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ABSTRACT Indoor Positioning Systems (IPSs) are used to estimate the position of mobile devices in

indoor environments. Fingerprinting is the most used technique because of its higher accuracy. However,

this technique requires a labor-intensive training phase that measures the Received Signal Strength

Indicator (RSSI) at all Reference Points (RPs) locations. On the other hand, model-based IPSs use signal

propagation models to estimate distances from RSSI. Thus, they do not require expensive training but

result in higher positioning errors. In this work, we propose SynTra-IPS (Synthetic Training Indoor

Positioning System), a hybrid approach between a fingerprint and a model-based IPS that uses synthetic,

simulated datasets combined with data fusion techniques to eliminate the fingerprint collection cost. In our

solution, we use the map of the scenario, with known anchor nodes’ positions and the log-distance signal

propagation model, to generate several synthetic, model-based, fingerprint training datasets. In the online

phase of our solution, the positions estimated by the several synthetic datasets using K-Nearest Neighbors

(KNN) are combined using data fusion techniques into a single, more accurate position. We evaluated the

performance of our SynTra solution in a real-world, large-scale environment using mobile devices with

Bluetooth Low Energy (BLE) technology, and we compared our solution to classic approaches from the

literature. Our results show that SynTra can locate mobile devices with an average error of only 2.36 m

while requiring no real-world environment training.

INDEX TERMS Indoor localization, fingerprint, path-loss propagation model, synthetic dataset.

I. INTRODUCTION

Positioning systems can be defined as the process of find-

ing the position of a target in outdoor or indoor envi-

ronments [1]. Today, one of the most known positioning

systems is the Global Navigation Satellite System (GNSS),

which includes the Global Positioning System (GPS), that

is able to locate devices in outdoor environments, where

there is a line-of-sight among the device and the satellites.

On the other hand, Indoor Positioning Systems (IPSs) focus

on locating mobile devices in indoor environments, where

GNSS can not provide a good accuracy [2]. Currently, there

is a lot of research to propose new methods and technologies

that increase the accuracy of the IPSs, motivated by the high

complexity of indoor environments [3]–[6].

The main technology used in IPSs is based on local

radio signals, and the position can be estimated using the

Time of Arrival (ToA) [7], Time Difference of Arrival

(TDoA) [8], Angle of Arrival (AoA) [9], and the Received

Signal Strength Indicator (RSSI) [3]. The RSSI being the

most frequently used due to its high availability since most

devices with wireless communication, such as Bluetooth

Low Energy (BLE) or WiFi, already comes with this feature.

WiFi is a wireless communication technology widely avail-

able in different places such as malls and airports, which

means no additional hardware and deployment requirements

for indoor localization. On the other hand, BLE has also

been widely used in indoor localization due to its low power

consumption, allowing it to be used by energy-constrained

devices such as smartwatches while also being available in

most smartphones.

Most IPSs can be classified into model-based and

fingerprint-based. Model-based IPSs estimate the positions
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based on the distance between the mobile device and the

Anchor Nodes (ANs), which are fixed devices with known

positions [10]. For this, the RSSI values are converted

into distances using a path-loss signal propagation model,

the most known being the Log-Distance model. Then, the

position computation is done using, for instance, the least-

squares technique. However, due to the high complexity

of indoor environments and the high RSSI variation, this

conversion is not always done realistically [11].

Fingerprint-based IPSs [12] are known to be more accu-

rate and popular. This method is divided into two phases:

offline and online. In the offline phase, also known as

training, several evenly spaced Reference Points (RPs) are

distributed in the environment. For each RP, several RSSI

values between a mobile device and the anchor nodes need

to be collected. They are then stored in a dataset along

with the position where the signals were collected. In the

online phase, the mobile device that we want to locate sends

an advertising packet that is received by the anchor nodes

that estimate the RSSIs and send them to a server. The

server compares these RSSI measurements to the ones in

the dataset to estimate the mobile device position. This

can be done using machine learning techniques such as

the K-Nearest Neighbor (KNN) [1], [13]–[15]. Although

fingerprint-based IPSs are more accurate, the fingerprint

collection on the offline phase is very time-consuming and

laborious. Moreover, the fingerprint dataset is unable to

adapt to future changes in the environment, requiring a new

fingerprint collection, which makes their implementation

unfeasible in large-scale locations. Thus, the main challenge

of this method is how to reduce the need for a real

fingerprint collection.

