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Abstract—Contemporary surveillance systems mainly use
video cameras as their primary sensor. However, video cameras
possess fundamental deficiencies such as the inability to handle
low-light environments, poor weather conditions, and concealing
clothing. In contrast, radar devices are able to sense in pitch-
dark environments and to see through walls. In this paper,
we investigate the use of micro-Doppler signatures retrieved
from a low-power radar device to identify a set of persons
based on their gait characteristics. To that end, we propose a
robust feature learning approach based on deep convolutional
neural networks. Given that we aim at providing a solution
for a real-world problem, people are allowed to walk around
freely in two different rooms. In this setting, the IDRad dataset
is constructed and published, consisting of 150 minutes of
annotated micro-Doppler data equally spread over five targets.
Through experiments, we investigate the effectiveness of both
the Doppler and time dimension, showing that our approach
achieves a classification error rate of 24.70% on the validation
set and 21.54% on the test set for the five targets used. When
experimenting with larger time windows, we are able to further
lower the error rate.

Index Terms—convolutional neural network, feature learn-
ing, gait classification, indoor sensing, low-power radar, micro-
Doppler, person identification

I. INTRODUCTION

Automatic awareness and smart sensing of the environment

is a crucial property of future surveillance systems. Modern

systems widely use video cameras to collect information from

their surroundings. However, despite the significant advances

in picture quality and a sharp price drop in recent years,

cameras possess fundamental deficiencies such as being unable

to handle sudden light flashes or to record in low-light scenar-

ios or poor weather conditions. In addition, the unrestrained

use of cameras is subject to controversy when operating in

privacy-sensitive areas. In contrast, a radar device preserves

visual privacy while being unaffected by weather or lighting

conditions. Moreover, it allows for through-the-wall sensing

and it can deal with face-concealing clothes. Therefore, radar

technology seems to become an indispensable alternative or

complementary sensor for a large set of applications.

A radar device transmits an electromagnetic signal over a

certain line of sight (LOS). The reflection of the targets moving

in the LOS contains information about their speed as a result

of the Doppler effect. In addition, separately moving parts are

characterized by their own Doppler signal. Most often, the

superposition of all these Doppler signals is summarized in a

so-called micro-Doppler (MD) signature [1].

The rich structure of an MD signature is used as input

for complex radar-based solutions in a wide array of stud-

ies. These can range from differentiating among pedestrians,

cyclists, and cars to recognizing the specific action a person is

performing [2], [3]. In this study, we go one step beyond action

recognition by proposing a novel approach for indoor identifi-

cation of individual humans based on their gait characteristics.

To that end, we leverage state-of-the-art tools in the area of

low-power radar technology and deep machine learning.

This study entails a number of aspects that significantly

increase the complexity and novelty compared to existing

sparse state-of-the-art literature on person identification [4],

[5]. First and foremost, a target is allowed to walk around in

a free and spontaneous way, solely limited by the boundaries

of the room. This is in stark contrast with existing studies that

only allow walking directly towards or away from the radar, or

limit the walking behaviour by using a treadmill. As a result,

the models require robustness against differences in walking

direction, short stops, and turns, and are thus better suited

for deployment in real-life scenarios. Secondly, we prioritize

on the use of power-efficient and compact devices that are

tailored to use in a smart home environment. Therefore, a

low-power Frequency Modulated Continuous Wave (FMCW)

radar is used, resulting in a Signal-to-Noise Ratio (SNR) of

8 dB on average. The combination of such radar with the low

radar cross section of approximately 0.5m2 [6] of a human

and a highly reflective indoor recording environment results

in noisy MD signatures and adds to the complexity of the

challenge. Finally, a feature learning approach is employed

based on deep machine learning that allows for the creation

of robust models that are invariant to the exact radar placement

and room setup.

Due to the lack of a large, publicly available and realistic in-

door data set recorded with a low-power radar, we constructed

the IDRad data set (IDentification with Radar data). This

dataset was used to train and evaluate the proposed Convo-

lutional Neural Network (CNN)-based models. To summarize,

the main contributions of our research effort are as follows:

• we propose robust classification models that are inde-

pendent of radar placement and room setup while allow-

ing for spontaneous walking, closely mimicking realistic
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identification scenarios,

• by employing deep convolutional neural networks, we

consider automatic learning of valuable features based

on the collected data, as opposed to a limited number of

context-specific and hand-engineered features,

• an extensive and intuitive in-depth analysis is performed

on the proposed processing pipeline with respect to the

model accuracy,

• we release the IDRad data set in order to facilitate future

research and benchmarking.

The rest of the paper is organized as follows: Section II

briefly lists related work in the area of radar signal processing

for classification purposes. Section III and Section IV describe

the principles of micro-Doppler and convolutional neural net-

works, respectively. In Section V, we subsequently explain the

proposed approach. Section VI consists of a description of the

experimental setup used to validate the proposed approach and

Section VII contains an in-depth discussion of our experimen-

tal results. Finally, we conclude the paper and suggest some

directions for future research in Section VIII.

