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Abstract— When navigating in an unknown environment
for the first time, a natural behavior consists in memorizing
some key views along the performed path, in order to use
these references as checkpoints for a future navigation mission
taking a similar path. This assumption is used in this paper as
the basis of a navigation framework for wheeled mobile robots
in indoor environments. During a human-guided teleoperated
learning step, the robot performs paths which are sampled
and stored as a set of ordered key images, acquired by a
standard embedded camera. The set of these obtained visual
paths is topologically organized and provides a visual memory
of the environment. Given an image of one of the visual
paths as a target, the robot navigation mission is defined as a
concatenation of visual path subsets, called visual route. When
running autonomously, the robot is controlled by a visual

servoing law adapted to its nonholonomic constraint. Based on
the regulation of successive homographies, this control guides
the robot along the reference visual route without explicitly
planning any trajectory. Real experiment results illustrate the
validity of the presented framework.

Index Terms— Visual Navigation, Visual Memory, Visual

Servoing for Mobile Robots

I. INTRODUCTION

Vision is a central clue of most of recent mobile robots

navigation frameworks. The authors of [4] accounts of

twenty years of works at the meeting point of mobile

robotics and computer vision communities. Often used

among more ”traditional” embedded sensors - proprio-

ceptive sensors like odometers as exteroceptive ones like

sonars - it provides accurate localization methods. In many

works, and especially those dealing with indoor naviga-

tion as in [8], computer vision techniques are used in

a landmark-based framework. Identifying extracted land-

marks to known references allows to update the results

of the localization algorithm. These methods are based on

some knowledges about the environment, such as a given

3D model or a map built online. They generally rely on

a complete or partial 3D reconstruction of the observed

environment through the analysis of data collected from

disparate sensors. The mobile robot can thus be localized

in an absolute reference frame. Both motion planning and

robot control can then be designed in this space. The

results obtained by the authors of [15] leave to be forcasted

that such a framework will be reachable using a single

camera. However, although an accurate global localization

is unquestionably useful, our aim is to build a complete

vision-based framework without recovering a the position

of the mobile robot with respect to a reference frame. The

authors of [4] call this kind of framework a qualitative

approach of navigation.

The principle of this approach is to represent the robot

environment with a bounded quantity of images gathered

in a set called visual memory. In [14], this concept is

exploited to control the 6 dof of a robotic arm under

large displacements. A set of images is extracted from

a previously learnt database which describes successive

targets for a global visual servoing task. The authors do

not consider the kinematic constraints of a mobile robot.

In the context of mobile robotics, [12] also proposes to

use a sequence of images, but recorded during a human

teleoperated motion, and called View-Sequenced Route

Reference. This concept underlines the close link between

a human-guided learning and the performed paths during

an autonomous run. However, the automatic control of the

robot in [12] is not formulated as a visual servoing task.

In this paper, we propose a complete image-based frame-

work (i.e from environment learning to control) for mobile

robots navigation. A sequence of images, acquired during

a human-guided learning, allows to derive paths driving

the robot from its initial to its goal locations. In order to

reduce the complexity of the image sequences, only key

views are stored and indexed on a visual path. The set of

visual paths can be interpreted as a visual memory of the

environment. The visual memory is structured as a graph

which takes into account the environment topology. A

navigation task consists then in performing autonomously a

visual route which is a concatenation of visual paths. The

visual route connects thus in the sensor space the initial

and goal configurations. Section II details more precisely

this point.

The Section III deals with the vision-based control scheme

designed to control the robot motions along a visual route.

The nonholonomic constraints of most current wheeled

mobile robots makes the classical visual servoing methods

unexploitable since the camera is fixed on the robot [18].

However, motivated by the development of 2D 1/2 visual-

servoing method proposed by Malis et al (see [11]), some

authors have investigated the use of homography and

epipolar geometry to stabilize mobile robots [5], [3]. In

this paper, because the notions of visual route and path

are very closed, we turn the nonholonomic visual-servoing

issue into a path following one. The designed control law
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Fig. 1. Building a visual memory: Into the rooms (a) and (b) and the
corridor (c), the paths rΨp have been learnt by teleoperating the robot.
As a result, the graph (d) represents the topological organization of the
visual memory. The blue circles show the vertices

does not need any explicit off-line path planning step.

In Section IV, experiments on a small indoor wheeled

mobile robot illustrate the implementation of the proposed

framework.

