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Abstract: Indoor positioning applications are developing at a rapid pace; active visual positioning
is one method that is applicable to mobile platforms. Other methods include Wi-Fi, CSI, and PDR
approaches; however, their positioning accuracy usually cannot achieve the positioning performance
of the active visual method. Active visual users, however, must take a photo to obtain location
information, raising confidentiality and privacy issues. To address these concerns, we propose a
solution for passive visual positioning based on pedestrian detection and projection transformation.
This method consists of three steps: pretreatment, pedestrian detection, and pose estimation. Pre-
treatment includes camera calibration and camera installation. In pedestrian detection, features are
extracted by deep convolutional neural networks using neighboring frame detection results and
the map information as the region of interest attention model (RIAM). Pose estimation computes
accurate localization results through projection transformation (PT). This system relies on security
cameras installed in non-private areas so that pedestrians do not have to take photos. Experiments
were conducted in a hall about 100 square meters in size, with 41 test-points for the localization
experiment. The results show that the positioning error was 0.48 m (RMSE) and the 90% error was
0.73 m. Therefore, the proposed passive visual method delivers high positioning performance.

Keywords: passive visual positioning; pedestrian detection; region of interest attention model;
projection transformation

1. Introduction

With the application and development of technologies based on user positioning
information, location-based services are now growing at a rapid pace. However, after
decades of research, there are still no reliable products for indoor localization, although
demand is rapidly increasing [1]. Most of the work on indoor localization focuses on the
provision of a widely applicable scheme for indoor localization such as GPS. The global
navigation satellite system (GNSS) can provide excellent location accuracy and can be fully
used in outdoor environments, but in indoor environments, its signals are weak and easily
blocked or attenuated by buildings [2]. Therefore, indoor localization is still a challenging
and meaningful research topic [3].

Generally, indoor positioning methods fall into two categories. Some are focused on
fingerprinting-based localization algorithms, given their effectiveness and independence of
infrastructure [4–6]. Fingerprinting-based methods include Wi-Fi and magnetic fingerprint-
ing. Wi-Fi received signal strengths (RSS) or magnetic field strengths (MFS) are collected
and compared with data in a fingerprinting database based on the assumption that each
location has a unique signal feature [7]. This kind of scheme is easy to establish and can
achieve fine localization performance, but the signal patterns change over time and are
vulnerable to environmental changes, which means this method is only reliable for a short
term [8]. Furthermore, RSS or MFS require labor-intensive and time-consuming data collec-
tion, and there are many situations where different locations have the same signal patterns
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or a similar signal feature. To overcome the defects of these schemes, other schemes have
been proposed, such as radio frequency identification (RFID), pseudo-satellite, optical, 5G,
etc. However, the accuracy and robustness of these systems are not enough for wide use
due to the complexities of indoor environments.

For example, simultaneous localization and mapping (SLAM) relies on a variety of
sensors in practical applications. Real-time location calculation and reconstruction require
high computing power and expensive equipment [9,10]. Moreover, positioning based
on image library matching requires matching photos taken by pedestrians and images
in the image library. This method needs to build different image databases for different
scenes [11]. Pedestrians must take photos, raising privacy issues and inevitably leading to
differences in image quality, which reduce positioning accuracy.

To overcome the limitations of active visual localization, we proposed a passive vision
scheme. The passive visual positioning method exploits security cameras mounted in
public areas. Only police officers and administrators can see the pictures taken by security
cameras. Users just obtain their position and do not access the pictures, so this method
avoids confidentiality and privacy problems. In this study, we demonstrate passive visual
localization based on pedestrian detection and projection transformation, which does not
require users to take a photo and can achieve sub-meter level localization accuracy. In this
system, security cameras set at a certain height capture pictures of the monitoring area in
real time. A server obtains the real-time pictures from the Wi-Fi and performs a computing
operation to extract accurate and precise pedestrian location information.

The main contributions of this study can be summarized as follows:

1. Our visual localization algorithm is a passive vision scheme. Unlike active visual localiza-
tion schemes, users do not need to take photos when they want to obtain their position.

2. Our visual localization algorithm makes full use of inter-frame detection results and
CAD map information. Unlike other visual detection methods, we propose a new
spatial attention model that fuses CAD map information and detection results from
previous frames. We call this model the region of interest attention model (RIAM).

3. Our visual localization algorithm is not limited to the detection results. Compared
with other visual detection methods, not only do we know if there are people in the
scene, but we also know exactly where the pedestrians are. We recover individual 2D
positions from the pedestrian detection pixel results.

4. Our detection method achieved 83.49% detection accuracy, representing an increase of
about 1.56% over the YOLOv3 approach. Compared with the YOLOv3 +PT method,
our passive visual positioning method increased average accuracy by about 12.2%,
achieved an average accuracy of 40.4 cm, and about 90% of the results were less than
73.2 cm from the actual position.

The paper proceeds as follows: Section 2 provides a brief overview of related work. The
system overview and methods are described in detail in Section 3. Experiment evaluations
are presented in Section 4. Section 5 is the conclusion, where we discuss some potential
future research.

2. Related Work

Our task of indoor localization is related to several areas of recent interest in computer
vision, such as visual localization, target detection, and visual pose estimation.