II. RELATED WORK

The employment of radar as a sensor has been extensively

investigated in the signal processing domain. In this section,

we provide a concise discussion of a number of related studies,

mainly targeting action classification and person identification.

A large number of radar studies focus on the automatic

recognition of multiple actions performed by humans. In these

cases, a set of distinct actions is listed and a model is built

that attempts to recognize these actions. Use cases range from

security applications trying to detect violent intents [7], [8] to

elderly monitoring applications that attempt to detect walking

behavior or falling people [9]–[11]. In [12], manual feature

engineering in combination with a support vector machine

(SVM) is applied, achieving over 90% test accuracy on seven

different actions. The actions under consideration consist of

typical human practices such as walking, running, and sitting,

but also practices that hint at violent behavior such as boxing

and walking while holding a stick.

The authors of [12] also applied a CNN-based deep learn-

ing approach to the same data set, achieving a similar test

accuracy [3], which demonstrates the potential of a feature

learning approach. In [13], transfer learning is used to classify

human aquatic activities. In particular, the authors started from

a CNN pretrained on the ImageNet data set and subsequently

fine-tuned the weights based on MD data, concluding that

a pretrained CNN performs considerably better than a CNN

trained from scratch. The authors of [2], [14] utilize an auto-

encoder to automatically learn features from MD signatures.

In [2], the authors apply an extreme learning machine (ELM)

to differentiate among pedestrians and cyclists, while in [14],

a softmax regression classifier is used to make a distinction

between four actions, including falling and bending.

A significant amount of work has been done in the domain

of identifying individual persons based on their rhythmical

motion of walking, with the main focus on video images as

input. In [4], the authors consider MD signatures to identify

individual persons. Thirteen subjects, seven males and six

females, walk on a treadmill positioned in front of the radar.

Based on k-means clustering and k-nearest neighbors (k-NN)

classification, an accuracy of 100% is achieved on identifying

the individual humans. They also report an accuracy of 92.4%

for the task of gender classification. Tahmoush et al. [5] report

results for recognizing eight persons using a k-NN classifier

and two hand-engineered features, namely the stride and torso

line of the subjects. In [15], Gaussian mixture models (GMM)

are used to identify individual persons and to differentiate

among male and female subjects based on hand-engineered

features. A total of 20 recordings of 30 subjects were used to

train and test the models developed. Similarly, in [16], eight

individuals are identified using GMMs, obtaining over 90%

accuracy.

This work aims at improving upon the existing state-of-the-

art in person identification by introducing a novel approach

that focuses on an uncontrolled scenario, allowing targets to

freely walk around. This results in models that are more robust

against changes in environmental conditions.

III. MICRO-DOPPLER

The bulk motion of a radar target moving at constant

speed induces a constant Doppler frequency shift. However,

in addition to the core translation of the target, multiple

smaller moving parts result in micro-motion dynamics. These

dynamics induce Doppler modulations on the echoed signal,

referred to as the micro-Doppler effect. The different moving

parts might induce a frequency modulation on the returned

signal that results in sidebands around the Doppler frequency

shift of the target [1]. The micro-Doppler map can be seen as

the power reflected as a function of the speed of the reflector.

In this work, a 77GHz Frequency Modulated Continuous

Wave radar is used. FMCW radars have the advantage that

they can be produced at a low cost, while at the same time

being relatively power efficient. Unfortunately, this power

efficiency usually comes at the cost of having a low SNR

of on average 8 dB, which is one of the challenges faced in

this study. An example of such MD signature is shown in

Fig. 1a, captured on 30 s of one person walking in a room. The

y-axis in this figure represents the Doppler dimension, also

referred to as Doppler channels throughout this paper, while

the x-axis represents the time dimension. The zero Doppler

channels contain the reflections of all static objects in the

room and thus result in high reflected power. In Fig. 1b, the

same MD signal is processed so to better demonstrate the

structure of the MD signature. To that end, the informative

signal is strengthened by removing noise in the range-Doppler

domain. This is done by thresholding values below −45 dB
(cf. Section V-A). Furthermore, the reflected power of the

static objects is decreased to better expose the characteristics

of a signature caused by a walking person. In this case, the

different distinguishable signals represent the body, the arms,

and the legs swinging.

IV. DEEP NEURAL NETWORKS

Deep learning or hierarchical learning is a subfield of

machine learning that aims at the automatic construction of
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(a)

(b)

Fig. 1: MD signature of one person spontaneously walking

in a room: (a) the raw MD signature and (b) the thresholded

MD signal together with a link to three visual snapshots of

a person turning, walking towards, and walking away from

the radar, respectively. The color scale shows the accumulated

power levels (in dB) after summing over each range-Doppler

map.

tailored features based on a stack of nonlinear operations. In

particular, algorithms in the field of deep learning aim at au-

tomatically creating feature hierarchies, typically through the

use of multi-layered feed-forward neural networks (FFNN).

Such a FFNN consists of a chain of functions that allow the

learning of increasingly complex concepts by stacking many

simpler functions:

f(x) = fL(fL−1(. . . f1(x))), (1)

f ℓ(x) = σ(Wℓ
x+ b

ℓ), ∀ℓ ∈ {1..L}, (2)

where x represents an input vector, L denotes the number

of layers in the network, σ represents a piece-wise nonlinear

function, and W
ℓ and b

ℓ describe the layer-specific weights

and biases, respectively.

