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Indoor navigation: state of the art and future 
trends
Naser El-Sheimy and You Li* 

Abstract 

This paper reviews the state of the art and future trends of indoor Positioning, Localization, and Navigation (PLAN). 
It covers the requirements, the main players, sensors, and techniques for indoor PLAN. Other than the navigation 
sensors such as Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS), the environmental-
perception sensors such as High-Definition map (HD map), Light Detection and Ranging (LiDAR), camera, the fifth 
generation of mobile network communication technology (5G), and Internet-of-Things (IoT) signals are becoming 
important aiding sensors for PLAN. The PLAN systems are expected to be more intelligent and robust under the emer-
gence of more advanced sensors, multi-platform/multi-device/multi-sensor information fusion, self-learning systems, 
and the integration with artificial intelligence, 5G, IoT, and edge/fog computing.

Keywords: Navigation, Indoor positioning, Information fusion, Wireless localization, Dead reckoning, Database 
matching
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Introduction
�e Positioning, Localization, and Navigation (PLAN) 

technology has been widely studied and successfully 

commercialized in many applications such as mobile 

phones and unmanned systems. In particular, indoor 

PLAN technology is becoming increasingly important 

with the emergence of new chip-level Micro-Electrome-

chanical System (MEMS) sensors, positioning big data, 

and Artificial Intelligence (AI) technology, as well as the 

increase of public interest and social potential.

The market value of indoor navigation: social bene�ts 

and economic value

�e global indoor PLAN market is expected to reach $ 

28.2 billion by 2024, growing at a Compound Annual 

Growth Rate (CAGR) of 38.2% (Goldstein 2019). Indoor 

PLAN has attracted the attention of not only consumer 

giants such as Apple and Google but also self-driving 

players such as Tesla and Nvidia. �is is because the 

emerging vehicle applications (e.g., autonomous driving 

and connected vehicles) need indoor-PLAN capability. 

Compared with traditional vehicles, unmanned vehicles 

face three important problems: PLAN, environmen-

tal perception, and decision-making. A vehicle needs to 

PLAN itself into the surrounding environment before 

making decisions. �erefore, only by solving the indoor 

PLAN can fully autonomous driving and location ser-

vices be achieved.

Social benefits Accurate PLAN can serve safety and 

medical applications and benefit special groups such as 

the elderly, children, and the disabled. Meanwhile, PLAN 

technology can bring a series of location services, such 

as Mobility as a Service (MaaS), which increases travel 

convenience and security, and reduces carbon emission 

(through changing owned vehicles to shared ones). Also, 

reliable PLAN technology can reduce road accidences, 

94% of which are caused by human errors (Singh 2015).

Economic values As a demander of indoor PLAN, 

autonomous driving technology is expected to reduce 

the ratio of owned to shared vehicles to 1:1 by 2030 

(Schönenberger 2019). By 2050, autonomous cars will be 

expected to bring savings of 800 billion dollars annually 
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by reducing congestion, accidents, energy consumption, 

and time consumption (Schönenberger 2019). �e huge 

social and economic benefits promote the demand for 

PLAN technology facing the autonomous driving and 

mass consumer markets.

Classi�cation of indoor navigation from market 

perspective

PLAN technology is highly related to market demand. 

Table  1 shows the accuracy requirements and costs of 

several typical indoor PLAN applications.

In general, for the applications that require higher 

accuracy, the facilities and equipment costs are corre-

spondingly higher. In many scenarios (e.g., the mass-mar-

ket ones), the minimum equipment installation cost and 

equipment cost are important factors that limit the scal-

ability of PLAN technology.

Industry and construction require the PLAN accuracy 

at the centimeter- or even millimeter-level. For example, 

the accuracy requirements for machine guidance and 

deformation analysis are 1–5  cm and 1–5  mm, respec-

tively. �e corresponding cost is in the $ 10,000 level 

(Schneider 2010).

Compared with industry and construction, the PLAN 

accuracy requirements for autonomous driving are lower. 

However, the application scene is much larger and has 

more complex changes; also, the cost is more restrictive. 

Such factors increase the challenge of PLAN in autono-

mous driving. �e Society of Automotive Engineers 

divides autonomous driving into L0 (no automation), L1 

(driver assistance), L2 (partial automation), L3 (condi-

tional automation, which requires drivers to be ready to 

take over when the vehicle has an emergency alert), L4 

(high automation, which does not require any user inter-

vention but is only limited to specific operational design 

domains, such as areas with specific facilities and High-

Definition maps (HD maps), and L5 (fully automation) 

(SAE-International 2016). In most situations, autono-

mous cars mean L3 and above. �ere is still a certain 

distance from L5 commercial use (Wolcott and Eustice 

2014). An important bottleneck is that PLAN technol-

ogy is difficult to meet the requirements in the entire 

environment.

�ere are various derivations and definitions of the 

accuracy requirement of autonomous driving. Table  2 

lists several of those derivations and definitions.

Table 1 Accuracy requirements and costs of typical indoor PLAN applications

Application Accuracy requirement Cost

Industry and construction (Schneider 2010) Centimeter-level to millimeter-level $ 10,000 level

Autonomous vehicles (Basnayake et al. 2010; 
Levinson and Thrun 2010; NHTSA 2017; Reid 
et al. 2019; Agency 2019; Stephenson 2016; 
Nvidia 2020)

Decimeter-level to centimeter-level $ 1,000 level to $ 10,000 level

Indoor mapping (Cadena et al. 2016) Decimeter-level to centimeter-level $ 1,000 level

First responder (Rantakokko et al. 2010) Decimeter-level in horizontal, floor-level in height $ 1,000 level

Pedestrian applications (Dodge 2013) Meter-level in horizontal, floor-level in height Use existing consumer devices; infrastruc-
ture deployment cost of $ 10 level per 100 
 m2-level area

Cellular emergency (FCC 2015) 80% within 50 m Use existing cellular systems

Table 2 Derivations and de�nitions of accuracy requirement for autonomous driving

Reference Analysis of accuracy requirement of autonomous cars

Research (Basnayake et al. 2010) Within 5 m, within 1.5 m, and within 1.0 m for which-road, which-lane, and where-in-lane, respectively, in V2X 
applications

Report (NHTSA 2017) 1.5 m (1 sigma, 68%) tentatively for lane-level information for safety applications

Research (Reid et al. 2019) For passenger vehicles operating, the bounds of lateral and longitudinal position errors are respectively 0.57 m 
(95% probability in 0.20 m) and 1.40 m (95% probability in 0.48 m) on freeway roads, and both 0.29 m (95% 
probability in 0.10 m) on local streets

Research (Levinson and Thrun 2010) Centimeter positioning accuracy with Mean Square Error (MSE) within 10 cm is sufficiently accurate for public 
roads

Report (Agency 2019) The accuracy of autonomous driving to be within 20 cm in horizontal and within 2 m in height

Research (Stephenson 2016) Active vehicle control in Advanced Driver Assistance Systems (ADAS) and autonomous driving applications 
require an accuracy better than 0.1 m

Industry (Nvidia 2020) The goal is centimeter-level
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�e research work (Basnayake et  al. 2010) shows the 

accuracy requirements in Vehicle-to-Everything (V2X) 

applications for which-road (within 5  m), which-lane 

(within 1.5  m), and where-in-lane (within 1.0  m). �e 

National Highway Safety Administration (NHTSA 2017) 

reports a requirement of 1.5  m (1 sigma, 68% probabil-

ity) tentatively for lane-level information for safety appli-

cations. �e research work (Reid et  al. 2019) derives an 

accuracy requirement based on road geometry standards 

and vehicle dimensions. For passenger vehicle operat-

ing, the bounds of lateral and longitudinal position errors 

are respectively 0.57  m (95% probability in 0.20  m) and 

1.40 m (95% probability in 0.48 m) on freeway roads, and 

both 0.29 m (95% probability in 0.10 m) on local streets. 