II. VISUAL MEMORY AND ROUTES

In [4], approaches using a ”memorization” of images

of the environment taken from an embedded camera are

ranked among mapless navigation systems. Indeed, as

proposed in [12] or in [9], any notion of map nor topology

of the environment appears, neither to build the reference

set of images, nor for the automatic guidance of the robot.

The first step of our framework consists on a learning

stage to build the visual memory. The visual memory

is structured according to the environment topology to

reduce the computational cost. We assume that the features

observed by the camera are quasi-static. However, the

remainder of the environment is not restricted to staticity,

since both perception and control algorithms are robust to

dynamic constraints such as occlusions.

A. Structure of the visual memory

The learning stage relies on the human experience. The

user guides the mobile robot into its workspace. In the case

of an urban vehicle for instance, as proposed in [15], the

user manually drives the robot along all the streets where

it will go down in an autonomous way. To each street is

associated a visual path, which is a set of key images

ordered from the beginning to the end of the street. We

use a similar learning approach in an indoor environment.

The user guides the mobile robot along one or several paths

into each room where the robot is authorized to go (see

Figure 1 (a),(b) and (c)). A visual path rΨp is then stored

and indexed as the pth learnt path in the rth room.

1) Visual paths: A visual path rΨp is composed of n

key images:

rΨp = {rIp
i |i = {1, 2, . . . , n}}

For control purpose (refer to Section III), the authorized

motions during the learning stage are assumed to be limited

to those of a car-like vehicle, which only goes forward. The

following Hypothesis 2.1 formalizes these constraints.

Hypothesis 2.1: Given two frames RFi and RFi+1, re-

spectively associated to the mobile robot when two suc-

cessive key images Ii and Ii+1 of a visual path Ψ were

acquired, there exists an admissible path ψ from RFi to
RFi+1 for a car-like vehicle whose turn radius is bounded,

and which only moves forward.

Moreover, because the controller is vision-based, the robot

is controllable from rIp
i to rIp

i+1 only if the hereunder

Hypothesis 2.2 is respected.

Hypothesis 2.2: Two successive key images Ii and Ii+1

contain a set Pi of matched visual features, which can be

tracked along a path performed between RFi and RFi+1.

During the acquisition of a visual path, the Hypothesis

2.2 constrains the choice of the key images. Two main

approaches have been implemented in our laboratory. The

first one, described in [1], uses planar patterns tracking.

A new key image Ii+1 is stored when a pattern, which

has been tracked since Ii was acquired, is likely to leave

the image. In the second approach, proposed in [15], Ii+1

is stored if the camera motion between Ii and Ii+1 is

sufficient to ensure a good 3D reconstruction of matched

interest points, and if the number of interest points is

upper than a fixed threshold. In this case, Pi is the set

of all correctly matched points between Ii and Ii+1. As

a consequence of Hypothesis 2.1 and 2.2, each visual

path rΨp corresponds to an oriented edge which connects

two configurations of the robot’s workspace. Moreover, the

number of key images of a visual path is directly linked

to the human-guided path complexity. According to this

parameter, we define the value of a visual path as its

cardinal.

2) Visual memory vertices: In order to connect two

visual paths, the terminal extremity of one of them and

the initial extremity of the other one must be constrained

as two consecutive key images of a visual path. The paths

are then connected by a vertex, and two adjacent vertices

of the visual memory are connected by a visual path (see

Figure 1 (d)).

Proposition 2.1: Given two visual paths

Ψp1
= {Ip1

i |i = {1, 2, . . . , n1}} and Ψp2
=

{Ip2

i |i = {1, 2, . . . , n2}}, if the two key images Ip1
n1
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and Ip2

1 abide by both Hypothesis 2.1 and 2.2, then a

vertex connects Ψp1
to Ψp2

.

We also assume this Proposition 2.1 in the particular case

where the terminal extremity of a visual path Ψp1
is the

same key image as the initial extremity of another visual

path Ψp2
. This is useful in practice, when building the

visual memory.

3) A strongly connected digraph: According to Sections

II-A.1 and II-A.2, the visual memory structure is defined

as a digraph, whose arcs are the visual paths. It is yet nec-

essary that this digraph is strongly connected. Indeed, this

condition warrants that any vertex of the visual memory is

attainable from every others, through a set of visual path.