The piece-wise nonlinear operation σ is commonly chosen

to be the rectifier linear unit (ReLU) [17], and where this

function is defined as follows: ReLU(x) = max(0, x).
Even though the concept of deep neural networks already

exists for several decades, it has regained considerable atten-

tion since a widely published breakthrough in the ImageNet

Large-Scale Visual Recognition Competition (ILSVRC) in

2012 [18]. Since then, further empirical evidence has shown

the excellent performance of deep learning in several appli-

cation domains, including image classification, speech recog-

nition, and natural language processing. The recent success

of deep learning can be attributed to the current availability

of large data sets and cheap computational power, as well

as a number of algorithmic advances and a culture of open

innovation.

Input
Kernel

Output

a b c d

e f g h

i j k l

w x

y z

aw + bx+
ey + fz

bw + cx+
fy + gz

cw + dx+
gy + hz

ew + fx+
iy + jz

fw + gx+
jy + kz

gw + hx+
ky + lz

Fig. 2: Example of a two-dimensional convolutional operation.

A 2 × 2-sized kernel is convolved over a 3 × 4-sized input

with zero padding. The operation of each element is exactly

described in the resulting output feature map.

In this work, we focus on deep convolutional neural net-

works (DCNNs). These artificial neural networks make use of

neurons that are only locally connected and that share weights.

This means that convolutional filters work on small local

receptive fields of input data in a sliding-window fashion. This

specialized kind of neural network has a grid-like topology.

Different filters evolve to become specific feature detectors,

for instance ranging from low-level color and edge detectors

in early layers to high-level object detectors in later layers.

The essential difference with a standard feed-forward neural

network is the use of convolutions instead of plain matrix

multiplications.

In Fig. 2, an example of a convolution is shown with a

kernel of size 2×2 and stride 1 1. The mathematical operation

of such a convolution is defined as follows:

Sij = (X ∗K)ij (3)

=
∑

m

∑

n

Xi+m,j+nKmn, (4)

with S denoting the resulting feature map, X a two-

dimensional input, and K a kernel ∈ R
m×n. Compared to

a regular FFNN, Equation 2, is modified as:

f ℓ
j (X) = σ(X ∗Wℓ

j + b
ℓ
j), ∀ℓ ∈ {1..L}, (5)

with f ℓ
j depicting the j-th feature map of layer ℓ.

Besides weight sharing, a dimension reduction technique

known as pooling is applied to effectively mitigate the number

of parameters and the data size. By averaging or maximiz-

ing the response of n × m cells, essential information is

preserved, while the data size is reduced. In Fig. 3, a max

pooling operation of size three and stride two is conceptually

displayed. It can be noted that a pooling operation results

in translation invariance. Indeed, the essential information is

preserved, regardless of its exact cell location.

1From a strict point-of-view, we are dealing with a cross-correlation, as the
kernel is not flipped.
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1.1 0.1 0.2 0.0 0.1 0.5 0.0

1.1 0.2 0.5

Fig. 3: Example of a one-dimensional max pooling operation

with size three and stride two. A seven-dimensional input

vector is reduced to a three-dimensional feature vector by

selecting the maximum value over a window of three neurons

and subsequently shifting by two neurons.

V. PROPOSED APPROACH

The goal of this research is to identify people based on the

MD signatures provided by a low-power FMCW radar. The

key research question we try to answer is whether such micro-

Doppler features allow characterizing individual humans in a

realistic scenario. The scenario under consideration is defined

as an indoor living space, in which people are allowed to freely

walk around in every direction possible. In Fig. 4, a schematic

overview depicting the proposed approach is given.

In this section, we discuss the different preprocessing steps

and machine learning algorithms used to address the afore-

mentioned question.

Fig. 4: Schematic overview of the proposed approach: (a) a

single target is captured by a low-power radar while walking

in a room, (b) the recorded raw signal is computed into an

MD signature, (c) the MD signature is processed to reduce

noise and retain only essential information, and (d) at each

time step, a 3 s MD fragment is fed to a CNN which predicts

probabilities for each target.

A. Preprocessing

In this work, an FMCW radar device produced by IN-

RAS [19] is used. This millimeter-wave radar allows working

with a significant amount of bandwidth of 1.5GHz and a

high frequency of 77GHz, resulting in an excellent range

and velocity resolution of 10 cm and 2 cm/s, respectively. The

device is set up in Single Input Single Output (SISO) mode

and the recording parameters are given in Table I. According

to our experiments, the SNR of the data provided by this radar

varies from 10 dB for targets within a range of 1m to 7 dB
for targets located at around 8m.

The MD signature is calculated by first determining the

range-Doppler map using a two-dimensional Fourier trans-

form. Subsequently, the absolute value of the signal is con-

verted to decibels (dB) and summed over the range dimension.

This MD signature is referred to as a raw signal throughout

the remainder of this paper.

