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Abstract

This paper presents a framework for indoor loca-
tion prediction system using multiple wireless signals
available freely in public or office spaces. We first pro-
pose an abstract architectural design for the system,
outlining its key components and their functionalities.
Different from existing works, such as robot indoor
localization which requires as precise localization as
possible, our work focuses on a higher grain: location
prediction. Such a problem has a great implication
in context-aware systems such as indoor navigation
or smart self-managed mobile devices (e.g., battery
management). Central to these systems is an effective
method to perform location prediction under differ-
ent constraints such as dealing with multiple wireless
sources, effects of human body heats or mobility of
the users. To this end, the second part of this pa-
per presents a comparative and comprehensive study
on different choices for modeling signals strengths and
prediction methods under different condition settings.
The results show that with simple, but effective mod-
eling method, almost perfect prediction accuracy can
be achieved in the static environment, and up to 85%
in the presence of human movements. Finally, adopt-
ing the proposed framework we outline a fully de-
veloped system, named Marauder, that support user
interface interaction and real-time voice-enabled lo-
cation prediction.

Keywords: Indoor positioning, WiFi signal, Naive
Bayes, Hidden Naive Bayes, indoor navigation.

1 Introduction

The increasing number of mobile devices has called
for a new framework to exploit mobile computing
power and to support more intelligent information
services. To this end, context-aware applications that
model information from users and their surround-
ing environments have been developed to provide
value-added services. Information about context is
multi-dimensional: positioning data, proximate peo-
ple, communication and utility usage. Outdoor posi-
tioning is more or less a solved problem for devices
equipped with GPS receivers. Indoor positioning,
however, offering a myriad potential applications in
indoor navigation and social pattern extraction, re-
mains an open research problem, and is our focus in
this study.
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There are two main approaches to solving the in-
door positioning problem: (i) installation of special-
ized indoor positioning systems, and (ii) use of ex-
isting radio-frequency infrastructures such as GSM,
802.11 and Bluetooth. Methods in the first category
have high accuracy, but are expensive and unsuitable
for large scale deployment. Methods using the latter
approach are more economical, but suffer from signal
instability and noise due to hardware characteristics,
exacerbated by environmental factors, such as people
in motion. We will focus on methods using 802.11
infrastructures. At the early, RADAR (Bahl & Pad-
manabhan 2000) applies the Nearest Neighbor algo-
rithm to estimate location but a poor performance is
obtained because it could not cover the nature of the
variance of WiFi signals. Current approaches (Roos
et al. 2002, Ladd et al. 2002, Krumm & Horvitz 2004,
Xiang et al. 2004) get a better performance by view-
ing the problem in terms of probabilistic model which
is well dealing with the the uncertainty. In these prob-
abilistic approaches Bayes’ rule is used for prediction
and WiFi signals is in different form such as histogram
(Youssef et al. 2003) and smoothed histogram (Roos
et al. 2002), exponential functions (Xiang et al. 2004)
and Gaussian (Kaemarungsi 2005). However, apply-
ing probabilistic model in recent works is empirical
and there is no systematical investigation in terms of
parameter estimation, prediction model selection as
well as experiment environment. We will cast them
as cases of Naive Bayes and discuss more in an uni-
fied framework. Furthermore, all recent approaches
are fully-supervised and therefore the degree of cali-
bration required is also a limiting factor to usability.

Motivated by the potential usefulness of indoor po-
sitioning systems to an array of applications, such
as navigation of office workspaces, we desire a sys-
tem generic enough to leverage existing WiFi access
points found in an urban environment. Importantly,
we examine the practical case where both the training
and testing signals are acquired in a mobile fashion.
We implement and compare two probabilistic mod-
els under a set of different conditions: Naive Bayes,
where the signal at each WiFi access point is consid-
ered to be independent, and the Hidden Naive Bayes
(Zhang et al. 2005), which models the joint relation-
ship among the WiFi access point signals to estimate
location by embedding the physical proximity of ac-
cess points in an environment. We also make use
of a Boolean adjacency matrix to impose constraints
among moving paths. We perform experiments in dif-
ferent scenarios, including where the wireless device
is fixed and in motion, both with and without the
presence of humans. Our results demonstrate these
models can be potentially deployed in complex envi-
ronments by design and implementation of the real in-
door positioning framework and an applications upon
this framework.