B. Visual route

A visual route describes the robot’s mission in the sensor

space. Given two key images of the visual memory Ic

and Ig, corresponding respectively to the current and goal

locations of the robot, a visual route is a set of key images

which describes a path from Ic to Ig , as presented in

Figure 2. In practice, Ic is not exactly a key image. It is

then necessary to determine which stored key image is the

closest one to Ic. This can be done in an off-line stage,

as Remazeilles et al propose in [14], by comparing the

photometric invariants of the request image with those of

the images store onto the visual memory. Assuming that

the user is able to point out which is the room r where

the robot is staying, the search of the closest image is

bounded to the learnt visual paths in r. The visual route is

the minimum length path of the visual memory connecting

two vertices associated to Ic and Ig . According to the

definition of the value of a visual path, the length of a

path is the sum the values of its arcs. The minimum length

path is obtained in a very simple way, using Dijkstra’s

algorithm. Consequently, the visual route results from the

concatenation of indexed visual paths. Given two visual

paths Ψp1
and Ψp2

, respectively containing n1 and n2

indexed key images, the concatenation operation of Ψp1

and Ψp2
is defined as follows:

Ψp1
⊕ Ψp2

=
{

I
p1,2

j |j = {1, . . . , n1, n1 + 1, . . . , n1 + n2}
}

I
p1,2

j =

{

Ip1

j if j � n1

Ip2

j−n1
if n1 � j � n1 + n2

The visual route describes a set of consecutive states that

the image has to reach in order that the robot joins the goal

configuration from the initial one. The robot motions are

controlled along the visual route using the data provided

by the embedded camera. The next section deals with this

issue.

III. VISUAL ROUTE FOLLOWING

Visual-servoing is often considered as a way to achieve

positioning tasks. Classical methods, based on the task

function formalism, are based on the existence of a dif-

feomorphism between the sensor space and the robot’s

configuration space. Due to the nonholomic constraints of

most of wheeled mobile robots, under the condition of

rolling without slipping, such a diffeomorphism does not

exist if the camera is rigidly fixed to the robot. In [18], the

authors add extra degrees of freedom to the camera. The

camera pose can then be regulated in a closed loop.

In the case of an embedded and fixed camera, the control

of the camera is generally based on wheeled mobile robots

control theory [16]. In [10], a car-like robot is controlled

with respect to the projection of a ground curve in the

image plane. The control law is formalized as a path

following problem. More recently, in [5] and [3], a partial

estimation of the camera displacement between the current

and desired views has been exploited to design vision-

based control laws. The camera displacement is estimated

by uncoupling translation and rotation components of an

homography matrix. In [5], a time-varying control allows

an asymptotical stabilization on a desired image. In [3],

a trajectory following task is achieved. The trajectory to

follow is defined by a prerecorded video and the control

law is proved stable using Lyapunov-based analysis. In our

case, unlike a whole video sequence, we deal with a set of

relay images which have been acquired from geometrically

spaced out points of view.

A visual route following can be considered as a sequence of

visual-servoing tasks. A stabilization approach could thus

be used to control the camera motions from a key image

to the next one. However, a visual route is fundamentally

a path. In [13], the authors propose to plan the trajectories

of image features directly in the sensor space from the first

image to the last one. These trajectories are then used as

references to control a robotic arm.

To design the controller, described in the sequel, the key

images of the reference visual route are considered as

consecutive checkpoints to reach in the sensor space. The

control problem is formulated as a path following to guide

the nonholonomic mobile robot along the visual route.
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A. Assumptions and models

Let Ii, Ii+1 be two consecutive key images of a

given visual route to follow and Ic be the current im-

age. Let us note Fi = (Oi,Xi,Yi,Zi) and Fi+1 =
(Oi+1,Xi+1,Yi+1,Zi+1) the frames attached to the robot

when Ii and Ii+1 were stored and Fc = (Oc,Xc,Yc,Zc)
a frame attached to the robot in its current location. Figure

3 illustrates this setup. The origin Oc of Fc is on the axle

midpoint of a cart-like robot, which evolutes on a perfect

ground plane.

The control vector of the considered cart-like robot is

u = [V, ω]T where V is the longitudinal velocity along

the axle Yc of Fc, and ω is the rotational velocity around

Zc. The hand-eye parameters (i. e. the rigid transformation

between Fc and the frame attached to the camera) are

supposed to be known.

According to Hypothesis 2.2, the state of a set of visual

features Pi is known in the images Ii and Ii+1. Moreover

Pi has been tracked during the learning step along the path

ψ between Fi and Fi+1. The state of Pi is also assumed

available in Ic (i.e Pi is in the camera field of view). The

task to achieve is to drive the state of Pi from its current

value to its value in Ii+1.