TABLE I: Recording parameters of the FMCW radar. The

range and velocity resolution of 10 cm and 2 cm/s, respec-

tively, allow for fine-grained capturing of detailed movements.

Waveform Parameters Sensing Parameters

Center freq. 77GHz Range resolution 10 cm
Chirp bandwidth 1.5GHz Velocity resolution 2 cm/s
Chirp duration 256 µs Ambiguous range 38.4 km
Sampling freq. 2GHz Ambiguous velocity 13.68 km/h

To mitigate the significant amount of noise (cf. Fig. 1a),

a thresholded variant of the MD signature is computed and

investigated in Section VI. Specifically, a lower threshold in

the range-Doppler domain filters out noise after subtraction

of the maximum value. This value is derived from Fig. 5,

which shows a normalized histogram of a random set of range-

Doppler maps in both cases of either an empty or a non-empty

room. For both histograms, we have filtered the influence of

the reflected power of all static objects by removing the zero

Doppler channels. From this figure, it can be derived that the

skew-normal distributed noise can be filtered by setting a lower

threshold of −45 dB.
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Fig. 5: Normalized histogram of 1, 000 (a) empty and (b)

non-empty range-Doppler maps. Figure (a) clearly shows the

presence of noise that is skew-normal distributed and with

a relative power below −45 dB. In figure (b), the perceived

signal resulting from walking activity is highlighted.

The final MD signatures (both raw and thresholded) contain

256 Doppler channels per time step, representing speeds from

−3.8m/s to 3.8m/s. It was visually observed that three

middle Doppler channels represent all non-moving objects.

The time dimension is represented by the frequency for which

a range-Doppler map is produced by the radar device. In this

case, a total of 256 chirps are taken, with each chirp having a

duration of 256 µs, thus resulting in approximately 15 frames

per second (FPS). Throughout this paper, a frame represents

one time step in the MD signature and consists of 256 Doppler

channels. In Section VI, both the time and Doppler input

dimension are extensively investigated.

B. Neural Network Architecture

Two key properties of convolutional neural networks make

them appealing for the task of identifying persons based on

low-SNR MD signatures: (1) the capability of building models
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that are robust against noisy data and (2) the learning of

valuable features in an automatic way.

In this study, the MD signatures are represented as two-

dimensional spatial structures that are fed to a deep convolu-

tional neural network. We assume that the features necessary

to identify multiple persons can be learned from short MD

fragments. The need for large amounts of data prevents the

use of more modern deep networks to boost performance

such as for example the inception networks [20] or residual

networks [21].

input

3× 3 conv, 8

2× 2 pooling

3× 3 conv, 16

2× 2 pooling

3× 3 conv, 32

2× 2 pooling

3× 3 conv, 64

2× 2 pooling

fc 128

dropout 0.5

fc 5

Fig. 6: Schematic diagram of the neural network architecture.

The first convolutional layer consists of eight 3 × 3 filters,

followed by a pooling layer with non-overlapping 2× 2 cells.

This sequence, which is repeated four times with an increasing

number of filters, is followed by a fully-connected two-layer

network.

Fig. 6 shows the conceptual architecture of our network. The

network structure was carefully designed by experimenting

with a large number of hyperparameters such as the number of

layers (convolutional, pooling, or fully-connected), the number

and size of filters, etc. The resulting network consists of four

convolutional layers and two fully connected layer, with the

number of output neurons dependent on the number of persons

present in the data set. A select number of 3×3 filters is used

to avoid rapid overfitting. Each convolutional layer and the

first fully connected layer make use of an Exponential Linear

Unit (ELU) non-linearity operation. This non-linear operation

is defined as follows:

ELU(x) =

{

x, if x > 0

α(exp(x)− 1) if x ≤ 0
, (6)

with x ∈ R representing the input and α a predefined parame-

ter greater than zero. Compared to other non-linearities, ELU

non-linearities possess improved learning characteristics [22].

Moreover, the negative values that are part of the range of

an ELU allow pushing mean unit activations closer to zero.

The latter is similar to batch normalization, but coming with

TABLE II: Physical characteristics of the persons who partic-

ipated in collecting the data set.

Target ID Age Height Weight

1 23 178 cm 82kg
2 32 185 cm 99kg
3 28 180 cm 79kg
4 24 182 cm 60kg
5 28 179 cm 71kg

a computational complexity that is lower. The last fully-

connected layer uses a softmax operation to produce outcome

probabilities for each target class.

The input dimension is sequentially reduced by four 2 ×
2 pooling layers. This network in total consists of 286, 408
trainable weights for a default input of 256× 45, resembling

256 Doppler channels and 45 time steps (i.e., three seconds)

of data.

VI. EXPERIMENTAL SETUP

In this section, we describe the characteristics of the IDRad

data set constructed.

A. IDRad Data Set

In order to create a realistic data set, we considered different

rooms, encouraging people to walk around spontaneously in

any possible direction. Each person was recorded individually,

hence, no recording contains multiple persons present at the

same time. We have captured our data over multiple days

and rooms, so to take into account the effect of contextual

influences like different moods, clothing, shoes, etc. By not

focusing on a single recording per user in a single room, we

explicitly aimed at developing a robust system that is capable

of dealing with different environments. In this study, we aimed

at simulating a challenging household setting by recording five

different persons.