The significance of this work is in using available
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Figure 1: The architecture of Marauder.NET

low-cost infrastructures for location detection in a ro-
bust fashion. Importantly, as good performance is
obtained for the case where both training and test-
ing data is acquired in a mobile fashion, the model is
suitable for general use in urban spaces, and in partic-
ular, for fine-grain indoor positioning for the visually
impaired.

The layout of the remainder of the paper is as fol-
lows. The framework and its principal components
are introduced in Section 2. Section 3 discusses about
experiments and results. A indoor navigator proto-
type is demonstrated in Section 4. Session 5 provides
a concluding summary.

2 Architecture

We first briefly outline each module in the proposed
framework and then discuss in detail two principle
components, namely database of learned signatures
(signature representation) and positioning estimation
engine (prediction model).

2.1 Proposed framework

Figure 1 outlines the architecture of the proposed
framework in which the higher the layer, the more
abstract the module. Layer Application sits on the
top of schema with built-in indoor positioning func-
tions is designed for user-oriental application such as
indoor navigator, blind assistant, etc.. The two low-
est modules of WiFi hardware and measurement are
widely available in the market where most of WiFi
adapter is integrated in recent wearable devices such
as notebooks and smartphones and its its software
drivers including signal measurement freely provided
to popular operating systems such as PlaceLab 1 and
OpenNetCF 2. The heart of this system is the core
engine inside the dashed rectangle which separates
into several sub-modules and their relationships are
represented as lines between components.

2.1.1 Signal pre processing

There are time-based techniques used to collected and
bundled WiFi signals as a collection such as non-
overlap window and overlap window (Figure 2). Nor-
mally, the window size is in order of seconds for daily
office activities.

1www.placelab.org
2www.opennetcf.com

2.1.2 Calibration Engine

Our system is supervised so that the system requires
training data collected in the calibration stage. The
steps to collect the data at one location is very sim-
ple: user with mobile device is standing at that loca-
tion and recording the WiFi signals for a given time
interval. We introduce three approaches to labeling
locations of text, voice and map-click in which two
first approaches are positoningless (voice is suitable
for people with blind while text is absolutely simple
and can be automatically transferred to voice using
available text-to-speech frameworks) and the last one
is supporting the offset coordinates with related to
provided partial vector/raster maps. Moreover, the
process of calibration can be done incrementally and
help the system more flexible and updated.

2.1.3 Trained Signatures

This database is the product of discussed calibration
engine. One signature, which is represented for each
location, consists of a set of W distributions of sig-
nal strengths of W access points and a distribution
representing the number of appearance of W access
points received at this location. Moreover, weak ac-
cess points with infrequent number of appearance are
also detected and eliminated out of final signatures.
It requires mechanism to optimal organize and struc-
ture those signature in this database when the num-
ber of location is large. We propose a simple method
of partitioning the whole database into cluster using
access point MAC and geographic relationship. While
access points MAC is available in signature and can
be computed efficiently, the information of geographic
relationship needs to be imported from user and ser-
vice providers.

2.1.4 Geographic Information

This optional module takes the constraints
among physical construction components in ur-
ban workspaces such as buildings, levels, sections
and areas covered by access points. From that,
the large number of locations is partitioned into
sub-groups which reduce query processing time from
estimation engine. This geographic information is
usually stable and could be easily collected by user
or service provider.

2.1.5 Adjacency Constraints

We introduce an optional module to keep a set of
neighbor locations for particular location for faster
retrieval. They are logical constraints that user can
only move from a location to its neighboring loca-
tions. Once current location is known with a high
probability, movement is constrained by topology
around a given location, and hence only neighboring
locations need be considered. This Boolean adjacency
matrix is taken into account in our experiments.

