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Introduction

�e term ‘navigation’ collectively represent tasks that include tracking the user’s posi-

tion, planning feasible routes and guiding the user through the routes to reach the 

desired destination. In the past, considerable number of navigation systems were devel-

oped for accessing outdoor and indoor environments. Most of the outdoor navigation 

systems adopt GPS and Global Navigation Satellite System (GLONASS) to track the 

user’s position. Important applications of outdoor navigation systems include wayfind-

ing for vehicles, pedestrians, and blind people [1, 2]. In indoor environments, the GPS 

cannot provide fair accuracy in tracking due to nonline of sight issues [3]. �is limita-

tion hinders the implementation of GPS in indoor navigation systems, although it can 

be solved by using “high-sensitivity GPS receivers or GPS pseudolites” [4]. However, the 

cost of implementation can be a barrier to applying this system in real-world scenarios.
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Indoor navigation systems have broad number of applications. �e certain applications 

are wayfinding for humans in railway stations, bus stations, shopping malls, museums, 

airports, and libraries. Visually impaired people also benefit from indoor navigation 

systems. Unlike outdoor areas, navigation through indoor areas are more difficult. �e 

indoor areas contains different types of obstacles, which increases the difficulty of imple-

menting navigation systems. General block diagram of a human indoor navigation sys-

tem is illustrated in Fig. 1.

A human indoor navigation system mainly consists of the following three modules: 

(1) Indoor positioning system module, (2) Navigation module, and (3) Human–machine 

interaction (HMI) module. �e indoor positioning system estimates the user’s posi-

tion, the navigation module calculates routes to the destination from current location 

of the user, and the HMI module helps the user to interact with the system and provide 

instructions to the user. Since GPS-based indoor positioning is not effective, methods 

based on computer vision, PDR, RF signals are utilized for indoor positioning. Figure 2 

Fig. 1 Human indoor navigation system: a general block diagram

Fig. 2 Hierarchical classification of indoor navigation systems based on adopted positioning technology
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illustrates the hierarchical classification of indoor navigation systems according to the 

positioning technologies adopted by them.

Computer vision-based systems employ omnidirectional cameras, 3D cameras or 

inbuilt smartphone cameras to extract information about indoor environments. Vari-

ous image processing algorithms, such as Speeded Up Robust Feature (SURF) [5], Gist 

features [6], Scale Invariant Feature Transform (SIFT) [7], etc., have been utilized for 

feature extraction and matching. Along with feature extraction algorithms, clustering 

and matching algorithms are also adopted in conventional approaches for vision-based 

positioning and navigation systems. Apart from conventional approaches, computer 

vision based navigation systems utilized deep learning methodologies in recent years. 

Deep learning models contains multiple processing layers to study the features of input 

data without an explicit feature engineering process [8]. �us, deep learning-based 

approaches have been distinguished among object detection and classification meth-

ods. Egomotion-based position estimation methods are also utilized in computer vision-

based navigation systems [9]. Egomotion approach estimates the camera’s position with 

respect to the surrounding environment.

PDR methods estimate the user’s position based on past positions by utilizing data 

from accelerometers, gyroscopes, magnetometers, etc. �e user’s position is calculated 

by combining the step length, the number of steps and the heading angle of the user [10, 

11]. Since a greater number of position errors occur in dead reckoning approaches due 

to drift [12], most of latest navigation systems integrate other positioning technologies 

with PDR or introduced some sensor data fusion methods to reduce the errors.

Communication-based technologies for indoor positioning includes RFID, Wi-Fi, 

visible light communication (VLC), UWB and Bluetooth. RFID systems consist of a 

RFID reader and RFID tags attached to the objects. �ere exist two types of RFID 

tags, namely, active and passive. Most of the recent RFID-based navigation systems 

have implemented passive tags since an external power source is not required. RFID-

based systems utilize Received signal strength (RSS), Angle of arrival (AOA), Time of 

arrival (TOA) and Time difference of arrival (TDOA) for position estimation [13]. In 

indoor environments, however, all the methods except RSS may fail to estimate the 

user’s position accurately due to nonline of sight scenarios. �e popular RSS-based 

positioning approaches are trilateration and fingerprinting [14]. RFID technology are 

widely implemented in navigation systems because of their simplicity, cost efficiency, 

and long effective ranges. Wi-Fi-based approaches are implemented in indoor envi-

ronments, where we have sufficient numbers of Wi-Fi access points, and a dedicated 

infrastructure is not required; instead, these approaches can utilize existing building 

infrastructure because most current buildings will be equipped with Wi-Fi access 

points. Wi-Fi-based indoor navigation systems make use of RSS fingerprinting or 

triangulation or trilateration methods for positioning [15]. Bluetooth-based systems 

have almost similar accuracy as Wi-Fi-based systems and use Bluetooth low energy 

(BLE) beacons as source of RF signals to track the positions of users using proximity 

sensing approaches or RSSI fingerprinting [16]. In recent advances, smartphones are 

usually used as a receiver for both Bluetooth and Wi-Fi signals. VLC-based systems 

utilize the existing LED or fluorescent lamps within buildings, which makes VLC-

based systems low cost. �ese LEDs or fluorescent lamps are becoming ubiquitous in 
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indoor areas. �e light emitted by lamps is detected using smartphone cameras or an 

independent photo detector. TOA, AOA, and TDOA are the most popular measuring 

methods used in VLC-based positioning systems [17]. UWB-based positioning sys-

tems can provide centimeter-level accuracy, which is far better than Wi-Fi-based or 

Bluetooth-based methods. UWB uses TOA, AOA, TDOA, and RSS-based methods 

for position estimation [18]. Comparison of various indoor positioning technologies 

in terms of accuracy, cost of implementation and power consumption are shown in 

Fig. 3.

�e navigation module will determine the route of the user in the constructed 

indoor map with respect to user’s current position. �e navigation module mainly 

consists of a map which represent the areas of indoor environment and a method to 

plan the navigation routes. �e most commonly used methods for route planning are 

A* algorithm [19], Dijkstra’s algorithm [20], D* algorithm [21] and Floyd’s algorithm 

[22]. In addition, there exist some systems that provide mapless navigation. All these 

systems are discussed in the upcoming sections.

Human–machine interaction module allows the users to communicate with the 

navigation system such as to set up the destination as well as change the destination. 

�e HMI module gives proper information and guidance to the users regarding route 

and location by means of acoustic feedback [23] or haptic feedback [24]. In the case of 

visually impaired ones, audio or vibration feedback is widely implemented in the HMI 

module.

In the past, significant number of attractive surveys about various indoor position-

ing technologies and indoor navigation systems were published [16–18, 25–28]. Most 

of these surveys mainly concentrated on positioning systems rather than the naviga-

tion system. In addition, they considered only a single technology such as wireless-

based systems or visible light-based system or vision-based systems. In this work, we 

provide a summary of recent advancements and developments in the field of indoor 

navigation and positioning systems that utilize different types of approaches, such as 

Fig. 3 Indoor positioning technologies: a comparison
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computer vision, sensors, RF signals, and visible lights. �e survey primarily deals 

with human navigation systems, including assisted systems for people with visual 

impairments (VI). In addition, some robotic navigation systems are also detailed in 

this paper.

Indoor positioning and way�nding systems

Computer vision-based navigation and way�nding systems

One of the main applications of indoor navigation is wayfinding for people with VI. 

ISANA [29] is a vision-based navigation system for visually impaired individuals in 

indoor environments. �e proposed system prototype contains a Google tango mobile 

device, a smart cane with keypad and two vibration motors. �e Google tango device 

has a RGB-D camera, a wide-angle camera, and 9 axes inertial measurement unit (IMU). 

�e key contributions of ISANA are: (1) an “indoor map editor” to create semantic map 

of indoor areas, (2) “obstacle detection and avoidance method” that aids real-time path 

planning and (3) a Smart Cane called “CCNY Smart cane” that can alleviate issues asso-

ciated with voice recognition software. �e geometric entities in the floors, such as lines, 

text, polygons, and ellipses, were extracted by the indoor map editor from the input 

CAD model of the indoor areas. �e indoor map editor can recognize the locations of 

rooms, doors, hallways, spatial and geometrical relationships between room labels, and 

global 2-dimensional traversal grid map layers. Prim’s minimum spanning tree algorithm 

is employed to draw out the above-mentioned semantic information. A novel map align-

ment algorithm to localize the users in the semantic map is proposed in ISANA. �e pro-

posed map alignment algorithm utilizes the 6-DOF pose estimation and area descriptive 

file provided by Google Tango VPS. �e navigation module utilizes the global navigation 

graph constructed from the 2-dimensional grid map layer along with the A* algorithm 

for path planning. �e safety of visually impaired individuals is guaranteed via obstacle 

detection, motion estimation and avoidance methods introduced in ISANA. To detect 

the obstacles, the ISANA will make use of the RGB-D camera to acquire depth data. �e 

3-dimensional point cloud or the depth data are rasterized and subjected to a denoising 

filter to remove the outliers. �ree-dimensional points are aligned with the horizontal 

plane by utilizing the deskewing process. A 2-dimensional projection-based approach 

is introduced to avoid the obstacle, and it produces a time stamped horizontal map for 

path planning and time stamped vertical map for obstacle alerts. A connected compo-

nent labeling approach-based algorithm [30] is adapted to detect the object to create 

horizontal and vertical maps. �e Kalman filter is employed to reckon the motion of 

obstacles based on time-stamped maps. ISANA uses an Android text to speech library 

to speak out the instructions and feedback to the users and a speech to text module [31] 

to recognize user’s voice inputs. �e CCNY smart cane provides haptic feedback to the 

user in noisy environments, and it also has a keypad to set the destinations and IMU to 

track the orientation of user and cane.

Tian et  al. [32] developed a system for helping blind persons navigate indoor envi-

ronments. �e proposed system consist of door detector module and text recognition 

module. �e separate module for the door detector consisted of the Canny edge detec-

tor and curvature property-based corner detector. �e relative positions were detected 

by measuring the angle between the top edge of the door and the horizontal axis. A 
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mean shift-based clustering algorithm was adopted for enhancing the text extraction by 

grouping similar pixels. A text localization model was designed by considering that texts 

have shapes with closed boundaries and a maximum of two holes. Text recognition was 

achieved by using Tesseract and Omni Page optical character recognition (OCR) soft-

ware. �e demonstrated results show that the false positive rate increased for the images 

acquired under challenging conditions, such as low light, partial occlusion, etc.