At present, visual localization systems can be roughly divided into two categories.
Active visual positioning methods are the most common visual localization methods,
whereby users must use photographic imaging equipment to build a relationship between
themselves and surrounding environments. However, passive visual localization methods
are based on security cameras so that users do not have to take photos, as the security
camera can build the relationship between pedestrians and the surrounding environments.
Furthermore, active visual positioning systems are divided into two types: matching-based
localization methods and image-database-based localization [12].
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Matching-based localization methods are the most common visual localization meth-
ods that use point, line, or optical flows to estimate image-to-image matches between a
picture and the image database or between a picture and the continuous image. Camera
localization can be estimated by a collinear equation and the correspondence of several
images. In 2004, Lowe proposed the scale-invariant feature transform (SIFT), which can
resist the influence caused by rotation, translation, scaling, viewpoint, illumination, and so
on [13]. However, the SIFT incurs large time costs. Rublee proposed the oriented fast and
rotated BRIEF (ORB) in 2011 [14]. Although this method may cause much mismatching, it is
about 100 times faster than SIFT. Line-matching methods are used in environments without
enough texture features-. In 2013, Zhang proposed the line band descriptor (LBD), which is
similar to the mean–standard deviation line descriptor (MSLD) method. LBD outperforms
MSLD in illumination, rotation, occlusion, and low-texture scenarios, but is more sensitive
to scale [15–17]. An optical flow method for matching images was proposed in 1950 by
Gibson. Since then, there have been many improvements such as the Lucas–Kanade (LK)
optical flow proposed in 1999 and the optical flow proposed in 2015 [18,19]. Structure
from motion (SfM) can estimate camera position based on matching. Torsten proposed a
combination of 2D-based methods with local SfM reconstruction, which has both a simple
database construction procedure and yields accurate pose estimation [20]. Zhang [21] fused
the data from an RGB-D camera and an inertial measurement unit (IMU).

Localization methods based on image databases rely on repositories of public geo-labeled
images [22]. This method compares the photo with the geo-labeled images to choose the
closest match, and the localization of the photo is estimated by the most similar image from
the geo-labeled images database [23–26]. The quality of geo-labeled images is the core of these
methods, including shape, color, and texture [27]. Zhang [28] proposed the improved vector
of local aggregated descriptors to improve the retrieval accuracy under different lighting
conditions. Most of the conventional methods retrieve images based on local descriptor
matching and reorder them through elaborate spatial verification [29–31]. Pretrained deep
convolution neural networks may effectively extract features [32–35]. Yu [36] used the SSD
convolution neural networks to extract the features to match. Nevertheless, the major
drawback of active visual positioning systems is the requirement that users must take a
photo, which may raise privacy issues; in addition, the quality of a photograph is not stable,
which will affect localization accuracy.

Passive visual localization methods mostly consist of detection-based localization so-
lutions. Detection-based localization methods are based on the ubiquitous security cameras
surrounding us in everyday life. It is quite different from other visual localization methods
as users are being photographed, so target detection is necessary. Target detection is a
visual task that detects and labels the position of objects from an image [37]. Conventional
methods detect objects based on features; these include the Viola–Jones detector (VJ), direc-
tional gradient histogram detector (HOG), deformable-part-based model (DPM), and so
on [38–41]. Recent works leverage deep convolution neural networks for target detection;
they are all becoming faster and more accurate [42]. Ross proposed regions with CNN
(R-CNN) in 2014; this method determines in advance where the target might appear, thus
avoiding a naive enumeration of all detection results [43]. To achieve faster run times, Ross
combined spatial pyramid pooling (SPP-net) and R-CNN, which can share CNN features
with each other [44]. Then, Ren proposed a faster R-CNN, which is about 10 times faster
than fast R-CNN [45]. Even then, target detection models are still not fast enough for
real-time detection. Based on the idea of regression, Redmon proposed You Look Only
Once (YOLOv1) [46]. The configuration of YOLOv1 uses GoogLeNet Networks, which
effectively perform object detection tasks such as ILSVRC classification and localization.
Based on the filter size of 3 × 3, the number of channels is double that in VGG. YOLOv2 is
faster and stronger than YOLOv1 [47]. After modification, the Darknet-19 model includes
19 convolution layers and 5 max pooling layers, which can extract objects faster. The
configuration of YOLOv3 is based on the Darkney-53 model [48]. YOLOv3′s prior detection
system reuses a classifier or locator to perform detection tasks. The model contains many
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positions and scales; areas made up of position and scale with the highest scores could be
considered the test results.

Compared with previous schemes, to eliminate active user actions, this study proposes
a new passive visual localization system based on security cameras. This method fuses inter
frame and map information at the feature level. During the pedestrian detection period
and different from YOLOv3, our improvement is the addition of detection information
from the last video frame and the map information to the spatial attention module by
area of interest. Experiments show that the performance of this method achieved higher
accuracy. However, similarly to scene recognition, target detection only shows us where
the pedestrian is at pixel level. Considering that target detection methods only show the
pedestrian location at pixel level, we transform the detection results from pixel coordinates
to geodetic coordinates by projection transformation (PT). Experiments show that this
method can achieve highly accurate positioning results.

3. System Overview and Methods

In this section, we describe the proposed method. The workflow of our visual indoor
positioning method is illustrated in Figure 1.
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Figure 1. Overview of our passive visual positioning method. The process is composed of
(a) pretreatment; (b) pedestrian detection; (c) position estimation.

As shown, the proposed system consists of three components: pretreatment, pedestrian
detection, and position estimation. These components of the workflow are executed in
sequence as follows:

(1) The pretreatment component is shown in Figure 1a. The interior orientation element
and lens distortion parameters of a camera are digitized through camera calibration.
A security camera is installed with stable localization.

(2) The target detection component is shown in Figure 1b. This includes offline training
and online pedestrian detection. Offline training employs a new attention mechanism
known as the region of interest attention model (RIAM), which fuses existing detection
results and map information.

(3) The position estimation component is shown in Figure 1c. The camera is positioned
to look downward so that what is shown in the picture is totally different from the
usual pedestrian detection database. After pedestrian detection from the overhead
view, the 2D pixel result is used to calculate the location of a pedestrian in plane 2D
coordinates, assuming that pedestrians are standing on the ground.