In contrast, the research work (Levinson and �run 

2010) believes that centimeter positioning accuracy (with 

a Root Mean Square (RMS) error of within 10 cm) is suf-

ficient for public roads, while the report (Agency 2019) 

defines the accuracy for autonomous driving to be within 

20 cm in horizontal and within 2 m in height. Meanwhile, 

the research work (Stephenson 2016) reports that active 

vehicle control in ADAS and autonomous driving appli-

cations require an accuracy better than 0.1  m. Beyond 

research, the goal for autonomous driving is set at the 

centimeter-level by many autonomous-driving compa-

nies (e.g., (Nvidia 2020)). To summarize, autonomous 

driving requires the PLAN accuracy at decimeter-level 

to centimeter-level. �e current cost is in the order of $ 

1000 to $ 10,000 (when using three-Dimensional (3D) 

Light Detection and Ranging (LiDAR)).

For indoor mapping, the review paper (Cadena et  al. 

2016) shows that the accuracy within 10 cm is sufficient 

for two-Dimensional (2D) Simultaneous Localization and 

Mapping (SLAM). Indoor mapping is commonly con-

ducted with a vehicle that moves slower in a smaller area 

when compared with autonomous driving. �e cost of a 

short-range 2D LiDAR for indoor mapping is in the order 

of $ 1000.

�e research work (Rantakokko et al. 2010) illustrates 

that first responders require indoor PLAN accuracy of 

1 m in horizontal and within 2 m in height. �e cost for 

first responders is at the $ 1,000-level.

For mass-market applications, it is difficult to find a 

standard of PLAN accuracy requirement. An accepted 

accuracy classification is that 1–5  m is high, 6–10  m is 

moderate, and over 11 m is low (Dodge 2013). �e verti-

cal accuracy requirement is commonly on the floor-level. 

For such applications, it is important to use existing con-

sumer equipment and reduce base station deployment 

costs. On average, the deployment in a 100  m2-level area 

costs approximately $ 10-level. �e E-911 cellular emer-

gency system uses cellular signals and has an accuracy 

requirement of 80% for an error of 50 m (FCC 2015).

�e cost of indoor PLAN applications depends on the 

sensors used. �e main sensors and solutions will be 

introduced in the following section.

Main players of indoor navigation

Various researchers and manufacturers investigate 

indoor PLAN problems from different perspectives.

Table 3 lists the selected research works that can reflect 

the typical navigation accuracy for different sensors, 

while Table 4 shows the selected players from the indus-

trial. �e primary sensor, reported accuracy, and sensor 

costs are covered.

�e actual PLAN performance is related to the factors 

such as infrastructure deployment (e.g., sensor type and 

deployment density), sensor grade, environment factors 

(e.g., the significance of features and area size), and vehi-

cle dynamics.

In general, different types of sensors have various prin-

ciples, measurement types, PLAN algorithms, perfor-

mances, and costs. It is important to select the proper 

sensor and PLAN solution according to requirements.

State of the art
To achieve an accurate and robust PLAN for autonomous 

vehicles, multiple types of sensors and techniques are 

required. Figure 1 shows part of the PLAN sensors that 

have been in autonomous cars. �is section summarizes 

the state-of-the-art sensors and PLAN techniques.

Sensors for indoor navigation

�e sensors include environmental monitoring and 

awareness sensors (e.g., HD map, LiDAR, RAdio Detec-

tion and Ranging (RADAR), camera, WiFi/BLE, 5G, 

and Low-Power Wide-Area Network (LPWAN)), and 

the navigation sensors (e.g., Inertial Navigation Systems 

(INS) and GNSS). �e advantages and challenges for 

each sensor are also introduced and compared.

Environmental monitoring and awareness sensors (aiding 

sensors for navigation system)

HD maps

Car-mounted road maps have been successfully com-

mercialized since the beginning of this century. Also, 

companies such as Google and HERE have launched 

indoor maps for public places. �ese maps contain roads, 

buildings, and Point-of-Interest (POI) information and 

commonly have meter-level to decimeter-level accuracy. 

�e main purpose of these maps is to assist people to 

navigate and perform location service applications. �e 

main approaches for generating these maps are satel-

lite imagery, land-based mobile mapping, and onboard 

GNSS crowdsourcing.
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In the past decade, HD maps have received extensive 

attention. An important reason is that traditional maps 

are designed for people, not machines. �erefore, the 

accuracy of the traditional map cannot meet the require-

ments of autonomous driving. Also, the traditional 

map does not contain enough real-time information for 

autonomous driving, which requires not only informa-

tion about the vehicle, but also information about exter-

nal facilities (Seif and Hu 2016). With these features, the 

HD map is not only a map but also a "sensor" for PLAN 

and environment perception. Table 5 compares the tradi-

tional map and HD map.

HD map is key to autonomous driving. It is generally 

accepted that HD maps require centimeter-level accuracy 

and ultra-high (centimeter-level or higher) resolution. 

Accordingly, creating HD maps is a challenge. �e crea-

tion and updating of the current HD maps are depend-

ent on professional vehicles equipped with high-end 

LiDAR, cameras, RADARs, GNSS, and INS. For example, 

Baidu spent 5 days building an HD map in a Beijing park 

by using million-dollar-level mapping vehicles (Synced 

2018). Such a generation method is costly; also, it is dif-

ficult to update an HD map continuously.

To mitigate the updating issue, crowdsourcing based 

on car-mounted cameras has been researched. �is 

method can lower the requirement of extra data collec-

tion if the images from millions of cars are used properly. 

However, this task is extremely challenging. First, it is 

difficult to obtain the PLAN solutions that are accurate 

enough for HD map updating with crowdsource data. 

Furthermore, to update the HD map in an area effectively 

where changes have occurred, there are challenges in 

transmitting, organizing, and processing massive crowd-

sourced data. For example, one hour of autonomous driv-

ing may collect one terabyte of data (Seif and Hu 2016). It 

takes 230 days to transfer one week’s autonomous driving 

data using WiFi (MachineDesign 2020). �us, dedicated 

onboard computing chips, high-efficiency commu-

nication, and edge computing are needed. �erefore, 

crowdsourcing HD maps requires cooperation from car 

manufacturers, map manufacturers, 5G manufacturers, 

and terminal manufacturers (Abuelsamid 2017).

LiDAR

LiDAR systems use laser light waves to measure distances 

and generate point clouds (i.e., a set of 3D points). �e 

distance is computed by measuring the time of flight of 

a light pulse, while the direction of a transmitted laser is 

tracked by gyros. By matching the measured point cloud 

with that stored in a database, an object can be located.

LiDAR is an important PLAN sensor on unmanned 

vehicles and robots. Figure 2 compares the PLAN-related 

performance of the camera, LiDAR, and RADAR.