A wearable navigation system for people with VI by utilizing a RGB-D camera was 

proposed in [33], and it used sparse feature and dense point clouds for estimating cam-

era motions. �e position and orientation of the objects in the indoor environment were 

identified using a corner-based real-time motion estimator algorithm [34] and along 

with that, an iterative closest point algorithm was included to prevent drift and errors in 

pose estimation. A simultaneous localization and mapping (SLAM) algorithm provided 

the mapping [35, 36]. �e modified D* lite algorithm helped the user route through 

the shortest path. Although the D* algorithm can handle dynamic changes in the sur-

roundings, narrow changes in the map can cause the change in the produced walking 

path. �is issue will make the navigation of people with VI more complicate. Normal D* 

algorithm generates the shortest path as a set of cells on the grid map. And it connects 

the current location and final destination by excluding untraversable cells. In this work, 

instead of directly following the generated set of cells, a valid waypoint point is gener-

ated in such a way that waypoint should be traversable as well as it should be located 

near to the obstacles at some distance. In the valid waypoint generation method, a point 

that is most far, visible as well as traversable from the current location is selected from 

the set of cells generated by the D* algorithm. Also, another point is selected, which is 

far, visible as well as traversable from the first selected point. Finally, a cell near to the 

first selected point and with less cost function is computed. However, some of the maps 

were inconsistent because the map merging technique was unable to correct for defor-

mations in the merged maps.

�e indoor wayfinding system for people with VI in [37] utilized Google Glass and 

Android phone. �e proposed object detection method used the Canny edge detector 

and Hough line transform. Since walls may be one of the main obstacles in indoor envi-

ronments, the floor detection algorithm identified the presence of walls by finding the 

stature of the floor region. However, the proposed object detection method failed for 

bulletin boards as well as indoor low contrast wall pixels.

In [38], the Continuous adaptive mean (CAM) shift algorithm was implemented 

with the D* algorithm for helping blind people navigate in indoor areas. �e proposed 

method used image subtraction for object detection and histogram backpropagation 

for creating a color histogram of detected objects. �e CAM shift algorithm provided 

tracking and localization of the users, and the D* algorithm helped the user calculate the 

shortest route between the source and destination.

Bai et al. [39] developed a vision-based navigation system for people with VI by uti-

lizing a cloud-computing platform. �e proposed prototype is made up of a stereo 

camera mounted on a helmet, smartphone, web application, and cloud platform. �e 

helmet also contains a speaker and earphones to facilitate the human–machine inter-

action. �e stereo camera acquires all the information about the surroundings and 

forwards it to the smartphone using Bluetooth. �e smartphone will act as a bridge 
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between users and cloud platform. All the core activities of the system, such as object 

or obstacle detection, recognition, speech processing, navigation route planning, is 

performed at the cloud platform. �e cloud platform contains three modules, namely, 

speech processing, perception, and navigation. �e speech processing module imple-

mented a recurrent neural network-based natural language processing algorithm [40, 

41] to analyze the user’s voice commands. �e perception module makes the user 

aware of his surroundings and aid the blind people to live as a normal person, and 

it fuses object detection and recognition functions [42], scene parsing functions [43, 

44], OCR [45, 46], currency recognition functions [47] and traffic light recognition 

functions [48] to improve the blind user’s awareness about the environment. All the 

functionalities in the perception module are based on deep learning algorithms. �e 

navigation module implements a vision-based SLAM algorithm to construct the map. 

�e SLAM algorithm will extract the image features of the surrounding environment 

and recreate the path of the camera’s motion. Preassigned sighted people use web 

application to provide additional support for blinds in complex scenarios.

Athira et al. [49] proposed an indoor navigation system for shopping mall. �e pro-

posed vision based system used GIST feature descriptor, and it enhanced the process-

ing of captured images and reduced memory requirements. �e main functions of 

the proposed system are keyframe extraction, topological map creation, localization, 

and routing. Keyframes are the important frames extracted from walkthrough videos 

that are used to create a topological map. For each frame, the L2 norm between two 

descriptors is calculated. If the L2 norm (Euclidean distance) exceeds a specific value, 

the frame is considered as “keyframe”. Consequently, the direction of key frames is 

detected by analyzing present frames with left and right parts of prior frames indi-

vidually to create the map. Once the direction of keyframes is detected, 2D points are 

calculated in the map. For localization, images captured from user’s current position 

is compared with existing keyframes using the L2 norm.

Bookmark [50] is an infrastructure-free indoor navigation system that utilize exist-

ing barcodes of books in a library, and it facilitates the navigation of library visitors 

to any book’s position just by scanning the barcode of books in the library. Bookmark 

was developed as an application that can be used in any phone that has a camera, 

and it provides a detailed map of the library to the user. �e detailed map contains 

locations of stairs, elevators, doors, exits, obstacles (pillars or interior walls) and each 

bookcase. �en, the map is converted to scalable vector graphics format, and the loca-

tions are represented by different color codes. To map the books in the library with 

the map, a book database of call numbers (a unique alphanumeric identifier associ-

ated with each book) and locations associated with call numbers is created. When 

a user scans the barcode of a book to know the location, the Bookmark’s server-side 

will collect information about the book from an existing library API. �is information 

will contain details of the book, including the call number. �e system will look up 

the call number inside the book database to retrieve the location for the user. Book-

mark implements the A* algorithm to plan the route between two points of interest. 

Since Bookmark does not use a positioning technique, the system will be unaware 

about the current position of the user until he/she completes the navigation or until 
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the next barcode is scanned. �e major limitations of the system include the absence 

of barcodes on books and the misplacement of books on the wrong shelves.

Li et al. [51] proposed a wearable virtual usher to aid users in finding routes in indoor 

environments, and it consists of a wearable camera that captures pictures for frontal 

scenes, headphones to listen to verbal routing instructions to reach a specific destina-

tion, and a personal computer. �e aim of the system is to aid users in wayfinding in an 

indoor environment using egocentric visual perception. A hierarchical contextual struc-

ture composed of interconnected nodes uses cognitive knowledge to estimate the route. 

�e hierarchical structure can be presented in the following three levels: (1) top level, 

where the root node represents the building itself; (2) zones and areas inside the build-

ing; and (3) bottom level, which corresponds to the location inside each area. Generally, 

the structure illustrates the human mental model and the understanding of an indoor 

environment. SIFT has been used for scene recognition. A “self-adaptive dynamic-

Bayesian network” is developed to find the best navigation route, and it is self-adaptive 

and can modify its parameters according to the current visual frame. Moreover, this net-

work can address uncertainties in perception and is able to predict relevant routes. �e 

obtained results demonstrated that the developed system is capable of assisting users to 

reach their destination without requiring concentration and a complex understanding 

about the map.

ViNav [52] is a vision based indoor navigation system developed for smartphones. 

�e proposed system provides indoor mapping, localization and navigation solutions 

by utilizing the visual data as well as data from smartphone’s inbuilt IMUs. ViNav sys-

tem is designed as a client–server architecture. �e client is responsible for collecting 

the visual imageries (images and videos) and data from sensors including accelerometer, 

barometer, gyroscope, etc. �e server will receive these data from the client and build 

3-dimensional models from that. �e server comprises of two modules. �e first mod-

ule is responsible for building 3-dimensional models of the indoor environment. Struc-

ture from motion technique is used to build 3-dimensional models from crowdsourced 

imageries captured by the client. �e data from the accelerometer as well as gyroscope 

are utilized to detect trajectories of the user. Moreover, Wi-Fi fingerprints collected from 

the path traveled by the user are combined with the 3d model for localizing the user’s 

position in the indoor area. �e second module facilitates the navigation of the user by 

calculating the navigation routes by using pathfinding algorithms. �e data about the 

obstacles in the path are retrieved from constructed 3D models and navigation meshes 

are computed by adding pedestrian’s traveling path retrieved from crowdsourced user’s 

paths with obstacle’s data. Barometer readings are utilized to detect the stairs, elevators, 

and change of floors. �e performance evaluation experiments demonstrate that ViNav 

can locate users within 2 s with an error, not more than 1 m.

Rahman et al. [53] proposed a vision-based navigation system using the smartphone. 

�e proposed system is designed in a manner where the smartphone camera is ena-

bled to capture the images in front of the user. �e captured images will be compared 

with pre-stored images to check whether the captured image contains any obstacles. An 

algorithm is proposed for assisting people with visual impairments. �e algorithm per-

forms both obstacle detection as well as pathfinding tasks for the user. Once an image is 

captured by the smartphone, the obstacle detection technique will initially extract the 
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region of interest from the image. �e extracted region of interest will be compared with 

images in the database. If an obstacle is detected, the pathfinding technique will suggest 

an alternate path for the user. It is achieved by checking the right and left of the extracted 

region of interest. In a test environment proposed system achieved an accuracy of 90%.

Reference [54] examined the performance of three indoor navigation systems that uti-

lize different techniques for guiding people with visual impairments in the indoor envi-

ronment. �e proposed work focused on the development of three navigation systems 

that utilize image matching, QR code, and BLE beacons respectively for localizing the 

user and testing of the developed navigation system in the realtime indoor environment. 

Image matching based indoor navigation system included a novel CNN model that is 

trained with thousands of images to identify the indoor locations. QR code-based system 

utilized existing QR code methods such as Zxing and Zbar. BLE beacons based method 

adopted a commercially available indoor positioning SDK to localize the user in indoor 

areas. All three navigation systems are implemented in a smartphone for real-time eval-

uation. Evaluation results show that QR code and image matching based methods out-

performed the BLE beacons based navigation system for people with visual impairments 

in the indoor environment.

Tyukin et  al. [55] proposed an indoor navigation system for autonomous mobile 

robots. �e proposed system utilizes an image processing-based approach to navigate 

the robot in indoor areas. �e system consists of “a simple monocular TV camera” and 

“color beacons”. �e color beacons are the passive device that has three areas with dif-

ferent colors. All these colors can be visually identified, and the surface of the beacons 

are matte and not glowing. �e operation of the proposed system can be classified into 

the three steps: (1) detection of the color beacons; (2) relative map generation, which 

identifies the location of the detected beacons in the indoor space with respect to the 

TV camera; and (3) identification of robot coordinates in the absolute map. An algo-

rithm that contains different image processing techniques was introduced for beacon 

detection. Initially, the image from the TV camera was subjected to noise removal and 

smoothing of image defects using a Gaussian filter. After preprocessing, the image is 

converted to HSV. �en, the algorithm will choose each color in order, and a smooth 

continuous function is applied for the classification of pixels. Color mask images are 

generated by averaging the grayscale images from each HSV channel. Finally, the algo-

rithm will recognize the pixel with the maximum intensity in the color mask and will fill 

pixels around it. �e algorithm will repeat this step until all colors used in the beacons 

are processed. Once the center of the colored areas of the beacon is identified, the mag-

nitude and direction of the vectors connecting the center of the colored area are esti-

mated. �ere will be two vectors, with one connecting the center of the first and second 

colored area and the other connecting the center of the second and third colored area. 

�e differences between these two vectors are used to identify the beacons. A navigation 

algorithm is introduced to estimate the coordinates of the beacon’s location and abso-

lute coordinates of the TV camera. �e relative coordinates of beacons were estimated 

using the beacon height and the aperture angle of the lens. �e created relative map is 

an image where the relative positions of beacons and colored beacons are represented as 

dots. A three-dimensional transformation is applied to the relative coordinates of bea-

cons to create the absolute map. �e demonstrated results of the experiment using the 
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proposed system show that the detection algorithm is able to detect the beacons only if 

it is within a range of 1.8 m from the TV camera. �e average deviation in the calculated 

absolute coordinates was only 5 mm from the original value.