2.1.6 Positioning Estimation Engine

Given a set of access points and their signal strengths,
the estimation engine will query the a set of locations,
calculate the posterior probabilities and the location
with the highest probability is returned us predicted
location.

2.1.7 Spatial User Interface

Its roles are for receiving the requests from utilities
in layer Application and returning the corresponding
location from estimation engine.



t


1
 2


1


2


Non-overlap


window


Overlap


window


Window size


overlap


Window size


Figure 2: Non-overlap window and overlap window.

2.1.8 Human-Computer Interaction

Besides indoor location returning, Marauder frame-
work also provides rich-informative meta-data ware-
house such as vector/raster maps as background and
voice guidance library which provides more relaxing
for higher layers of application. While background
map helps to provide more fancy and friendly to nor-
mal enduser, voice function relaxes users out of the
device’s monitor. Moreover, every piece of voice in-
formation about around context is trivial for normal
people but is significantly meaningful to disable one
so that this module aims to provide superior support
to the blind.

2.2 Signature representation

Given a particular location, observed WiFi signals
consist of the WiFi access point identifiers (MAC
address) and corresponding received signal strength
(RSS). We define thelocation signature as distribu-
tions of signal strengths over a finite set of access
points received at that location. Precisely, the loca-
tion signature consists of a set of W distributions of
signal strengths over W access points and a multino-
mial distribution representing the number of appear-
ances of these W access points at this location.

While the frequency of appearance of W access
points is often modeled as discrete distribution of
size W , there are different methods to model the sig-
nal strengths over each access points and the cho-
sen method can affect the prediction accuracy signif-
icantly. Figure 3 shows the plot of measured WiFi
signals of one access points in 5-minute interval at a
particular location when mobile device is hold stay
still at a position. The blue bar and red curve show
the empirical histogram and the estimated Gaussian
distribution respectively.

Three methods of modeling, namely histogram,
smoothed histogram with kernel Gaussian function
and Gaussian are investigated in this works. With a
small bin of 1dBm, the signal strength is discrete into
V = 100 values from -100dBm to 0dBm and counts
over all received signals. The histogram signature
is the distribution of V normalized values. Kernel
Gaussian function K(y) = 1

2πσ2
k

exp( (y−µk)2

2 ) where

(µk, σ2
k) is kernel parameters and y is signal strength,

is introduced to smooth the histogram. The number
of parameters needs for storing a signature in his-
togram as well as smoothed histogram distributions
are the same and equal to W (1 + V ) parameters if
the pin is 1dBm. Gaussian distribution captures the
signals with just two parameters, mean and variance.

2.3 Prediction model and signature parame-
ter estimation

Location prediction in our work is cast as a classi-
fication problem. Most previous works has used the
Naive Bayes (NB) which the critical assumption is the

Figure 3: The variance of RSS at a investigated loca-
tion.

independence of received signals among access points
conditionally on the current location. One model
to deal with correlation among attributes is Hidden
Naive Bayes (HNB) (Zhang et al. 2005). It creates a
hidden parent node for each attribute node, captur-
ing the influence from other nodes. Below we briefly
outline both the NB and HNB.

Let C ∈ {1, ..., K} be the location random
variable where K is number of locations, Xm ∈
{1, ..., W} represents the m-th access point ran-
dom variable, Ym ∈ {1, ..., V } represent the signal
strength corresponding to m-th access point where
W is number of access points, M is number of ac-
cess points of an observation and V is number of
discrete values of signal strength. Signature pa-
rameters are estimated from a set of training data
of N observations D = {o1, ...,oN} where on =
(c(n), x

(n)
1 , y

(n)
1 , ..., x

(n)
M , y

(n)
M ), n = 1, ..., N . In the pre-

diction phase, the predicted location c∗ is inferred
based on current observation o = (x1, y1, ..., xM , yM ).

