions.

First, we are the first to bring the concept of hierarchy

location management into fingerprinting-based indoor local-

ization. Second, we propose a new particle Markov Chain

model to evaluate the LA-level performance regarding the

visibility area with large obstacles environment, which is

commonly seen in nowadays beacon deployment scenario

(such as hypermarkets, shopping mall, libraries) but seldom

discussed. Third, we assess both mean distance error and

LA learning accuracy in a real-world environment containing

significant obstacles that block the line-of-sight path.

We note that BTrack is not limited for the usage of kid

tracking, other tracking applications can also employ the

techniques of BTrack. Also, BTrack is developed based on

KNN, a modified particle filtering, and a particle Markov

chain. Particle filter-based techniques have been applied

with great success to a variety of state estimation problems

including localization with sensing data [33]–[35], object

tracking [36]–[38], mobile robot localization [39]–[41],

people tracking [42], [43], etc. The main novelty of this

work includes a new hierarchy indoor localization concept

(inspired by the cellular location management system) and a

new particle Markov Chain model to evaluate the LA-level

localization accuracy.

The remainder of this paper is organized as follows.

Section II describes the problem scenario in this study.

Section III introduces the basic operation and implementa-

tion architecture of the proposed BTrack system. Section IV

describes the localization algorithms used in the proposed

approach. Sections V and VI present the experimental setup

and results, respectively. Finally, Section VII provides some
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brief concluding remarks and indicates possible areas of

future work.

II. PROBLEM SCENARIO

This section develops the problem scenario of a potential

ILBS application for kid tracking, which has attracted grow-

ing interest in recent years. In [19] and [20], BLE-based

tracking devices are generally paired with iOS/Android

smartphone apps to allow the parent to monitor the child over

short distances (e.g., 20-30 m). Typically, such apps monitor

the signal received from a BLE beacon worn or carried by

the child and trigger an alarm if the beacon moves beyond

a certain range. While such apps provide some measure of

reassurance to the parents, they are of only limited use for

actually locating the child since it only provides the ‘‘last

location’’ of the child before the signal was lost.

FIGURE 1. Illustration of a kid tracking application in an indoor
environment with shelf layout (f (o, P1) = 1 and f (o, P2) = 0).

To support a better localization service in kid tracking,

Fig. 1 demonstrates the concept of the BTrack system devel-

oped in this study. Assuming that the parent (mother) and

kid (Amy) are in a typical store environment consisting of

three rows of shelves (1, 2 and 3). In accordance with the

store policy, each row of shelves is divided into three sections

(A, B and C) and a BLE beacon is mounted on the top of

each section. Assuming that both the parent (tracker) and

the kid (tracked user) are in possession of mobile devices

(usually, a parent carries with a smartphone and a child wears

a lightweight device with WiFi/BLE modules) installed with

the tracking app. Suppose further that while the mother is

standing at Shelf 3B, Amy wanders off and is now standing

adjacent to Shelf 1B. As soon as the mother does not see

Amy (Step 1), she activates the tracker app (parent side) and

the kid’s side of the app installed on Amy’s device imme-

diately reports the wireless fingerprint to the BTrack server

(Step 2). The wireless fingerprint is used to learn Amy’s

position using a localization algorithm based on our proposed

BTrack system. The kid tracking application then sends a set

of navigational instructions based on the estimated position.

In Step 4, we illustrate two possible cases of the returned

paths (locations) to the parent app to guide the mother toward

Amy, and the detailed discussion is given below.

Practical tracking and localization environments often

contain sight obstructions (e.g., shelving units in a retail

store or bookshelves in a library). Thus, a lower average local-

ization error does not always represent a better outcome in

all ILBS. For example in the above kid tracking application,

consider the estimated location outcomes P1 and P2 in Fig. 1.