To sum up the proposed system, in pretreatment, camera parameters are calibrated in
preparation for further processing. Pedestrian detection includes an off-line and on-line
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phase. In the off-line phase, the neural network model parameters are tuned using labeled
videos, and in the on-line phase, the trained model parameters are used for pedestrian
detection. In position estimation, we calculate the user’s position through projection
transformation based on the detection results. The following subsections provide the
details for each of these components.

3.1. Pretreatment

The camera must be calibrated to compensate for internal camera and distortion error.
Internal camera error includes focus error and center pixel error in the lens. In addition,
the lens distortion error comprises radial distortion and tangential distortion. As shown
in Figure 2, the center of focus is offset from the ideal center coordinates. The radial and
tangential distortion perpendicular to the radial direction is caused by defects in the shape
and fabrication of the lens. Both kinds of distortion error will cause the pixel point to
deviate from the ideal position, which will influence localization accuracy.
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Therefore, the interior parameters and distortion parameters of the camera are derived
to obtain real pixel coordinates. The relationship between the pixel coordinates of the ideal
image and those of the actual image is described by Equation (1); here, two tangential and
three radial distortions are considered:{

xd = xu
(
1 + k1r2 + k2r4 + k3r6)+ 2p1xuyu + p2

(
r2 + 2x2

u
)

yd = yu
(
1 + k1r2 + k2r4 + k3r6)+ p1

(
r2 + 2y2

u
)
+ 2p2xuyu

(1)

where (xu, yu) is the original pixel coordinate, (xd, yd) is the corrected pixel coordinate,
{k1, k2, k3} is the parameter of the radial distortions, {p1, p2} is the parameter of the tan-
gential distortions, and r is the radius of the pixel.

The calibration method proposed by Zhang [49] was adopted as it delivers high
calibration accuracy and is robust, with concise calibration operation and low hardware
requirements. This approach uses the structural geometry of a chessboard (Figure 3) to
calibrate internal camera parameters (Figure 4). As illustrated in Figure 4, the image center
point of the security camera was located at the image coordinate (671, 351), while the
average focal length f was 666.81. In this study, the calibration error was 0.23 pixels.



Micromachines 2022, 13, 1413 6 of 20

Micromachines 2022, 13, 1413 6 of 20 
 

 

requirements. This approach uses the structural geometry of a chessboard (Figure 3) to 
calibrate internal camera parameters (Figure 4). As illustrated in Figure 4, the image 
center point of the security camera was located at the image coordinate (671,351), while 
the average focal length f was 666.81. In this study, the calibration error was 0.23 pixels. 

 
Figure 3. Camera calibration based on chessboard structural geometry. 

 
Figure 4. Internal camera parameter matrix. 

3.2. Target Detection 
Target detection relies on a basic neural network (YOLOv3) that is robust and can 

tackle different target sizes. During indoor positioning, we have the previously detected 
result and entrance and exit information of a CAD map of a target building. YOLOv3, 
however, does not use all the available information and cannot meet the accuracy re-
quirements for passive visual positioning. Thus, a new region of interest attention mod-
ule (RIAM) was designed and added to YOLOv3 to make full use of the previously de-
tected result and entrance and exit information of a CAD map of a target building. A 
YOLOv3 deep convolutional neural network, extended by RIAM, is the foundation for 
our pretrained model to detect pedestrian pixel positions from videos. 

3.2.1. Deep Convolutional Neural Networks 
Methods such as YOLO, which use a regression model and entire images as the in-

put of the network, directly return a target border and classify and extract targets in lo-
cations in the image. However, YOLOv1 still has many problems and cannot extract 
small targets. Therefore, we use YOLOv3, as shown in Figure 5. 

Figure 3. Camera calibration based on chessboard structural geometry.

Micromachines 2022, 13, 1413 6 of 20 
 

 

requirements. This approach uses the structural geometry of a chessboard (Figure 3) to 
calibrate internal camera parameters (Figure 4). As illustrated in Figure 4, the image 
center point of the security camera was located at the image coordinate (671,351), while 
the average focal length f was 666.81. In this study, the calibration error was 0.23 pixels. 

 
Figure 3. Camera calibration based on chessboard structural geometry. 

 
Figure 4. Internal camera parameter matrix. 

3.2. Target Detection 
Target detection relies on a basic neural network (YOLOv3) that is robust and can 

tackle different target sizes. During indoor positioning, we have the previously detected 
result and entrance and exit information of a CAD map of a target building. YOLOv3, 
however, does not use all the available information and cannot meet the accuracy re-
quirements for passive visual positioning. Thus, a new region of interest attention mod-
ule (RIAM) was designed and added to YOLOv3 to make full use of the previously de-
tected result and entrance and exit information of a CAD map of a target building. A 
YOLOv3 deep convolutional neural network, extended by RIAM, is the foundation for 
our pretrained model to detect pedestrian pixel positions from videos. 

3.2.1. Deep Convolutional Neural Networks 
Methods such as YOLO, which use a regression model and entire images as the in-

put of the network, directly return a target border and classify and extract targets in lo-
cations in the image. However, YOLOv1 still has many problems and cannot extract 
small targets. Therefore, we use YOLOv3, as shown in Figure 5. 

Figure 4. Internal camera parameter matrix.

3.2. Target Detection

Target detection relies on a basic neural network (YOLOv3) that is robust and can tackle
different target sizes. During indoor positioning, we have the previously detected result
and entrance and exit information of a CAD map of a target building. YOLOv3, however,
does not use all the available information and cannot meet the accuracy requirements
for passive visual positioning. Thus, a new region of interest attention module (RIAM)
was designed and added to YOLOv3 to make full use of the previously detected result
and entrance and exit information of a CAD map of a target building. A YOLOv3 deep
convolutional neural network, extended by RIAM, is the foundation for our pretrained
model to detect pedestrian pixel positions from videos.