2.3.1 Naive Bayes

Figure 4 shows the NB. The joint distribution
P (C, X1, Y1, . . . , XM , YM ) is given by:

P (C)
M∏

m=1

P (Xm|C)P (Ym|C, Xm)

where the distribution of access point x given a loca-
tion c, P (Xm = x|C = c) is multinomial (W -size pa-
rameter πc), the probability of signal strength y given
location c and access point x, P (Ym = y|C = c,Xm =
x), is normalized histogram (V -size vector parameter
γc,x), smoothed histogram (V -size vector parameter
ηc,x), Gaussian (two parameters µc,x and σ2

c,x) respec-
tively. Without any prior knowledge about the cur-
rent location c, the distribution P (C = c) could be
assigned as uniform.

Let the identify function I(a, b) = 1 if a = b else
= 0, in maximum likelihood estimation framework,
the sufficient statistics are:

nc =
N∑

n=1

M∑
m=1

I(c(n), c)

n(y)
c,x =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x)I(y(n)

m , y)

n(x)
c =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x)

The parameters of P (Xm|C) are estimated as
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Figure 4: Naive Bayes model.

π̂(x)
c =

n
(x)
c + 1

nc + W

The parameters of P (Ym|C, Xm) are differently es-
timated according to three methods of representation.
In histogram case, the parameters are as follows

γ̂(y)
c,x =

n
(y)
c,x + 1

n
(x)
c + V

In smoothed case, the parameters are estimated
as:

η̂(y)
c,x =

m
(y)
c,x∑V

y=1 m
(y)
c,x

where

m(y)
c,x =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x)K(y − y(n)

m )

In the Gaussian case, the mean and variance are

µ̂c,x =
mc,x

nc,x

σ̂2
c,x =

m2
c,x

nc,x

where

mc,x =
N∑

n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x)y(n)

m

and

m2
c,x =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , x)(y(n)

m − µc,x)2

At the prediction step, the location is found by
finding the location having the highest likelihood:

c∗ ∝ arg max
c∈{1,...,K}

P (o|c)P (c)

= arg max
c∈{1,...,K}

P (c)
M∏

m=1

P (xm|c)P (ym|c, xm)

where Bayes’ rule is used.

2.3.2 Hidden Naive Bayes

HNB relaxes the independent assumption in the NB
by letting attributes depends on each other. In our
case the HNB approximates the full correlation of ac-
cess points by creating a hidden parent variable Hm
for each variable Ym and then linearly simplifies the

conditional probabilities. Figure 5.a and 5.b show
fully connected node Ym and its HNB approximation.
The joint distribution P (C, X1, Y1, . . . , XM , YM ) is
defined as:

P (C)
M∏

m=1

P (Xm|C)P (Ym|Y−m, Xm, C)

where distribution of access point xm given location
c P (Xm = x|C = c) is multinomial and the dis-
tribution of signal strength ym of access point xm
given location c and a set of signal strengths Y−m =
{Y1 = y1, ..., Ym−1 = ym−1, Ym+1 = ym+1, ..., YM} of
other access points P (Ym = ym|Y−m, Xm = xm, C =
c) is also a multinomial.

In (Zhang et al. 2005), P (Ym|Y−m, Xm, C) is rep-
resented by P (Ym|Hm, Xm, C) and is formulated as:

M∑

j=1,j 6=m

wxm,xj |cP (Ym|Yj , Xj , Xm, C)

where
∑M

m=1,j 6=i wXm,Xj |C = 1.
The weight wxixj |c of two access points xi and xj

conditional on location c is defined in (Zhang et al.
2005):

wxi,xj |c =
IP (xi, xj |c)∑M

j=1,j 6=i IP (xi, xj |c)
where IP (xi, xj |c) is the conditional mutual informa-
tion

IP (xi, xj |c) = H(xi|c) + H(xj |c)−H(xi, xj |c)

and H(xi|c) is the entropy of access point xi and
H(xi, xj |c) is the joint entropy of xi and xj :

H(xi|c) = −
V∑

yi=1

P (yi|xi, c) log P (yi|xi, c)

and

H(xi, xj |c) = −
V∑

yi=1

V∑
yj=1

P (yi, yj |xi, xj , c)

log P (yi, yj |xi, xj , c)

Defining the all distributions in HNB as multino-
mial where the parameters of P (yi|yj , xj , xi, c) is V -
size vector τxi|xj ,yj ,c, the parameter of P (xi|c) is W -
size vector πc, the parameter of P (yi|xi, c) is V -size
vector γxi|c and the parameter of P (yi, yj |xi, xj , c) is
V × V -dimension matrix Φxi,xj |c.

