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Abstract—The estimation of the position of a person in a
building is a must for creating Intelligent Spaces. State-of-the-
art Local Positioning Systems (LPS) require a complex sensor-
network infrastructure to locate with enough accuracy and
coverage. Alternatively, Inertial Measuring Units (IMU) can be
used to estimate the movement of a person; a methodology that
is called Pedestrian Dead-Reckoning (PDR). In this paper, we
describe and implement a Kalman-based framework, called INS-
EKF-ZUPT (IEZ), to estimate the position and attitude of a
person while walking. IEZ makes use of an Extended Kalman
filter (EKF), an INS mechanization algorithm, a Zero Velocity
Update (ZUPT) methodology, as well as, a stance detection
algorithm. As the IEZ methodology is not able to estimate the
heading and its drift (non-observable variables), then several
methods are used for heading drift reduction: ZARU, HDR and
Compass. The main contribution of the paper is the integration
of the heading drift reduction algorithms into a Kalman-based
IEZ platform, which represents an extended PDR methodology
(IEZ+) valid for operation in indoor spaces with local magnetic
disturbances. The IEZ+ PDR methodology was tested in several
simulated and real indoor scenarios with a low-performance IMU
mounted on the foot. The positioning errors were about 1% of
the total travelled distance, which are good figures if compared
with other works using IMUs of higher performance.

I. INTRODUCTION

In order to fulfil the Intelligent Spaces’ goals, further

research in artificial intelligence and sensor network tech-

nology, is required. One important topic is the accurate and

continuous location of persons indoors. Local Positioning Sys-

tems (LPS) are being investigated, using ultrasound, radio or

vision technology [1], but in some cases beacon-free solutions

are preferable since they do not depend on a pre-installed

infrastructure.

During the last decade several beacon-free methodologies

have been proposed for accurate person’s position estimation

based on inertial sensors [2]-[14]. These methodologies, often

called Pedestrian Dead-Reckoning (PDR) solutions, integrate

step lengths and orientation estimations at each detected step,

so as to compute the absolute position and orientation of a

person. Some PDR approaches assume a smooth walk on

horizontal surfaces, and others are valid for uneven terrain

with complicated gait patterns. PDR has been proposed for a

large range of applications, such as defense, emergency rescue

workers, smart offices, and so on. PDR positioning accuracy,

normally ranges from 0.3% to 10% of the total travelled

distance, but this figures strongly depend on the algorithm

implemented and the particular inertial sensor technology

employed.

Inertial Measurement Units (IMU), normally contain several

accelerometers, gyroscopes, magnetometers and even pressure

sensors. The IMU sensors in aerospace applications, based

on gimballed sensors or laser based gyroscopes, are bulky

but provide a very accurate estimation with a low drift [9].

The size and performance of an inertial sensor are linearly

dependent parameters, so the smaller the sensor the lower

performance is expected. Low- size and weight units such

as those based on Micro-Electro-Mechanical (MEMS) sensors

are becoming very popular, but they have a significant bias

and therefore suffer large drifts after integration.

In this paper, we describe and implement a Kalman-based

framework (IEZ), following the Foxlin work [14], to estimate

the position and attitude of a person while walking (section

II). Several methods for heading Drift reduction: ZARU,

HDR and Compass, have been implemented and integrated

into the Kalman-based IEZ framework (section III). Finally,

these extended PDR algorithms (IEZ+) were tested in several

simulated and real indoor scenarios with an IMU mounted on

the foot (section IV).

II. THE KALMAN-BASED INERTIAL PDR METHOD

The method for Pedestrian Dead-Reckoning (PDR) has

been implemented in a Kalman-based framework using the

guidelines of Foxlin [14]. The idea is to use an Extended

Kalman Filter (EKF) to estimate the errors of an Inertial

Navigation System (INS), which accumulate due to the IMU
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Fig. 1. The IEZ Kalman-based framework used for pedestrian dead-
reckoning. It has four main blocks: 1) an INS mechanization algorithm adapted
to incorporate the error estimations from an EKF, 2) a Extended Kalman Filter
(EKF) that estimates the errors states related to the INS, 3) a Zero-Velocity-
Update (ZUPT) block that feeds the EKF with the measured errors in velocity,
and 4) a Stance&Still detection algorithm to determine when the person is
at rest (Still) or with the foot on the ground while walking (Stance). In this
framework 3 accelerometers and 3 gyroscopes are used in an IMU mounted
on the foot of a person.

sensor biases. The EKF is updated with velocity measurements

by the Zero-Velocity-Update strategy (ZUPT) every time the

foot is on the floor. We call this Kalman-based framework

INS-EKF-ZUPT, or just IEZ, for short. Figure 1 shows the

main blocks in the IEZ PDR methodology.