The distance error for the two outcomes is approximately the

same. However, for P2, Amy is hidden from the tracker (the

parent) by Shelf 2B. In other words, if the parent is guided to

pointP2, she still cannot seeAmy. Thus, the tracking outcome

is unsatisfactory from the parent’s perspective. By contrast,

for P1, the parent is approximately the same distance from

Amy, but, in this case, can actually see her. As a result, P2
represents a far more satisfactory outcome. In other words,

prediction accuracy excluding line-of-sight obstacles is an

important issue when evaluating the performance of tracking

and localization schemes. To the best of our knowledge, local-

ization performance based on direct line-of-sight location

area is not discussed before. Accordingly, this study measures

the location and tracking system in both mean distance error

and prediction accuracy considering direct line-of-sight. The

location is tracked on the level of cell (with a size up to 1 m2)

and of LA (with a total size up to 5 m2). In particular, a LA

does not contain any obstacles such that the tracked user

is being visible from the predicted position P. Specifically,

the event of satisfactory tracking is based on having direct

line-of-sight, which can be defined by the function f (o, i)

in [28] as

f (o, p) =

{

1, if person o is visible at location p.

0, else.
(1)

For example, in Fig. 1, Amy (i.e., person o) is visible from

position P1, and hence f (o,P1) = 1. By contrast, she is

invisible from position P2, and hence f (o,P2) = 0.

III. DESIGN OF BTrack SYSTEM

The BTrack system proposed in this study employs a BLE

beacon paradigm to accomplish the fingerprint-based local-

ization and tracking of a person. Specifically, we consider

crowded indoor environments such as retail stores, shopping

malls, public libraries, museums, and so on. Briefly, BLE bea-

cons are deployed at known locations throughout the indoor

environment (e.g., in the aisles or on the shelves in a retail

store), and a mobile device containing both Wi-Fi and BLE

modules is attached to the tracking person in the form of a

wearable device. The Wi-Fi module is used to communicate

with the BTrack server, while the BLE module is used to

detect the signals of the nearby BLE beacons. The received

RSS vector is sent periodically to the BTrack server to learn

the updated current location of the tracking person. Impor-

tantly, the frequency at which the RSS fingerprint is collected

and sent to the BTrack server can be configured in accordance

with the required localization accuracy and the frequency of

the location information is used; thereby enabling a tradeoff
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to be made between the localization accuracy and the battery

consumption of the tracking device.

A. IMPLEMENTATION ARCHITECTURE

This subsection describes the implementation architecture

of the proposed BTrack system. The discussions commence

by describing the protocol stack among the BLE beacons,

the mobile handheld devices (e.g., a smartphone and a wear-

able device with a Wi-Fi/BLE interface), and the server. The

communication between the ILBS app and the BTrack server

is also handled by Wi-Fi or a cellular network. The detailed

design of the location management in BTrack Server is then

introduced and discussed.

FIGURE 2. The protocol stack of BTrack system.

Fig. 2 shows the protocol stack employed in the BTrack

system.As shown, the communications between the deployed

beacons and the mobile handheld (e.g., wearable user device)

are handled by iBeacon/Eddystone protocol over BLE inter-

face, while those between the mobile handheld and the

BTrack server are handled by Wi-Fi or cellular interface.

The user device periodically detects the Advertisement

messages (UUID, Major, Minor and TX_Power) of nearby

beacons deployed over the BLE beacon platform. The ILBS

app is implemented on top of the TCP/IP protocol between

the handheld/wearable device and the server. In particular,

the app is implemented using Representational State Transfer

(REST); an architectural style whose Application Program-

ming Interfaces (APIs) facilitate connection and interaction

with both Web services and cloud services.

Fig. 3 shows the detailed implementation framework

of BTrack server. The server contains both a RESTful

API module and a Web module to support interac-

tion with the BTrack app and other web/cloud services.

All of the messages produced in BTrack are encapsulated

using the RESTful API module and are transmitted over

the HTTPS protocol. The BTrack User Profile is a

database to store the user’ profiles (i.e., the unique IDs of

the tracked users, ILBS service information, and so on). The

Fingerprint database stores the beacon profile (i.e., the

IDs of the deployed beacons together with their position

information (e.g., the cell identity and the LA identity)). The

Fingerprint database additionally stores the mapping

between the RSS vectors and the corresponding location

coordinates. Finally, the Map Data database stores a map

of the floor plan showing the positions of the BLE beacons

and the corresponding cell/LA information, respectively.