�e main advantages are its high accuracy and data 

density. For example, the Velodyne HDL-64E LiDAR has 

a measurement range of over 120 m, with ranging accu-

racy of 1.5 cm (1 sigma) (Glennie and Lichti 2010). �e 

observation can cover 360° horizontally, with up to 2.2 

million points per second (Velodyne 2020). Such features 

Table 4 Companies and products in indoor PLAN

Primary sensor Company Performance Sensor cost

Camera Mobileye Decimeter-level to centimeter-level $100 level to $10 level

Camera (infrastructural) VICON Centimeter-level and higher $10,000 level to $1,000 level for a specific area (e.g., a park-
ing lot)

LiDAR Velodyne Decimeter-level to centimeter-level $10,000 level to $1,000 level

LiDAR (infrastructural) SICK Decimeter-level to centimeter-level $10,000 level for a specific area

HD map HERE Centimeter-level Costly. A team of professional cars works for days to create 
a regional HD map

Inertial sensors (vehicle) Profound positioning 2% of travel distance Low-cost IMU at $ 100 to $ 10 level

Inertial sensors (pedestrian) TDK-InvenSense 4–8% of distance; 1% of distance 
with a fixed device

Low-cost IMU at $ 100 to $ 10 level

GNSS Trimble Decimeter-level to centimeter-level $ 1,000 level

UWB Decawave Decimeter-level $ 100 level for a set of anchors that are used to cover a 
place of 100  m2 level

Ultrasonic Marvelmind Decimeter-level $ 100 level for a set of anchors that are used to cover a 
place of 100  m2 level

WiFi/BLE Cisco 50% within 5 m and 90% within 10 m Infrastructure deployment cost of $ 10 level per 100 
 m2-level area

5G Huawei No commercial PLAN system yet $1000 to $ 100 level per base station. Coverage range from 
kilometer-level to within 100 m
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make LiDAR a strong candidate in providing high-defini-

tion surrounding environment information.

�e main challenges of using LiDAR are the high price 

and large size. Also, the current LiDAR system has a 

rotation mechanism on the top of the carrier, which may 

have a problem in its life span. Some manufacturers try to 

use solid-state LiDAR to alleviate these problems. Apple 

Fig. 1 Part of PLAN sensors on an autonomous vehicle

Table 5 Comparison of traditional map and HD map

Time Accuracy Generation method Challenge

Traditional map (since 2000) Meter-level to decimeter-level (Tom-
Tom 2020; Liu et al. 2020), road-level

Satellite imagery, land-based mobile 
mapping, and onboard GNSS crowd-
sourcing

Not significant

HD maps (since 2010) Centimeter-level (Liu et al. 2020), 
where-in-lane level

A team of professional cars equipped 
with high-end LiDAR, cameras, GNSS, 
and INS (Synced 2018)

Crowdsourcing using car-mounted 
cameras (Abuelsamid 2017) (chal-
lenging)

High requirements on accuracy, reso-
lution, and updating rate; high data 
and computational loads

Fig. 2 Comparison of camera, LiDAR, and RADAR performance
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unveils a new iPad Pro with a LiDAR scanner, which may 

bring new directions to indoor PLAN.

LiDAR measurements are used for PLAN through 2D 

or 3D matching. For example, the research works (de 

Paula Veronese et  al. 2016) and (Wolcott and Eustice 

2017) match LiDAR measurements with a 2D grid map 

and a 3D point cloud map, respectively. �e PLAN per-

formance is generally better when the surrounding envi-

ronment features are significant and distinct from other 

places; otherwise, performance is limited. �e LiDAR 

measurement performance will not be affected by light 

but may be affected by weather conditions.

Camera

Cameras are used for PLAN and perception by collect-

ing and analyzing images. Compared with LiDAR and 

RADAR, the camera has a much lower cost. Also, the 

camera has the advantages such as rich feature informa-

tion and color information. Also, the camera is a passive 

sensing technology, which does not transmit signals and 

thus does not have errors on the signal-propagation side. 

Moreover, the current 2D computer vision algorithm is 

more advanced, which has also promoted the application 

of cameras.

Similar to LiDAR, the camera depends on the sig-

nificance of environmental features. Also, the camera is 

more susceptible to weather and illumination conditions. 

Its performance degrades under harsher conditions, such 

as in darkness, rain, fog, and snow. �us, it is important 

to develop camera sensors with self-cleaning, longer 

dynamic range, better low light sensitivity, and higher 

near-infrared sensitivity. Furthermore, the amount of raw 

camera data is large. Multiple cameras on an autonomous 

vehicle can generate gigabyte-level raw data every minute 

or even every second.

Some PLAN solutions use cameras, instead of a high-

end LiDAR, to reduce hardware cost. An example is 

Tesla’s autopilot system (Tesla 2020). �is system con-

tains many cameras, including three forward cameras 

(wide, main, and narrow), four side cameras (forward 

and rearward), and a rear camera. To assure the PLAN 

performance in the environments that are challenging for 

cameras, RADARs and ultrasonic sensors are used.

�e two main camera-based PLAN approaches are 

visual odometry/SLAM and image matching. For the 

former, the research work (Mur-Artal and Tardós 2017) 

can support visual SLAM using monocular, stereo, and 

Red–Green–Blue-Depth (RGB-D) cameras. For image 

matching, road markers, signs, poles, and artificial fea-

tures (e.g., Quick Response (QR) codes) can be used. �e 

research work (Gruyer et  al. 2016) uses two cameras to 

take the ground road marker and match it with a preci-

sion road marker map. In contrast, the research works 

(Wolcott and Eustice 2014) and (McManus et  al. 2013) 

respectively use images from monocular and stereo cam-

eras to match the 3D point cloud map generated by a sur-

vey vehicle equipped with 3D LiDAR scanners.

RADAR

RADAR has also received intensive attention in the 

autonomous driving industry. Similar to LiDAR, the 

RADAR determines the distance by measuring the 

round-trip time difference of the signal. �e difference 

is that the RADAR emits radio waves, instead of laser 

waves. Compared with LiDAR, the RADAR generally has 

a further measurement range. For example, the Bosch 

LRR RADA can reach up to 250 m. Also, the price of a 

RADAR system has dropped to the order of $ 1,000 to 

$ 100. Moreover, RADAR systems are lightweight, which 

makes it possible to embed them in cars.

On the other hand, the density of RADAR measure-

ments is much lower than that of LiDARs and cameras. 

�erefore, RADAR is often used for obstacle avoid-

ance, rather than as the main sensor of PLAN. Similar 

to LiDAR, the measurement performance of RADAR 

is not affected by light but may be affected by weather 

conditions.

WiFi/BLE

WiFi and BLE are the most widely used indoor wireless 

PLAN technologies for consumer electronics. �e com-

monly used observation is RSS (Zhuang et al. 2016), and 

the typical positioning accuracy is at meter-level. Also, 

researchers have extracted high-accuracy measurements, 

such as CSI (Halperin et  al. 2011), RTT (Ciurana et  al. 

2007), and AoA (Quuppa 2020). Such measurements 

can be used for decimeter-level or even centimeter-level 

PLAN.

A major advantage of WiFi systems is that they can 

use existing communication facilities. In contrast, BLE 

is flexible and convenient to deploy. To meet the future 

Internet-of-�ings (IoT) and precise localization require-

ments, new features have been added to both the latest 

WiFi and BLE technologies. Table  6 lists the new WiFi, 

BLE, 5G, and LPWAN features that can enhance PLAN. 

WiFi HaLow (WiFi-Alliance 2020) and Bluetooth long 

range (Bluetooth 5) (Bluetooth 2017) are released to 

improve the signal range, while WiFi RTT (IEEE 802.11 

mc) (IEEE 2020) and Bluetooth direction finding (Blue-

tooth 5.1) (Bluetooth 2019) have been released for preci-

sion positioning.

5G/LPWAN

5G has attracted intensive attention due to its high speed, 

high reliability, and low latency in communication. Com-

pared with previous cellular technologies, 5G has defined 
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three application categories (Restrepo 2020), includ-

ing Ultra-Reliable and Low-Latency Communication 

(URLLC) for high-reliability (e.g., 99.999% reliable under 

500 km/h high-speed motion) and low-latency (e.g., mil-

lisecond-level) scenarios (e.g., vehicle networks, indus-

trial control, and telemedicine), enhanced Mobile Broad 

Band (eMBB) for high-data-rate (e.g., gigabit-per-second-

level, with a peak of 10 gigabits-per-second) and strong 

mobility scenarios (e.g., video, augmented reality, virtual 

reality, and remote officing), and massive Machine-Type 

Communication (mMTC) for application scenarios (e.g., 

intelligent agriculture, logistics, home, city, and environ-

ment monitoring) that have massive nodes which have a 

low cost, low power consumption, and low data rate.