In this work, we propose SynTra-IPS (Synthetic Training

Indoor Positioning System), a hybrid approach between a

fingerprint and a model-based IPS. In the offline phase of

our solution, we use a log-distance propagation model with

different parameters to generate several synthetic training

datasets that reflect the RSSIs in the different RPs of the

environment under different propagation conditions. In the

online phase, we execute the K-Nearest Neighbor (KNN) in

all synthetic datasets to locate a signal from the mobile node.

Then, we use data fusion techniques to combine all of the

estimated positions into a single, more accurate position. To

evaluate the performance of our solution, we implemented

a real-world, large-scale testbed using mobile devices with

Bluetooth Low Energy (BLE) technology. Our results show

that SynTra can locate mobile devices with a average error

of only 2.36 m. As we will show, this is a better accuracy

when compared to model-based solutions, getting close to

a complete fingerprint-based solution, but without the need

for any real-world, laborious training.

Our main contributions are summarized as follows:

1) Our solution uses several synthetic datasets to charac-

terize the signal in different regions of the scenario,

without the need for complex real-world data gather-

ing from the environment.

2) We propose a new data fusion strategy that combines

the positioning estimates by KNN using all synthetic

datasets, into a single, more accurate position that

outperforms approaches that use just a single synthetic

dataset.

3) Through a large number of real-world experiments, we

verify the efficiency and effectiveness of the proposed

solution. Our results show that the system can achieve

a competitive localization accuracy compared to state-

of-the-art IPSs such as model-based IPSs, IPSs us-

ing a single synthetic dataset, and even traditional

fingerprint-based IPSs with real training.

The rest of the paper is organized as follows. In the

next section, we show our related work. Section III presents

SynTra, our proposed IPS solution. Section IV shows our

real-world testbed and experimentation methodology. In

Section V, we show and discuss the results of the perfor-

mance evaluation. In Section VI, we discuss the applicability

and limitations of our solution. Finally, Section VII presents

our conclusions and future work.

II. RELATED WORK
To estimate the position of a mobile device in an indoor

environment is a complex task since the electromagnetic

signal sent by devices does not have a deterministic behav-

ior [16]. In order to make IPS more robust and accurate,

many techniques and algorithms are proposed in the litera-

ture. Most solutions can be classified into model-based and

fingerprint-based.

In model-based IPSs, the signals measured between the

mobile device and at least three anchor nodes are used to

estimate the distances. For this, signal propagation models

such as the Log-distance [10] and Two-ray Ground Reflec-

tion Model (TGRM) [17] are used. In [18], the authors use

the frequency diversity in the wireless channel to reduce

the multipath effect on the distance estimation. Similarly,

in [19], the authors propose the Optimal Multi-channel

Trilateration Positioning Algorithm (OMCT) to find the

global optimal parameter values and prevent the algorithm

from falling into local optimum. Thus, the focus is reducing

the multipath effects to increase system accuracy. In [20], it

is proposed to use assistant nodes and an adaptive Kalman

filter to assist and improve the distance estimation. However,

the experiments did not consider the complexity of the

environment, such as walls and other obstacles, which can

result in lower accuracies.

In [21], the authors propose a model-based IPS that

uses the k-means algorithm to separate the RSSI into three

groups, where each group receives different filters that

allow the propagation model to make more stable distance

estimations. Sadowski et al. [3] compare the performance of

a distance-based IPS using four dominant technologies: Wi-

Fi, BLE, LoRaWAN, and ZigBee. The evaluation metrics

were system accuracy and energy consumption, and the

results show that Wi-Fi and BLE have advantages over other

technologies. The model-based IPS mentioned above uses a
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fixed path-loss exponent to characterize the signal behavior

in all regions of the scenario, which is not a suitable solution

for large-scale scenarios. In [10], the authors have performed

a smaller training to find different path-loss exponents

that characterize each region of the scenario. The results

show that using dynamic model parameters decreases the

positioning error.

However, despite efforts to improve accuracy, indoor

environments are complex, making it difficult to estimate

distances only by analyzing the RSSI. Because of this,

several proposed IPSs are fingerprint-based. Fingerprint-

based IPS can use several machine learning algorithms to

estimate the mobile device position, such as decision trees,

random forest, KNN, and deep learning. In [22] the authors

describe the main machine learning algorithms that can be

used for localization.