B. INDOOR LOCALIZATION

This subsection presents the indoor localization method and

the user tracking procedure performed by the BTrack server,

as indicated in the lower part of Fig. 3. Implementing the loca-

tion fingerprinting procedure in the BTrack system involves

in two processes, namely training and operating. In the

present study, the dataset required for training purposes was

compiled by measuring the RSS values at each sample loca-

tion in the experimental environment (see also Section IV-A)

using an android app (see Fig. 5(c))) and then integrating

these values with the shelf and aisle information in the Map

Data database. The operating process is triggered when

the Location Area Update (LAU) procedure is exe-

cuted: The LAU function on the BTrack app collects the RSS

data periodically and transmitted to the BTrack server, where

they were used to learn the localization on the sever side.

When requested by an ILBS, the BTrack server reports the

location (cell, LA) to it.

As the operating process shown in Fig. 3, the RSS val-

ues reported by the user device are normalized and input

to a KNN algorithm (see Algorithm 1), which provides an

initial guess of the user’s location based on the difference

between the normalized RSS values of the user device and

those obtained during the training process. An improved

estimate of the user’s position is then obtained using a

particle filter algorithm (see Algorithm 2) based on the

user’s trajectory, map information, and pedestrian behavior,

respectively.

1) RSS CALIBRATION BASED ON RESCALING

To solve the device diversity problem [44], several RSS

calibration methods have been proposed, including the

DIFFerence of signal strength (DIFF) [45], the Signal

Strength Difference [46], the cosine similarity [47], and linear

calibration [48]. However, in practical tracking environments,

such methods have limited performance due to line-of-sight

obstructions. As described above, BTrack computes the real-

time location of the user. As a result, the computation time

must be minimized such that the server can respond with the

estimated user position in real-time. Accordingly, the present

study adopts a simple min-max normalization method (also

called rescaling) to match the RSS values in a range of

[0, 100]. How to select the feature scaling method and the

target range depends on the nature of the data. Specifically,

the system first finds the minimum andmaximumRSS values

in the collected RSS dataset in the Fingerprint database,

and stores them as Rmin and Rmax, respectively. Each RSS

value, Ri, in the dataset is then mapped to an integer value

in the range of 0 to 100 in accordance with Eq. (2). Note

that in the case of missing data, i.e., the user device does not

receive any signal from a BLE beacon since the RSS vector

was last collected, BTrack maps the missing RSS value as 0.

The general formula is given as:

R′
i =

Ri − Rmin

Rmax − Rmin
× 100 (2)

2) MACHINE LEARNING

As shown in Algorithm 1, the KNN algorithm takes the

normalized RSS data from the user device as the input and
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FIGURE 3. The implementation framework of BTrack server.

Algorithm 1 K -Nearest Neighbors (KNN) Algorithm

Require: Ri = (r1i , r
2
i , ..., r

m
i ),T = (t1, t2, ..., tm),K

Ensure: position P

R′
i = Ri−Rmin

Rmax−Rmin
× 100

for i = 1 to n do

Di =
√

∑m
j=1(T (j) − R′

i(j))
2

end for

PK ⇐ Select K positions according to smallest Di
P ⇐ majority position of PK
return P

then estimates the position of the user based on the k nearest

data instances in the Fingerprint database (i.e., the train-

ing dataset). Note that Ri represents the i-th set of training

RSS vector, T is the input RSS vector, and m is the total

number of nearby beacons in the considered region. TheKNN

algorithm first computes the Euclidean distance Di between

the i-th training data instance and the input data instance.

Then it selects K closest sample locations, i.e., those having

the smallest values of Di and chooses the majority of these

locations as the output. That is, the outcome P obtained by the

KNN algorithm is one particular instance of the set of sample

locations, and is also treated as an initial estimated location

of the tracking person.

3) POSTERIOR DISTRIBUTION OF LOCATION SAMPLES

In the context of particle filter, the posterior distribution of

a stochastic process given noisy and/or partial observations

is approximated by a set of random samples called particles,

each associated with an important weight [49]. Here, a parti-

cle represents a possible cell where a user might reside in.