5G has strong potential to change the cellular-based 

PLAN. First, the coverage range of 5G base stations may 

be shrunk from kilometers to hundreds of meters or 

even within 100  m (Andrews et  al. 2014). �e increase 

of base stations will enhance the signal geometry and 

mitigate Non-Line-of-Sight (NLoS) conditions. Second, 

5G has new features, including mmWave Multiple-Input 

and Multiple-Output (MIMO), large-scale antenna, and 

beamforming. �ese features make it possible to use 

multipath signals to enhance PLAN (Witrisal et al. 2016). 

�ird, 5G may introduce device-to-device communi-

cation (Zhang et  al. 2017a), which makes cooperative 

PLAN possible.

Meanwhile, the newly-emerged IoT signals and the 

Low-Power Wide-Area Network (LPWAN, e.g., long-

range (LoRa), Narrow Band-IoT (NB-IoT), Sigfox, and 

Long Term Evolution for Machines (LTE-M) have the 

advantages such as long-range, low-cost, low-power-

consumption, and massive connections (Li et al. 2020a). 

Figure 3 demonstrates the communication ranges of 5G 

and LPWAN signals, with a comparison with other wire-

less technologies.

5G and LPWAN systems provide a possibility for the 

wide-area localization in indoor and urban areas. Simi-

lar to 5G, LPWAN systems no longer require an extra 

communication module that costs $ 10 level in the cur-

rent PLAN systems. LPWAN signals are compatible with 

more and more smart home appliances. �ese nodes will 

increase the deployment density of IoT networks and 

thus enhance PLAN performance. Also, it is feasible to 

add new measurement types (e.g., TDoA (Leugner et al. 

2016) and AoA (Badawy et  al. 2014)) into the 5G and 

LPWAN base stations.

Most of the existing research on 5G and LPWAN based 

PLAN is based on theoretical analysis and simulation 

data because there are limited real systems. �e stand-

ard for mmWave signal has been late and therefore it is 

difficult to find the hardware for experimenting. �e 

accuracy ranges from 100-m-level to centimeter-level, 

depending on the base station deployment density and 

the type of measurement used. �e survey paper (Li et al. 

2020a) provides a systematic review of 5G and LPWAN 

standardizations, PLAN techniques, error sources, and 

mitigation. In particular, it summarizes the PLAN errors 

by end-device-related errors, environment-related errors, 

base-station-related errors, and data-related errors. It is 

important to mitigate these error sources when using 5G 

and LPWAN signals for PLAN purposes.

�ere are indoor PLAN solutions based on other types 

of environmental signals, such as the magnetic (Kok and 

Solin 2018), acoustic (Wang et al. 2017), air pressure (Li 

et  al. 2018), visible light (Zhuang et  al. 2019), and mass 

flow (Li et al. 2019a).

Navigation and positioning sensors

Inertial navigation system

An INS derives motion states by using angular-rate and 

linear specific-force measurements from gyros and accel-

erometers, respectively. �e review paper (El-Sheimy and 

Youssef 2020) summarizes the state of the art and future 

trends of inertial sensor technologies. INS is tradition-

ally used in professional applications such as military, 

aerospace, and mobile surveying. Since the 2000s, low-

cost MEMS-based inertial sensors were introduced into 

the PLAN of land vehicles (El-Sheimy and Niu 2007a, 

b). Since the release of the iPhone 4, MEMS-based iner-

tial sensors have become a standard feature on smart-

phones and have brought in new applications such as 

gyro-based gaming and pedestrian indoor PLAN. Table 7 

compares a typical inertial sensor performance in mobile 

mapping and mobile phones. Different grades of iner-

tial sensors have various performances and costs. �us, 

Table 6 New WiFi, BLE, 5G, and LPWAN features that can enhance PLAN

Technology New feature

WiFi Long range, low power consumption in WiFi HaLow (WiFi-Alliance 2020); high-precision ranging in WiFi RTT (IEEE 802.11 mc) (IEEE 2020)

BLE Long range in BT long range (BT 5) (Bluetooth 2017); high-precision direction finding in Bluetooth 5.1 (Bluetooth 2019)

5G Higher base station density (Andrews et al. 2014), mmWave Multiple-Input And Multiple-Output (MIMO), large-scale antenna, and 
beamforming (Witrisal et al. 2016), device-to-device communication (Zhang et al. 2017a), new measurement types (del Peral-Rosado 
et al. 2017)

LPWAN Low cost, low-power consumption, long range, new measurement types (Li et al. 2020a)
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it is important to select a proper type of inertial sensors 

according to application requirements.

�e INS can provide autonomous PLAN solutions, 

which means it does not require the reception of exter-

nal signals or the interaction with external environ-

ments. Such a self-contained characteristic makes it a 

strong candidate to ensure PLAN continuity and reli-

ability when the performances of other sensors are 

degraded by environmental factors. An important error 

source for INS-based PLAN is the existence of sen-

sor errors, which will accumulate and lead to drifts in 

PLAN solutions. �ere are deterministic and stochastic 

sensor errors. �e impact of deterministic errors (e.g., 

biases, scale factor errors, and deterministic thermal 

drifts) may be mitigated through calibration or on-

line estimation (Li et  al. 2015). In contrast, stochas-

tic sensor errors are commonly modeled as stochastic 

processes (e.g., white noises, random walk, and Gauss-

ian–Markov processes) (Maybeck 1982). �e statistical 

parameters of stochastic models can be estimated by 

the methods such as power spectral density analysis, 

Allan variance (El-Sheimy et al. 2007), and wavelet vari-

ance (Radi et al. 2019).

Fig. 3 Signal ranges of 5G, LPWAN, and other wireless technologies (Li et al. 2020a)

Table 7 Typical tactical- and consumer-grade inertial sensors

Items Tactical-grade (NovAtel 2020), typically used 
in mobile mapping

Consumer-grade (TDK-InvenSense 
2020), typically used in consumer 
electronics

Initial gyro bias 0.75 (°)/h 18,000 (°)/h

Gyro bias over − 40 to + 85 °C Not given 108 000 (°)/h

Gyro scale factor error 0.03% 3%

Accelerometer bias 1 ×  10–3 g
(g = 9.806 65 m/s2)

60 ×  10–3 g

Accelerometer bias over − 40 to + 85 °C Not given 180 ×  10–3 g

Accelerometer scale factor error 0.03% 3%

Cost $ 1,000 level $ 10 level
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Global navigation satellite system (as an initializer)

GNSS localizes a receiver using satellite multilateration. 

It is one of the most widely used and most well-com-

mercialized PLAN technology. Standalone GNSS and 

GNSS/INS integration are the mainstream PLAN solu-

tions for outdoor applications. In autonomous driving, 

the GNSS transfers from the primary PLAN sensor to 

the second core. �e main reason is that GNSS signals 

may be degraded in urban and indoor areas. Even so, 

high-precision GNSS is still important to provide an 

initial localization to reduce the searching space and 

computational load of other sensors (e.g., HD map and 

LiDAR) (Levinson et al. 2007).

�e previous boundaries between high-precision pro-

fessional and mass-market GNSS uses are blurring. A 

piece of evidence is the integration between high-pre-

cision GNSS techniques and mass-market chips. Also, 

the latest smartphones are being able to provide high-

precision GNSS measurements and PLAN solutions.

Table  8 lists the main GNSS positioning techniques. 

Single Point Positioning (SPP) and Differential-GNSS 

(DGNSS) are based on pseudo-range measurements, 

while Real-Time Kinematic (RTK), Precise Point Posi-

tioning (PPP), and PPP with Ambiguity Resolution 

(PPP-AR) are based on carrier-phase measurements. 