In a first stage, we recorded the random walking of five

persons in a room for five consecutive minutes, and the same

five people were again recorded in the same room for 15

consecutive minutes two weeks later. Table II lists some basic

information about each target. All our subjects are males

between 23 and 32 years old with comparable postures. Their

weights range from 60 kg to 99 kg and their heights range

from 178 cm to 185 cm.

The whole training data set contains 20 minutes of MD

signatures per person. As mentioned before, each target is

recorded in a continuous matter. Therefore, each recording

also contains other movements than regular walking, including

turns, short stops, and accidental moves. A video camera is

also used for simultaneously recording the walking targets,

mainly for easing the analysis of the MD signatures. The video

data were not used to train our models in this study.

In a second stage, a different room was used to create the

validation and test set. Again, the recordings for both the

validation and the test set contain five minutes of continuous

walking for all targets and were created with two weeks in

between. In Fig. 7, an image sequence visualizes a three-

second walking fragment. We can observe that the continuous
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Fig. 7: Image sequence showing three seconds of walking.

TX
RX

9m

6m

(a)

TX
RX

8m

5m

(b)

Fig. 8: Conceptual and photographic visualization of (a) the

training room and (b) the validation/test room. The radar

position is represented by a red circle. The line of sight is

indicated by dotted lines with the receiving beamwidth (RX)

covering 76.5◦ and the transmitting beamwidth (TX) covering

51◦. The green cross denotes a possible target.

recording possesses a significant amount of variation, includ-

ing walking parallel to the radar.

Fig. 8a and 8b show a conceptual and visual representation

of the training and validation/test room. We would like to

emphasize that the walls of this building are built based on a

metallic construction framework, which resulted in reflections

and a considerable amount of noise in the recordings. In

addition, the presence of a metallic and wooden closet together

with an open ceiling with metallic tubes in the test room

produced ghost targets coming from multi-path reflections.

In order to facilitate further research on this topic, the IDRad

data set is made publicly available 2.

B. Statistical Analysis

Given that the FMCW radar records range-Doppler maps

with a speed of around 15FPS, the training set contains

67, 625 frames, while the validation and test set contain

22, 535 frames each. One frame represents one time step in the

MD signature and is depicted by 256 Doppler channels (i.e.,

the sum over all range channels per Doppler channel of one

range-Doppler map). For both the validation and test set, we

2The data set is publicly available at https://www.imec-int.com/IDRad.

generate samples by cutting up the MD signal into windows

with a length of 45 frames (representing 3 s of data) with an

overlap of 1 s, thus resulting in 1, 490 samples. Throughout

this paper, we report the error rate, which is the ratio of

wrongly classified samples to a total of 1, 490 samples, as

a measure to compare the obtained results.

Fig. 9 shows the average walking speed of each target in

all data sets. The speed per target is computed by averaging

the Doppler channels linked to the maximum power present

in each range-Doppler map after removing the zero-Doppler

channels. It can be noted that average speed in itself is

potentially a relevant feature as it is dimly linked to the

walking behavior of a person. However, it is clear that speed

in itself is not sufficient to solve the challenge originally put

forward since multiple targets have similar walking speeds

in all data sets. Moreover, the speed of a target is naturally

varying due to the relatively small rooms and thus the need

for turns. This is shown by the large standard deviation of the

speed of each target, which can be linked to large variations

in walking speed.

Fig. 10 displays the standard deviation of the reflected

power per Doppler channel for raw and thresholded MD

signatures. It is clear that the zero-Doppler (indices 127 –

129) channels, representing the static objects, contain a lower

amount of variation compared to their surrounding channels.

Moreover, we can conclude that most information resides in

the middle third Doppler channels and that the thresholded

signals contain more overall variance. In Section VII-B, the

removal of the static and outer Doppler channels is investigated

and the effect on the accuracy of the model is reported.
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Fig. 9: Average target speed per set.
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Fig. 10: Standard deviation of raw and thresholded Doppler

channels over all frames of the training set.

C. Learning

We trained our models on a GeForce GTX 980 graphics

card using the Theano3 and Lasagne libraries4. Mini-batches

of size 64 were used and the parameters were learned based

on the Adam optimizer, using a learning rate of 0.0001 and

0.0005 L2 regularization. This learning rate was adaptively

lowered based on the cross-entropy loss of the validation. The

model was trained for around 300 epochs and required 15

minutes on average to converge.

A major challenge in our research was to prevent our

models from overfitting on the training set. To that end, we

augmented our data set by randomly shifting over the time

dimension. All samples were locally normalized to the range

[0, 1]. We experimented with mirroring of the MD signatures,

but observed no noticeable improvements.

VII. EXPERIMENTAL RESULTS

A. Analysis of Time Dimension

In the process of learning valuable features from given input

data, it is crucial to determine the relevant input dimensions.