The output of the user location is modeled as a predicted

particle with noise, where limitation of gait speed, the user’s

mobility trace, and the floor plan are relevant environmental

information.

FIGURE 4. The procedure of a typical particle filter.

The following section presents how our modified particle

filter method continuously maintain the posterior distribution

of the set of location samples based on a new guess location

P in each time period t . Fig. 4 first shows the basic operation
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of the particle filter. In the initialization stage, according to

a prescribed sampling distribution (a uniform distribution,

in the present study), the algorithm generates a number of

particles (i.e., location samples refer to cells or RPs in the

region of interest) for the tracking user on themap of the study

area considered. The prediction stage considers (1) the last

estimated location, (2) the particle distribution obtained in the

previous round and (3) a new guess of the current position by

a fingerprinting mapping system, such as KNN used in this

work. We note that both the particle distribution (i.e., location

sample distribution) and the new guess location are used to

update the particle distribution in next round. Also, environ-

mental factors, such as the constraints imposed on the particle

movement by the pedestrian gait speed and obstacles are con-

sidered for updating the weight associated with each particle

in this round. Here, we propose two rules for adjusting the

particles’ weight:

1) the weights associated with particles around the current

guess position P are added;

2) the weight of any particle (referring to any location

sample) associated with infeasible movement, such as

the user passing through an obstacle or traveling too

far from the previous predicted position, should be

reduced.

Finally, in the resampling stage, the particle filter nor-

malizes and updates all of the weights with their sum and

obtains a probability distribution of the tracking user being

located around each sample location. Finally, the parti-

cle filter chooses the particle with the largest weight as

the output cell (i.e., the estimated position of the tracking

user).

Algorithm 2 shows the pseudocode of the particle filter

algorithm. In lines 1-6, the algorithm generates N particles

(sample locations) uniformly distributed over the considered

region, and assigns each particle an initial weight. Here,

notation < x it ,w
i
t > indicates that at time t , the i-th particle

is associated with weight wit at position x
i
t . For each location

update period t , as shown in Line 10, the algorithm takes the

initial estimate of the tracking user P as the input, which is

obtained by the KNN algorithm. In lines 11-17, the algorithm

resamples each particle in accordance with the weightwt−1 in

the previous round, and determines the new particle position

x it based on Pt and the environmental factors, e.g., the gait

speed limitation S. After adjusting the weight (here, by reduc-

ing the weights of any particles associated with abnormal

movement, such as blocked by an obstacle Ot ), the algorithm

resamples all the particles, and BTrack generates the user

location, L, associated with the largest weight. Specifically,

the map information acquired from the Map Data database

is also used in Line 14. We adjust the weights in Lines 14-15

as follows:

1) Adding associated weights to particles near the cur-

rent guess position P, where distance(P, x it−1) = 0

represents the distance between P and x it−1. When

P = x it−1. In this part, we adjust the weight by adding

Algorithm 2 Modified Particle Filter

Require: Map information

Ensure: L

1: if t = 0 then

2: for i = 1 to N do

3: Draw sample x i0 from q(.)

4: Construct weights wi0
5: end for

6: end if

7:

8: for t = 1 to T do

9: St = φ, η = 0

10: Using Algorithm 1 to find an initial Pt
11: for i = 1 to N do

12: Resample a particle x it−1 according to distribution

given by xt−1 and wt−1

13: Sample x it from p(xt |xt−1,Pt , St )

14: Adjust weight wit from p(Ot |x
i
t )

15: η = η + wit
16: St = St ∪ < x it ,w

i
t >

17: end for

18: L ⇐ Find location with largest weight from <

xt ,wt >

19: Output L

20: for i = 1 to N do

21: wit = wit/η

22: end for

23: end for

η1[
1

1+distance(P,xit−1)
], where η1 (0 ≤ η1 ≤ 1) is the

learning factor for the new guess of location.