A. Inertial Navigation (INS)

The INS algorithm uses the accelerometer and gyroscopic

readings, in the sensor body (b) frame of reference, (ab
k and

ω
b
k, respectively) which are taken at every sample interval ∆t

at discrete sampling times k. A classical INS mechanization

was implemented, including some modifications to cope with

the information provided by the EKF throughout the error

state vector: δxk = [δϕk, δωb
k, δrk, δvk, δab

k]. This 15-element

vector contains the estimated biases for accelerometers and

gyroscopes (δωb and δab, respectively), as well as, the errors

in attitude (δϕ) and the errors in position and velocity (δr, δv).

All these 5 components have 3 elements each, corresponding

to a three-dimensional estimation. Details of the designed INS

block for use in the IEZ framework are shown in Fig. 2 and

explained in the following.

This INS mechanization process has five main phases:

1) Bias compensation of raw acceleration and gyroscopic

values based on Kalman bias estimates (1.a & 1.b in

Fig. 2).

2) Integration of gyroscopic values in order to estimate the

attitude (2).

3) Remove the gravitational component in acceleration

readings (3).

4) Integration of acceleration values to estimate the velocity

and, after a second integration, the position (4.a & 4.b).

5) Refinement of position, velocity and attitude based on

Kalman error estimates (5.a, 5.b & 5.c).

The first phase for bias compensation consists in subtracting

to the raw acceleration and gyroscopic sensor data (ωb
k and

ab
k respectively), the bias terms estimated by the Kalman filter

(positions 4-6 and 13-15 in the error state vector for gyro and

accelerometers biases, respectively):

{

ω
′b
k = ω

b
k − δxk−1(4 : 6) = ω

b
k − δωb

k−1

a
′b
k = ab

k − δxk−1(13 : 15) = ab
k − δab

k−1

, (1)

where ω
′b
k and a

′b
k denote the bias-compensated gyroscopic

and acceleration sensor readings, respectively.

In the second phase, we update the sensor orientation, with

respect to the navigation frame (n, defined to be Noth-West-

Up on the ground), based on the bias-compensated gyroscopic

readings. A Padé approximation of the exponential function is

used for this orientation update [11]:

Cn
bk|k−1

= f(Cn
bk−1|k−1

, ω
′b
k ) = Cn

bk−1|k−1
·
2I3×3 + δΩk · ∆t

2I3×3 − δΩk · ∆t
,

(2)

where Cn
bk|k−1

is the rotation matrix that transforms from

the body (b) to the navigation (n) frame, which is updated with

the gyroscopic information at time k but not yet corrected by

the EKF; Cn
bk−1|k−1

is the last rotation matrix available that

was already corrected by the EKF after the filter update at time

k−1; and δΩk is the skew symmetric matrix for angular rates

used to define the small angular increments in orientation:

δΩk =





0 −ω
′b
k (3) ω

′b
k (2)

ω
′b
k (3) 0 −ω

′b
k (1)

−ω
′b
k (2) ω

′b
k (1) 0



 . (3)

Note that the rotation matrix Cn
bk−1|k−1

is post-multiplied

by the term that represents the small change in orientation,

since this rotation is with respect to the sensor body reference

frame (b).

In the third phase, the acceleration of gravity is removed

from the sensor readings. Initially, the accelerations, a
′b
k , are

transformed from the sensor body coordinate frame (b) to the

navigation frame (n), and then the value of g (9.8 m/s) is

subtracted to the “vertical” component of acceleration:

ăk = Cn
bk|k−1

· a
′b
k − [0, 0, g]. (4)

In the fourth phase, the gravity-free acceleration value ăk,

is integrated to obtain the velocity in the navigation frame,

vk|k−1, prior to the EKF correction at time k:

vk|k−1 = vk−1|k−1 + ăk · ∆t. (5)



Fig. 2. Details of the INS mechanization algorithm adapted to be used in cooperation with the EKF in the IEZ framework. It accepts the estimated sensor
biases for accelerometers and gyroscopes (δω

b and δab, respectively), as well as, the errors in attitude (δϕ) and the errors in velocity and position (δr, δv).