Bista et al. [56] proposed a vision-based navigation method for robots in indoor envi-

ronments. �e whole navigation process depends on 2-dimensional data of the images 

instead of 3-dimensional data of images utilized in existing methods. �ey depicted the 

indoor area as a collection of reference images that were obtained during the earlier 

learning stage. �e proposed method enables the robot to navigate through the learned 

route with the help of a 2-dimensional line segment detector. To detect the line seg-

ment in the acquired images, a highly accurate and quick line detector called EDLine 

detectors [57] is employed. �e indoor maps were created by utilizing key images and 

its line segments. During map construction, the first acquired image will be considered 

as a key image. �e line segment of the first key image will be matched with the next 

image’s (second image) line segment to form a set of line segments. For matching line 

segments, a Line Band descriptor-based matching method was adopted [58]. Matching 

will be mainly based on Line Band descriptor, followed by the application of geometric 

constraints and filters to remove false matches. Once the matched set of the key image 

and the next image is obtained, the method will consider the next image (third image) 

and perform the same line segment matching between the first acquired key image and 

the current image. �ese steps will result in two-matched set of lines. A trifocal ten-

sor is utilized to find the two-view matches between these two sets. �e trifocal sen-

sor is a “ 3 × 3 array that contains all the geometric relationships among three views”, 

and it needs three-view correspondence between lines. Two-view matches (matching of 

the current image with the previous and next key image) utilized for initial localization 

and three-view correspondence generation. �ree-view matches were used for mapping 

(matching the current image with previous, next and second next key image). �e pre-

vious and next key images of a currently acquired image will share some line segment, 

which facilitates robot navigation and motion control. �e rotational velocity of the 

robot is also derived from the three-view matches. �e proposed navigation method was 

evaluated in three different indoor areas. �e obtained drift in the navigation path of the 

robot was only 3 cm and 5 cm for the first two experiments. In the third experiment, a 

large drift was present in the path of the robot during the circular turn. �e inclusion of 

obstacle avoidance module will be considered in future work to deal with the dynamic 

objects in the indoor environment.

Table  1 illustrates the comparison of computer vision-based indoor navigation 

systems.

Computer vision-based positioning and localization systems

�e tasks of indoor localization, positioning, scene recognition and detection of specific 

objects, such as doors, were also considered in the context of indoor navigation since 

they can be extended for wayfinding in indoor areas.

Tian et  al. [59] developed a method to detect doors for assisting people with VI to 

access unfamiliar indoor areas. �e proposed prototype consists of a miniature camera 

mounted on the head for capturing the image and a computer to provide the speech 

output following the object detection algorithm. A “generic geometric door model” 
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built on stable edge and corner features facilitates door detection. Objects with similar 

shapes and sizes, such as bookshelves and cabinets, were separated from the door using 

additional geographic information. �e presented results indicate a true positive rate of 

91.9%.

�e Blavigator project included a computer vision module [60] for assisting blind peo-

ple in both indoor and outdoor areas. �e proposed object collision detection algorithm 

uses a “2D Ensemble Empirical Mode Decomposition image optimization algorithm” 

and a “two-layer disparity image segmentation algorithm” to identify adjacent objects. 

Two area of interests are defined near the user to guarantee their safety. Here, depth 

information at 1 m and 2 m are analyzed for retrieving information about the obstacles 

in the path from two distances.

An omnidirectional wearable system [61] for locating and guiding the individual in 

an indoor environment combined GIST and SURF for feature extraction. Two-levels 

of topological classification are defined in this system, namely, global and local. �e 

Table 1 Computer vision-based navigation and way�nding systems

References Bene�ciary Computer-vision 
solution

Path planning 
solution

Remarks /�ndings

Lie et al. [29] People with VI Google Tango VPS Prism MST 
algorithm, A* 
algorithm

(+) Haptic feedback 
system provided 
safe navigation in 
noisy environments

Tian et al. [32] People with VI Canny edge detec-
tor, Tesseract and 
Omni page OCRs

Not available (−) Path planning 
module is absent

Lee and Medioni 
[33]

People with VI Corner-based 
motion estimator 
algorithm

SLAM and D* Lite 
algorithm

(−) Inconsistency in 
constructed maps

Garcia and Nahape-
tian [37]

People with VI Canny edge detec-
tor and Hough line 
transform

Not available (−) Detection failed 
for bulletin boards 
as well as low con-
trast wall pixels

Manlises et al. [38] People with VI Image subtraction, 
Histogram back-
propagation

D* algorithm (−) Low brightness 
and noise in indoor 
areas will affect the 
recognition and 
feedback systems, 
respectively

Bai et al. [39] People with VI Deep learning-
based object 
recognition, scene 
parsing, Currency 
recognition func-
tions

Vision-based slam (+) Improved loca-
tion awareness for 
the users

Athira et al. [49] Customers of shop-
ping mall

Gist descriptors Not available (−) Does not support 
navigation between 
floors

Pearson et al. [50] Visitors of library Bar code recognition A* algorithm (−) Misplaced books 
and books without 
barcodes can limit 
the system func-
tionalities

Li et al. [51] Normal people SIFT descriptors Self-adaptive 
dynamic-Bayesian 
network

(+) Scalability
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global classification will consider all images as references, whereas the local classifi-

cation will be based on prior knowledge. A visual odometry module was developed 

by integrating extended Kalman filter monocular SLAM and omnidirectional sen-

sors. �e system was trained using 20,950 omnidirectional images and tested on 7027 

images. Localization errors were present due to misclassified clusters.

Huang et  al. [62] developed an indoor positioning system called 3DLoc, which is 

a 3D feature-based indoor positioning system that can operate on handheld smart 

devices to locate the user in real time. �is system solves the limitation that exists in 

previous indoor navigation systems based on sensors and feature matching (e.g., SIFT 

and SURF), and it considers the 3D signature of pictures of places to recognize them 

with high accuracy. An algorithm to obtain the signatures from pictures has been 

proposed. �e algorithm is capable of robustly decoding those signatures to identify 

the location. At the first stage, 3D features are extracted from the captured pictures. 

�erefore, a 3D model is constructed using the obtained features using the indoor 

geometry reasoning [63]. Pattern recognition is then performed to identify the 3D 

model. �e authors proposed a K-locations algorithm to identify the accurate loca-

tion. An augmented particle filter method is used if the captured images are insuf-

ficient for recognizing the location due to information loss. Inertial sensors of the 

mobile device are used to provide real-time navigation of users under motion. Based 

on the conducted experiments, 90% of the exposed errors are within 25 cm and 2° for 

location and orientation, respectively.

iNavigation [64] combines SIFT feature extraction and an approximately nearest 

neighbor algorithm called ‘K-d tree based on the best bin’ first for positioning from 

the ordinary sequential images. Inverse perspective matching was used for finding 

the distance when an image was queried by the user. Dijkstra’s algorithm was imple-

mented for routing through the shortest path. In this method, locations of landmark 

images were manually assigned. �erefore, further expansion of landmark image 

datasets requires a considerable amount of manual work.

Image processing-based indoor localization method [65] for indoor navigation uti-

lizes the principal component analysis (PCA)-SIFT [66] feature extraction mecha-

nism to reduce the overall running time of the system compared to that of SIFT- or 

SURF-based methods. It also implemented a Euclidean distance-based locality sensi-

tive hashing technique for rapid matching of the images. �e precision of the system 

increased up to 91.1% via the introduction of a confidence measure.

�e localization algorithm [67] for indoor navigation apps consists of an image edge 

detection module using a Canny edge detector and text recognition module using stroke 

width transform, Tesseract, and ABBY fine reader OCRs. Tesseract is a free OCR soft-

ware that supports various operating systems, and its development has been sponsored 

by Google. Tesseract can support the recognition of texts in more than 100 languages, 

including the languages written from right to left, such as Arabic. �e ABBY fine reader 

OCR is developed by “ABBY”, a Russia-based company, and it supports approximately 

192 languages. Further, its latest version is able to convert texts in the image files to vari-

ous electronic documents, such as PDF, Microsoft Word, Excel, Power Point, etc. �e 

experimental results proved that ABBY is quick and has high recognition accuracy on a 

benchmark dataset used in research on OCR and information retrieval.
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Xiao et al. [68] proposed a computer vision-based indoor positioning system for large 

indoor areas using smartphones. �e system makes use of static objects in the indoor 

areas (doors and windows) as the reference for estimating the position of the user. �e 

proposed system contains mainly two processes as follows: (a) static object recognition 

and (b) position estimation. In the static object recognition process, initially, the static 

object is detected and identified by implementing the Fast-RCCN algorithm [69]. �e 

included deep learning network is similar to VGG16 network [70]. �e pixel coordi-

nate of the “control points” (physical feature points on the static object) in the image 

is used for position calculation of the smartphone. �e pixel coordinates of “control 

points” were calculated by analyzing the test image and identified reference image. �e 

SIFT feature detector is adapted for the extraction of feature points from both the test 

and reference images. A homographic matrix is constructed from the matching feature 

point pairs of test and reference images. �is homographic matrix and “control point” of 

reference images are utilized to find the “control point” of the test image. �e collinear 

equation model of the “control point” in the image and “control point” in the space is cal-

culated for the position estimation of the smartphone. �e results show that the system 

has achieved an accuracy within 1 m for position estimation.

A visual indoor positioning system that makes use of a CNN-based image retrieval 

method was proposed in [71]. �e system database contains images for each scene, and 

its CNN features, absolute coordinates and quaternion are provided with respect to a 

given local coordinate system and scene labels. In the offline phase, the CNN features 

of the images related to each scene were extracted using the pretrained deep learning 

VGG16 network. �e proposed system consists of the following two online phases: 

(1) image retrieval task based on CNN and (2) pose estimation task. During the image 

retrieval phase, the CNN will retrieve most similar images (two images) with respect 

to the query image. In the pose estimation phase, the “Oriented Fast and Rotated Brief 

(ORB)” [72] feature detector is adapted for feature extraction of three images (test 

image and retrieved most two identical images). �e feature points of the test image are 

matched with each similar image using the Hamming distance. �e scale of the monocu-

lar vision is calculated from the pose of the two identical images and transformation of 

matches between pairs of the test image and identical image. �e position and orienta-

tion of the test image is calculated by utilizing the monocular vision and transformation 

between the test image and the identical image. Images from two benchmark datasets, 

the ICL-NUIM dataset [73] and the TUM RGB-D dataset [74], were used for system 

evaluation. �e average error in pose estimation using ICL-NUIM and TUM RGB-D 

was 0.34 m, 3.430 and 0.32 m, 5.580, respectively. In the ICL-NUIM dataset, the pro-

posed system exhibited less localization error compared to PoseNet [75], 4D PostNet 

and a RGB-D camera pose estimation method that combines a CNN and LSTM recur-

rent network [76].