DGNSS and RTK are relative positioning methods 

that mitigate some errors by differencing measure-

ments across the rover and base receivers. In contrast, 

PPP and PPP-AR provide precise positioning at a sin-

gle receiver by using precise satellite orbit correction, 

clock correction, and parameter-estimation models. 

�ey commonly need minutes for convergence (Trim-

ble 2020).

�ere are other types of PLAN sensors, such as mag-

netometer, odometer, UWB, ultrasonic, and pseudolite. 

In recent years, there appears relatively low-cost UWB 

and ultrasonic sensors (e.g., (Decawave 2020; Marvel-

mind 2020). Such sensors typically can provide a deci-

meter-level ranging accuracy within a distance of 30 m. 

Also, Apple has built a UWB module into the iPhone 11, 

which may bring new opportunities for indoor PLAN. To 

summarize, Table 9 illustrates the principle, advantages, 

and disadvantages of the existing PLAN sensors.

Techniques and algorithms for indoor navigation

�e PLAN techniques include position-fixing, Dead-

Reckoning (DR), database matching, multi-sensor fusion, 

and motion constraints. Figure  4 demonstrates the 

indoor PLAN techniques. �e details are provided in the 

following subsections.

Position-�xing techniques

Geometrical position-fixing methods have been widely 

applied over the past few decades, especially in the field 

of satellite positioning and wireless sensor networks. �e 

basic principle is the geometric calculation of distance 

and angle measurements. By the type of measurement, 

position-fixing methods include range-based (e.g., multi-

lateration, min–max, centroid, proximity, and hyperbolic 

positioning), angle-based (e.g., multiangulation), and 

angle-and-range-based (e.g., multiangulateration). Fig-

ure 5 shows the basic principle of these methods.

Range-based methods

�e location of a device can be estimated by measuring 

its distance to at least three base stations (or satellites) 

whose locations are known. �e most typical method is 

multilateration (Guvenc and Chong 2009), which is geo-

metrically the intersection of multiple spheres (for 3D 

positioning) or circles (for 2D positioning). Also, the 

method has several simplified versions. For example, the 

min–max method (Will et al. 2012) computes the inter-

section of multiple cubes or squares, while the centroid 

method (Pivato et al. 2011) calculates the weighted aver-

age of multiple base station locations. Moreover, the 

proximity method (Bshara et al. 2011) is a further simpli-

fication by using the location of the closest base station. 

Meanwhile, the differences of device-base-station ranges 

can be used to mitigate the influence of device diversity 

and some signal-propagation errors (Kaune et al. 2011).

For position-fixing, the base station location is usually 

set manually or estimated using base-station localization 

approaches (Cheng et  al. 2005). �e distances between 

the device and the base stations are modeled as Path-Loss 

Models (PLMs) and parameters are estimated (Li 2006). 

To achieve accurate ranging, it is important to mitigate 

the influence of error sources (e.g., ionospheric errors, 

Table 8 GNSS positioning techniques

Technique Accuracy Measurement Methods for accuracy improvement

SPP Meter-level Pseudo-range None

DGNSS Decimeter-level to meter-level Pseudo-range Differential measurements

RTK Centimeter-level Carrier-phase Differential measurements, ambiguity resolution

PPP Decimeter-level to centimeter-level Carrier-phase Precise satellite orbit and clock corrections, float ambiguity

PPP-AR Similar to RTK Carrier-phase Precise satellite orbit and clock corrections, ambiguity resolution
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troposphere errors, wall effects, and human body effects). 

In addition, it is necessary to reduce the influence of end-

device factors (e.g., device diversity).

�e research work (Petovello 2003) describes the 

range-based PLAN algorithm and its quality control. 

Meanwhile, the research work (Langley 1999) proposes 

an index (i.e., the dilution of precision) for the evaluation 

of signal geometry. A strong geometry is a necessary con-

dition, instead of a necessary and sufficient condition, for 

accurate range-based localization because there are other 

error sources, such as the stochastic ones.

Angle-based methods

Triangulation, a typical AoA based PLAN method, com-

putes the device location by using the direction meas-

urements to multiple base stations that have known 

locations (Bai et al. 2008). When direction measurement 

uncertainty is considered, the direction measurement 

from two base stations will intersect to a quadrilateral. 

�e research work (Wang and Ho 2015) provides a theo-

retical derivation and performance analysis of the trian-

gulation method.

Angle-based PLAN solution can typically provide high 

accuracy (e.g., decimeter-level) in a small area (e.g., 30 m 

by 30 m) (Quuppa 2020). �e challenge is that AoA sys-

tems require specific hardware (e.g., an array of antennae 

and a phase-detection mechanism) (Badawy et al. 2014), 

which is complex and costly. �ere are low-cost angle-

based solutions such as that use RSS measurements from 

multiple directional antennae (Li et al. 2020b). However, 

for wide-area applications, both the angle measurement 

and PLAN accuracy are significantly degraded. �e Blue-

tooth 5.1 (Bluetooth 2019) has added the direction meas-

urement, which may change the angle-based PLAN.

Angle-and-range-based methods

Multiangulateration, a typical angle-and-range-based 

PLAN method, calculate the device location by using its 

Table 9 Principle, advantages, and disadvantages of PLAN sensors

Sensor Principle Advantage Disadvantage

HD map Use detailed road and infrastructure data 
for precise localization and environment 
perception

High accuracy
High resolution
Rich environment and infrastructure layers

High requirement on update and accuracy
High accuracy requirement
Costly in generation and maintenance

LiDAR Use infrared light waves to measure dis-
tances and generate point clouds

High ranging accuracy
Dense point cloud
Being used in consumer devices

High cost
Large size
The problem in the life span
Dependency on the significance of features

Camera Collect and analyze images for localization 
and perception purposes

Low cost
Dense point clouds with colors
Passive sensing

Sensitivity to illumination and weather
Dependency on the significance of features

RADAR Use radio waves for ranging and object 
detection

Low cost
Accurate ranging
Small size, being used in cars

Low measurement density
Cannot detect markers

WiFi/BLE Use local communication signals for 
localization

Existing infrastructure
Supported by consumer devices

Low accuracy by RSS
High power consumption in WiFi
Problems inherent to wireless signals (e.g., 

multipath, NLoS, and variation)

5G Use next-generation cellular signal for 
localization

Existing infrastructure
Supported by consumer devices
New features, such as miniaturized base 

station and mmWave MIMO

Low accuracy by RSS
Problems inherent to wireless signals
Current base station density is low

LPWAN Use IoT signals for localization Supported by IoT devices
Low cost
Low power consumption
Long range

Low accuracy by RSS
Problems inherent to wireless signals

INS Measure angular rates and linear specific 
forces to derive motion states

Self-contained
Robust in the short term
Off-the-shelf sensors in consumer devices
Full motion states

Relative navigation solution
High cost for high-end sensors
Significant errors for low-cost sensors

GNSS Localize device using satellite trilateration Global absolute position fixing
High precision when converged (with 

RTK/PPP)
Supported by consumer devices

Signal degradation in urban and indoor 
regions

Prone to jam and spoof
Relatively weak in attitude determination

UWB/ultrasonic Precise localization through precise rang-
ing

High-precision ranging
Cost is reducing, being used in consumer 

devices

Require extra infrastructure
Problems inherent to wireless signals
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relative direction and distance to a base station that has 

a known position. �is approach is widely used in engi-

neering surveying. For indoor PLAN, a solution is to 

localize a device by its direction to a ceiling-installed AoA 

base station (Quuppa 2020) and known ceiling height. 

�is approach is reliable, and it reduces the dependence 

on the number of base stations. However, the cost is high 

when using in wide-area applications.