2) Reducing associated weights to particles that would

cause infeasible movement from the previous loca-

tion to the current location. We adjust the weight by

(1 − η2)w
i
t−1 + η2w

i
t−1I (x

i
t−1, x

i
t ), where η2 is the

learning factor for the infeasible movement caused by

the obstacles and

I (x it−1, x
i
t )

=

{

1, if moving from x it−1 to x
i
t is feasible

0, else.
(3)

In this part, the associated weight is decreased by

η2 wit−1 (0 ≤ η2 ≤ 1) when there is infeasible

movement; while other associated weight is unchanged

when the movement is feasible.

Based on the above discussion, the next set of location

samples is given by the weights as follows:

wit = η1

[

1

1 + distance(P, x it−1)

]

+ (1 − η2)w
i
t−1 + η2w

i
t−1I (x

i
t−1, x

i
t ) (4)

In Lines 20-22, theweights associatedwith the particles are

further normalized and stored. In each location update period,
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the algorithm proceeds to the next round and computed the

new position based on the last stored distribution andweights.

We note that the proposed Algorithm 2 is basically follows

the practical filter method, where the core part (Lines 9-22)

executed for tracking the user movement at each time period

has computational complexity only linear O(N ), in the num-

ber of particles N . In the present study, a particle represents a

RP or cell in the considered region. It is worth to note that the

weight assignment to each particle is important and should

be adjusted based on the characteristics of the mobility traces

collected in the environment.

C. INDOOR LOCATION LEARNING WITH

PARTICLE MARKOV CHAIN

Based on the above particle filtering, we obtain the poste-

rior distribution for each cell. This subsection focuses on

indoor location learning. Here, we first construct the cell-

level transitions B(z, z′) according to the particles’ located

cells at times t − 1 and t . Then, we further construct the

LA-level transition probabilities from a set of transitions B(.).

In practice, we define an indicator function I it (z) as

I it (z, z
′) =

{

1, if (x it−1 = z) ∧ (x it = z′)

0, else.
(5)

According to the N particle locations, we model the cell-

level transitions probability from cell z at time t − 1 to cell z′

at time t as

Bt (z, z
′) =

N
∑

i=1

I it (z, z
′)wit (6)

From (6), we model the LA transition as a first-order non-

homogeneousMarkov chain with transition matrixPt , whose

state space S is the set of all LAs in the considered indoor

environment. Suppose that both Z ′,Z ∈ S; LA Z contains

nz cells, denoted by a set C(Z ′) = {z′1, z
′
2, . . . , z

′
nz

}; while a

neighboring LA Z contains nz′ cells, denoted by a set C(Z ) =

{z1, z2, . . . , znz}.The transition probability T (.) from LA Z to

LA Z ′ can be computed by combining all the possibilities

that a user located in any cell z′ ∈ S(Z ′) moving to any cell

z ∈ S(Z ), which is shown below

Pt (Z
′,Z ) =

n′
z

∑

k=1

nz
∑

l=1

Bt (z
′
k , zl) (7)

Since a cell can be included in multiple overlapping LA,

we further normalize the transition probability as

P
∗
t (Z

′,Z ) =
Pt (Z

′,Z )
∑

∀Y∈S Pt (Z ′,Y )
(8)

After we obtain the transition matrix P∗, we computed the

stationary probability π (Z ) by solving

π (Z ) =
∑

∀Z ′∈S

P
∗
t (Z

′,Z )π (Z ′) (9)

Finally, the estimated LA is the one which has the maxi-

mum likelihood that a user located at, which is given by

Z∗ = argZ ,Z∈S maxπ (Z ) (10)

IV. EXPERIMENTAL TESTBED

This section describes the experimental testbed setup,

the method used to construct the location training dataset,

and the procedure employed to test the BTrack system under

various pedestrian mobility patterns.

A. TESTBED SETUP

The testbed was constructed in the library of National Cheng

KungUniversity (Tainan, Taiwan). The testbed is deployed on

a region having dimensions of 7.1 m×4.2 m, with three rows

of tall bookshelves as sight obstructions (see Fig. 5(a)). Each

row of shelves contain five separate bookcases, each with a

width of 0.6 m, a depth of 0.9 m and a height of 2.15 m1

The aisles between the bookshelves have a width of 1.1 m.