PoseNet is a 6 DOF camera relocalization system for indoor and outdoor environ-

ments using a deep learning network. �e PoseNet used a 23 convolutional layer model 

that is similar to GoogLeNet [77] for classification. Caffe library was utilized for imple-

menting the PoseNet model.

A considerable number of elderly people may fall and become injured because of 

aging. In this scope, a smartphone-based floor detection module for structured and 
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unstructured environments that enables the identification of floors in front of the user is 

proposed in [78]. Structured environments are the areas that have a well-defined shape, 

and unstructured environments are the area with the unknown shape. In unstructured 

environments, superpixel segmentation was implemented for floor location estima-

tion task. Superpixel segmentation will generate clusters of pixels, and they are then 

reshaped based on their color surroundings. For the structured environment, the Hough 

transform is used for line detection and the floor-wall boundary is represented by a pol-

ygon of connected lines. �e results demonstrate that the system achieved an accuracy 

of 87.6% for unstructured environments and 93% for structured environments.

Stairs, doors, and signs are the common objects that can be used as reference points 

to guide people with visual impairments in indoor areas. Bashiri et al. [79] proposed an 

assistive system to guide people with visual impairments in indoor areas. �e proposed 

system consists of two modules; a client mobile devices to capture the images and a pro-

cessor server to detect the objects in the image. A CNN model was utilized to recognize 

indoor objects such as stairs, doors, and signs to assist people with visual impairments. 

�e transfer learning technique was leveraged to build the object recognition CNN 

model. A popular CNN model AlexNet was utilized for the transfer learning method 

to create the new CNN model. �e developed CNN model has evaluated in MCindoor 

20000 dataset [80] and achieved recognition accuracy of more than 98%.

Jayakanth [81] examined the effectiveness of texture features and deep CNNs for 

indoor object recognition to assist people with visual impairments in indoor environ-

ments. �e performance of three texture features LPQ, LBP, BSIF and CNN model built 

by the transfer learning approach using a pre-trained GoogleNet model was evaluated 

in this work. All of the proposed methods were evaluated in MCindoor 20000 dataset. 

Obtained results show that the CNN model built by the transfer learning approach using 

a pre-trained GoogleNet model achieved recognition accuracy of 100%. Although LPQ 

computation doesn’t require any high-performance computing tools like what CNN 

computation required, the LPQ feature descriptor displayed a similar performance com-

pared to CNN for indoor object recognition.

Afif et al. [82] extended a famous deep convolutional neural network called RetinaNet 

for indoor object detection to assist the navigation of people with visual impairments in 

indoor areas. �e proposed object detection network is comprised of a backbone net-

work and a pair of sub-networks. Among two sub-networks, the first network will per-

form object classification and the second network will extract the bounding box as well 

as the class name of objects. Feature pyramid networks are used as a backbone of the 

proposed detection network. Feature pyramid network-based architecture can detect 

objects on various scales which improves the performance of multi scales predictions. 

Evaluation of the proposed object detection network was carried out in a custom data-

set which contains 8000 images and 16 different indoor landmark objects. During the 

evaluation of the proposed detector, different backbone network architectures such as 

ResNet, DenseNet, VGGNet have been experimented with RetinaNet. RetinaNet with 

ResNet network outperformed all other combinations and achieved a mean average pre-

cision of 84.16%.

An object recognition method [83] for indoor navigation of robots was developed 

using a SURF-based feature extractor and bag-of-words feature vectors using Support 
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Vector Machine (SVM) classifier. �e nearest neighbor algorithm or RANSAC algo-

rithm enabled feature vector matching. �e proposed method was not able to recognize 

multiple objects in a single frame.

Table  2 presents a comparison of computer vision-based indoor positioning, indoor 

localization and indoor scene recognition systems.

Communication technology based indoor positioning and way�nding systems

Communication technology-based positioning systems make use of various approaches 

to measure the signals from respective signal transmitting devices (Wi-Fi access point, 

BLE beacon etc.) installed in the indoor environments. �e commonly used methods 

are time-based methods, angle-based methods, and RSS-based methods [84]. �e time-

based measurements include TOA and TDOA. �e TOA approach utilizes the time 

taken for the signal propagation between the transmitter and receiver to find the range of 

the user, while the TDOA approach uses the difference of transmission time for two sig-

nals that have a different velocity. �e angle-based method ‘AOA’ makes use of the angle 

of arrival at the target node to estimate target direction. �e AOA measurement tech-

nique is rarely used in an indoor environment due to non-line of sight issues [85]. AOA 

and TOA based indoor localization approach are shown in Figs. 4 and 5 respectively.

Table 2 Computer vision-based positioning, localizing and scene recognizing systems

References Purpose Solution Performance /�ndings

Huang et al. [62] Indoor positioning 3D signature of places for 
feature detection, Novel 
K-locations algorithm

(+) 90% of the exposed errors 
are within 25 cm and 2° for 
location and orientation 
respectively

Kawaji et al. [65] Indoor positioning PCA-SIFT features and locality 
sensitive hashing

(+) Running time reduced 
while comparing with the 
pure SIFT features-based 
system

Deniz et al. [67] Localization using texts in 
boards and banners

Canny edge detector, Tesser-
act and ABBY fine reader 
OCRs

ABBY fine reader showed 
better recognition rate than 
Tesseract

Adorno et al. [78] Floor detection method Superpixel segmentation 
and Hough line transform

(+) Accuracy: 87.6% for the 
unstructured environment 
and 93% for the structured 
environment

Murillo et al. [61] Personal localization in 
indoor areas

GIST and SURF-based feature 
detector, Extended Kalman 
filter monocular SLAM

(+) 82% correct localization

Xiao et al. [68] Indoor positioning in large 
indoor areas

CNN and SIFT features (+) Low cost, accuracy: less 
than 1 m

Chen et al. [71] Indoor positioning CNN and ORB features (+) Average position error: less 
than 0.35 m

Kendall et al. [75] Indoor and outdoor localiza-
tion

CNN (+) Robust to various lighting 
and motion blur scenarios

Bashiri et al. [79] Indoor object recognition to 
assist people with VI

Transfer learning based on 
the CNN model (AlexNet)

(+) Accuracy: 98%

Jayakanth [81] Indoor object recognition to 
assist people with VI

CNN and texture features (+) Accuracy: 100%

Afif et al. [82] Indoor object detection to 
assist people with VI

CNN Mean average precision: 
84.16%
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TDOA method computes the difference between the TOA of the signals from two 

distinct RF transmitters to the mobile device. A TDOA value geometrically repre-

sents a hyperbola as shown in the figure. When there is more than one TDOA value, 

the intersection point of hyperbolas is estimated as the position of the mobile device. 

Figure 6 illustrate the TDOA based indoor localization approach.

Lateration, angulation, proximity, and radio fingerprinting are the main techniques 

used in communication technology-based systems for position estimation. �e lat-

eration technique calculates the distance between the receiver device and cluster of 

Fig. 4 AOA based indoor localization approach

Fig. 5 TOA based indoor localization approach
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transmitting devices (access points, tags or beacons) that are attached in predefined 

locations. �e angulation technique is similar to the lateration technique but consid-

ers the angle or phase difference between the sender and receiver instead of distance 

for position estimation [86].

�e proximity technique is based on the proximity of the receiver to recently known 

locations. Compared with lateration and angulation, the proximity technique can pro-

vide a rough location or set of possible locations. �e radio fingerprinting approach is 

an entirely different approach compared to the other techniques and does not consider 

the distance, angle or nearness between sender and receiver. Instead, a pattern match-

ing procedure is applied, where the RSS or other signal properties at a location will be 

compared with the RSS for different locations stored in the database [87]. General steps 

involved in RSS fingerprint-based localization system are explained in Fig. 7. For pattern 

Fig. 6 TDOA based indoor localization approach

Fig. 7 RSS fingerprinting based indoor localization system
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matching, different types of algorithms including Euclidean distance, machine learning 

algorithms such as KNN, SVM, etc are used in the literature.

FreeNavi [88] is a mapless indoor navigation system that relies on the Wi-Fi fin-

gerprints of each landmark’s entrance in the indoor environment. Along with Wi-Fi 

fingerprints, walking traces of the users between two landmarks was utilized for cre-

ating virtual maps of the indoor environment. A lowest common subsequence (LCS) 

algorithm [89] that finds similarities between Wi-Fi fingerprints was adopted for vir-

tual map creation as well as indoor localization. �e LCS algorithm was developed 

to tolerate access point (AP) changes in regions where the concentration of the APs 

are high. To provide reliable navigation of users, two route planning algorithms were 

introduced in this system. One was for finding the shortest path between two land-

marks while the other was for finding the most frequently traveled route. Both of 

the abovementioned algorithms were implemented using Floyd’s shortest path algo-

rithms. FreeNavi was evaluated in a shopping center environment in Beijing by col-

lecting the fingerprints of 23 landmarks and a total of 1200 m of traces. �e virtual 

maps have a maximum accuracy of 91%, although an 11.9% error step rate was found 

in navigation because the user have to guess the travelling direction in junctions.

A Wi-Fi fingerprinting-based navigation system was proposed in [90]. �e proposed 

system makes use of Wi-Fi fingerprinting combined with a radio path loss model for 

the estimation of locations. �e position estimation algorithm was based on parti-

cle filter and K nearest neighbor (K-NN) algorithms. Dijkstra’s algorithm was imple-

mented for the shortest path calculation between the source and destination. �ese 

authors also examined the performance of three fingerprint matching algorithms, 

namely, Kalman filter, unscented Kalman filter and K-NN. �e results showed the 

average error while using each algorithm and the values were similar at approximately 

1.6 m. However, K-NN had the greatest maximum error.

In a Wi-Fi-based indoor navigation system, the fluctuations in RSS can result in 

unfair positioning accuracy. To overcome these issues, a fingerprint spatial gradient 

(FSG) was introduced in [91]. �e proposed method makes use of the spatial rela-

tionship of RSS fingerprints between nearby numerous locations. For profiling the 

FSG, these authors introduced an algorithm that picks a group of nearby fingerprints 

that advance the spatial stability as well as fingerprint likeness. A pattern matching 

approach is used for comparing the stored FSG and queried FSG using similarity 

measures, such as the cumulative angle function, cosine similarity or discrete Fréchet 

distance. �e average accuracy of the position estimation was between 3 and 4 m.

In Wi-Fi-based indoor positioning and navigation systems, the radio fingerprinting 

approach has been used widely for estimating the position of the RF signal receiver. 