In general, geometrical position-fixing methods are 

suitable for the environments (e.g., outdoors and open 

indoors) that can be well modeled and parameterized. 

By contrast, it is more challenging to use such methods 

in complex indoor and urban areas due to the existence 

of error sources such as multipath, NLoS conditions, 

and human-body effects. �e survey paper (Li et  al. 

2020a) has a detailed description of the error sources 

for position-fixing methods. It is difficult to alleviate 

the device-, signal-propagation-, and base-station-

related error sources by the position-fixing technique 

itself. �us, it is common to integrate with other PLAN 

techniques, such as DR and database matching.

Fig. 4 Techniques for indoor navigation

Fig. 5 Principle of position-fixing methods
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Dead-reckoning techniques

�e basic principle of DR technology is to derive the cur-

rent navigation state by using the previous navigation 

state and the angular and linear movements. �e angu-

lar and linear movements can be obtained by using the 

measurements of sensors such as inertial sensors, cam-

eras, magnetometers, and odometers. Among them, 

inertial sensors are most widely used for DR. �ere are 

two main DR algorithms based on inertial sensors: INS 

mechanization and PDR. �e former is widely used in 

land-vehicle, airborne, and shipborne PLAN applica-

tions, while the latter is a common method for pedestrian 

navigation. Figure 6 shows the flow of the INS mechani-

zation and PDR algorithms. INS can provide 3D naviga-

tion results, while PDR is a 2D navigation method.

�e INS mechanization works on the integration of 

3D angular rates and linear accelerations (Titterton et al. 

2004). �e gyro-measured angular rates are used to 

continuously track the 3D attitude between the sensor 

frame and the navigation frame. �e obtained attitude 

is then utilized to transform the accelerometer-meas-

ured specific forces to the navigation frame. Afterward, 

the gravity vector is added to the specific force to obtain 

the acceleration of the device in the navigation frame. 

Finally, the acceleration is integrated once and twice 

to determine the 3D velocity and position, respectively. 

�erefore, the residual gyro and accelerometer biases in 

general cause position errors proportional to time cubed 

and time squared, respectively.

In contrast, the PDR algorithm (Li et  al. 2017) deter-

mines the current 2D position by using the previous 

position and the latest heading and step length. �us, it 

consists of platform-heading estimation, step detection, 

and step-length estimation. �e platform heading is usu-

ally calculated by adding the device-platform misalign-

ment (Pei et al. 2018) into the device heading, which can 

be tracked by an Attitude and Heading Reference System 

(AHRS) algorithm (Li et al. 2015). �e steps are detected 

by finding periodical characteristics in accelerometer and 

gyro measurements (Alvarez et  al. 2006), while the step 

length is commonly estimated by training a model that 

contains walking-related parameters (e.g., leg length and 

walking frequency) (Shin et al. 2007).

�ere are DR algorithms based on other types of sen-

sors, such as visual odometry (Scaramuzza and Fraun-

dorfer 2011) and wheel odometry (Brunker et  al. 2018). 

Magnetometers (Gebre-Egziabher et  al. 2006) are also 

used for heading determination.

To achieve a robust long-term DR solution, there are 

several challenges, including the existence of sensor 

errors (Li et al. 2015), the existence of the misalignment 

angle between device and platform (Pei et al. 2018), and 

the requirement for position and heading initialization. 

Also, the continuity of data is very important for DR. In 

some applications, it is necessary to interpolate, smooth, 

or reconstruct the data (Kim et al. 2016).

DR has become a core technique for continuous and 

seamless indoor/outdoor PLAN due to its self-contained 

characteristics and robust short-term solutions. It is 

strong in either complementing other PLAN techniques 

when they are available or bridging their signal outages 

and performance-degradation periods.

Database-matching techniques

�e principle for database matching is to compute the 

difference between the measured fingerprints and the 

reference fingerprints in the database and find the closest 

match (Li et  al. 2020a). Database-matching techniques 

are used to process data from various sensors, such as 

cameras, LiDAR, wireless sensors, and magnetometers. 

�e database-matching process consists of the steps of 

feature extraction, database learning, and prediction. 

Figure 7 demonstrates the processes. First, valuable fea-

tures are extracted from raw sensor signals. Afterward, 

features at multiple reference points are combined to 

Fig. 6 Diagram of INS mechanization and PDR algorithms
Fig. 7 Diagram of database matching process
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generate a database. Finally, the real-time measured fea-

tures are compared with those in the database to localize 

the device.

According to the dimensions of measurements and the 

database, database-matching algorithms can be divided 

into the 1D (measurement)-to-2D (database) matching, 

the 2D-to-2D matching, the 2D-to-3D matching, and the 

3D-to-3D matching. In the 1D-to-2D matching, the real-

time feature measurement can be expressed as a vector, 

while the database is a matrix. Such a matching approach 

has been used to match features such as wireless RSS 

(Li et  al. 2017) and magnetic intensity (Li et  al. 2018). 

Examples of the 2D-to-2D matching are the matching 

of real-time image features (e.g., road markers) and an 

image feature database (e.g., a road marker map) (Gruyer 

et  al. 2016), and the matching of 2D LiDAR points and 

a grid map (de Paula Veronese et al. 2016). By contrast, 

the 2D-to-3D matching is a current hot spot. For exam-

ple, it matches images to a 3D point cloud map (Wolcott 

and Eustice 2014). Finally, an example of the 3D-to-3D 

matching is the matching of 3D LiDAR measurements 

and a 3D point cloud map (Wolcott and Eustice 2017).

According to the prediction algorithm, database-

matching algorithms can be divided into the determinis-

tic (e.g., nearest neighbors (Lim et al. 2006) and Iterative 

Closest Point (ICP) (Chetverikov et  al. 2002)) and sto-

chastic (e.g., Gaussian distribution (Haeberlen et  al. 

2004), Normal Distribution Transform (NDT) (Biber and 

Straßer 2003), histogram (Rusu et al. 2008), and machine-

learning-based) ones. Machine learning methods, such 

as Artificial Neural Network (ANN) (Li et  al. 2019b), 

random forests (Guo et  al. 2018), Deep Reinforcement 

Learning (DRL) (Li et  al. 2019c), and Gaussian Process 

(GP) (Hähnel and Fox 2006), have also been applied.

With the rapid development of machine-learning tech-

niques and the diversity in modern PLAN applications, 

database matching has been attracted even more atten-

tion than geometrical methods. �e database matching 

methods are suitable for scenarios that are difficult to 

model or parameterize. On the other hand, the inconsist-

ency between real-time measurement and the database is 

the main error source in database matching. Such incon-

sistency may be caused by the existence of new environ-

ments and varying environments and other factors. �e 

survey paper (Li et al. 2020a) has a detailed description of 

the error sources for database matching.

Multi-sensor fusion

�e diversity and redundancy of sensors are essential to 

ensure a high level of robustness and safety of the PLAN 

system. �is is because various sensors have different 

functionalities. In addition to their primary functional-

ity, each sensor has at least one secondary functionality 

to assist the PLAN of other sensors. Table 10 shows the 

primary and second functionality of different sensors in 

terms of PLAN.

Due to their various functionalities, different sensors 

provide different human-like senses. Table 11 lists PLAN 

sensors corresponding to different senses of the human 

body. �e same type of human-like sensors can provide a 

backup or augmentation to one another. Meanwhile, the 

different types of human-like sensors are complementary. 

�us, by fusing data from a diversity of sensors, extra 

robustness and safety can be achieved.