A known work that uses this approach is the

RADAR [23], which combined empirical measurements in

the proper environment with a signal propagation model to

estimate the target location. Similarly, in [12], the reduction

of the empirical data needed by RADAR motivated the

solution. The authors use clustering techniques to reduce

computational requirements. Torres et al. [24] proposed a

fingerprint-based IPS for home monitoring. Their solution

showed that it is possible to get a precise positioning at the

room level with no extra access point, an accessible solution

for home monitoring.

Unlike the works that use the conventional fingerprint,

crowdsourcing-based approaches use the user’s movements

to generate the radio map and reduce the effort to implement

the system. In [25], the authors presented a location algo-

rithm that uses a few RSSI’s measured by users in real-time

to update the dataset with no complete training. Similarly,

Niu et al. [26] developed a crowdsourcing-based IPS, called

WicLoc, which builds the fingerprint dataset by recording

user movements, as well the RSSI, achieving room-level

location accuracy. However, these systems require many

sensors such as an accelerometer and gyroscope to get

users’ movement. Although our work is not based on

crowdsourcing, our solution can be used without effort to

generate immediate results through the synthetic dataset, and

crowdsourcing can be used to improve the result based on

the real users’ data.

Other solutions use a virtual dataset generated by math-

ematical models to reduce the training effort. In [27], it

is proposed a method to create the dataset in real-time

using an optimized ray-tracing algorithm. Similarly, the

authors in [28] proposed a new method for interpolating the

RSSI using a path-loss model containing wall attenuation.

However, these methods require the material type of the

walls, which is hard to get. In [29], the authors use a deep

neural network to reduce the radio map generation workload

by learning the data distribution. Similarly, Kim et al. [30]

propose a new architecture to reduce the dimension of the

resource space and thus reconstruct the radio map using a

deep neural network. However, training a neural network

requires a lot of labeled, trained data.

Ali et al. [31] explores the floor plan and wall map of

the environment to assistant the signal propagation model

and generate the simulated training base. The experimental

results show that by using the floor plan information and en-

vironmental parameters, it is possible to achieve significant

positioning accuracy. In [15], it is proposed a method that

requires only a few reference points to reconstruct a denser

training dataset. The method uses a signal propagation

model based on zone and interpolation to generate the RSSI.

In [32], the proposed solution requires little training to learn

the model parameters and then generates extra RSSI values

in new, virtual RPs. With the common goal of reducing

training workload, in [33], the authors introduce the Hierar-

chical Positioning Algorithm (HPA). This algorithm creates

several sub-dataset with different densities in virtual RPs.

However, the author uses only a sufficiently small number

of fingerprints, with the same path-loss exponent in all RPs.

In Table 1, we show the comparison between the main

works mentioned in this section. The positioning error of

the mentioned works depend on the way the experiment was

carried out (real or simulation), as well as the size of the

scenario and the algorithms used to estimate the positioning.

TABLE 1. Comparison of different indoor positioning systems.

Solution Type Training
Obstacle

Count
Data Fusion

[28]
fingerprint

model-based
synthetic no no

[33] fingerprint-based synthetic yes no

[20]
fingerprint

model-based
real no no

[23] fingerprint-based real no no

[26] crowdsourcing real no no

[31] fingerprint-based synthetic yes no

[10] model-based real no no

SynTra
fingerprint

model-based
synthetic yes yes

Our proposed approach differs from all of the above

solutions. First, differently from model-based solutions that

convert real RSSIs into estimated distances, our solu-

tion converts real distances from the map into synthetic

RSSIs, which allows it to take into consideration the walls

of the scenario, among other things. When compared to

fingerprint-based IPSs, most solutions either try to reduce

the training using sensors, data analysis, and crowdsourcing

or try to reduce the dataset to improve performance. Our

solution completely eliminates the real-world training part

of the fingerprint technique and replaces it with synthetic

datasets. In particular, in the more directly related works

[33] and [31], the authors present calibration-free position-

ing techniques, which exploit the floor plan/wall map of the

environment for the construction of RSSI maps, calculating

the path-loss of the signals using a signal propagation model.