�e fingerprinting approach follows a pattern matching technique where the property 

of the currently received signals is compared with the properties of the signal stored 

during the offline or training phase. In the last 10 years, various machine learning 

algorithms such as SVM [92], KNN [93], neural networks [92] have been utilized for 

pattern matching in radio fingerprint-based indoor localization methods. Compared 

to traditional machine learning algorithms, deep learning algorithms such as CNN, 

RNN, etc have demonstrated their effectiveness in various tasks such as image clas-

sification, text recognition, intrusion detection, etc. In this context, in recent years 
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deep neural network-based approaches [94, 95] have been used in fingerprint-based 

indoor localization systems.

Jin-Woo et al. [96] proposed an indoor localization system that utilizes CNN for the 

Wi-Fi fingerprinting task. Since the fluctuations in RSS and multipath issues can cause 

errors in location estimation, training with few data can lead to the development of inef-

fective models. �e proposed method utilized 2-D radio maps as inputs to train the 

CNN model. �e 2-D virtual map for the input has been created from the 1-D signals. 

�e developed deep CNN architecture consists of four convolutional layers, two max-

pooling layers, and two fully connected layers. Even though It is a lite deep CNN model 

it has outperformed all other deep neural network-based methods proposed before that 

and achieved a mean accuracy of 95.41%. Since 2-D radio maps are used for training the 

deep CNN, it can learn signal strength and topology of radio maps. �is approach makes 

the proposed system robust to the small RSS fluctuations.

Mittal et  al. [97] have adapted CNN for Wi-Fi based indoor localization system for 

mobile devices. �e proposed work presents a novel technique for Wi-Fi signature to 

image transformation and a CNN framework namely CNN-LOC. Instead of training 

with the available dataset, they have constructed their database by collecting RSSI data 

from a test environment. One of the novelties of the proposed work is the conversion 

of RSSI data to image data. For each location, the collected RSSI data are converted to 

the grayscale image using the Hadamard product method. Similar to [14], this work has 

used a lite deep CNN model which comprises of five CNN layers. To improve the scal-

ability of the system, CNN-LOC is integrated with a hierarchical classifier. Hierarchical 

classifiers are used to scale up the lite or small CNN architecture for larger problems. 

�e proposed hierarchical classifier consists of three layers where the first layer is used 

to find the floor number, the second layer for detecting the corridor and the third layer 

for estimating the location of the mobile device. �e system has been tested in 3 indoor 

paths extended over 90 m. �e obtained results show that the average localization error 

was less than 2 m.

Ibrahim et al. [98] proposed an advanced approach to improve the localization accu-

racy by reducing randomness and noise found in RSS values. �e time series of RSS val-

ues are applied to CNN as input. �e hierarchical architecture of CNN was employed for 

predicting the fine-grained location of the user. �e first layer is responsible for detect-

ing the building, second and third layers will predict floor number and location of the 

user respectively. �e proposed CNN model was evaluated in the UJIIndoorLoc dataset. 

�e dataset consists of the Wi-Fi RSS fingerprints collected from multiple-multi storied 

buildings. Demonstrated results show that the proposed hierarchical CNN predicts the 

building and floor with an accuracy of 100%. �e average error in localization is 2.77 m 

which acceptable in the case of Wi-Fi-based systems.

Li et al. [99] proposed a multi-modal framework for indoor localization tasks in the 

mobile edge computing environment. Presented work focuses on the multiple mod-

els’ based localization approaches, its drawback and finally proposes theoretical solu-

tions to overcome its shortcomings. �ere exist many machine learning models for 

RSS based indoor localization tasks. Even though they displayed their effectiveness in 

the test environment, but failed to repeat the same performance in practical situations. 

�ere are many factors like refrigerators, temperature, doors in indoor areas which can 
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affect the localization performance. �eoretically, building distinct models for distinct 

surroundings is an effective method for indoor localization. But multiple models based 

approaches will also have drawbacks. Too many models have to be built, the presence 

of unstable factors which affect RSS are the major drawbacks. To solve these issues, two 

combinatorial optimization problems are formulated: external feature selection problem 

and model selection for location estimation problem. NP-hardness of the problems is 

analyzed in this work.

Wireless technology based indoor localization systems are prone to errors because of 

non-line of sight issues, inconsistency in received signals, fluctuation in RSS, etc. In large 

scale wireless-based localization systems, while comparing with the number of sensors, 

information is sparse. �e main challenge in these systems is recovering the sparse sig-

nals for further processing to localize the user. Compressive sensing is a popular sig-

nal processing technique to efficiently acquire and reconstruct signals. �is technique 

is used in wireless-based indoor positioning systems [100, 101] to recover sparse signals 

efficiently. Many of the existing compressive sensing techniques are intended to solve 

the issues for a single application and it lacks dynamic adaptability. Zhang et al. [102] 

proposed a learning-based joint compressive technique to solve the challenges in com-

pressive sensing techniques. �ey introduced a learning technique that can learn the 

basis of sparse transformation from compressive sensing measurement output instead 

of historical data. Acquiring a big amount of historical data is costly and learning from 

specific historical data can affect the dynamic adaptability.

A hybrid navigation system that combines magnetic matching (MM), PDR and Wi-Fi 

fingerprinting was proposed in [103]. Since such systems combine different approaches, 

the user can even navigate through the regions were Wi-Fi signals are poor or environ-

ments have indistinctive magnetic feature. �e location of the user was resolved by 

calculating the least value of the mean absolute difference between the estimated finger-

print or magnetic profile and the predetermined value of the respective candidate in the 

database. An attitude determination technique [104] and PDR [105] method were inte-

grated for implementing the proposed navigation algorithm. To improve the Wi-Fi and 

MM results, three separate levels of quality control method using PDR-based Kalman 

filter were introduced. �e results demonstrated that the proposed method has an accu-

racy of 3.2 m in regions with sufficient number of APs and 3.8 m in regions with poor 

numbers of APs.

iBill [106] integrates an iBeacon device, inertial sensors, and magnetometer to localize 

the users in large indoor areas using a smartphone. iBeacon is a variant of BLE protocol 

developed by Apple Inc. [107]. �e proposed system contains two operational modes. If 

the user is within the range of the beacons, then a RSS-based trilateration algorithm is 

adopted for localization. Otherwise, the system will enter the particle filter localization 

(PFL) mode, which considers magnetic fields and data from inertial sensors for localiza-

tion. Since the PFL mode itself cannot compute the initial position of the user, it will 

assume the last location obtained in the iBeacon localization mode as the initial posi-

tion of the user. �e accelerometer data and gyroscope data are used for updating the 

location and direction of the particles, respectively. �ese particles are utilized to repre-

sent the walking distance and direction of the user. To overcome the limitation of using 

magnetic fields only for assigning weights for a particle in the particle filter method, the 
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system considered the probability distribution of step length and turning angles of parti-

cles to determine the weight. �e iBILL system reduced the computational overhead of 

PFL and solved the limitations associated with the unknown initial location and heavy 

shaking of smartphone. iBill achieved less error in localization compared to the dead 

reckoning approach and Magicol [108]. Magicol system combines magnetic fields and 

Wi-Fi signals using a “two-pass bidirectional particle filter” for localization. Magicol 

consumes less power compared to systems that rely only on Wi-Fi signals. In the Magi-

col and dead reckoning approaches, the error in localization increased drastically while 

walking for more steps. However, iBill showed consistency in localization accuracy while 

walking for long time (more steps case) also.

Lee et al. [109] proposed an indoor localization system that utilizes inbuilt sensors in 

smartphones, such as Bluetooth receivers, accelerometers, and barometers. �e RSSIs 

of the signal received from Bluetooth beacons are used for location estimation with the 

help of the trilateration algorithm. PDR has been used to reduce the uncertainty in RSS 

identifiers, which improved location estimation by tracing the direction and steps of a 

normal user. Atmospheric pressure determined using a barometer was utilized for verti-

cal location estimation. Due to the limitations of sensors in smartphones, the proposed 

method could not deliver satisfactory results in real-world scenarios.

A simple but efficient Bluetooth beacon-based navigation system using smartphones 

was proposed in [110]. �e system utilizes RSSI measurements for position estimation. 

�e positioning algorithm [111] initially measures the RSSI from each beacon and per-

form a noise removal operation. �e “Log-Path Loss model” [112] based on the mean 

of the RSSI values is utilized for the estimation of distance from each beacon. �e algo-

rithm implements the proportional division method to estimate the position of the users 

when they are near to two or more beacons. In the proportional division method, the 

line representing corridor where beacons are installed is divided with respect to the 

distance between two nearby beacons. When only one beacon is near to the user and 

another one is far, the algorithm assumes the user’s position is on the other side of that 

nearby beacon. Dijkstra’s shortest path algorithm was adopted for finding the shortest 

route for navigation. �e system performed well in a small indoor region.

DRBM [113] is a dead reckoning algorithm that combines a “Bluetooth propagation 

model” and multiple sensors for improved localization accuracy. �e “Bluetooth propa-

gation model” utilized the linear regression method for feature extraction. An individ-

ual parameter that varies with the characteristics of the users was integrated with data 

from accelerometers for calculating the exact steps covered by the user. Subsequently, 

the results from Bluetooth propagation model and sensor-based step calculation method 

were fused using a Kalman filter for improving the accuracy of positioning. �e results 

demonstrated that the positioning errors were within 0.8 m.

Reference [114] examined the performance of machine learning classifiers, such as 

SVM, Random Forest and Bayes classifier, for the Bluetooth low-energy beacon finger-

printing method. �e experimental infrastructure was created using beacons provided 

by Estimote and iBeeks. Both types of beacons use Eddystone profiles developed by 

Google. �ese authors evaluated the performance of algorithms for different smart-

phones with a preinstalled fingerprinting Android app. Eddystone packets from each 

beacon are scanned over a period of time to obtain the RSSI values. �e MAC of the 
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beacon and associated RSSI values are logged for further training processes. �e open 

source project ’Find’ was adapted for the whole task. Several machine learning algo-

rithms are already available in ‘Find’ servers. �e results showed that Random Forest 

increased the accuracy of positioning by 30% compared to the Bayes classifier and a 91% 

correct identification of location.

In recent years BLE beacons based technology has been used for the development 

of assistive navigation systems for people with visual impairments. A blind or visually 

impaired user with a minimum knowledge of smartphones can utilize these systems to 

find the indoor ways in train stations, museums, university premises, etc. Basem et al. 

[115] proposed a BLE beacons based indoor navigation system for people with visual 

impairments. �e proposed system utilized the fuzzy logic framework for estimating the 

position of the user in indoor areas. �e basic methodology utilized for indoor position-

ing is BLE fingerprinting. Authors analyzed the performance of various versions of the 

fingerprinting algorithm including fuzzy logic type 1, fuzzy KNN, fuzzy logic type 2 and 

traditional methods such as proximity, trilateration, centroid for indoor localization. �e 

fuzzy logic type 2 method outperformed all other methods. �e average error of locali-

zation obtained in the fuzzy logic type 2 approach is just 0.43 m.