Table 10 Primary and secondary functionality of various sensors in terms of PLAN

Sensor Primary functionality Secondary functionality

HD map Precise localization and environment perception Constrain localization solutions through map matching

LiDAR Precise point-cloud-based localization Provide environment models and constraints

Camera Provide visual odometry and visual SLAM, or match 
images with a database

Provide environment models and constraints

RADAR Ranging and object detection Enhance cameras under challenging illumination conditions

INS Provide continuous self-contained position, velocity, 
and attitude

Bridge outages of other sensors, and aid signal acquisition of other sensors

Magnetometer Provide absolute heading Provide position through magnetic matching

Odometer Provide absolute velocity and relative distance Constrain the drift of INS errors, and bridge GNSS and vision signal outages

Pressure Provide absolute height Identify the floor level and constrain the drift of INS altitude errors

GNSS Provide absolute position, velocity and time Help initialization for DR and database matching

UWB Provide absolute position Provide augmentation to GNSS and INS in indoor and urban areas

Ultrasonic Provide absolute position Enhance navigation under challenging weather conditions

Visible light Provide absolute position Reliable landmark updates for DR

WiFi/BLE Provide absolute position Help initialization for INS and database matching

5G Provide absolute position Model multipath environment
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To be specific, for position-fixing and database-match-

ing methods, the loss of signals or features lead to out-

ages in the PLAN solution. Also, changes in the model 

and database parameters may degrade the PLAN per-

formance. To mitigate these issues, DR techniques can 

be used (El-Sheimy and Niu 2007a, b). Moreover, the use 

of other techniques can enhance position-fixing through 

more advanced base station position estimation (Cheng 

et  al. 2005), propagation-model estimation (Seco and 

Jiménez 2017), and device diversity calibration (He et al. 

2018). Also, the number of base stations required can be 

reduced (Li et  al. 2020b). On the other hand, position-

fixing and database-matching techniques can provide 

initialization and periodical updates for DR (Shin 2005), 

which in turn calibrate sensors and suppress the drift of 

DR results.

Database matching can also be enhanced by other tech-

niques. For example, the position-fixing method can be 

used to reduce the searching space of database-match-

ing (Zhang et  al. 2017b), predict the database in unvis-

ited areas (Li et  al. 2019d), and predict the uncertainty 

of database-matching results (Li et  al. 2019e). Also, a 

more robust PLAN solution may be achieved by integrat-

ing position-fixing and database-matching techniques 

(Kodippili and Dias 2010).

From the perspective of integration mode, there are 

three levels of integration. �e first level is loosely cou-

pling (Shin 2005), which fuses PLAN solutions from dif-

ferent sensors. �e second level is tightly-coupling (Gao 

et al. 2020), which fuses various sensor measurements to 

obtain a PLAN solution. �e third level is ultra-tightly-

coupling, which using the data or results from some sen-

sors to enhance the performance of other sensors.

Motion constraints

Motion constraints are used to enhance PLAN solu-

tions from the perspective of algorithms, instead of add-

ing extra sensors. Such constraints are especially useful 

for low-cost PLAN systems that are not affordable for 

extra hardware costs. For land-based vehicles, the Non-

Holonomic Constraints (NHC) can improve the head-

ing and position accuracy significantly when the vehicle 

moves with enough speed (Niu et  al. 2010), while the 

Zero velocity UPdaTe (ZUPT) and Zero Angular Rate 

Update (ZARU, also known as Zero Integrate Head-

ing Rate (ZIHR)) respectively provide zero-velocity and 

zero-angular-rate constraints when the vehicle is quasi-

static (Shin 2005). When the vehicle moves at low speed, 

a steering constraint can be applied (Niu et  al. 2010). 

Moreover, there are other constraints such as the height 

constraint (Godha and Cannon 2007) and the four-wheel 

constraint (Brunker et al. 2018).

For pedestrian navigation, ZUPT (Foxlin 2005) and 

ZARU (Li et al. 2015) are most commonly used. Also, the 

NHC and step velocity constraint (Zhuang et  al. 2015) 

have been applied. Furthermore, in indoor environments, 

constraints such as the corridor-direction constraint 

(Abdulrahim et al. 2010), the height constraint (Abdulra-

him et al. 2012), and the human-activity constraint (Zhou 

et al. 2015) are useful to enhance the PLAN solution.

Use cases

Multi-sensor-based indoor navigation has been utilized 

in various applications, such as pedestrians, vehicles, 

robots, animals, and sports. �is chapter introduces 

some examples. �ree of our previous cases on indoor 

navigation are demonstrated. �e used vehicle platforms 

include smartphones, drones, and robots.

Smartphones

�is case uses an enhanced information-fusion struc-

ture to improve smartphone navigation (Li et  al. 2017). 

�e experiment uses the built-in inertial sensors, WiFi, 

and magnetometers of smartphones. By combining the 

advantages of PDR, WiFi database matching, and mag-

netic matching, a multi-level quality-control mechanism 

is introduced. Some quality controls are presented based 

on the interaction of sensors. For example, wireless posi-

tioning results are used to limit the search scope for mag-

netic matching, to reduce both computational load and 

mismatch rate.

�e user carried a mobile phone and navigated in a 

modern office building (120  m by 60  m) for nearly an 

hour. �e smartphone has experienced multiple motion 

modes, including handheld horizontally, dangling with 

hand, making a call, and in a trouser pocket.

�e position results are demonstrated in Fig. 8. When 

directly fusing the data from PDR, WiFi, and magnetic 

in a Kalman filter, the results suffer from large posi-

tion errors. �e ratio of large position errors (greater 

than 15  m) reached 33.4%. Such a solution is not reli-

able enough for user navigation. By using the improved 

Table 11 PLAN sensors corresponding to  di�erent senses 

of the human body

Human sensing Smartphone Vehicle

Eyes Camera Camera, LiDAR

Ears GNSS, WiFi, BLE, UWB 
(new), 5G (future), 
microphone

GNSS, RADAR, ultrasonic, 
UWB, 5G (future), 
microphone

Moving direction Gyro, magnetometer Gyro, magnetometer

Moving distance Accelerometer Odometer, accelerometer

Memory Map HD map, map

Decision making Processor, algorithm Processor, algorithm
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multi-source fusion, the ratio of large errors was reduced 

to 0.8%. �is use case indicates the importance of sensor 

interaction and robust multi-sensor fusion.

Drones

�is use case integrated a low-cost IMU, a barometer, 

a mass-flow sensor, and ultrasonic sensors for indoor 

drone navigation (Li et  al. 2019a). �e forward velocity 

from the mass flow sensor and the lateral and vertical 

NHC can be utilized for 3D velocity updates.

Figure  9 shows the test scenario and selected results. 

Indoor flight tests were conducted in a 20  m by 20  m 

area with a quadrotor drone, which was equipped with 

an InvenSense MPU6000 IMU, a Honeywell HMC 5983 

magnetometer triad, a TE MS5611 barometer, a Sen-

sirion SFM3000 mass-flow sensor, and a Marvelmind 

ultrasonic beacon. Additionally, four ultrasonic beacons 

were installed on four static leveling pillars, with a height 

of 4 m.

When ultrasonic ranges were used, the system 

achieved a continuous and smooth navigation solution, 

with an approximate navigation accuracy of a centim-

eter to decimeter level. However, during ultrasonic sig-

nal outages, the accuracy was degraded to 0.2, 0.6, 1.0, 

1.3, 1.8, and 4.3 m in the mean value when navigating 

for 5, 10, 15, 20, 30, and 60 s, respectively.

Robots

�is use case integrated a photodiode and a cam-

era indoor robot navigation (Zhuang et  al. 2019). Fig-

ure 10 shows the test platform and selected results. �e 

size of the test area was 5  m by 5  m by 2.84  m, with 

five CREE T6 Light-Emitting-Diodes (LEDs) mounted 

evenly on the ceiling as light beacons. �e receiver used 

in the experiments contained an OPT101 photodiode 

and a front camera of a smartphone. �e receiver was 

mounted on a mobile robot at a height of 1.25 m.