B. Principle

Consider the straight line Γ = (Oi+1,Yi+1) (see Figure

4). The control strategy consists in guiding Ic to Ii+1 by

regulating asymptotically the axle Yc on Γ. The control

objective is achieved if Yc is regulated to Γ before the

origin of Fc reaches the origin of Fi+1. This can be done

using chained systems. Indeed in this case chained system

properties are very interesting. A chained system results

from a conversion of a mobile robot non linear model into

an almost linear one [16]. As long as the robot longitudinal

velocity V is non zero, the performances of path following

can be determined in terms of settling distance [17]. The

settling distance has to be chosen with respect to robot and

perception algorithm performances.
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Fig. 4. Control strategy

The lateral and angular deviations of Fc with respect to

Γ to regulate can be obtained through partial Euclidean

reconstructions as described in the next section.

C. Evaluating Euclidean state

In the sequel, we suppose that Pi = {pik, k = 1 · · ·n}
is a set of image points of Pi+1. These points are matched

with the set of image points Pc = {pck, k = 1 · · ·n}
of Ic. Let Π be a 3D reference plane defined by three 3D

points whose projections onto the image plane belong to Pi

(and Pc). The plane Π is given by the vector πT = [n∗ d∗]
in the frame Fi+1, where n∗ is the unitary normal of Π in

Fi+1 and d∗ is the distance from Π to the origin of Fi+1. It

is well known that there is a projective homography matrix

G, relating the image points of Pi and Pc [7]:

αkpik = Gpck + βke

where αk is a positive scaling factor and βk is a scaling

factor, null if the target point belongs to Π. Given at least

four matched points belonging to Π, G can be estimated

by solving a linear system. If the plane Π is defined by

3 points, at least five supplementary points are necessary

to estimate the homography matrix [7]. Assuming that the

camera calibration K is known, the Euclidean homography

of plane Π is estimated as H = K−1GK and it can be

decomposed into a rotation matrix and a rank 1 matrix:

H = Rc
i+1 + tc

i+1

n∗
⊤

d∗
(1)

As exposed in [6], it is possible from H to determine the

camera motion parameters, that is Rc
i+1 and

t
c
i+1

d∗ . The

normal vector n∗ can also be determined, but the results are

better if n∗ has been previously well estimated (note that

it is the case in indoor navigation with a camera looking

at the ceiling for instance). In our case, the mobile robot

is supposed to move on a perfect ground plane. Then an

estimation of the angular deviation θ between Fc and Fi+1

can be directly extracted from Rc
i+1. Furthermore, we can

get out from
t

c
i+1

d∗ the lateral deviation y up to a scale factor

between the origin of Fc and a straight line Γ.

As a consequence, the control problem can be formulated



as following Γ in regulating to zero y and θ before the

origin of Fc reaches the origin of Fi+1

D. Control law

Exact linearization of nonlinear models of wheeled mo-

bile robot under the assumption of rolling without slipping

is a well known theory, which has already been applied in

many vehicle guidance applications, as in [17] for a car-

like vehicle, and in our previous works (see [2]). The used

state vector of the robot is X =
[

s y θ
]⊤

, where

s is the curvilinear coordinate of a point M, which is

the orthogonal projection of the origin of Fc on Γ. The

derivative of this state give the following state space model:






ṡ = V cos θ

ẏ = V sin θ

θ̇ = ωc

(2)

The state space model (2) is converted into a chained

system of dimension 3
[

a1 a2 a3

]⊤
. Deriving this

system with respect to a1 gives an almost linear system.

By choosing a1 = s and a2 = y, and thanks to classical

linear automatics, it is then possible to design an asymptot-

ically stable guidance control law, which performances are

theoretically independent to the longitudinal velocity V :

ω(y, θ) = −V cos3 θKpy − |V cos3 θ|Kd tan θ (3)

Kp and Kd are gains which set the performances of the

control law. They must be positive for the control law

stability. Their choice determine a settling distance for the

control, i. e. the impulse response of y with respect to

the covered distance by the point M on Γ. However, as

y is estimated up to a scale factor 1

d∗ , this modifies the

performances of the control law (3). In practice, to alleviate

this difficulty, we choose Kp and Kd for a given d∗ that we

though maximum. As said before, the control performances

are independent to V . Then V can be fixed or tuned by a

supervisor. However, V has to be non-null to allow the

regulation. Then, in practice, V is controlled in an open

loop at the first and the last image of the visual route.

IV. EXPERIMENTS

Fig. 5. Following a visual route: the previously learnt visual path, about
10m long, is materialized on the ground. The pictures were taken during
an autonomous run

The proposed framework is implemented on a PekeeTM

robot which is controlled from an external PC. A small

1/3” CMOS camera is embedded on the robot and looks at

the ceiling. Ceiling images are used for two main purposes.