Murata et al. [116] proposed a smartphone-based indoor localization system that can 

be extended for blind navigation in large indoor environments that contains multistoried 

buildings. �e proposed work addressed six key challenges for smartphone-based indoor 

localization in large and complex environments. �e challenges are associated with the 

mobility of the user and the nature of large scale environments. �e challenges include 

accurate and continuous localization, scaling the system for multiple floors, Varied RSS 

values from the same transmitter to different devices located in the same location, varied 

walking patterns of individuals, signal delay, etc. �e authors improved the probabilistic 

localization algorithm using various techniques to address the above-mentioned chal-

lenges. RSSI from BLE beacons and data from embedded IMUs in the smartphone are 

utilized for location estimation. �e proposed system was evaluated in a large shopping 

mall (21,000  m2 area) with 10 individuals including blinds and people with low vision. It 

is observed that the proposed techniques reduced the mean localization error from 3 to 

1.5 m while using the probabilistic localization algorithm.

Ahmetovic et  al. [117] proposed a smartphone-based indoor navigation system for 

people with visual impairments. �e proposed system namely, NavCog relies on RSSI 

from BLE beacons and inbuilt sensors of smartphones for localizing the user in indoor 

areas. �e location of the user was estimated using a fingerprint matching algorithm. 

�ere are many fingerprint matching algorithm proposed in the literature. Here, the 

author chose a variant of the KNN algorithm to compute the location of the user by 

matching the observed RSSI value with RSSI fingerprints stored during the offline stage. 

Apart from basic localization and navigation service, NavCog can notify the user about 

their surroundings regarding the point of interest or stairs or elevators etc. NavCog was 

evaluated in a university campus with the help of six people with visual impairments. 

�ey recorded all the experiments using a video camera to see whether the user is miss-

ing any turn during navigation, waiting for instructions, hitting any obstacles, etc. Cur-

rent version of NavCog lacks the functionality to notify the user when they are traveling 

in the wrong way.
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Kim et al. [118] proposed a smartphone based indoor navigation assistant for people 

with VI impairments. �e system namely, StaNavi uses the smartphone and BLE bea-

cons attached in the indoor areas to guide the users in a large train station. Along with 

the RSS from BLE beacons, data from the inbuilt compass of the smartphone is utilized 

to estimate the position and orientation of the visually impaired users. A commonly used 

indoor localization method called proximity detection technique was used to compute 

the user’s position. �e StaNavi system makes use of a cloud-based server for providing 

navigation route information. Similar to StaNavi, GuideBeacon [119] indoor navigation 

system also utilizes the smartphone compass and BLE beacons to estimate the position 

and orientation of the visually impaired users in the indoor environment. But GuideBea-

con used the low-cost BLE beacons to facilitate indoor tracking. �e position estimation 

procedure includes identification of the nearest beacons for a user by using the prox-

imity detection technique. GuideBeacon can provide audio, haptic and tactile feedback 

to the visually impaired user. Reference [120] proposed an indoor navigation system for 

people with visual and hearing impairments. �e proposed system utilized proximity 

detection as well as nearness to beacons techniques in localization algorithm to track 

the position of the user. It is noted that in the last 5 to 6 years only the development of 

BLE beacons based navigation systems have become popular. It can be due to the avail-

ability of smartphones for low cost, less cost of beacons compared to other RF transmit-

ters which have been used before. In the case of Blind navigation, only a few BLE beacon 

based systems have been proposed in recent years.

ISAB [121] is a wayfinding system developed for assisting people with VI in libraries, 

and it utilizes various technologies such as Wi-Fi, Bluetooth, and RFID. Here, each com-

munication technology was used for different purposes. First, Wi-Fi fingerprinting was 

used for localization and navigating through the entrance of the building to the desired 

floor. Floor plans of the indoor environment were represented as graphs, and Dijkstra’s 

algorithm was implemented for path planning. Bluetooth technology was used for navi-

gating users to the desired shelf where the desired item is placed. Each shelf contains a 

shelf reader where a Bluetooth module is attached. �e user can pair their smartphones 

with this Bluetooth module, and the shelf reader will provide instructions to the user. 

Finally, RFID technology was implemented to find the desired item on the shelf, where 

each item is embedded with a RFID tag. Additionally, an effective user interface was 

developed for simplifying interactions of blind people with the system. �e proposed 

system helped the users to reach towards a target with a maximum accuracy of 10 cm.

PERCEPT [122] is a RFID technology-based navigation system developed for people 

with VI. PERCEPT consists of passive RFID tags pasted on the indoor areas, a “glove” 

that consists of a RFID reader, and kiosks placed at entrances, exits of landmarks. �e 

kiosks contain information about key destinations and landmarks. Additionally, an 

Android smartphone that provides instruction to the user through a text to speech 

engine. An Android phone will communicate with the glove and PERCEPT server using 

Wi-Fi, and Bluetooth. �e directions provided by the PERCEPT system lacks proximity. 

Moreover, the direction was not presented in terms of steps or feet.

PERCEPT II [123] includes a low-cost navigation method using smartphones alone 

(gloves were omitted). �e cost for system deployment was decreased by creating a sur-

vey tool for orientation and mobility that aids in labeling the landmarks. NFC tags were 
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also deployed in specific landmarks for providing navigational instructions by means of 

audio. �e navigation module implemented Dijkstra’s algorithm for route generation.

A RFID-based indoor wayfinding system for people with VI and elderly people was 

proposed in [124]. �e proposed system consists of a wearable device and a server. �e 

wearable device consists of a RFID reader that can read passive tags, an ultrasonic range 

finder for detecting obstacles in the path and a voice controller. �e server comprises of 

a localization module as well as navigation module. �e navigation module implements 

Dijkstra’s algorithm for path planning. For efficient localization, authors considered the 

normal movements of a person with vision while developing the system. �e naviga-

tion module was linked to an obstacle avoidance algorithm where obstacles are catego-

rized as expected and unexpected by assigning a predefined probability measure. Again, 

these obstacles were categorized as mobile and fixed and a triangle set is formulated for 

detecting mobile obstacles. An earphone was also embedded in the system for providing 

effective guidance to the user.

Roll Caller [125] introduced a method that relates the location of the user and the 

targeted object based on frequency shifts caused in the RFID system. �e Roll Caller 

prototype comprises of passive RFID tags attached to items, RFID reader with multiple 

numbers of antennas, and a smartphone with inertial sensors, such as accelerometers 

and magnetometers. An anchor timestamp was used to represent the value of the fre-

quency shift. �is anchor time stamp was integrated with inertial measurements, such 

as acceleration and the direction from the sensors of smartphone for allocating anten-

nas. �e proposed method reduced the system overhead since the location of person 

and item are not calculated separately. Instead, a spatial relationship between the object 

and users was introduced to locate them.

DOVI [126] combined IMU and RFID technology to assist the people with VI in indoor 

areas. DOVI’s navigation unit consists of a chip (NavChipISNC01 from InterSense Inc.) 

has a three-axis accelerometer, barometer, and magnetometer. An extended Kalman 

filter was included for compensating the sensor and gravity biases. While RFID mod-

ule was implemented to reduce the drift errors in IMU. Dijkstra’s algorithm was imple-

mented to estimate the shortest navigation routes. A haptic navigation unit was present 

in DOVI that provides feedback/instruction to the user about navigation by means of 

vibration.

Traditional RFID positioning algorithms were facing fluctuations in location estima-

tion due to multipath and environmental interference in RFID systems. To take care 

of this issue a new positioning algorithm called BKNN is introduced in [127]. BKNN 

is the combination of Bayesian probability and K-NN algorithm. In the implemented 

UHF-RFID system, RSS values were analyzed using Gaussian probability distribution 

for localization. �e irregular RSS were filtered out using Gaussian filters. Integration of 

Bayesian estimation with K-NN improved the localization accuracy. Hence, the average 

error in location estimation of the proposed system was approximately 15 cm.

A VLC technology-based navigation system that utilizes existing LEDs inside an 

indoor environment was proposed in [128]. �e proposed system comprises of four 

LED bulbs attached to the ceiling of the room and they were interconnected using the 

same circuit to operate as a single optical transmitter. Trilateration algorithm was imple-

mented for locating the receiver/user. Target’s path was tracked using Kalman filtering 
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and sequential important sampling particle filtering methods. �ey also examined the 

performance of the Kalman filter and particle filter for tracking the users. �e demon-

strated results show that particle filter is better compared to the Kalman filter for user 

tracking.

AVII [129] is a navigation system for visually impaired people using VLC technology. 

Along with VLC-based positioning, a geomagnetic sensor was introduced for provid-

ing accurate direction. A sonar sensor was also embedded in the system for detecting 

obstacle along the navigation path. Dijkstra’s algorithm was modified and utilized in the 

system that enables the user to select the best and shortest navigation routes. �e sys-

tem give instructions to the user through the embedded earphone in the form of audio 

signals.

In [130], a VLC-based positioning system was integrated with magnetic sensors of the 

Android smartphone for assisting people with VI in indoor environments. �e proposed 

prototype consists of an Android phone for calculating the position of the user. A speech 

synthesizer system inside a smartphone provides instructions to users through the ear-

phone. �e latitude and longitude of each location will be stored as visible light ID in 

each visible light associated with that location. Once the visible light receiver obtains 

information about the light ID from visible light, it will transmit the ID to a smart-

phone via Bluetooth. �e smartphone integrates this information with the directional 

calculation from geomagnetic sensors and provides route instructions to the user. �e 

smartphone was attached to a strap that hung freely around the user’s neck. Due to the 

irregular motion of the users, the strap swung more than expected, which led to errors 

in reading the geomagnetic sensor and errors in position estimation.

Reference [131] proposed a method of mitigating random errors in inertial sensors 

and removing outliers in a UWB system. Multipath and nonline of sight conditions were 

the reason for outliers in the UWB systems. �e proposed system consists of a UWB 

system and an inertial navigation system. �e inertial navigation system consists of an 

accelerometer, a gyroscope, and a magnetometer. �e UWB system makes use of the 

TDOA method and least square algorithm for position estimation. An “anti-magnetic 

ring” was introduced to remove the outliers in the UWB system under non-line of sight 

conditions, and it was the first method to do so. For improved positioning accuracy, the 

information from the accelerometer and UWB system was fused using a “double-state 

adaptive Kalman filter” algorithm based on the “Sage-Husa adaptive Kalman filter” and 

“fading adaptive Kalman filter”. �e results showed that the inclusion of “anti-magnetic 

ring” and “double state adaptive Kalman filter” algorithm reduced the positioning errors.

Table 3 provides a comparison of communication technology-based indoor navigation 

and positioning systems.

Pedestrian dead reckoning based indoor positioning and way�nding systems

Hsu et al. [132] developed a system that only depends on inbuilt sensors of smartphones 

and is devoid of any external infrastructure. Here, the user’s steps were detected by inte-

grating values of acceleration along three axes obtained from accelerometer data. �e 

user’s step length was calculated by combining the maximum acceleration values and 

minimum acceleration values. Since step length varies with the person, an individual 

parameter that varies with the users was also fused with the maximum and minimum 
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acceleration values to detect steps. Direction changes of the users were decided from the 

data provided by the gyroscope. Since the PDR approaches may result in errors in locali-

zation, a calibration mark is provided in the map and floor. �e main limitations of this 

work were the variations in the data provided by sensors caused by the holding position 

of phones (like in pocket or bag) and the absence of a path planning algorithm, which 

increased the difficulty of navigation.