This velocity is integrated to obtain the sensor position in

the navigation frame:

rk|k−1 = rk−1|k−1 + vk|k−1 · ∆t. (6)

Finally, in the fifth phase, we correct the previously com-

puted position and velocity estimates once the EKF has been

updated with the measurements at time k, by making use of

the filtered Kalman error state δxk:

{

rk|k = rk|k−1 − δxk(7 : 9) = rk|k−1 − δrk

vk|k = vk|k−1 − δxk(10 : 12) = vk|k−1 − δvk
.

(7)

The attitude refinement is achieved by updating the rotation

matrix, Cn
bk|k−1

, with the three angle errors estimated by the

EKF for roll, pitch and yaw (δϕk). Assuming that those

angle errors are small, the corrected rotation matrix, Cn
bk|k

,

is computed, using another Padé approximation, as:

Cn
bk|k

= g(Cn
bk|k−1

, δϕk) =
2I3×3 + δΘk

2I3×3 − δΘk

· Cn
bk|k−1

(8)

where δΘk is the skew symmetric matrix for small angles

δΘk = −





0 −δϕk(3) δϕk(2)
δϕk(3) 0 −δϕk(1)
−δϕk(2) δϕk(1) 0



 . (9)

Note that the original rotation matrix has been premultiplied

by the incremental rotation term since this small change in

orientation is with respect to the navigation frame (n).

B. The Extended Kalman filter (EKF)

The PDR navigation state transition model is a non-linear

function of the states, but it can be linearized around a state

estimate [14], [11]. If the 15-element error state vector at time

k is

δxk|k = δxk = [δϕk, δωb
k, δrk, δvk, δab

k], (10)

then, the linearized state transition model is:

δxk|k−1 = Φkδxk−1|k−1 + wk−1, (11)

where δxk|k−1 is the predicted error state, δxk−1|k−1 is the

last filtered error state at time k−1, wk−1 is the process noise

with covariance matrix Qk = E(wkwT
k ), and Φk is the 15×15

state transition matrix:

Φk =












I ∆t · Cn
bk|k−1

0 0 0

0 I 0 0 0
0 0 I ∆t · I 0

−∆t · S(a
′n
k

) 0 0 I ∆t · Cn
bk|k−1

0 0 0 0 I













.

(12)

The term S(a
′n
k

) in matrix Φk is the skew symmetric matrix

for accelerations that allows the EKF to act as an inclinometer,

estimating the pitch and roll of the sensor:

S(a
′n
k

) =





0 −azk
ayk

azk
0 −axk

−ayk
axk

0



 . (13)

a
′n
k is the bias-corrected acceleration that has been trans-

formed to the navigation frame of reference:

a
′n
k = Cn

bk|k−1
· a

′b
k = (axk

, ayk
, azk

). (14)

The measurement model is

zk = Hδxk|k + nk (15)

where zk is the error measurements, H is the measurement

matrix, and nk is the measurement noise with covariance

matrix Rk = E(nknT
k ).

The filtered error state δxk|k at time k is obtained after a

measurement at time k is available, with the Kalman update
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equation:

δxk|k = δxk|k−1 + Kk · [mk − Hδxk|k−1], (16)

where Kk is the Kalman gain, mk is the actual error measure-

ment, and δxk|k−1 is the predicted error state.

The Kalman gain is calculated with the usual formula:

Kk = Pk|k−1HT (HPk|k−1HT + Rk)−1. (17)

where Pk|k−1 is the estimation error covariance matrix, that

is computed at time k based on measurements received at time

k-1, with the classical form: Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 +

Qk−1. The covariance matrix Pk|k at time k is then computed

using the Kalman gain in the Joseph form equation: Pk|k =
(I15×15 − KkH)Pk|k−1(I15×15 − KkH)T + Rk.