3.2.1. Deep Convolutional Neural Networks

Methods such as YOLO, which use a regression model and entire images as the input
of the network, directly return a target border and classify and extract targets in locations
in the image. However, YOLOv1 still has many problems and cannot extract small targets.
Therefore, we use YOLOv3, as shown in Figure 5.
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Figure 5. Structure of YOLOv3.

Unlike other CNN models, a single neural model in YOLOv3 was used for the whole
process. This model divides images into different areas, and predicts bounding boxes
and probabilities for targets weighted by the probability of the prediction. In contrast to
classifier-based systems, YOLOv3 looks at the entire image during testing, so its predictions
exploit the global information in the image. Unlike R-CNN, which requires thousands of
images of a single target, YOLOv3 makes predictions through a single network assessment.
Unlike Faster-RCNN, SSD, YOLOv1, and YOLOv2, this network has three scale factors.
Thus, we chose YOLOv3 as the basic network and added the new attention module to
improve detection accuracy.

3.2.2. Region of Interest Attention Module

The new region of interest attention module (RIAM) uses the channel attention model
as usual; however, the spatial attention model considers the positioning environment,
fusing the previously detected information and entrance and exit information of a target
from a CAD map of a building interior. A channel-first method was adopted to improve
YOLOv3′s target detection accuracy, following [50]. Therefore, in this study, we still use the
channel first.

As shown in Figure 6, the convolutional block channel attention module includes
three parts. Firstly, maximum pooling and average pooling are carried out for the input
feature graph, and feature compression is carried out along the spatial dimension, so
that each two-dimensional feature channel will be compressed into a number. Secondly,
the multilayer perceptron (MLP) is used to reconstruct the vectors. Finally, the channel
attention weight Mc is obtained by the activating function, and RIAM extracts the spatial
attention weights from videos.
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RIAM combines CAD map information and the previously detected results in our
proposed solution for passive visual positioning. Pedestrian positions in one schematic room
are shown in Figure 7; the camera is located on the ceiling with six areas of interest, indicating
detected pedestrian locations. The two yellow areas are the entrances and exits, and the four
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white areas are the pedestrian detection results extracted from the video images collected by
the camera. The four red areas are the areas based on predictions from the white areas. The
pixel size for each area needs four parameters {(xi, yi), (ai, bi)}, where the coordinate (xi, yi)
represents the point in the left and bottom of the bounding box and (ai, bi) represents the
length and width of the bounding box for each pedestrian in the room.
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The entrances depicted in yellow are where pedestrians enter the room. The four
parameters for the two yellow regions of interest {(xi, yi), (ai, bi), i = 1, 2}were obtained by
picking the relevant frame from the video obtained by the camera. These two locations are
used to identify the positions of pedestrians as they may enter the room. For the pedestrians
already in the room, the white areas indicate actual target pedestrian detection results. The
red areas indicate target pedestrian positions predicted from the frame in the video based
on the white areas. The size of the red region of interest {(xi, yi), (ai, bi), i = 3, 4, 5, 6} is
defined as follows: a = ((yn+an)−(yn−1+an−1))

2

yn−yn−1
+ an + yn − yn−1

b = ((xn+bn)−(xn−1+bn−1))
2

xn−xn−1
+ bn + xn − xn−1

(2)

As shown in Figure 8, (xn−1, yn−1), (xn, yn) are the n − 1 and n frame’s detection
results. Due to the pedestrians walking in a continuous manner, (xn+1, yn+1) is equal to
(xn−1, yn−1).
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Based on the above equations, we can obtain the RIAM. Since the backblock of
YOLOv3 is responsible for image feature extraction [48], the RIAM is added between
each convolution of backblock to test performance.

3.3. Position Estimation

The detection results only indicate who is in the area; however, in a large-scale scenario,
we need to know the exact position of each pedestrian. We calculate the coordinates
of each pedestrian in the object space coordinate system from pixel coordinates of the
pedestrian detection results by projection transformation (PT). However, there is a missing
scale problem when calculating the 3D position of a target from a single image. In this
application scenario, we assume that pedestrians’ feet are always on the ground. We use
the height (H) of the camera to solve the scale problem.

Figure 9 illustrates the corresponding relations between image plane coordinates and
object space coordinates. The image plane coordinates have Q1 as the origin and the object
space coordinate system has an origin at Q3. Point Q2 is the center point from a pinhole
image from the camera, point O1 is the projection of point

(
Mx, My

)
onto the image plane,

and point Q is the projection of point P
(

Px, Py
)

onto the image plane. According to the
projection relationship, we can calculate the square coordinate of pedestrians based on the
pixel coordinates detected for pedestrians.
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The value {α, γ, β} is used to estimate pedestrian positions in object space coordinates
and can be calculated as follows: α = ∠O2MyO3 = tan−1

(
H

O3 My

)
γ = ∠MyO2Py = tan−1

(
O1v1×ypix

f

) (3)

where H is the height of the security camera, O3My is the value of m on the y coordinate,
O1v1 is the value of Q on the v coordinate, ypix is the actual length of a single pixel module,
and f is the focal length of the camera.

We can then obtain the β:
β = α− γ (4)
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We obtain the coordinates of pixel point Q in the object space coordinate system as follows:{
X = O3Px = H

tan βx

Y = O3Py = H
tan βy

(5)

where βx and βy are the angles in the X-axis direction and Y-axis direction, respectively.
In summary, in pedestrian detection, we sufficiently utilize the previous detection results

and CAD map information by coupling them by RIAM. Since we need to provide location
services, the target detection result alone is not enough for indoor positioning. We estimate
the position of detected pedestrians based on projection transformation. To test the availability
of passive visual positioning, we conducted two experiments, as set out in Section 4.