The sufficient statistics in this case are:

nc =
N∑

n=1

I(c(n), c)

n(xi)
c =

N∑
n=1

M∑
m=1

I(c(n), c)I(x(n)
m , xi)

n(yi)
c,xi

=
N∑

n=1

M∑
m=1

I(c(n), c)I(x(n)
m , xi)I(y(n)

m , yi)
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Figure 5: (a) Model when received signals are fully
dependent and (b) its approximation, the HNB.

n(yi,yj)
c,xi,xj

=
N∑

n=1

M∑
m=1

M∑

l=1,l 6=m

I(c(n), c)I(x(n)
m , xi)

I(y(n)
m , yi)I(x(n)

l , xj)I(y(n)
l , yj)

The parameters of P (yi|xi, c), P (yi, yj |xi, xj , c)
and P (yi|yj , xj , xi, c) are estimated as follows (Zhang
et al. 2005):

π̂(xi)
c =

n
(xi)
c + 1

nc + W

γ̂
(yi)
xi|c =

n
(yi)
c,xi + 1
nc + V

Φ̂(yi,yj)

xi,xj |c =
n

(yi,yj)
c,xi,xj + 1
nc + V 2

τ̂
(yi)
xi|xj ,yj ,c =

n
(yi,yj)
c,xi,xj + 1

n
(yj)
c,xj + V

Similar to NB model, at the classification step, the
location is found by finding the location having the
highest likelihood:

c∗ ∝ arg max
c∈{1,...,K}

P (c|o)P (c)

= arg max
c∈{1,...,K}

P (c)
M∏

i=1

P (xi|c)

M∑

j=1,j 6=i

wxi,xj |cP (yi|yj , xj , xi, c)

Again, without any prior knowledge about current
location, the probability P (c) is assigned to uniform
distribution and have no effect during classification
step.

3 Experiments

We conducted experiments comparing the NB with
the HNB. In the case of NB, we consider three cases
wherein the RSS is represented as a histogram (Model
I, NB+H), smoothed histogram using a kernel Gaus-
sian function (Model II, NB+K), and the Gaussian
(Model III, NB+G). In the case of HNB, the RSS
is represented by a histogram (Model IV, HNB+H).
In order to investigate realistic settings, three envi-
ronments were defined: A–no humans present, B–
humans present but not moving, and C–humans mov-
ing during testing and training. Investigated results

Figure 6: Layout of office space used in the experi-
ments.

illustrate that the system performance will be signifi-
cant affected with human presence and especially hu-
man in moving (Xiang et al. 2004). RSS is processed
using both with and without overlap window. The
system is predicted in a time slot of every 2 seconds.
The non-overlap window is 2s while overlap window
size is 4 seconds with 2 second overlap.

The system was set up in a corridor area whose
layout is depicted in Figure 6 (corridor is indicated
in yellow). The building is equipped with an IEEE
802.11b wireless network with 2.4 GHz frequency
bandwidth consisting of three Cisco Aironet 1200 Se-
ries access points. The calibration and testing pro-
gram was run on a Sony Vaio VGN-UX17GP under
Windows XP with a built-in wireless card (Intel(R)
PRO/Wireless 3945ABG). We modeled the environ-
ment as 12 locations (1-12) with the distance be-
tween two neighboring locations being 4 meters. For
each scenario described above, training data was col-
lected for each location in 5 minutes intervals with
approximately 300 observations. The calibration data
12locations× 15minutes× 3environments = 9hours is
randomly divided to 3 parts, 1 for training and 2 test-
ing.