It is important to mention that the non-bias error terms of

the filtered state vector, δxk|k, are reset to zero after the INS

uses them to refine the current attitude, velocity and position.

This is because those errors are already compensated and

incorporated into the INS estimations. The only terms that

are maintained over time in the EKF filter are the gyro and

accelerometer biases, i.e. δωb
k and δab

k.

The actual error measurement mk that feeds the EKF, is

calculated for ZUPT as: mk = vk|k−1 − [0, 0, 0], where

the zero vector means that at stance we know that the

velocity of the foot is almost zero. The measurement ma-

trix, H, for ZUPT update is a 3 by 15 matrix like this:

H = [03×3, 03×3, 03×3, I3×3, 03×3]. It selects the velocity

error components from the error state matrix δxk, i.e. the 10th

to 12th terms.

C. Stance detection

The EKF gets feedback from measurements, only when the

person’s foot is detected to be stationary on the ground (totally

still, or in a stance phase during walk). Most algorithms in the

literature for stance detection rely on basic signal processing

techniques with accelerometers [5], [13] or gyroscopes [2].

They properly work in many situations but occasionally fail

in slow and random walk [13]. We implement a multi-

condition algorithm, that complements the implementation of

[10] by using both sources of information (accelerometers and

gyroscopes) and an order filter so as to make the detection

process robust enough (see Fig. 3).

The three conditions (C1, C2 and C3) to declare a foot as

stationary are:

1) The magnitude of the acceleration, |ak| = [ab
k(1)2 +

ab
k(2)2 + ab

k(3)2]0.5 must be between two thresholds

(thamin
= 9 and thamax

= 11 m/s2).

C1 =

{

1 thamin
< |ak| < thamax

0 otherwise
. (18)

2) The local acceleration variance, which highlights the

foot activity, must be above a given threshold (thσa
=

3 m/s2). The local variance is computed this way:

σ2
ab

k

=
1

2s + 1

k+s
∑

j=k−s

(ab
k − ab

k)2, (19)

where ab
k is a local mean acceleration value, computed

by this expression: ab
k = 1

2s+1

∑k+s

q=k−s aq , and s defines

the size of the averaging window (s = 15 samples). The

second condition C2 is satisfied when:

C2 =

{

1 σab

k

> thσa

0 otherwise
. (20)

3) The magnitude of the gyroscope, |ωk| = [ωb
k(1)2 +

ω
b
k(2)2 + ω

b
k(3)2]0.5, must be below a given threshold

(thωmax
= 50 o/s).

C3 =

{

1 |ωk| < thωmax

0 otherwise
. (21)

The three logical conditions must be satisfied simultane-

ously for foot stationary detection, so a logical “AND” is

applied, and the result is filtered out using a median filter with

a neighboring window of 11 samples in total. The registered

logical “1”s mark the Stance phase that occurs when the foot is

stationary on the floor (while walking, or not). The Still phase,

corresponding to a non-walking stationary foot, is detected

from stance samples that are not surrounded by non-stance

samples in a window larger than 2 seconds. Figure 4 shows

results of this multi-condition stance detection process.

III. METHODS TO REDUCE THE DRIFT IN HEADING

The IEZ Kalman-based PDR method presented in last

section (Fig. 1), accumulates large errors in orientation due

to the bias in the gyroscopes. IEZ can not estimate it because

the yaw orientation (ψk), and the gyroscopic bias (δωb) in the

vertical axis, are not observable from ZUPT measurements

alone [14]. Next subsections describe the integration in IEZ

of some approaches to reduce the drift in heading: ZARU

[10], HDR [12], and the use of magnetometers as a compass.

We focus on methods to reduce the drift without using

any external infrastructure such as GPS and LPS, nor map-

matching techniques. See Fig. 5 to view how these methods

are integrated in the IEZ framework.
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Fig. 5. The IEZ-extended PDR framework. It represents the same methodol-
ogy as presented in Fig. 1 but adding the blocks for heading drift reduction:
ZARU, HDR and Compass.

A. Zero angular rate update (ZARU)

ZARU stands for Zero Angular Rate Update [10]. So, the

idea is to feed the EKF with measurements of the measured

error in the angular rate, while the foot is still.