Hasan and Mishuk [133] proposed a PDR-based navigation method for smart glasses. 

Since PDR methods need sensors for acquiring data, these authors introduced the smart 

intelligent eye ware called “JINS-MEME”, which contains a three-axis accelerometer and 

gyroscope. Usually, PDR methods will calculate the current position of a user from his 

last known position; therefore, the initial position of the user should be known for track-

ing his position. Calculation of the current position of a user requires the step length 

of the user, number of steps covered by the user from his last known position and azi-

muth or heading angle of the user. Data from the three-axis accelerometer is used for 

step detection process. If the sensors are mounted on foot, then step detection can 

be achieved by utilizing the zero-velocity update. However, the sensors in this system 

were attached on to the smart glass, and the norm of the accelerometer was utilized for 

detecting steps. If the norm of the accelerometer crosses a predefined value, it is then 

considered as one step. Since step length varies with the user, a parameter is included 

for step length calculation and these parameter is obtained from an experiment where 

4000 steps of 23 people were analyzed. In addition, the “extended Kalman filter” was 

introduced to merge the values from accelerometer and gyroscope. �e data merging 

approach was utilized for calculating the heading angle to rectify the errors of PDR and 

gyro sensor such as bias, noises, tilts, etc. Instead of using data from sensors individually, 

fused data are more accurate for further calculation.

Ju et  al. [134] proposed a PDR based navigation system for smartphones that uses 

“multiple virtual tracking (MVR)”, �e proposed system solves the limitation of exist-

ing methods in which all walls and passages are considered parallel or perpendicular. It 

also solves the limitation of walking indoor for a long time. Microelectromechanical sys-

tem IMUs are comprised of three-axis accelerometers, magnetometers, and gyroscopes 

and they are employed to calculate the position. �e proposed system does not rely on 

existing infrastructure or designed maps. �e proposed MVR algorithm uses the con-

cept of the map-matching algorithm to examine potential pedestrian’s trajectories [135], 

and it passes through two stages; in the first stage, “the main track utilizes the domi-

nant direction as a matching function when it is significantly reliable”, and in the second 

stage, “the data obtained on an ambiguous direct straight line to utilize the dominant 

direction is expanded by multiple virtual tracking for diversified cases”. Generally, the 

PDR system passes through the following four steps: (1) step detection, in which peak 

detection approach is employed to detect the accurate step; (2) step length estimation, 

in which the relationship between the walking status and the step length is determined 

by the accelerometer; (3) heading estimation, in which the cumulative error over time of 

the “Attitude Reference System” is used to reduce the accumulated heading error and an 

“extended Kalman filter (EKF)” is designed to compute the heading error as well as the 

gyroscope biases; (4) position calculation, in which the obtained heading value through 

the “Attitude Reference System” and the previous step are used to compute the user’s 



Page 29 of 41Kunhoth et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:18  

current location and the Mahalanobis distance is employed to obtain the similarity 

between the dominant direction and the estimated heading. �e proposed PDR-Mul-

tiple virtual tracking system passes through (1) basic tracking steps described earlier; 

(2) virtual trajectory awareness, in which a dominant direction block might be added 

to check if the user is in the dominant direction even in unreliable situations; and (3) 

“virtual track extension and reduction”, in which the virtual track is extended if there is 

a likelihood of a dominant direction when a new straight line appears. �e experimental 

results of the proposed PDR-Multiple virtual tracking system demonstrated its effective-

ness when compared with conventional PDR systems that use the dominant direction in 

sophisticated trajectories.

Hsu et al. [136] proposed a navigation system for pedestrian localization, and it is com-

posed of a triaxial accelerometer, triaxial magnetometer, triaxial gyroscope, Bluetooth 

transmission module, and a microcontroller. �e intention of the developed system is 

to reduce the integral error to accurately estimate and construct the walking trajectories 

of the pedestrian. �e system does not require external positioning techniques, and it 

comprises of a wearable inertial navigation device and a computer device. �e naviga-

tion device can be placed on the foot of the pedestrian to construct walking trajectories. 

A walking trajectory algorithm that consist of trajectory height estimation function, and 

trajectory reconstruction function, is implemented to build user’s trajectories. �e sig-

nals are received by the computer through the Bluetooth wireless module. �e sensor 

merging method, which is based on “double-stage quaternion”, uses the EKF to merge 

the angular velocity, acceleration, and magnetic signals. A rotation stage is implemented 

to provide a stable rotation rate and eliminate the interference resulted from the global 

earth rotation rate. During the experiment phase, users were asked to wear the device 

and walk for both long and short periods. �e distance error and the end-to-end error 

were approximately 8.33 m and 4.81 m, respectively. �e average height errors were 

6.42% and 3.60% for walking downstairs and upstairs, respectively.

In [137], a dead reckoning approach for estimating and tracking a user using smart 

handled phones was proposed. �e proposed approach solves the limitation of position-

ing mobile phones and the surrounding environment, and it depends on identifying the 

relative variations in the distance traveled by users’ walking direction. �e actual position 

of a user is approximated by combining distance traveled and previous position informa-

tion. Calibration is required to adjust the initialization of the algorithm to recognize the 

movement path of the user with respect to a reference system. �e navigation path is 

estimated by a sequence of orthogonal segments. Each orthogonal segment consists of 

the distance computed in steps and the movement heading determined with respect to 

the reference system. �e movement direction, or the heading, is computed from the 

measurement data of the magnetic field. If the algorithm is not capable of identifying the 

rotation of the user or if sudden variations occurred in the data, then the algorithm will 

create an alarm to perform the calibration again. �e current PDR approach does not 

consider the slight rotation of a user, and an assessment of this approach indicated that 

the maximum error obtained in the system is not more than four steps.

PDR based indoor positioning systems are prone to error in localization because of 

sensors biases, drift, etc. Recent PDR based systems have introduced the multi-sensor 

fusion approaches and multiple positioning technology integrations [138–140] to reduce 
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the integral and drift errors observed in PDR based systems. Qiu et al. [141] proposed a 

multi-sensor fusion approach for alleviating the error present in traditional PDR based 

systems. �e proposed work utilized a foot-mounted magnetic/inertial sensors to esti-

mate the location of the user. �e foot mounted sensor ‘Xsens’ contains 3 axis accelerom-

eter, gyroscope, and magnetometer. A walking stance phase detection algorithm which 

utilizes the data from the accelerometer, as well as gyroscope, was introduced in this 

work. Sensor fusion is achieved by implementing the extended Kalman filter method. 

�e performance of the sensor fusion approach was evaluated in both indoor as well as 

outdoor environments. Demonstrated results show that the overall error obtained in the 

proposed system was less than 1% of the total traveled distance.

�e integration of multiple positioning technologies or sensor fusion approaches can 

improve the accuracy of PDR based systems and vice versa. It means PDR technologies 

have been integrating with other technologies to alleviate the positioning errors. Kuang 

et  al. [142] proposed a smartphone-based indoor positioning approach that combines 

magnetic matching and PDR technology. Magnetic matching technology has been used 

alone or along with Wi-Fi or BLE technology for indoor navigation in recent years. 

While using Magnetic matching alone, it is hard for a system to differentiate the mag-

netic field at a single point from other near points. In this context, the authors came with 

a solution to integrate the magnetic filed sequence along with the traveled path contour 

estimated by PDR technology. Moreover, the drift errors generated in the PDR method 

are regulated by an extended Kalman filter with the help of the reference magnetic field 

sequence. Gauss–Newton iterative technique was utilized to compare the measured 

magnetic field sequence with reference magnetic field sequences. �e demonstrated 

result shows that the proposed method achieved an accuracy not more than 2.5 m with 

less computational load compared to other existing solutions.

A real-time smartphone-based indoor localization system that combines BLE technol-

ogy along with the PDR approach has been proposed in [143]. �e proposed system uti-

lizes the inertial measurement units in the smartphone and RSS from the BLE beacons 

to estimate the position of the user in indoor areas. A smartphone application was built 

to fuse the inertial data and RSS from beacons. �e inertial data is used to compute the 

step length as well as the heading angle. Step detection was achieved by analyzing the 

height of each jump during every zero crossings. If the height is above the specific pre-

assigned threshold value, a step is detected. Zero crossings are the instants where a sig-

nal or value changes its sign. Step length estimation technique adopted a state of the art 

approach which require the length of the user’s leg and vertical change of body center 

of mass as input along with a correction factor defined in the literature. �e heading 

estimation procedure includes the fusion of data from accelerometer and gyroscope fol-

lowed by computation of device’s attitude. �e attitude is further converted to quaterni-

ons and Euler angle representations. �e relationship between these representations is 

used to find the heading angle. Later the step length and heading angle are fused with 

RSS from BLE beacons to reset the location of the user and decrease the drift error.

Shan-Jung et al. [144] propose an indoor navigation system which integrate PDR tech-

nology along with the Wi-Fi fingerprinting method. �e work mainly focuses on cali-

brating the fingerprinting database with the aid of inertial measurement units in the 

smartphone device. A quaternion based extend Kalman filter was employed for sensor 
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fusion to reduce the positioning error in the PDR method. In the PDR method, acceler-

ometer data were utilized to detect valid steps. Noise obtained in the accelerometer was 

filtered out by using a low pass filter. �e step detection algorithm can able to identify 

the steps from both the magnitude phase as well as the temporal phase. A pair of peaks 

and valleys are considered as one step. An existing method is adopted for computing the 

step length. �e step length computation method considers the standard deviation of the 

acceleration data since the stride length and walking speed are related. �e landmarks in 

indoor areas can be utilized for providing directions to the user. Here, the Wi-Fi finger-

printing method has been utilized for identifying the nearest landmark. If the user has 

reached any landmark, the integrated errors in the PDR method will be reseted. In this 

way, the drift errors in the PDR system are alleviated.

Mercury [145] is a network localization and navigation system using smartphones for 

indoor applications. Localization of the user is achieved by fusing the various measure-

ments from the IMU and range measurements among the users. �e range measure-

ments between various users are acquired using acoustic signals. �e Mercury system 

consists of a built-in IMU, speaker, earphone of a smartphone and Bluetooth transceiver. 