In what follows, we investigate how many time steps and

which Doppler channels optimize the performance of the iden-

tification model. Selecting the essential information channels

for both dimensions (i.e., time and Doppler) is a determining

factor to prevent overfitting of the network. In that regard,

we analyzed the effect of ranging the time dimension from 5

to 150 frames, while keeping the Doppler dimension fixed to

256. As mentioned above, frames are recorded at an interval

of 15FPS, with the input window range thus varying from

1/3 s to 10 s. We repeated this experiment for both raw and

thresholded MD signatures.

Our results are depicted in Fig. 11. We can note that each

number is the result of averaging the output of the experiment

three times. It is clear that the model cannot effectively learn

valuable features from raw MD signatures when using all

256 Doppler channels as input. This effect is studied in more

detail in Section VII-B. In contrast, the results of using the

thresholded MD signatures show that there is a clear benefit

of adding more time steps to the input. In this case, the error

3http://deeplearning.net/software/theano/
4lasagne.readthedocs.io/

rate ranges from 61.08% for the shortest window to 21.26%

when the input consists of 140 time steps, resembling 9.33 s of

information. We notice a sharp decrease in terms of error rate

in the early phase, when the length of the window ranges from

5 to 45 frames. The improvement becomes less significant for

longer fragments. Considering a trade off between short-term

predictions and high model performance, we conclude that

the use of 45 time frames — resembling three seconds — is

optimal.

0 20 40 60 80 100 120 140
0

20

40

60

80

Time dimension (frames)

E
rr

o
r

ra
te

(%
)

Raw MD Thresholded MD

Fig. 11: The error rate as a function of the length of the input

window for both the raw and thresholded MD signals.

B. Analysis of Doppler Dimension

In the previous section, we concluded that a window of

45 frames contains a sufficient amount of valuable informa-

tion, while still enabling short-term predictions. A second

conclusion is related to the fact that the model was unable

to effectively learn from the full raw MD signatures. More-

over, in Section VI-B, we statistically observed that some

channels contain more variance than others, which can be an

indication that they hold more useful information. Therefore,

the influence of downsampling the entire Doppler dimension

is investigated, as well as removing specific channels. We

hypothesize that intelligently reducing the input dimension

will decrease the chance of overfitting. To support this hy-

pothesis with experimental data, we use the network described

in Section V-B and fix the length of the input window to 45

frames.

We compare the models trained on the original 256 Doppler

channels and on a downsampled version by a factor of two and

four. The MD signatures are downsampled by linear interpo-

lation. Both the effect of removing the zero-Doppler channels

(Remove Static) and removing the outer Doppler channels,

representing high speeds in both directions (Remove Outer),

are analyzed. More precisely, in the case of removing the static

objects, the three center Doppler channels are removed. For

removing outer Dopplers, we empirically decided to eliminate

24 Doppler dimensions at both sides. This significantly reduces
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TABLE III: Results for the default CNN model when removing and downsampling certain Doppler dimensions from the input

(in %). The left half of the table shows the error rate for the five different targets used, for both the original input and for

downsampled versions of the input by a factor of two and a factor of four. The right half of the table shows the error rate for

the same input dimensions but when making use of thresholded MD signatures.

Raw MD Signatures Thresholded MD Signatures

original factor 2 factor 4 original factor 2 factor 4

Input 256× 45 66.51 128× 45 61.97 64× 45 51.16 256× 45 28.46 128× 45 30.81 64× 45 32.64
Remove Static 253× 45 67.07 126× 45 57.13 63× 45 53.49 253× 45 28.34 126× 45 27.79 63× 45 33.82
Remove Outer 208× 45 64.27 104× 45 54.18 52× 45 51.34 208× 45 31.07 104× 45 35.59 52× 45 33.42
Remove Both 205× 45 47.76 102× 45 46.35 51× 45 50.74 205× 45 26.65 102× 45 31.70 51× 45 33.36

(a) 256×45 (b) 253×45 (c) 208×45 (d) 205×45

Fig. 12: Visualization of an example MD signature fed as input

to our model: (a) the original signature, (b) Remove Static, (c)

Remove Outer, and (d) Remove Both.

the input dimension, while we hypothesize that this will not

influence the effectiveness of the trained models. Fig. 12 shows

an example MD signature for each scenario.

In Table III, an overview of the results is given. Again, each

number is the result of averaging the output of the experiment

three times. We can observe there is a significant advantage to

using thresholded MD signatures as compared to using the raw

counterparts. Moreover, we can observe that the sensitivity of

the network to overfitting on the noise obstructs the learning

of advanced features. While hard thresholding removes parts

of the signal of a target, the loss in information is clearly

outweighed by the benefits of a more robust learning process.

When raw MD signatures are used, it is clear that removing

both static and outer Doppler channels has a positive effect on

the performance of the model. This effect is less pronounced

when using thresholded MD signatures as input. The lowest

error rate is 26.65% and is achieved by removing both static

and outer Doppler channels on thresholded MD signatures.