∆ω
b
k = ω

b
k − [0, 0, 0]. (22)

If ZARU is integrated in the IEZ framework, then its

measurement matrix must be:

H =

[

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

]

, (23)

and the error measurement vector is the concatenation of

the ZARU and ZUPT contributions:

mk = [∆ω
b
k,∆vk]. (24)

B. Heuristic Heading Reduction (HDR)

HDR stands for Heuristic Heading Reduction. It was origi-

nally proposed by Borestein et al. [12]. It makes use of the fact

that many corridors or paths are straight. So, the idea of the

HDR algorithm is to detect when a person is walking straight,

and in that case apply a correction to the gyro biases, in order

to reduce the heading error.

In our paper we use the same hypothesis, but we implement

it in a total different way as Borestein et al. did [12]. Instead

of filtering the gyro signals with a binary I-controller, we work

in the Yaw space, detecting a straight walk by analyzing the

orientation change, ∆ψk, among successive steps:

∆ψk = ψk −
ψk−(ks−ks−1) + ψk−(ks−ks−2)

2
, (25)

where ψk is the heading of the foot at the current sample

k computed as ψk = arctan(Cn
bk|k

(2, 1), Cn
bk|k

(1, 1)); ks is

the sample of last detected step (red points in Fig. 4), and

ks−1 is the sample of the previous to the last detected step.

The right part of equation 25 takes the average of two Yaw

values at positions within the previous stance phases that are

correlative with the position of sample k in its own stance

phase.

If the orientation change among successive steps, ∆ψk, is

small enough (below a given threshold), then it is assumed a

straight-line walk; and the EKF is fed with some measurement,

mk, to correct the heading error so as to make the trajectory

straight:

mk =

{

∆ψk |∆ψk| ≤ th∆ψ

0 otherwise
, (26)

If |∆ψk| is larger than th∆ψ , then the orientation change is

considered to be a real variation in the trajectory of a person.

In that case, no corrections are fed into the EKF. We use an

angular value of 4 degrees as threshold th∆ψ .

The measurement matrix, H, when incorporating the ZUPT

and HDR updates is a 4 by 15 matrix as follows:

H =

[

[001] 01×3 01×3 01×3 01×3

03×3 03×3 03×3 I3×3 03×3

]

. (27)



C. Electronic Compass

This drift compensation method is normally used in outdoor

environments, where magnetic disturbances are moderate. In-

doors, the magnetic disturbances can be severe and permanent

for a given position of the user. Some authors [12] do not

recommend the use of magnetometers indoors, but, conve-

niently treated, we believe they are very useful as an absolute

reference for heading.

In order to use the magnetometer sensor as a compass, we

first transform the sensor body readings into the navigation

frame of reference, using the Roll (φk) and Pitch (θk) angles:

Bn
k =





cos θk 0 − sin θk

0 1 0
− sin θk 0 cos θk



·





1 0 0
0 cos φk − sin φk

0 sin φk cos φk



·Bb
k,

(28)

where the roll and pitch angles are obtained from the rota-

tion matrix, as follows: φk = arctan(Cn
bk|k

(3, 2), Cn
bk|k

(3, 3))

and θk = − arcsin(Cn
bk|k

(3, 1)).
After this transformation, the magnetic field components are

geodetically levelled, so the heading angle (ψcompass
k
) is:

ψcompass
k

= − arctan(Bn
k (2)/Bn

k (1)) − Md (29)

where Md is the earth magnetic declination at a given point

on the earth surface.

The compass error measurement mk for the EKF is

mk = ∆ψk = ψk − ψcompass
k
. (30)

The measurement matrix, H, for ZUPT and Compass esti-

mation is equal to the HDR case (eq. 27).

D. The full integration of all methods in IEZ

Once defined each individual method for drift reduction

(ZARU, HDR and Compass), the evaluation of all these

methods merged into the same IEZ framework is quite straight-

forward. The measurement matrix would be a 7 by 15 matrix

with these components:

H =





[001] 01×3 01×3 01×3 01×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3



 , (31)

and the measurement vector would be:

mk = [∆ψk,∆ω
b
k, ∆vk]. (32)

IV. TESTS

We have performed several tests in order to evaluate

the performance of these PDR methods: IEZ, IEZ+ZARU,

IEZ+HDR, IEZ+Compass and IEZ+ZARU+HDR+Compass.