Field test results showed that the proposed system 

provided a semi-real-time positioning solution with an 

average 3D positioning accuracy of 15.6 cm in dynamic 

tests. �e accuracy is expected to be further improved 

when more sensors are used.

Fig. 8 Inertial/ WiFi/ magnetic integrated smartphone navigation results (modified on the results reported in Li et al. (2017))
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Future trends
�is section summarizes the future trends for indoor 

PLAN, including the improvement of sensors, the use of 

multi-platform, multi-device, and multi-sensor informa-

tion fusion, the development of self-learning algorithms 

and systems, the integration with 5G/ IoT/ edge comput-

ing, and the use of HD maps for indoor PLAN.

Improvement of sensors

Table  12 illustrates the future trends of sensors in 

terms of PLAN. Sensors such as LiDAR, RADAR, iner-

tial sensors, GNSS, and UWB are being developed 

in the direction of low-cost and small-sized to facili-

tate their commercialization. For HD maps, reducing 

maintenance costs and increasing update frequency is 

key. �e camera may further increase its physical per-

formance such as self-cleaning, larger dynamic range, 

stronger low-light sensitivity, and stronger near-infra-

red sensitivity.

It is expected that the introduction of new wireless 

infrastructure features (e.g., 5G, LPWAN, WiFi HALow, 

WiFi RTT, Bluetooth long range, and Bluetooth direc-

tion finding) and new sensors (e.g., UWB, LiDAR, 

depth camera, and high-precision GNSS) in consumer 

devices will bring in new directions and opportunities 

for the PLAN society.

Fig. 9 INS/Barometer/Mass-flow/Ultrasonic integrated navigation (modified on the results reported in Li et al. (2019a))
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Multi-platform, multi-device, and multi-sensor information 

fusion

�e PLAN system will develop towards the integration of 

multiple platforms, multiple devices, and multiple sen-

sors. Figure 11 shows a schematic diagram of the multi-

ple-platform integrated PLAN.

With the development of low-cost miniaturized satel-

lites and Low Earth Orbit (LEO) satellite technologies, 

using LEO satellites to provide space-based navigation 

signal has become feasible. �e research paper (Cluzel 

et  al. 2018) uses LEO satellites to enhance the coverage 

of IoT signals. Also, the paper (Wang et al. 2018) analyzes 

the navigation signals from LEO satellites. In addition to 

the space-borne platform, there are airborne and under-

ground PLAN platforms. For example, the research paper 

(Sallouha et  al. 2018) uses unmanned aerial vehicles as 

base stations to enhance PLAN.

Collaborative PLAN is also a future direction. �e 

research in (Zhang et al. 2017a) has reviewed 5G coop-

erative localization techniques and pointed out that 

cooperative localization can be an important feature for 

5G networks. In the coming years, the characteristics 

of massive devices, dense base stations, and device-to-

device communication may make accurate cooperative 

localization possible. In addition to multiple devices, 

there may be multiple devices (e.g., smartphones, smart-

watches, and IoT devices) on the same human body or 

vehicle. �e information from such devices can also be 

used to enhance PLAN.

Self-learning algorithms and systems

Arti�cial intelligence

With the popularization of IoT and location-based ser-

vices, more complex and new PLAN scenarios will 

appear. If this is the case, self-learning PLAN algorithms 

and systems are needed. �ere are already research 

works that use artificial intelligence techniques in various 

PLAN modules, such as initialization, the switch of sen-

sor integration mode, and the tuning of parameters. �e 

research paper (Chen et al. 2020) uses ANN to generate 

Fig. 10 Photodiode/Camera integrated navigation (modified on the results reported in Zhuang et al. (2019))
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PLAN solution directly from inertial sensor data, while 

the research work (Li et al. 2019c) uses DRL to perform 

wireless positioning from another perspective. In the 

future, there will be a massive amount of data, which 

meets the requirement of artificial intelligence. Mean-

while, with the further development of artificial intelli-

gence algorithms, computing power, and communication 

Table 12 Future trends of PLAN sensors

Sensor Future trend

HD map Reduced maintenance cost (e.g., through crowdsourcing)
Improved update frequency

LiDAR Lower cost and smaller size
Longer range

Camera Improved physical performance (e.g., self-cleaning, improved dynamic 
range, stronger low-light sensitivity, and stronger near-infrared 
sensitivity)

RADAR Reduced cost
Improved measurement density

WiFi/BLE Longer range, lower power consumption
New range and direction measurements

5G Denser and more miniaturized base station
Multipath-assisted localization; cooperative localization
New range and direction measurements

LPWAN Higher base station density
New range and direction measurements

INS Lower sensor errors

GNSS Multi-frequency and multi-system
Smaller size and power consumption

UWB/Ultrasonic Reduced cost
Longer range of low-cost systems

Fig. 11 Schematic diagram of multiple-platform integrated PLAN
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capabilities, the integration between PLAN and artificial 

intelligence will become tighter.

Data crowdsourcing (e.g., co-location)

�e data from numerous consumer electronics and sen-

sor networks will make crowdsourcing (e.g., co-location) 

a reality. As mentioned in the HD map subsection, the 

crowdsourcing technique may fundamentally change 

the mode of map and HD map generation. Furthermore, 

using crowdsourced data can enhance PLAN perfor-

mance. For example, the crowdsourced data contains 

more comprehensive information than an ego-only car in 

teams of map availability and sensing range. On the other 

hand, as pointed out in (Li et  al. 2019e), how to select 

the most valuable data from the crowdsourced big data 

to update the database is still a challenge. It is difficult to 

evaluate the reliability of data automatically by the soft-

ware in the absence of manual intervention and lack of 

evaluation reference.

Integration with 5G, IoT, and edge/fog computing

As described in the 5G subsection, the development of 

5G and IoT technologies are changing PLAN. �e new 

features (e.g., dense miniaturized base stations, mm-

wave MIMO, and device-to-device communication) 

can directly enhance PLAN. Also, the combination of 

5G/IoT and edge/fog computing will bring new PLAN 

opportunities. Edge/fog computing allows data process-

ing as close to the source as possible, enables PLAN data 

processing with faster speed, reduces latency, and gives 

overall better outcomes. �e review papers (Oteafy and 

Hassanein 2018) and (Shi et  al. 2016) provide detailed 

overviews of edge computing and fog computing, respec-

tively. Such techniques may be able to change the exist-

ing operation mode on HD maps and for PLAN. It may 

become possible to online repair or optimize HD maps 

by using SLAM and artificial intelligence technologies.

HD maps for indoor navigation

HD maps will be extended from outdoors to indoors. �e 

cooperation among the manufacturers of cars, maps, 5G, 

and consumer devices have already shown its importance 

(Abuelsamid 2017). �e high accuracy and rich informa-

tion of the HD map make it a valuable indoor PLAN sen-

sor and even a platform that links people, vehicles, and 

the environment. Indoor and outdoor PLAN may need 

different HD map elements. �erefore, different HD 

maps may be developed according to different scenarios. 

Similar to outdoors, the standardization of indoor HD 

maps will be important but challenging.

Conclusion
�is article first reviews the market value, including the 

social benefits and economic values, of indoor navi-

gation, followed by the classification from the marker 

perspective and the main players. �en, it compares 

the state-of-the-art sensors, including navigation sen-

sors and environmental-perception (as aiding sensors 

for navigation), and techniques, including position-fix-

ing, dead-reckoning, database matching, multi-sensor 

fusion, and motion constraints. Finally, it points out 

several future trends, including the improvement of 

sensors, the use of multi-platform, multi-device, and 

multi-sensor information fusion, the development of 

self-learning algorithms and systems, the integration 

with 5G/IoT/edge computing, and the use of HD maps 

for indoor PLAN.
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