4. Experiments
4.1. Experimental Environment and Setup

The experimental environment was a typical hall in the Sirindhorn Research Center
at Wuhan University. Figure 10 is the floor plan of the entire test site; we chose the hall
for experiments, marked in red. As shown in Figure 10, we chose point P1 as the origin
of the object square coordinate system. The X-axis goes from left to right and the Y-axis
and X-axis are on the horizontal ground, where the Y-axis goes from P1 to the door and the
Z-axis goes from bottom to top.
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The camera is a top view, so the height will affect visual range. The height of the room or
the office is about 3 m, so we chose the hall as the experiment site. The indoor height of the hall
is about 10 m, and about 12 m in length and 8 m in width. Moreover, we installed the camera
at an altitude of about 7 m in a top-down pose so that the whole hall can be photographed.
Furthermore, Figure 11 shows the layout of the experiment site. Due to the sofa and table in
the hall, the 41 test-points shown in red dots were spaced regularly about 120 cm apart and
were used to evaluate the positioning accuracy of passive visual positioning.
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Figure 11. Test-points and camera deployment.

We tested the positioning accuracy for each test-point. The whole experiment ran on a
computer with an Ubuntu 16.04 system. The CPU was an Intel Core i7-6700k, the RAM
was 32 GB, and the graphics card type of this computer was an NVidia GTX 1070 with 8 GB
of memory.

4.2. Pedestrian Detection Results

In this study, because the image had a top view, the training set also had to have a
top view. However, there are few public top view pedestrian data sets for training. Thus,
we built a top view video data set of pedestrians, containing 2000 frames in total, which
includes 500 crowd-source frames from videos and 1500 frames collected in three areas.

As shown in Figure 12, there are various pedestrians in various scenarios. Figure 12a
is the crowd-source picture, and Figure 12b–d were taken by us. The video as shown in
Figure 12a is part of the MOT15 database, and there are about eight pedestrians in the
video. The video as shown in Figure 12b was taken in the hall of the laboratory at Wuhan
University, and there are seven pedestrians in the video. The video as shown in Figure 12c
was taken in the hall of the Finland Geodetic Survey Institute, and there are two pedestrians
in the video. The video as shown in Figure 12d was taken in the hall of the Sirindhorn
Research Center, and there are two pedestrians in the video.
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To test our proposed detection method, Faster-RCNN, SSD512, YOLOv3, and YOLOv3 + RIAM
were used for pedestrian detection from the top view. A total of 1400 frames in continuous
time were selected as the training set, and the remaining 600 frames in continuous time
were used as the test set. The detection accuracy measured by mean average precision
(mAP) and the running time for each tested model are shown in Table 1.

Table 1. Various neural network results.

Model mAP Running Time

Faster-RCNN 78.33% 196.2 ms
SSD 75.59% 64.9 ms

YOLOv3 81.63% 29.3 ms
YOLOv3 + RIAM 83.49% 38.3 ms

As indicated in Table 1, the SSD model had the lowest detection accuracy, with a mAP
score of 75.59%, and Faster-RCNN achieved a mAP score of 78.33%. Due to the three pre-
set boxes in different scales, YOLOv3 outperformed the SSD model, with 81.63% detec-
tion accuracy. Due to the attention mechanism of the region of interest attention module,
YOLOv3 + RIAM delivered the highest performance, achieving 83.49% accuracy. This method
yielded a 1.56% improvement over YOLOv3. Although the YOLOv3 + RIAM model used
more time than YOLOv3, the accuracy improvement was more important in indoor position-
ing. Furthermore, the detection results from the YOLOv3 and YOLOv3 + RIAM models were
used in the following positioning experiment.

4.3. Indoor Positioning Result

Due to the active visual localization method, which requires users to stop walking and
take an image, this method is deeply influenced by image quality and may raise privacy
issues. In this study, we propose that the passive visual localization method can not only
overcome these limitations, but can also achieve the requirement for high accuracy indoor
positioning. An experiment was designed to evaluate the performance of the passive visual
localization method. The performance of passive visual technology was evaluated using
Equation (6) as follows:

E = ‖Ptrue − Ploc‖ (6)

where Ptrue and Ploc represent the two-dimensional true coordinates and the positioning
coordinates to be evaluated, respectively; E represents positioning error.

In our experiment, we employed the above detection technology in videos for about
one and a half minutes at each test-point. We obtained a frame every second from the
videos, so there are 90 frames for each test-point. Then, we calculated the 90 pedestrian
locations at each test-point, and we estimated the error of passive indoor positioning by
the truth coordinate of the test-points.

Figure 13 is the position result achieved by detection result and projection transfor-
mation (PT). The results of Figure 13a were calculated by YOLOv3, and the results of
Figure 13b were calculated by YOLOv3 + RIAM. As shown, there are 41 positioning results
of the test-points, and the size of each red point corresponds to the positioning error of
each position. It can be seen that the positioning accuracy of the control points close to
the projection center is higher than that of the edge. Comparing the two images, although
the positioning mean errors of some test-points in the central region were not significantly
different, the positioning mean errors of test-points obtained by the YOLOv3 + RIAM
method were lower in the edge region. The max error of YOLOv3 + RIAM is smaller.
Detailed positioning results are set out in Table 2; the results include root mean square
errors (RMSE), mean errors, max errors, min errors, and range of errors. There are two
columns of results below each indicator, and the left line is results of YOLOv3 and the right
line is results of YOLOv3 + RIAM.
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Figure 13. Position error of the 41 test-points. (a) Results by YOLOv3; (b) results by YOLOv3 + RIAM.