Some tests were performed by simulation, but most of them

belong to real indoor scenarios, where the IMU is installed on

the right foot of a person, as Fig. 6 shows.

Fig. 6. Xsens IMU attached to the right foot using the shoe’s laces.

accelerometers gyroscopes magnetometers

Axes 3 3 3

Full Scale (FS) ±50 m/s2 ±300 deg/s ±750 mGauss
Linearity 0.2% of FS 0.1% of FS 0.2% of FS

Bias stability 0.02 m/s2 1 deg/s 0.1 mGauss
Bandwidth 30 Hz 40 Hz 10 Hz
Max update rate 512 Hz 512 Hz 512 Hz

TABLE I
PERFORMANCE OF INDIVIDUAL SENSORS IN XSENS IMU

A. IMU description

We use a commercially available IMU, model MTi from

Xsens Technologies B.V (Enschede, The Netherlands). Its size

is 58x58x22 mm (WxLxH), and it weights 50 grams. It is

configured to send data at 100 Hz.

The IMU has three orthogonally-oriented accelerometers,

three gyroscopes and three magnetometers. The accelerom-

eters and gyroscopes are MEMS solid state with capacita-

tive readout, providing linear acceleration and rate of turn,

respectively. Magnetometers use a thin-film magnetoresistive

principle to measure the earth magnetic field.

The performance of each individual MEMS sensor within

the MTi IMU are summarized in table I. They suffer from

a significant bias, and this bias also varies over time, so

PDR algorithms have the challenge of avoiding excessive error

accumulation (drift) during integration.

B. EKF Tuning

The EKF in the IEZ and the extended IEZ+ frameworks

had to be fine-tuned in order to obtain a stable operation, by

selecting the values of matrixes Qk, Rk and Pk|k−1.

The process noise covariance matrix, Qk, is initialized for

k = 1 as a diagonal 15x15 matrix with these in-diagonal

elements: [1 · 10−4
1×3 rad, 01×3, 01×3, 1 · 10−4

1×3 m/s, 01×3]. The

non-zero values correspond to the variance of gyroscopic and

accelerometer sensors that is, in both cases, about 1 · 10−4.

The measurement noise covariance matrix: Rk is a square

matrix with rows and columns equal to the number, n, of

measurements available (3 for ZUPT, 4 for IEZ+ZARU, 6 for
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Fig. 7. Estimated trajectories from IEZ PDR algorithms, when using IMU
simulated data.

IEZ+HDR, 7 for IEZ+ZARU+HDR, and so on). We set this

matrix with in-diagonal elements with values of: 0.01 m/s for

ZUPT, 0.1 rad/s for ZARU, and 0.1 rad HDR and Compass.

The state estimation covariance matrix, Pk|k−1, is initialized

as a diagonal 15x15 matrix with these in-diagonal elements:

[01×3, 1 · 10−2
1×3 rad/s, 01×3, 01×3, 1 · 10−2

1×3 m/s2].
The results of the PDR algorithms strongly depends on the

selected values for these covariance matrixes, so the tuning

must be done trying to find a consistent response among the

state estimates and the state estimation covariance matrix.

C. Performance using simulated IMU data

We simulated the data an IMU would output when a person

is walking along a pre-defined trajectory and the IMU is

mounted on the foot. This simulator was useful to better tune

the EKF, and also to add controlled noise and biases to any

of the simulated sensors.

A square trajectory of 20-meters-long side was simulated

with a velocity of 1 m/s and a constant stride length of 1 meter.

The gyroscopic biases were zero for X and Y axis, but was

set to -0.05 rad/s in Z axis. Additionally, white Gaussian noise

with zero mean was added to the accelerometer and gyroscopic

samples (σa = 0.01 m/s2 and σω = 0.01 rad/s). Figure 7

shows the positioning results using the IEZ and the different

IEZ-extended algorithms. It is clear how a heading drift is

accumulated due to the gyro bias using the IEZ method alone.

However, we can see how the addition of several heading-

related measurements to IEZ (ZARU+HDR+Compass) gives

better results that in any other cases.