However, in this case, the authors generate only a single

synthetic dataset to represent the signal behavior in the

environment, with the same path-loss exponent in all RPs.
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FIGURE 1. Offline phase of our SynTra architecture: map information as well as a set of propagation model parameters are used as an input to a
log-distance-based RSSI Simulator that outputs a number of synthetic training datasets.

In our work, we use several synthetic datasets combined

using the proposed data fusion techniques to improve the

accuracy.

To the best of our knowledge, no existing work considered

exploiting the log-distance signal propagation model to

generate several synthetic fingerprint datasets. In addition,

this article is the first to apply data fusion from several

datasets to provide an improved position estimation in

indoor localization. The details of our proposed solution are

described in the next section.

III. SYNTRA-IPS ARCHITECTURE
In this section, we present our proposed SynTra-IPS (Syn-

thetic Training Indoor Positioning System). Like most IPS

solutions, SynTra is composed of two phases: offline and

online. In the next sections, we present the details of both

phases.

A. OFFLINE PHASE: DATASETS CONSTRUCTION

Figure 1 shows an overview of the offline phase. In this

phase, we use the map information and an RSSI simulator

to obtain several synthetic training datasets generated by

a log-distance model with different propagation parameters.

Thus, some datasets will eventually be better to characterize

the scenario than others.

In this phase, we assume that an area A contains a

set of n Anchor Nodes (ANs) with previously known

positions, and then we measure the signal strength at

m Reference Points (RPs) for their neighboring ANs. The

RPs are evenly separated, and their positions (Xi, Yi),

i = (1, 2, 3, ...,m) are also known. Thus, for each RP,

we have vectors of received signal strengths defined as:

RPi=(RSSI1, RSSI2, RSSI3, ..., RSSIm, Labeli, Xi, Yi),
where RSSIm is the received signal strength from the mth

AN, Labeli is the RPi identification, and (Xi, Yi) is the RP

position.

A fingerprint dataset is composed of several measure-

ments of signals at the RPs, and we associate the signals

with their real locations. Usually, this dataset is created

based on a real-world training step to collect the signals at

each RP. However, as mentioned, this is an intensive labori-

ous step, especially in medium to large-scale scenarios, since

it requires several days to collect all of the data. Also, there

is a need to re-create a new dataset when some scenario

characteristics change.

Thus, to eliminate the cost of collecting fingerprints, we

propose an RSSI simulator to create synthetic fingerprint

datasets based on map information and virtual reference

points that match the distribution of real RPs. Our goal

is to get the information of the scenario through the floor

plan of the building and, thus, reduce the hard step to

create the signal map. The RSSI simulator was developed

by our research group. As input, it requires the real ANs’

positions, the location of the RPs, and the location and

dimensions of the rooms’ walls. As an output, our RSSI

simulator generates a set of synthetic datasets using different

parameters for the signal propagation model, in our case, the

log-distance [34], [35]. These signals, for each RP, can be

computed as:

RSSIn = RSSId0 − 10α log(
d

d0
)−

∑

i

Li +Xσ (1)

where RSSIn is signal strength received from the nth AN,

d is the distance between the RP and ANn, RSSId0 is the

RSSI value measured at distance d0 (usually 1 m), α is

the path-loss exponent, i.e., a signal loss rate related to the

environment,
∑
i

Li, is the attenuation constants in dB for

the quantity of walls between the RP and ANn and, finally,

Xσ is a zero-mean Gaussian random variable that models

the RSSI variation [36]. When establishing the parameter

values in (1), it is possible to get several synthetic signal

values for all of the RPs, and then create a single, synthetic

training dataset.

However, it is known that signal propagation in indoor

environments is subject to several challenges since obstacles

can cause high signal variation. Thus, different areas of

the scenario may have different parameters in the propa-

gation model that best characterizes the signal’s behavior.

Considering that we have four main parameters in the log-

distance model (RSSId0, α, Li, and Xσ), we can establish

different values for each parameter and create T different

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3105188, IEEE Access

Assayag et al.: Indoor Positioning System using Synthetic Training and Data Fusion

Synthetic Dataset 1

Synthetic Dataset 2

Synthetic Dataset 3

Synthetic Dataset ...

Synthetic Dataset T

Online Phase

AP1

-94-42 -57

...

...