As shown in Fig. 5(b), the experimental area was partitioned

into 34 grid cells,2 with a size ranging from 0.54 m2 to

0.66 m2. The sample locations (see the • symbols) are the

center of the cells and are referred to as possible positions

for user tracking. To provide direct line-of-sight path, each

LA contains several neighboring cells and forms a visible

location area with no obstacle blocking. In our testbed, a LA

ranges from 4.2 m2 to 4.6 m2 (see Fig. 5(c)) . Also, a cell can

belong to more than one LA.

TABLE 1. Average RSS of the smartphones measured in the experiments.

The experiments were performed using two different

smartphone models, namely an HTC Desire 728 and an

ASUS ZE551M, respectively (see Fig. 6(a)). Table 1 shows

the RSS variance between these two devices. Also, Table 2

shows the comparison under different experimental settings.

Note that we intend to employ two different smartphone

models throughout the evaluation; one is used to build the

1We note that the large size of the obstacle does prevent the signal propa-
gation and cause multipath fading, which highly affects the performance of
location accuracy. The testing environment we choose is with high and big
shelves, which is a very challenging environment.

2Although we use a grid-based partition to identify a cell, other cell shapes
are also possible. Therefore, one can partition the region of interest into
several cells with different size and/or different shape even in a complex
environment. We suggest that a cell should not contain obstacle in the
environment. It is worth to note that the key point is we use the center of
a cell to identify a position (i.e., a reference point (RP)). Therefore, BTrack
can be easily used any indoor environment.
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FIGURE 5. Experimental platform. (a) NCKU library. (b) Floor plan
containing 34 cells. (c) Floor plan containing six LAs. (d) Android app.

Fingerprint database and the other is used to test the

BTrack algorithm. Since the wireless signals are trained

and tested from two different handheld chipsets, the exper-

iment result is more convincing and useful. Based on the

FIGURE 6. Experimental devices. (a) The training and the operating
mobile devices: HTC Desire 728 and ASUS ZE551ML. (b) The beacon
device.

observations, we also select to use KNN algorithm instead

of SVM algorithm. Here, the LAU function is implemented

on both smartphones. However, it can be implemented on

a small-sized development board with Wi-Fi/BLE modules,

such as Raspberry Pi, and can be used as the form of a

wearable device.

Fig. 6(b) shows one of the BLE beacons used to periodi-

cally broadcast wireless signals throughout the experimental

environment. The BLE beacons were mounted on top of the

bookshelves. To build the location training dataset for the

Fingerprint database at each sample location, we use a

smartphone (HTC Desire 728) to measure RSS vectors at the

center of each cell in the testbed. Then we utilize the machine

learning technique mentioned in the previous section to train

the system.

FIGURE 7. Beacon Deployments. (a) 3-beacon-deployment.
(b) 6-beacon-deployment. (c) 9-beacon-deployment.

As shown in Fig. 7, three different beacon deployments

were considered. In every case, the broadcasting period of

the beacons was set as 200 ms and the BLE interface on

the smartphone scanned the beacon signals every 400 ms.

In performing the experiments, BTrack reported the estimated

position of the tracking user in terms of the sample location

associated with the center of the corresponding cell. The

localization performance was evaluated in terms of both the

mean distance error (i.e., the distance between the predicted
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TABLE 2. Comparison of performance under different experimental settings, and the same training device (ASUS ZE551ML) is used in all experiments.

location and the ground truth one) and the prediction accuracy

(i.e., the probability that the predicted cell is included in the

corrected LA.)

B. DATA COLLECTION AND TRAJECTORY CREATION

To test and evaluate the performance of BTrack, a person

carries with a smartphone (ASUS ZE551M) walking through

all 34 cells in the testbed. The LAU function installed on

the smartphone periodically receives the RSS nearby and

reports the current received wireless fingerprint to BTrack

server such that the user current location can be learnt and

updated. By comparing the location learned from BTrack

system and the cell the user actually resided, the localization

accuracy is evaluated in terms of the mean distance error

(i.e., the cell-level accuracy) and the LA prediction accuracy

(i.e., the LA-level).