As seen in Table 2, different points have different positioning accuracy. The minimum
mean error of two detection methods are both test-point 26, and the maximum mean error
of two detection methods are test-points 31 and 36. Test-point 26 is closest to the projection
center and test-points 31 and 36 are far from the projection center. Among the 41 test-points
of the passive visual positioning based on YOLOv3, there were 27 points with an average
accuracy smaller than 0.5 m, while 37 test-points were smaller than 1 m. Moreover, there
were 28 points with an average accuracy smaller than 0.5 m, while 39 test-points were
smaller than 1 m based on YOLOv3 + RIAM. The results show that YOLOv3 + RIAM can
achieve higher positioning accuracy in passive visual indoor positioning. Additionally, the
positioning accuracy of passive vision can reach 1 m in 95% of the coverage area.
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Table 2. Various results for the evaluated 41 test-points.

Num
YOLOv3|YOLOv3 + RIAM Errors (m)

RMS Mean Max Min Range

Test-Point 1 0.32 0.33 0.32 0.33 0.34 0.35 0.31 0.31 0.04 0.04

Test-Point 2 0.29 0.30 0.29 0.30 0.36 0.38 0.25 0.26 0.11 0.12

Test-Point 3 0.30 0.28 0.30 0.28 0.31 0.30 0.29 0.27 0.03 0.03

Test-Point 4 0.53 0.53 0.53 0.53 0.55 0.55 0.52 0.52 0.02 0.03

Test-Point 5 0.72 0.73 0.72 0.73 0.74 0.76 0.70 0.71 0.04 0.04

Test-Point 6 0.72 1.03 0.72 1.03 0.74 1.04 0.72 1.02 0.02 0.02

Test-Point 7 0.49 0.74 0.49 0.74 0.52 0.76 0.46 0.71 0.06 0.06

Test-Point 8 0.51 0.62 0.51 0.62 0.53 0.64 0.49 0.59 0.05 0.05

Test-Point 9 0.39 0.45 0.39 0.45 0.40 0.46 0.38 0.44 0.02 0.02

Test-Point 10 0.26 0.28 0.26 0.28 0.29 0.30 0.24 0.26 0.05 0.05

Test-Point 11 0.08 0.08 0.08 0.08 0.11 0.11 0.04 0.05 0.07 0.07

Test-Point 12 0.12 0.12 0.11 0.12 0.16 0.17 0.09 0.10 0.07 0.07

Test-Point 13 0.06 0.07 0.06 0.07 0.10 0.11 0.03 0.04 0.07 0.07

Test-Point 14 0.11 0.11 0.10 0.10 0.20 0.19 0.04 0.03 0.17 0.16

Test-Point 15 0.20 0.21 0.20 0.21 0.21 0.23 0.18 0.20 0.03 0.03

Test-Point 16 0.25 0.37 0.25 0.37 0.27 0.40 0.22 0.35 0.05 0.05

Test-Point 17 0.30 0.32 0.30 0.32 0.38 0.40 0.24 0.25 0.15 0.15

Test-Point 18 0.35 0.46 0.35 0.46 0.40 0.51 0.29 0.40 0.11 0.11

Test-Point 19 0.13 0.49 0.13 0.49 0.20 0.55 0.09 0.44 0.11 0.11

Test-Point 20 0.35 0.45 0.35 0.45 0.42 0.52 0.26 0.36 0.16 0.17

Test-Point 21 0.52 0.53 0.52 0.53 0.53 0.54 0.48 0.49 0.04 0.05

Test-Point 22 0.44 0.45 0.44 0.45 0.46 0.48 0.43 0.44 0.04 0.04

Test-Point 23 0.40 0.40 0.40 0.40 0.46 0.46 0.38 0.38 0.08 0.08

Test-Point 24 0.24 0.26 0.24 0.26 0.25 0.27 0.23 0.25 0.02 0.02

Test-Point 25 0.14 0.15 0.14 0.15 0.15 0.16 0.11 0.13 0.03 0.04

Test-Point 26 0.05 0.05 0.04 0.05 0.08 0.09 0.01 0.01 0.08 0.08

Test-Point 27 0.19 0.20 0.19 0.20 0.25 0.26 0.16 0.17 0.09 0.09

Test-Point 28 0.43 0.45 0.43 0.44 0.53 0.55 0.30 0.32 0.23 0.23

Test-Point 29 0.28 0.30 0.28 0.30 0.35 0.37 0.22 0.23 0.13 0.13

Test-Point 30 0.90 1.00 0.90 1.00 0.92 1.02 0.87 0.96 0.05 0.05

Test-Point 31 1.15 1.08 1.15 1.08 1.22 1.14 1.13 1.05 0.09 0.09

Test-Point 32 0.52 0.54 0.52 0.54 0.54 0.56 0.51 0.52 0.04 0.04

Test-Point 33 0.71 0.73 0.71 0.73 0.73 0.75 0.69 0.71 0.04 0.04

Test-Point 34 0.30 0.31 0.29 0.31 0.34 0.36 0.26 0.28 0.08 0.08

Test-Point 35 0.32 0.34 0.32 0.34 0.36 0.38 0.29 0.30 0.07 0.07

Test-Point 36 1.02 1.34 1.02 1.34 1.12 1.45 0.97 1.29 0.15 0.15

Test-Point 37 0.18 0.24 0.18 0.24 0.20 0.26 0.17 0.22 0.03 0.04

Test-Point 38 0.80 0.94 0.79 0.94 0.99 1.14 0.72 0.86 0.27 0.28

Test-Point 39 0.34 0.35 0.34 0.35 0.39 0.41 0.23 0.25 0.16 0.16

Test-Point 40 0.57 0.59 0.57 0.59 0.63 0.65 0.52 0.53 0.11 0.11

Test-Point 41 0.61 0.72 0.61 0.72 0.66 0.77 0.56 0.67 0.10 0.10

Figure 14 and Table 3 show all the statistical results and the cumulative distribution
function (CDF) of the positioning error. The red curve represents the passive visual localization
results based on YOLOv3 + RIAM, and the blue curve represents the results based on YOLOv3.
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The yellow curve represents the 90% errors and the green curve represents the 95% errors
of two methods. YOLOv3 + RIAM performed better in indoor positioning than YOLOv3,
especially in the edge region, and the positioning errors of 90% and 95% of RIAM methods
were smaller than those of YOLOv3. The RMS error of the positioning method is 1.217 m and
1.446 m and the maximum error of the positioning method is 0.480 m and 0.549 m. The passive
vision positioning methods based on YOLOv3 + RIAM achieve an RMSE, 95% error, 90%
error, ME, Max, and Min error of 0.480 m, 0.964 m, 0.732 m, 0.404 m, 1.217 m, and 0.006 m,