AP2 AP3

×

RSSIs  to Anchor Nodes

kNN
Pos. Est. 1

kNN
Pos. Est. 2

kNN
Pos. Est. 3

kNN
Pos. Est. ...

kNN
Pos. Est. T

Data Fusion
Estimated

 Position of
 the Mobile

Device

Mobile
Device

FIGURE 2. Online phase of our SynTra architecture: positions estimated by several synthetic datasets, using K-Nearest Neighbors (KNN), are combined using data
fusion techniques to form a single, more accurate position.

training datasets with all values combinations that can be

tuned to make it fit nearly any regions of the environment.

For instance, combining parameters values of RSSId0 = {-

55, -60}, α = {2.5, 3.0, 4.0}, Li = {2, 3}, and Xσ = {1,2,3},

it is possible to get 36 different synthetic datasets. Some of

them will perform better in different areas of the scenario.

Therefore, the result of the offline phase of our SynTra-

IPS is a set of synthetic datasets with different parameter

values for the propagation model. In the next section, we

will show how to combine the results of these synthetic

datasets to estimate the users’ positions.

B. ONLINE PHASE: ESTIMATING POSITIONS

In the online phase, the RSSI values of a mobile device are

used to estimate its position. Figure 2 shows an overview

of the online phase of our SynTra-IPS. In this phase,

the positions estimated by the several synthetic datasets,

using K-Nearest Neighbors (KNN), are combined using data

fusion techniques to form a single, more accurate position.

The online phase starts when a mobile device sends a

packet. This packet will be received by several ANs that

will be able to estimate the RSSIs. These RSSIs are sent

to a central location server where the synthetic datasets,

computed in the offline phase, are stored.

In the next step, for each synthetic dataset, we find the

synthetic sample that best matches the real-world RSSIs

samples from the mobile device. For this, several machine

learning techniques can be used. In SynTra, we used the

KNN algorithm, one of the most popular techniques used

in fingerprint-based IPSs. KNN uses the Euclidian distance

as a similarity measure to find the dataset sample that is

most similar to the real-world RSSIs. Thus, the position

estimation of the mobile device, using that specific synthetic

dataset, is the same position as the RP from that closest

sample.

After executing the KNN for each one of the T syn-

thetic datasets, we will have T possibly different position

estimations, each one with its own accuracy, depending on

how close the propagation model parameters of the synthetic

dataset matches the characteristics of the real-world area the

mobile device is located.

Finally, the last step of the online phase is how to combine

all of these T position estimations into a single, more

accurate one. For this, we use data fusion techniques. Data

fusion allows us to combine data from several sources in

such a way that the accuracy of the resulting estimation is

higher than any of the individual sources. For our SynTra

solution, we proposed and evaluated the performance of four

data fusion techniques, which will be explained in the next

paragraphs.

1) SynTra Voting

In the first data fusion technique, we used a simple majority

voting mechanism to determine the best position. Thus, we

consider the final position to be the one that was most often

chosen among the T predictions. Here, voting is done using

the point identification label. We will refer to this variation

of our solution as SynTra Voting.

2) SynTra Dist

In the second data fusion technique, called SynTra Dist, we

use the euclidian distances between the matched sample

and the k-nearest samples as a measurement of accuracy.

Thus, for each of the T synthetic datasets, instead of having

only the estimated position, we will also have this local

distance information for each k-nearest samples to indicate

how accurate the estimated position is.

Thus, given a position estimation and the computed

distance for each one of the T synthetic datasets, we will

choose the position estimation from the dataset with the

lowest global distance. This approach considers that if the

distance value is low, we will have more chance of choosing

a synthetic dataset in which the propagation parameters

more closely resembles that of the real-world region where

the mobile device is located.
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3) SynTra Avg

In the third data fusion technique, called SynTra Avg, we

simply get the average position (X,Y ) among all of the T

position estimations, as shown in (2):

(X,Y ) =

T∑
i=0

(Xi, Yi)

T
(2)

where (X,Y ) is the final estimated position, (Xi, Yi) is

the position estimated using the ith synthetic dataset, and

T is the number of synthetic datasets. This is a simple

approach that considers that, on average, the several position

estimations from the T synthetic datasets are in nearby

regions. However, this approach is sensitive to outliers, i.e.,

estimated positions with higher errors due to the unrealistic

propagation parameters from their synthetic datasets.