C. Main Results

In this section, we finalize the model configuration based

on our previous analyses. As discussed in Section VII-B,

reducing the input dimension by removing the outer and static

TABLE IV: Error rate for the training, validation, and test set

(in %) for a number of target combinations. (*) Trained on

the combined training and validation set.

trained on training validation testing

targets 1, 2, 3 1.72 6.71 13.20
targets 1, 4, 5 2.71 30.87 20.81
targets 1, 2, 3, 4, 5 1.95 24.70 21.54
targets 1, 2, 3, 4, 5 (*) 0.09 0.07 15.10

Doppler dimensions has a small but positive influence on

the effectiveness of our approach. Thus, a thresholded MD

signature with dimension 205 × 45 is fed as an input to the

CNN model described in Section V-B.

The error rate on all five targets for the validation and test set

acquired with our best model setup is listed in Table IV. Two

combinations consisting of three targets are shown, together

with the results obtained by a trained model for all five targets.

It is clear that some targets can be more easily classified than

others as the best performing triplet achieves a validation and

test error of 6.71% and 13.20%, respectively. However, the

combination of Target 1, 4, and 5 results in a significantly

lower effectiveness of 30.87% and 20.81% for the validation

set and test set, respectively. Fig. 9 shows that Target 2 and

Target 3 have the highest and lowest average walking speed,

respectively. We assume this enables easier separation between

the targets. Target 4 possesses high variability in average

walking speed between its training and validation set (cf.

Fig. 9), while all three targets have similar walking speeds

in the validation set.

The best performing model achieves 24.70% error rate on

the validation set and 21.54% error rate on the test set for all

five persons. We would like to emphasize that this result is

based on a training set that is recorded in a different room

and on a different day. To measure the impact of providing

information about the room to the training set, we combine

both the training and the validation set, and use 80% and

20% of the resulting set of samples for training and validation,

respectively. The error rate of the test set decreases to 15.10%,

showing the advantage of having a larger training set and

having more variety in the data. However, we can observe that

the relatively small difference shows that the initial learning of

the model is, to some extent, already robust against different

environmental conditions

To measure the influence of the proposed feature learning

approach, we compare the obtained results with a traditional
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dimension reduction technique, namely Principal Component

Analysis (PCA) in combination with a Support Vector Ma-

chine (SVM) and a Random Forest (RF) classifier. To that end,

we apply PCA on the thresholded Doppler dimensions and

reduce the 256 channels to 9 components. The input samples

are represented by a 405-dimensional vector, containing 9

Doppler components for each of the 45 frames. The hyper

parameters of both classifiers are optimized by means of a grid

search performed over a range of values, selecting the model

with the best outcome for the validation set. Table V lists the

results for both combinations. The deep CNN substantially

outperforms both PCA-based methods by an absolute margin

of 17% on the test set.

TABLE V: Error rate on the validation and test set (in %) for

the deep CNN- and PCA-based methods.

method validation testing

PCA plus RF 48.86 38.59
PCA plus SVM 49.20 38.52
deep CNN 24.70 21.54

D. In-Depth Analysis

In this section, we analyze the results obtained with the

above described network, achieving 21.54% on the test set.

First, a comparison is given of the accuracy between the differ-

ent targets. Second, we analyze the focus of the network when

classifying MD signatures. Finally, a representative example is

shown, demonstrating the effectiveness of the trained model.

In Table VI, the normalized confusion matrix is displayed

for the test set, obtained with the original training and valida-

tion set (for all five targets). As described in Section VI-B,

the test set consists of 1,490 samples, equally distributed

over the five targets. We can observe that, on the one hand,

distinguishing Target 1 and 4 is more difficult with 68.12%

and 70.47% accurately classified samples, respectively. On the

other hand, Target 2, 3, and 5 achieve high scores of 91.28%,

78.19%, and 84.23% correctly classified samples, respectively.

According to this table, mainly Target 1, 4, and 5 are confused

among each other. When inspecting the MD signatures of the

training set of both Target 1 and Target 4, we can observe

that they show great variability while walking and that their

corresponding MD signatures contain relatively more noise.

Fig. 13 shows the activation feature maps of the second to

last convolutional layer for two randomly selected samples.

The first image of each row represents the original input

MD sample. Different feature maps contain different types of

information, highlighting specific parts of the signal. Specif-

ically, certain feature maps focus on the entire shape of the

MD signature, while others highlight the torso or body part

trajectories. This insight shows that the network has learned

a wide range of discriminative features that steer the decision

of the identification prediction.

Finally, we study the robustness of the network when mak-

ing predictions for a contiguous MD segment of 47 seconds.

More precisely, one fragment of ten seconds per target is

randomly selected from the validation set and the resulting

TABLE VI: Confusion matrix for the test set (in %).
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Target 1 68.12 2.35 3.36 12.08 14.09

Target 2 3.69 91.28 1.34 1.34 2.35

Target 3 10.07 2.01 78.19 8.05 1.68

Target 4 4.7 0.00 8.39 70.47 16.44

Target 5 7.72 2.35 2.68 3.02 84.23

Fig. 13: Resulting 32 feature maps of the second to last

convolutional layer for two randomly selected MD fragments.

fragments are then concatenated, again using a random order.

Each time step, an MD signature with a length of 3 s is fed to

the CNN model and probabilities for each target are returned.