The estimation of the gyroscopic bias in the Z axis, using

any of the IEZ+ extended methods, gets stable after 5 seconds

(500 samples), as can be seen in Fig. 8. This initial period

corresponds to the Still phase, just before the person starts

to walk. Once the person is walking, the gyroscopic bias

estimation is no longer changed since the state estimation

covariance matrix converged to low values, which means that

the bias estimation was reliably done.
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Fig. 8. Simulation of the evolution of the gyroscopic biases as estimated
by the EKF in any of the IEZ+ extended methods. The vertical gyro bias
converges in a few seconds to the true bias value (-0.05 rad/s).
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Fig. 9. Position estimation results using IEZ and several IEZ-extended PDR
algorithms. The test is performed in building A of IAI-CSIC campus in a
Counter-Clock-Wise (CCW) direction. The path is about 125 meters long,
and it contains indoor as well as outdoor parts.

D. Performance in real indoor environments

We tested the PDR algorithms in a real indoor environment.

Tests were performed in building “A” of IAI-CSIC campus,

both in a Counter-Clock-Wise (CCW) and Clock-Wise (CW)

directions. Figures 9 and 10 show the estimated trajectories

for a path 125 meters long, completed in 100 seconds.

It is important to mention that the Compass contribution is

decisive in order to obtain accurate trajectories with respect

the ideal path. This is valid even with several local magnetic

perturbations that were detected along the path, as can be seen

in Fig. 11.

As an initial performance index, we computed the position-

ing errors (difference between the initial and final position)

with respect to the total travelled distance (TTD). The values
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Fig. 10. The same test than in figure 9 but in Clock-Wise (CW) direction.
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Fig. 11. Magnetometer readings, Bb

k
(for k=1 to 10000), during the

walking test in the indoor environment of Fig. 9. Note that the magnetic field
magnitude is not constant along the path due to local magnetic disturbances.

presented in table II show the typical range of positioning

errors found for several indoor tests like those presented in

figures 9 and 10.

PDR Method Positioning errors (% of TTD)

IEZ > 15
IEZZARU [4-8]
IEZHDR [2-10]
IEZCompass [0.6-5]

IEZZARU+HDR+Compass [0.3-1.5]

TABLE II
TYPICAL PERFORMANCE OF IEZ AND IEZ+ PDR ALGORITHMS FOR

SEVERAL INDOOR TESTS. ERRORS IN PERCENTAGE OF TOTAL TRAVELLED

DISTANCE (TTD).

V. CONCLUSION

We have described, implemented and compared some of

the most relevant Kalman-based PDR algorithms in the state

of the art for pedestrian dead reckoning. The study consisted

in the implementation of several methods for heading drift

reduction, and the evaluation in a common IEZ PDR platform.

We restricted the study to the use of an IMU sensor alone, i.e.

without using any external infrastructure such as GPS, LPS

or building-maps to correct the heading drift. The device was

placed at the foot of the person because is the best position

for accurate PDR.

The presented results shown that extended IEZ+ PDR

algorithms can provide good solutions for estimating human

trajectories, even in indoors environments with local magnetic

disturbances, and even using a low-performance IMU. The un-

corrected heading drift is proportional to the travelled distance

but not to the time elapsed. The positioning error, for the IEZ+

method integrating ZARU+HDR+compass, is typically about

1% of the total travelled distance.

Future work will be focused to obtain a periodic absolute

positioning update during the walk, in order to cancel out

any drift. This update could be done with LPS sensors such

as those based on RFID, WiFi, UWB or ultrasound; also

matching PDR estimations with local maps; or using any kind

of magnetic signatures that can be associated to a known

position. Any of these approaches should provide a better

indoor location of persons for Intelligent Spaces in scenarios

such as homes, offices, healthcare spaces, emergencies, sport

centers and so on.
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[13] A.R. Jiménez, F. Seco, C. Prieto and J. Guevara, “A Comparison of
Pedestrian Dead-Reckoning Algorithms using a Low-Cost MEMS IMU,”
In 6th IEEE International Symposium on Intelligent Signal Processing,

26-28 August, Budapest, Hungary, 2009, pp. 37-42.
[14] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”

IEEE Computer graphics and Applications, vol. 1, pp. 38-46, 2005.