Here, the users will localize themselves by utilizing the temporal cooperation, the spa-

tial cooperation among them along with the knowledge about the map. �e acceleration 

and angular velocity provided by the IMU were utilized for phone orientation estimation 

[146]. �e obtained acceleration samples based on the phone orientation were trans-

ferred from the “phone’s coordinate system” to the “Earth’s coordinate system”. �e step 

direction and step length of users were calculated by utilizing the acquired acceleration 

samples. For range measurements, the acoustic signals were recorded and transmitted 

using earphones and speakers, and these tasks are performed when a user performs spa-

tial cooperation. Spatial cooperation is achieved by finding the range between the user 

followed by exchanging the position information. A user will try to sense the acoustic 

signals produced by another user to measure the range. If the acoustic signals are absent, 

then the user will perform two-way ranging and measure the time taken for two-way 

propagation to estimate the range [147]. �e step direction and step length calculated 

from the IMU measurements and range measurements were fused with map informa-

tion using an algorithm called Belief Propagation . �e belief propagation algorithm 

will find the positional belief of the user. Bluetooth is used to exchange the positional 

belief of the users among them. During system evaluation the map of the indoor envi-

ronment was partitioned as small squares with dimensions of 0.7 m × 0.7 m because the 

belief propagation algorithm requires this partition. In case of single user scenario, the 

Mercury system is compared with the two systems Mapcraft [148] and a system using 

a Kalman filter technique [149]. �e Mercury system proved its robustness compared 

to the other two systems, even in the absence of the user’s initial position. In multi-user 

scenarios, the Mercury achieved an exceptional localization performance because of 

spatial cooperation. Table 4 shows a comparison of PDR-based navigation systems.
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Evaluation criteria

In this section, we propose criteria to be considered while evaluating indoor positioning 

and navigation systems. �ese proposed criteria will be helpful for investigations into 

positioning and navigation system. Moreover, considering these factors in the develop-

ment stage can result in an ideal navigation system.

Accuracy and precision

Accuracy is one of the main performance metrics of a navigation system. �is metric 

is mainly associated with the indoor positioning module of the navigation system. �e 

error in localization is expressed in terms of accuracy. It is computed as the aver-

age Euclidean distance between the ground truth location coordinates and estimated 

Table 4 PDR-based navigation systems

References Solution Performance Findings/remarks

Hasan and Mishuk [133] Data from the accelerom-
eter and gyroscope fused 
using the Kalman filter

Average deviation: 2 m (−) The system cannot 
follow the path of the 
user if the positioning 
updates from RF signal 
are absent for a mini-
mum duration of 5 min

Ju et al. [134] PDR system with multiple 
virtual tracking to avoid 
drift errors in heading 
angle

Position error: 0.77% of 
total distance (1430 m)

(+) It solves the limitation 
of existing methods that 
assume all of the walls 
and corridors are parallel 
or orthogonal

Hsu et al. [136] Trajectory reconstruc-
tion algorithm, Double 
filter quaternion-based 
adaptive Kalman filter for 
sensor fusion

Distance error: 0.52% 
(5.28 m) of total traveled 
distance

(+) Reduced the integral 
error in trajectory recon-
struction and estimation 
without utilizing any 
other external position-
ing technique

Liu et al. [145] Belief propagation algo-
rithm to localize the user 
by fusing sensory infor-
mation, and the range 
information between 
users

80th percentile of localiza-
tion error was 1.6 m and 
3.5 m

(+) The system is robust 
towards unknown initial 
position scenarios and 
multiple user scenarios

Giorgi et al. [137] PDR-based navigation 
system utilizing the 
embedded sensors of 
smartphones

Maximum error: 4 steps (+) Low-cost system

Qiu et al. [141] Multi-sensor fusion 
approach using extended 
Kalman filter

Distance error: 1% of trave-
led distance

(+) Sensor installation and 
path propagation errors 
are rectified

Kuang et al. [142] PDR approach integrated 
with magnetic matching

Accuracy: less than 2.5 m (+) Introduction of mag-
netic matching approach 
reduced the drift errors 
in PDR

Ciabattoni et al. [143] PDR approach integrated 
with BLE technology

Distance error: 0.18 m 
when whole beacons are 
functioning

(+) BLE beacon-based 
approach reduced the 
drift errors in PDR

Shan-Jung et al. [144] PDR approach integrated 
with the Wi-Fi fingerprint-
ing technique

Pathway error is almost 
zero in simulation experi-
ments

Wi-Fi fingerprinting based 
calibration system 
reduced the cumulative 
error in PDR
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location coordinates. A more realistic approach compared to Euclidean distance was 

introduced in [150]. �is method depicted floor plans, obstacles and interfloor tra-

versing routes as polygons for error estimations.

Precision deals with the consistency of system performance, or the consistency in 

positioning over time and various scenarios. �e precision of the system can be rep-

resented in terms of the cumulative distribution function. In normal human naviga-

tion, the fall-off in these metrics up to a limit can be acceptable, although for people 

with VI, these fall-offs may affect their safety.

Cost

�e cost of navigation systems can be classified among the positioning, navigation and 

HMI modules. In particular, the cost of the positioning module includes the individual 

costs of infrastructure components and their maintenance and devices for position esti-

mation. �e employment of Wi-Fi or VLC-based systems can reduce the cost of the 

infrastructure components because most building are installed with Wi-Fi APs or LEDs. 

However, the initial implementation cost is high for Wi-Fi APs compared with Bluetooth 

beacons or RFID tags. �e cost of navigation modules is associated with the adopted 

map construction methodologies. Google indoor maps is an open source SDK, but its 

service is limited to few countries. Several other paid map building SDKs are available in 

the market.

Usually, the HMI module does not account for a large contribution to the cost of the 

whole system. In smartphone-based navigation or positioning systems, users utilize 

speakers, microphone and earphones to interact with the system. �e noises from the 

navigation environment create difficulties for people with VI when using audio feed-

back. �us, a haptic feedback system must be implemented along with audio feedback

Scalability

�e scalability of the system can be evaluated by considering two parameters, namely, 

geography and the number of users. Geography represents the area of the indoor envi-

ronment covered. An increase in the number of users in the same region can create 

confusion in positioning due to interference from the signals of communication technol-

ogy-based systems. Computer vision-based systems also encounter problems in indoor 

scene recognition due to occlusions created by other users.

Robustness

Robustness means the ability of the system to withstand adverse conditions, such as 

component malfunctions and losses of signal. �e system should provide the navigation 

and tracking of the user even if one or two infrastructure components fail or malfunc-

tion. In particular, Wi-Fi based system or BLE based system should work properly even if 

one or two Wi-Fi APs or BLE beacons fails to work.

Usability

Navigation systems are developed for reducing manual effort and time in the wayfind-

ing process. �e system design should consider the preferences of consumers. In this 
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context, the size of the system, power consumption, and real-time performance have to 

be considered. �e positioning systems should pull location information in real time, 

and the navigation module should provide real-time route presentation and turn by turn 

directions. �is design suits people with no disabilities or physical impairments. How-

ever, people with VI require additional feedback, such as haptic feedback, an obstacle 

detection module, and a location awareness module for compensating their disability.

Future work and discussion

Computer vision-based navigation and positioning systems can provide better mindful-

ness about encompassing environments compared with systems that utilize communi-

cation technologies or PDR approaches. �us, computer vision-based frameworks are 

more appropriate for navigation by individuals with VI. In computer vision-based sys-

tems, deep learning methodologies are observed to be more precise than pure conven-

tional methodologies. �e hybrid technique that utilizes deep learning methodologies 

for scene recognition or image retrieval tasks and SIFT or ORB features for position esti-

mation achieved better accuracy compared with pure deep learning methodology-based 

systems. �ree-dimensional feature-based localization methods solved the limitations 

associated with SIFT- or SURF-based matching methods. �e impact of human occlu-

sions adversely affects visual feature-based positioning [81]. �e elimination of human 

objects from visual scene recognition process can be further explored to solve these 

issues for both static and dynamic camera setups.

Compared to 2-dimensional image feature based approaches 3-dimensional features 

and RGB-D image-based methods are more reliable for indoor navigation. Visual posi-

tioning systems which are considered as the future of indoor navigation technology uti-

lize RGB-D images to train and learn the models for localizing the user in indoor areas. 

Most of the RGB-D based methods have not extended to a fully working indoor naviga-

tion system. Instead many articles have proposed the methods and done offline testing 

in the publicly available dataset. Only a few works had extended RGB-D indoor position-

ing techniques to fully working indoor navigation systems, but still, it is implemented in 

a client–server manner. Because every mobile device is not able to bear the high compu-

tation required for position estimation tasks. Optimization of visual indoor positioning 

models to deploy in mobile devices like smartphones is one of the least explored topic in 

this research domain. �ere exists some systems that utilized Google tango VPS for the 

development of indoor navigation. But Google tango is supported in only a few devices 

and currently, Google has stopped the support on Google tango. But Google’s new tool 

ARCore provides similar features like Google tango. It can be extended for the develop-

ment of visual positioning based indoor navigation systems.

Communication technology-based approaches that integrate PDR methodologies or 

magnetic fingerprinting methods improved the coverage and precision of the system. 

�e drift errors and initial position estimation problems of PDR-based systems are alle-

viated by introducing communication technologies, such as BLE and Wi-Fi, or magnetic 

fingerprinting approaches along with PDR. Fingerprint spatial gradients (spatial relation 

between RSS fingerprints of nearby locations) reduced the issues associated with RSS 

fluctuations. PDR systems integrated with Bluetooth technology seem to be more pre-

cise, and such systems can be further extended to correct radio maps of Wi-Fi.
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Other than seven indoor positioning technologies discussed in this article, there exist 

many other technologies like audio signal based localization [151], magnetic field-based 

localization [152], etc. Audio signal based localization or acoustic localization is more 

accurate and cheaper compared to other RF technologies [153]. Because acoustic local-

ization requires microphones and speakers which are available in every smart mobile 

device. Moreover, RF signal speed is very much higher compared to the sound and it 

implies acoustic localization can provide higher accuracy. In this context, acoustic local-

ization technology can be combined with BLE or Wi-Fi-based approaches, where BLE or 

Wi-Fi can be utilized for rough location estimation and acoustic signals for computing 

the precise location.

Step length estimation is crucial task in PDR-based systems. Step length depends on 

the user’s movement, velocity, and physical properties, such as height. �e step length 

estimation task is still an open research issue. Precise step length estimation can mini-

mize the accumulated errors of PDR systems. �e step length for walking, running and 

walking with heavy load will be different for a same person. Differentiating the differ-

ent walking scenarios is still an open challenge in the research of PDR based navigation 

system. Another interesting research direction in the field of PDR systems is deploying 

deep learning algorithms to determine the type of pedestrian movement by utilizing 

data from the gyroscopes and accelerometers installed in smartphones.

Conclusion

�is paper presents a detailed overview of the advancements in systems for indoor posi-

tioning and wayfinding. We classified the existing systems based on the adopted posi-

tioning technologies. We provided a comprehensive review of the various proposed 

indoor positioning and wayfinding methods in the last 6 years. Moreover, this work ana-

lyzed its advantages and limitations. �is article also discussed different assessment cri-

teria for evaluating navigation and positioning systems. We further provided potential 

research directions for future research in indoor positioning and wayfinding systems.
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