4) SynTra WAvg

Finally, the last data fusion approach, called SynTra WAvg,

is a combination of SynTra Dist and SynTra Avg. It tries to

solve the outliers problem of SynTra Avg using the distance

metric, used in SynTra Dist, as weights.

First, in order to invert the distances so the higher the

better, we need to compute the sum of the weights as

follows:

sumDist =
T∑

i=0

(maxDist− disti) (3)

where maxDist is the maximum distance identified among

all of the T predictions, and disti is the distance value

among the k neighbors in the ith synthetic dataset. Thus,

the final position can be computed as follows:

(X,Y ) =
T∑

i=0

(
maxDist− disti

sumDist
) ∗ (Xi, Yi) (4)

Therefore, the final position is computed using the

weighted average positions from all of the T estimated

positions, prioritizing the ones with shorter distances, and

reducing the outliers influence.

IV. EXPERIMENTAL TESTBED
This section presents our experimentation methodology and

real-world testbed. The results of the performance evaluation

will be discussed in Section V.

A. SYSTEM ENVIRONMENT

To evaluate the performance of SynTra, we conducted an

experiment in a real, large-scale environment with an area

of 645 m2 with 15 anchor nodes distributed throughout the

area. The test scenario consists of 15 spaces (11 rooms

plus 3 halls), as shown in Figure 3, in which each space

is covered by at least one anchor node. The anchor nodes

are fixed on the ceiling in locations where it was somewhat

convenient to connect them to the power supply.

Even though our solution does not require any real-world

training, we still need to define reference points for the

generation of the synthetic datasets. Thus, we separated

the environment into 150 different reference points, evenly

spaced 2 m apart from each other. Finally, combined with

the floor plan information, shown in Figure 3, we have all of

the required information to generate the synthetic datasets.

We can then apply the signal propagation model described

in (1) to simulate RSSI values at all RPs.

B. SYNTHETIC DATASET PARAMETERS

Indoor environments are complex structures hard to be

modeled by a single signal propagation model since different

areas have different signal characteristics caused by the

diversity in layouts and obstacles that cause multipath and

reflections [10], [35]. Even during the day, these signals can

vary due to crowd mobility. The log-distance propagation

model has parameters that require calibration to generate

simulated signals that are mostly similar to real-world signal

behavior.

To represent the signal in the different areas, it would

need several parameter values for the log-distance model,

but performing the calibration of the parameters is costly,

and the effort to do so would be equivalent to performing

a real collection in all RPs. Therefore, we use a range of

values for the parameters, with common values to be found

in IPS [3], [21], [37], [38]. In this case, we would avoid the

effort of carrying out an extensive experiment to calibrate

those parameters.

Instead of creating just one synthetic dataset with fixed,

averaged parameters to model the whole scenario, our

proposed SynTra generates several synthetic datasets with

different signal parameters in such a way that eventually one

of the datasets will be better than the others to represent a

specific region. Thus, given the possible values that each of

the parameters of the log-distance model can assume, the

combination of these parameters generates several synthetic

datasets. Table 2 shows several possible values for these pa-

rameters and the resulting number of possible combinations,

which is the total number of synthetic datasets.

In this table, similar to (1), RSSId0 represents the possi-

ble values for the RSSI at 1 m, α represents the values for

the path-loss exponent, Li, the values for wall losses, and

Xσ , the RSSI variations. For instance, in the first row, by
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FIGURE 3. Real-world experimentation testbed: 11 rooms, 3 halls, and
15 anchor nodes. Gray dots represent the 150 reference points.

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3105188, IEEE Access

Assayag et al.: Indoor Positioning System using Synthetic Training and Data Fusion

TABLE 2. Combination of synthetic datasets that can be generated by
different parameters values for the log-distance model.

Model Parameters Possible

CombinationsRSSId0 α Li Xσ

55,60 3.5, 4.0, 5.5 2,3 1,2,3 36
50,55,60 3.5, 4.0, 4.5 2,3 1,2,3 52
50,55,60 3.5, 4.0, 4.5 2,3,4 1,2,3 81
50,55,60 3.5, 4.0, 4.5 2,3,4,5 1,2,3 108

50,55,60,65 3.5, 4.0, 4.5 2,3,4,5 1,2,3 240
50,55,60,65 3.5, 4.0, 4.5 2,3,4,5,6 1,2,3,4 400

combining all of the possible values for these parameters,

it is possible to generate 36 different synthetic datasets.