The trained model either consistently predicts the correct

output or is confused when a transition between two targets

happens. In the latter case, the MD signature fed to the model

contains gait aspects of two different targets, which explains

the confusion of the model. Fig. 14 shows the concatenated

MD signal, together with the corresponding probabilities for

each target, the predicted target, and the true target.

E. Averaging Predictions

To boost the effectiveness of the trained model, we analyze

the effect of combining multiple predictions over a longer time

period. This also corresponds to the more practical usage of

person identification, in wich persons are monitored for longer

periods of time. In Fig. 15, the result of averaging predictions

for an increasing number of seconds is displayed. The results

for the model trained on just the training set are shown,

together with the model trained on the combined training and

validation set (cf. Table IV).

The length of the window over which predictions are

averaged ranges from 3 s to 30 s. The number of predictions

used depends on the size of this window. A window of 4 s
results in an average over 16 predictions, while a window of

30 s results in an average over 406 predictions. We can observe

a sharp decrease in error rate on the test set when more than

one prediction can be used. For windows of more than 25 s,
a minimum error rate of 0% can be achieved.

F. Intruder Detection

An additional use case of person identification is the con-

struction of an automatic intruder detection system that alerts

when an unknown person enters a monitored area (for security,

theft prevention, and so on). Such a system can be trained on a

set of known people living together (e.g., a family), and where
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Fig. 14: Experiment showing a 47s MD signature consisting of five targets and its corresponding predictions per frame.
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Fig. 15: Classification performance as a function of the length

of the window used to average a number of predictions.

these people can be accurately recognized using our method.

In this experiment, we test the possibilities of our method

tackling such a use case. To that end, we recorded test data for

a sixth target using the same procedure as in Section VI-A for

a total of five minutes in the validation/test room (cf. Fig. 8b).

The original model, trained on five different targets, is used

to predict the outcome of a given sample. The uncertainty of

the predictions is modeled and the prediction for an intruder

target is based on this uncertainty value. Fig. 16 shows the

concatenation of random 10 s fragments of Targets 2, 3, and 5,

originating from the test set, together with two 10 s fragments

of the intruder target. Predictions are made frame per frame,

but using a window size of 4 s (cf. Section VII-E) to predict the

correct outcome. The variance over all probabilities per class is

computed, comparing the maximum value to a fixed threshold

in order to decide whether it is an unknown target (i.e., an

intruder). Fig. 16 shows high uncertainty among the different

class probabilities when the unknown target appears. Wrong

intruder alerts are given when the MD signature transitions

from one known target to another.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, a feature learning approach towards the

automatic identification of spontaneously walking persons in

different rooms was proposed. To that end, we constructed

the IDRad data set of five targets that is split into a training,

validation, and test set consisting of 20 minutes, 5 minutes, and

5 minutes of data per target, respectively. A deep convolutional

neural network was applied to automatically extract features

from the processed micro-Doppler signatures and compute ac-

curate probabilities over five targets. An in-depth investigation

was conducted of multiple input configurations, leading to the

conclusion that an optimal input signal can be obtained by

cutting out the outer 24 Doppler channels and the 3 static

Doppler channels of a thresholded micro-Doppler signature

of 3 s long. With this input, we achieved an error rate of

24.70% on the validation set and an error rate of 21.54% on

the test set for five different targets. We validated the effec-

tiveness of our feature learning approach by comparing it to

a combination of principal component analysis with a support

vector machine and random forest. The deep convolutional

neural network significantly outperformed these approaches

by an absolute margin of 17%. When experimenting with

larger time windows, we were able to further lower the error

rate to 0% for above 25 s windows. Moreover, the approach

was extended in order to create an intruder detection system

that alerts when an unknown person enters a certain area. To

summarize, we successfully built a solution to automatically

identify persons in an indoor and realistic setting solely based

on gait characteristics recorded with a low-power FMCW

radar.

To continue this work, we plan to investigate the necessary

improvements to enable a wide set of applications. This

primarily involves identification of multiple people walking

in the same room, while allowing these rooms to be more

cluttered. A key challenge in identifying more than one person

is isolating the different targets in the range-Doppler(-azimuth)

domain. Based on an effective tracking algorithm, one could

separate and deduct the MD signatures of each individual

person. Indeed, the separation and clear isolation of each MD

signature is a non-trivial task and inquires clear separable

targets. In order to improve the robustness of the model in

cluttered rooms, we will analyze and implement advanced

machine learning techniques to alleviate the impact of multi-

path reflections and shadowing effects in the range-Doppler

domain. Furthermore, we will increase the size and complexity
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Fig. 16: Experiment on modeling the uncertainty of the network so to enable the prediction of an intruder class.

of our dataset, which will enable true end-to-end learning

and mitigate the effects of overfitting. In addition, one can

investigate the use of multiple radar setups to incorporate

information coming from different recording angles with the

aim of significantly increasing the ability to record the gait

characteristics of a human in a fine-grained manner. Finally,

time-dependent models such as Long Short-Term Memory

(LSTM) networks will be investigated so to be able to fully

exploit the temporal information.
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