respectively. It is obvious that the proposed detection method performs well in indoor
positioning and that passive visual positioning can achieve high positioning accuracy.
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Table 3. Various statistical results.

Passive
Visual

Positioning Error (m)

RMS 95% 90% Mean Max Min

YOLOv3+PT 0.549 1.056 0.952 0.460 1.446 0.013

YOLOv3 +
RIAM + PT 0.480 0.964 0.732 0.404 1.217 0.006

Then, we performed a dynamic test in the hall of the Sirindhorn Research Center in
order to compare the performance of the proposed method, pedestrian dead reckoning
(PDR), and magnetic field matching (MM).

As shown in Figure 15, the black line is the pedestrian real route, and the red line is the
result achieved by the positioning method. Figure 15a is the result achieved by MM, and
MM caused a very large positioning error due to mismatching in the hall [51]. Figure 15b
is the result achieved by PDR, and we can see that PDR is affected by the position drift
error of the inertial navigation system; pure PDR needs other methods to reduce the drift
error [52]. Figure 15c is the result achieved by passive visual positioning. Due to the size of
the area covered by the camera, the red part is the part with results, and the blue part is the
part without results. However, we can see that our method can achieve better positioning
accuracy in the hall.



Micromachines 2022, 13, 1413 16 of 20

Micromachines 2022, 13, 1413 16 of 20 
 

 

As shown in Figure 15, the black line is the pedestrian real route, and the red line is 
the result achieved by the positioning method. Figure 15a is the result achieved by MM, 
and MM caused a very large positioning error due to mismatching in the hall [51]. Fig-
ure 15b is the result achieved by PDR, and we can see that PDR is affected by the posi-
tion drift error of the inertial navigation system; pure PDR needs other methods to re-
duce the drift error [52]. Figure 15c is the result achieved by passive visual positioning. 
Due to the size of the area covered by the camera, the red part is the part with results, and 
the blue part is the part without results. However, we can see that our method can achieve 
better positioning accuracy in the hall. 

 

(a) 

 

(b) 

Micromachines 2022, 13, 1413 17 of 20 
 

 

 

(c) 

Figure 15. Test-points and camera deployment. (a) MM. (b) PDR. (c) Passive visual. 

Figure 16 and Table 4 show all the statistical results and the CDF of the positioning 
error. The red curve represents the passive visual localization results based on passive 
vision, the green curve represents the results based on MM, and the blue curve repre-
sents the results based on PDR. The orange and light blue lines represent the 90% and 95% 
errors, respectively. The passive visual method performed better in indoor positioning 
than PDR and MM. The positioning errors of 90% and 95% of the passive visual method 
were smaller than those of PDR and MM. The RMS error of the positioning method is 
0.643 m, 2.581 m, and 1.4351 m. The maximum error of the positioning method is 2.175 
m, 4.364 m, and 3.919 m. It is shown that our methods can perform well in the hall envi-
ronment. Furthermore, in contrast to the active vision positioning method, our approach 
does not require the user to take a photo, nor does it require a database of images for 
every place. 

 
Figure 16. CDF of various positioning methods. 

Figure 15. Test-points and camera deployment. (a) MM. (b) PDR. (c) Passive visual.



Micromachines 2022, 13, 1413 17 of 20

Figure 16 and Table 4 show all the statistical results and the CDF of the positioning
error. The red curve represents the passive visual localization results based on passive
vision, the green curve represents the results based on MM, and the blue curve represents
the results based on PDR. The orange and light blue lines represent the 90% and 95%
errors, respectively. The passive visual method performed better in indoor positioning than
PDR and MM. The positioning errors of 90% and 95% of the passive visual method were
smaller than those of PDR and MM. The RMS error of the positioning method is 0.643 m,
2.581 m, and 1.4351 m. The maximum error of the positioning method is 2.175 m, 4.364 m,
and 3.919 m. It is shown that our methods can perform well in the hall environment.
Furthermore, in contrast to the active vision positioning method, our approach does not
require the user to take a photo, nor does it require a database of images for every place.
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Table 4. Results of various positioning methods.