FIGURE 8. The trajectory paths considered in the experiment.
(a) W-shaped path. (b) Z-shaped path.

The signals broadcast by the BLE beacons were detected

via our developed Android app (see Fig. 5(d)) and are stored

in a JSON (JavaScript Object Notation) format. The training

dataset was collected from 3:00 PM to 5:00 PM onMarch 24,

2017. We use the training smartphone (HTC Desire 728)

to receive 100 wireless fingerprints (RSS vectors) at each

sample location, i.e., the center of each cell. The received data

along with the corresponding location are stored as the loca-

tion training dataset in the Fingerprint database. For the

system evaluation, we also consider to receive 100 wireless

fingerprints according to three typical pedestrian mobility

patterns. The user carrying the operating smartphone (ASUS

ZE551M) walks around the testbed with three different tra-

jectory paths, namely random, W-shaped, and Z-shaped.

In the random path, the user wanders around the testbed

at a random movement; i.e., with an equal chance to move

with a random neighboring cell. Meanwhile, the W-shaped

and Z-shaped paths were defined as shown in Figs. 8(a)

and 8(b), respectively. The walking speed is in the range from

0.88 m/s to 1.5 m/s [50]. The RSS vectors collected based

on these mobility traces are used to assess the localization

accuracy in the testbed.

V. EXPERIMENTAL RESULTS

This section shows the experimental results obtained in

our testbed. The mean distance error, which is the average

Euclidean distance between the estimated location p̂ = (x̂, ŷ)

and the ground true location p = (x, y) is computed as

Mean distance error = E[

√

(x − x̂)2 + (y− ŷ)2] (11)

Based on Eq. (1), the success LA tracking is defined on the

event that a BTrack user can be tracked and is visible at the

predicted location, where

Success location tracking =

{

1, if
∑

p∈Z∗
f (o, p) ≥ 1

0, else.

(12)

The LA prediction accuracy is the expected outcome of a

success location tracking. For instance, in the kid tracking

example, when the kid and the parent are in the same LA

(it does not matter which cell he/she resides in), both users

can see each other without sight obstruction. Fig. 9 shows

the cumulative distribution function (CDF) of the mean dis-

tance error for the three beacon deployments described above.

As expected, the distance error reduces with an increasing

number of beacons. However, in practice, a tradeoff should

be made between the deployment and operational cost as

well as the positioning accuracy. It is worth noting here that

when using only pure fingerprinting (i.e., KNN and the RSS

dataset without any calibration), the mean distance error is

greater than 1 m and is hence unsatisfactory in most indoor

positioning applications. The following discussions evaluate

the performance of BTrack (both the mean distance error and

the LA prediction accuracy) when calibration and/or position

tracking with the particle filter are considered.

In the remaining experiments, the evaluation is performed

on the testbed employing the 9-beacon-deployment plan

(see Fig. 7(c)). Fig. 10 shows the CDF of the mean distance

error against different methods. In terms of the mean distance

error, the BTrack system has the best performance, while

the linear method is the second-best. Table 3 compares the

localization performance metrics (mean distance error and

LA prediction accuracy) obtained by BTrack for each tra-

jectory path with those obtained by five existing methods.
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TABLE 3. Comparison of the mean distance error and LA tracking accuracy with prior work.

FIGURE 9. Positioning error of different deployments.

FIGURE 10. Accuracy comparison between our system and existing
methods when user walks randomly.

In terms of the LA prediction accuracy, the pure fingerprint-

ing method has the poorest performance of all the methods

in the Z-shaped path; however, the LA prediction accuracy is

actually higher than those of the other methods (DIFF, SSD,

Cosine, Linear) for the random and W-shaped paths. In other

words, our experimental results confirm that the performance

depends on the user mobility. Since BTrack outperforms the

other methods, we conclude that both RSS calibration as well

as motion sensing are useful to implement the indoor fine-

grained tracking system.