Firstly, extracted features from an image of the ceiling or

from the top of the walls during a visual path learning

ought to be recovered in an autonomous run under similar

conditions.

Secondly, the ceiling is generally a plane parallel to the

ground plane. Then, it is quite easy to give a good approx-

imation of the normal vector n∗ to the reference plane Π
in order to evaluate an homography. If the camera frame is

confounded with the robot frame Fc, we can assume that

n∗ =
[

0 0 1
]

. The Euclidean homography matrix

H has thus a very simple expression. Indeed, as the

displacement between Fi+1 and Fc only consists of one

rotation θZc and two translations tXcXc and tY cYc, H is

given by (refer to equation (1)):

H =





cos θ − sin θ tXc

sin θ cos θ tY c

0 0 1



 (4)

Therefore, H has only three degrees of freedom. Only

two points lying on Π and matched in Ii+1 and Ic

are theoretically necessary to estimate H. The angular

deviation θ with respect to Γ can be estimated directly

from the computation of H. The lateral deviation y can

also be estimated since it is the Xi+1 coordinate of the

origin of Fc:

y = −tXc cos θ − tY c sin θ (5)

Thus, from the computation of the Euclidean homography

H, the state of Fc with respect to the straight line Γ can

easily be determined.

The Figure 6 illustrates the evolution of planar patterns

(1) (2) (3)

(4) [...] (5)

(6) (7) (8)

Fig. 6. Evolution of the image space when the robot is regulated between
two consecutive key image: in each image, the yellow square is the current
state of the tracker, the red one is the state to reach. At image (7), a new
reference state is given for the tracker. The image (6) is thus considered
close to the previous reference key image: the control has succeeded.

tracked during the robot motion along a given visual route.

These tracked planar patterns have been extracted while

the user was creating a visual path which is included



into the visual route to be followed. They result from the

extraction of a set of interest points, regarding oriented

gradient maxima into a rectangular area selected by the

user in the current image. An algorithm, based on particle

filtering, provides a robust tracking of planar patterns with

respect to partial occlusion and to illumination changes.

Details on both pattern extraction and tracking can be found

in [1].

To create a visual path, the user specifies the beginning of

the learning. Then he teleoperates the robot and selects, into

the current image, areas which contain possible interesting

features. The remainder of the key image selection is then

automatic (see [1]). The user indicates when the path to

learn has been performed. Then, the new visual path is

stored.

At the first step of an autonomous run, the current camera

image has to be located into the visual memory. The

tracking of learnt planar pattern in this image is then

automatic. As a consequence, the user must have chosen

at least one reference attitude of the robot which has to

be associated with one key image. If the robot has ever

achieved a mission since it has been started up, the current

image is already supposed to be closed to a key image. At

each frame, the tracker provides the coordinates of a current

tracked planar pattern. H is then computed thanks to the

knowledge of this pattern in the key image to reach Ii+1.

A key image is assumed to be reached when a distance

between the current points coordinates and the desired one

goes under a fixed threshold. The reference path, which is

represented on the Figure 5 by the white squares which are

lying on the ground, has been acquired as a visual route of

fifteen key images. The corresponding path length is about

10m. The longitudinal velocity V was fixed to 0.2m.s−1.

When the robot stops at the end of the visual route, the

final errors in the image corresponds to a positioning error

around 5cm and an angular error about 3◦. Nevertheless,

note that the robot has been stopped roughly, by setting

V to zero since the last key image of the visual route

has been detected. Moreover, both camera intrinsic and

hand-eye parameters has been roughly determined. The

positioning accuracy depends above all on the threshold

which determines if a key image is reached. Our future

works will improve that point.

V. CONCLUSION

This paper presents an original image-based navigation

framework dedicated to nonholonomic mobile robots. The

approach is illustrated in the context of indoor navigation.

We propose to learn the environment as a graph of visual

paths, called visual memory. A navigation mission into

this visual memory is a visual route. A visual route is

made of a sequence of key images of the environment

which describes, in the sensor space, an admissible path

for the robot. This visual route can be performed thanks

to a visual-servoing control law, which is adapted to the

robot nonholonomy and does not require any absolute

geometrical localization of the robot.

Future works will be devoted to relax the staticity constraint

of the environment. We will try to analyse and to take

into account environment modifications, which may occur

between learning steps and autonomous runs, in both visual

route building and following.
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