Passive Method
Positioning Error (m)

RMS 95% 90% Max

Passive visual 0.643 1.168 0.964 2.175

PDR 2.581 3.960 3.852 4.364

MM 1.435 3.029 2.610 3.919

5. Conclusions

Active visual users must take a photo with their smartphone to obtain location in-
formation, raising confidentiality and privacy issues. To solve this problem, we propose
passive visual positioning technology based on pedestrian detection and projection trans-
formation. However, the pedestrian in a video frame is collected by a top view camera,
which causes the pedestrian to have little textural information, and the detection result
cannot achieve accuracy requirements for indoor positioning. To solve this problem, we
collected the top view video and improved YOLOv3 with a new attention model containing
frame detection results and CAD map information. The detection experiment results show
that the proposed method achieves high detection accuracy with a mAP score of 83.49%,
which is 1.56% higher than YOLOv3. Compared to active visual positioning technologies,
this method does not need users to take photos or a server to build an image database.
The proposed method also delivered more accurate indoor positioning results than PDR
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or magnetic field matching. These results demonstrate that passive visual positioning
technology is effective. The CDF error of static positioning is within 0.96 m at 95% and the
RMS error of positioning is 0.48 m. The CDF error of dynamic positioning is within 1.168 m
at 95% and the RMS error of positioning is 0.643 m. When the number of pedestrians
increases, since pedestrian detection based on YOLOv3 + RIAM is calculated based on a
regression model, it will not increase the volume of pedestrian detection calculations. In
addition, the positioning calculation for each person is calculated separately. The running
time to calculate the position of 100 people is 0.00274 s. This result indicates that an increase
of the number of people does not have a large impact on the computational complexity. In
the future, we will work on the following problems. When there are many pedestrians, if
different pedestrians are identified, location information can be sent to the corresponding
pedestrians. At present, we match the status and location information of pedestrians on the
server with the information on the mobile phone of pedestrians. Furthermore, the MAC
address of the pedestrian’s mobile phone can be obtained. Through this matching process,
we can use the MAC address to identify unique users, and we can send each user’s location
to their mobile phone using the Mac address. If pedestrians block each other, then we
can add the training data of the same situation to give the deep learning network more
advanced detection ability. In addition, multiple indoor security cameras can be used to
shoot images from multiple angles; thus, we can fuse a few pictures to reduce the influence
of occlusion on positioning calculations. Furthermore, considering the coverage of the
security cameras, we will focus on the extensibility of passive visual localization to provide
more universal applications and even higher positioning accuracy.

Author Contributions: This paper is a collaborative work by all the authors. D.W. proposed the idea,
implemented the system, performed the experiments, analyzed the data, and wrote the manuscript.
R.C. aided in proposing the idea, gave suggestions, and revised the rough draft. Y.Y., X.Z., Y.X. and
Z.L. assisted with certain experiments. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (grant nos. 2016YFB0502200 and 2016YFB0502201) and the NSFC (grant no. 91638203).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, D.; Shan, J.; Shao, Z.; Zhou, X.; Yao, Y. Geomatics for smart cities-concept, key techniques, and applications. Geo-Spat. Inf. Sci.

2013, 16, 13–24. [CrossRef]
2. Mautz, R. Overview of current indoor positioning systems. Geod. Ir. Kartogr. 2009, 35, 18–22. [CrossRef]
3. Mautz, R. Indoor Positioning Technologies. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2012.
4. Liu, J.; Chen, R.; Pei, L. A hybrid smartphone indoor positioning solution for mobile LBS. Sensors 2012, 12, 17208–17233. [CrossRef]

[PubMed]
5. Youssef, M.; Agrawala, A. The horus WLAN location determination system. In Proceedings of the Third International Conference

on Mobile Systems, Applications, and Services, Seattle, WA, USA, 6–8 June 2005; pp. 205–218.
6. Yang, S.; Dessai, P.; Verma, M. Freeloc: Calibration-free crowdsourced indoor localization. In Proceedings of the 32nd IEEE

International Conference on Computer Communications, Turin, Italy, 14–19 April 2013; pp. 2481–2489.
7. Wei, M. Secure and robust Wi-Fi fingerprinting indoor localization. In Proceedings of the 2011 International Conference on Indoor

Positioning and Indoor Navigation, Guimarães, Portugal, 21–23 September 2011; pp. 21–23.
8. Liu, M. Scene recognition for indoor localization using a multi-sensor fusion approach. Sensors 2017, 17, 2847. [CrossRef]

[PubMed]
9. Bozorgasl, Z.; Dehghani, M.J. 2-D DOA estimation in wireless location system via sparse representation. In Proceedings of the 4th

International Conference Computer Knowledge Engineering, Mashhad, Iran, 29–30 October 2014; pp. 86–89.
10. Hightower, J.; Borriello, G. Location systems for ubiquitous computing. Computer 2001, 34, 57–66. [CrossRef]
11. Lee, N.; Kim, C.; Choi, W.; Pyeon, M.; Kim, Y.x. Development of indoor localization system using a mobile data acquisition

platform and BoW image matching. KSCE J. Civ. Eng. 2017, 21, 418–430. [CrossRef]
12. Chen, Y.; Chen, R.; Liu, M. Indoor visual positioning aided by CNN-based image retrieval: Training-free, 3D modeling-free.

Sensors 2018, 18, 2692. [CrossRef]
13. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]

http://doi.org/10.1080/10095020.2013.772803
http://doi.org/10.3846/1392-1541.2009.35.18-22
http://doi.org/10.3390/s121217208
http://www.ncbi.nlm.nih.gov/pubmed/23235455
http://doi.org/10.3390/s17122847
http://www.ncbi.nlm.nih.gov/pubmed/29292761
http://doi.org/10.1109/2.940014
http://doi.org/10.1007/s12205-016-1057-5
http://doi.org/10.3390/s18082692
http://doi.org/10.1023/B:VISI.0000029664.99615.94


Micromachines 2022, 13, 1413 19 of 20

14. Rublee, E.; Rabaud, V.; Konolige, K. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International
Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011.

15. Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric
consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805. [CrossRef]

16. Wang, Z.; Liu, H.; Wu, F. HLD: A robust descriptor for line matching. In Proceedings of the 11th IEEE International Conference
on Computer-Aided Design and Computer Graphics, Huangshan, China, 19–21 August 2009; pp. 19–21.

17. Salaun, Y.; Marlet, R.; Monasse, P. Multiscale line segment detector for robust and accurate SFM. In Proceedings of the 23rd
International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; pp. 4–8.

18. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981.
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