As described in Section III-B, BTrack uses both RSS cal-

ibration and a marginal distribution approach to estimate the

possible sample location of the tracking person. Observing

the results presented in Table 3, it is found that BTrack yields

a lower mean distance error than all the existing methods for

each of the considered trajectory paths. For example, BTrack

yields an average distance error of just 0.94 m in the case of

the random trajectory path. In other words, BTrack reduces

the mean distance error by around 25% compared to that of

the existing methods. Furthermore, BTrack achieves a predic-

tion accuracy of 91.38% for the random path; corresponding

to an average improvement of 16% over the existing methods.

Similar results are obtained for both the W-shaped path and

the Z-shaped path.

FIGURE 11. Localization performance measured at each reference point
via pure fingerprinting. (a) Mean distance error (meters). (b) LA prediction
accuracy.

Due to environmental factors (e.g., sight obstructions

which prevent direct line-of-sight signals), the accuracy of

the estimated position depends strongly on where the user

resides (i.e., the particular cell at which the user resides in).

Accordingly, a further series of experiments were performed

in which the user remained stationary at each of the 34 sample

locations in the testbed, and localization was performed using

both the pure fingerprinting method and the BTrack system.

The performance metrics obtained by the two methods are

presented in Figs. 11 and 12, respectively.
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FIGURE 12. Localization performance measured at each reference point
in BTrack. (a) Mean distance error (meters). (b) LA prediction
accuracy.

The results confirm that, for both methods, the localization

performance is significantly dependent on the environmental

factors. In particular, the mean distance errors at the sample

locations not surrounded by the bookshelves (i.e., further

away from the deployed beacons) are much higher than those

located between two bookshelves. For example, in Fig. 11(a),

the mean distance errors at the sample locations in the first

and final rows of the grid (see the highlighted areas) are

usually very high varying in the range of 1.31 ∼ 2.34 m.

By contrast, the reverse tendency is noted for the LA predic-

tion accuracy. For example, as shown in Fig. 11(b), the pre-

diction accuracy has a lower value vary in the range of

34.29% ∼ 69.92% (see the highlighted area) for the sample

locations located between two rows of bookshelves. This

finding is reasonable since, in such positions, there is a greater

chance that the line-of-sight of the tracker is blocked by the

bookshelves. In other words, for objects located at sample

locations between the bookshelves, even though the mean

distance error is less than 1 m, the user may be hidden from

the direct line-of-sight by bookshelves.

Fig. 12 shows that BTrack significantly improves both

the mean distance error and the prediction accuracy. The

performance improvement stems primarily from the use of

the modified particle filter algorithm (Algorithm 2), which

transforms the estimated locations into a probability dis-

tribution over sample locations as the tracked user moves

over time by suppressing infeasible predictions (e.g., those

associated with movements blocked by the shelves).

Compared to the pure fingerprinting scheme, the perfor-

mance of BTrack is also slightly improved by scaling RSS

in Algorithm 1.

VI. CONCLUSIONS

BLE beacons have emerged as a viable platform for vari-

ous proximity-based services, including brand promotion and

localization. The present study has proposed a user tracking

and localization system based on BLE beacon technology for

indoor location based services. The problem of improving the

localization performance for the case where the propagation

of the beacon signals is impaired by the presence of physical

obstacles is also considered. The feasibility of the proposed

system, designated as BTrack, has been demonstrated in a

real-world environment using both the mean distance error

and the location area prediction accuracy metrics. It is shown

that compared with existing methods, BTrack reduces the

average localization error by 25% and improves the average

prediction accuracy bymore than 16% given a randommobil-

ity pattern through the testbed area.

As a final remark, the beacon deployment density signifi-

cantly affects the localization performance. The experimental

results are mainly based on a 9-beacon-deployment plan.

In the future, we would improve the performance in a low

density beacon environment, such as a 3-beacon-deployment

plan, i.e., each shelf only have a minimum of one bea-

con. Also, testing of BTrack in environment with random

obstructions as well as randomly deployed beacons will be

considered in the future work. Additional beacons should be

deployed at other strategic locations within the environment,

such as near the entrance/exit, next to the elevators, and so

on. A future direction includes the study of the coexist of

Wi-Fi/BLE indoor navigation, in which further performance

improvement might be achievable under a lower density of

beacon deployment plan.
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