The system performance is evaluated by using two
measures of accuracy (meters) and precision (percent-
age) adapted in (Liu et al. 2007). While the accuracy
is predefined according to the calibration data, the
precision is the distribution of distance error between
the estimated location and the true location. The
data collected for each location belong to a region
with the radius of 2m, therefore the precision with
accuracy 2m is the recall rate of which is measured
as the ratio of estimated location and ground truths.

Table 1 shows the precision for four models in
twelve scenarios. Overall, model NB+H is marginally
better compared to the other models, especially in
noisy environments. The rate decreases gradually as
noise is introduced as a result of allowing moving hu-
mans and objects in the environment, and increases
when tuning techniques are integrated.

In terms of tuning techniques, overlap window
yields improved results of approximately 10% in sce-
narios where humans are moving. While the use of an
adjacency matrix improves only 2% in performance,
it does reduce computation time considerably in case
of large-scale environment because of its role of clus-
tering.

Surprisingly, the HNB with more complex and
computational model, does not demonstrate superior
performance compared to simpler models. On the
other hand, although obtained performance is slightly
lower, model NB+G shows potential opportunity to
be deployed as large-scale system in real environ-
ment because of its useful characteristics such as com-
pressed signature and simple prediction engine.



Table 1: Precision rate (%) when accuracy is 2 meters.
Environment A (no humans) B (humans static) C (humans moving)

Window(overlap) 2s 4s(2s) 2s 4s(2s) 2s 4s(2s)

Adjacency constraint No Yes No Yes No Yes No Yes No Yes No Yes

I (NB+H) 99.09 99.19 99.34 99.39 93.25 93.92 96.88 97.10 74.22 77.14 85.36 85.64

II (NB+K) 99.19 99.29 99.14 99.14 92.06 93.84 95.77 96.07 70.16 72.89 79.98 80.54

III (NB+G) 95.22 95.62 96.83 96.89 90.88 92.14 94.51 94.81 67.51 68.90 77.43 78.73

IV (HNB+H) 99.39 99.19 99.39 99.39 87.69 89.54 92.95 93.03 70.25 72.61 78.94 80.92
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Figure 7: Indoor navigator prototype is developed
using Marauder.NET framework.

4 Marauder

Several potential applications can be developed based
on our proposed framework such as indoor navigator
and blind positioning assistant. Figure 7 shows an in-
door navigator application named Marauder, working
under Windows XP platform and running in portable
device Sony Vaio VGN-UX17GP. This application
support end-users to import background maps, setup
calibration regions in preparation step and locate
where we are in the building. Existing background
map is listed in top-right panel where their names
represent hierarchical relationship such as building,
floor, section so so on. In the bottom-right panel,
set of calibrated regions of the current map are easy
to adjust/add/remove. The wide center area shows
the current map where the red crossing sign tells us
where we are in this map. While the green triangle
button is enable for realtime location prediction, the
red circle button supports for recording the signatures
in training phase. To release user out of application
monitor or support visual impaired, voice guidance
assistant could be triggered with black human button
on the toolbar. Besides, there are several other func-
tions such as navigating and zooming (menu View)
and prediction engine mode (menu Tools) and man-
aging parameter and reporting (menu Options) built
in the menubar on the top of GUI.

5 Conclusion

A framework is proposed to provide indoor position-
ing capabilities for an array of potential applications
such as indoor navigator, visual-impaired assistant or
indoor surveillance system. We present a systematic
study of two probabilistic models, the Naive Bayes
and Hidden Naive Bayes, for positioning classifica-
tion using WiFi signals. We also have experimented
with various methods of modeling signal strengths,
histogram, smoothed histogram and Gaussian in sev-

eral different conditions of real environments. The re-
sults show that simple Bayesian models can be used
to provide a reliable location detection accuracy. The
precision is nearly perfect in non-human environment,
around 95% while people are still and 85% in moving
circumstance. Surprisingly, HNB model only shows
same performance in non-human case and slightly less
accuracy in most of remaining scenarios.
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