One issue with this combination is the rapid increase of

the number of datasets, which results in a higher processing

cost on the online phase. Using the combinations in the last

row, for instance, would result in 400 different synthetic

datasets.
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FIGURE 4. Signal characterization of the environment using the signal
propagation model as executed by the RSSI simulator.

Figure 4 shows a simulation using just one dataset gen-

erated by the following parameter values: RSSId0 = −60,

α = 4.5, Li = 4 dBm, and Xσ = 1. In this figure, we

can see how a single synthetic dataset represents the signal

behavior in the scenario.

C. EXPERIMENTAL METHODOLOGY

To validate our proposed solution, we performed a real,

laborious RSSI collection at the same reference points

described in the previous section and depicted in Figure 3.

During the experiments, the anchor nodes received BLE

advertising packets sent by beacons at a 1 Hz rate. Beacon

nodes are mobile devices that we will estimate the posi-

tions in the online phase and they operate with a single,

small, and long-lasting battery. For the experiment, we used

11 different beacons to diversify the RSSI behavior.

Thus, at each RP, the signal values among beacons and

anchor nodes are estimated and sent to a central server that

then stores the data in a real-world fingerprint dataset. We

collected 100 fingerprint measurements at each RP. During

the experiments, the highest communication range observed

between beacons and ANs was 25 m, even though at this

distance, most packets are not received.

After the training process, the fingerprint dataset had

15.000 samples (signal measurements) from different bea-

cons at 150 RPs. Again, it is important to emphasize that

this is an exhaustive process and it is unnecessary for

our proposed solution, being performed only for evaluation

purposes to be compared to real-world data. Figure 5 depicts

the average RSSI values from the real signal propagation in

our test environment.
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FIGURE 5. Signal characterization of the scenario based on the
measurements made empirically.

V. PERFORMANCE EVALUATION
We evaluated the performance of SynTra in three different

aspects. First, we analyzed the impact of the number of

dataset combinations on the positioning error. Second, we

evaluated the performance of the data fusion techniques.

Finally, we compared the performance of our SynTra solu-

tion to traditional approaches found in the literature. In all

of the experiments, we used a fixed value of 10 for the k

parameter of KNN since it had the best results even though

the difference from other k values was not significant.

A. DATASETS COMBINATIONS

A key aspect of our proposed SynTra solution is the

number of synthetic datasets generated by combining the

propagation model parameters. To evaluate the impact of the

number of datasets on the system performance, we executed

our solution using the different combinations of parameter

values specified previously in Table 2. Thus, we executed

SynTra using small combinations composed of only 36

datasets up to larger combinations of 400 datasets.

TABLE 3. Impact of the number of datasets on the average positioning error
for the different data fusion approaches, highlighting the best result.

Number of

Datasets

Best

Dataset

Data Fusion Technique

Voting Dist Avg WAvg

36 2.84 m 3.04 m 2.85 m 2.63 m 2.53 m
52 2.84 m 2.94 m 2.84 m 2.43 m 2.38 m
81 2.84 m 2.93 m 2.85 m 2.42 m 2.36 m

108 2.84 m 3.01 m 2.90 m 2.44 m 2.37 m
240 2.84 m 3.18 m 2.85 m 2.54 m 2.41 m
400 2.84 m 3.10 m 2.89 m 2.51 m 2.41 m

Table 3 shows the average positioning error obtained

when using these different datasets combinations for all of

the data fusion techniques (Voting, Dist, Avg, and WAvg)

as well as the result of the best, single dataset. The first

thing we can notice when focusing on the last column of

the table is that the WAvg data fusion technique resulted

in the smallest average error and that it was effective in

reducing the error from 2.84 m (without data fusion) to

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3105188, IEEE Access

Assayag et al.: Indoor Positioning System using Synthetic Training and Data Fusion

1 10 20 30 40 50 60 70 81

Synthetic Training Dataset

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 E

rr
o
r 

(m
) Smallest Error

Average Error

FIGURE 6. Average positioning error for each of the 81 individual, synthetic datasets; each bar corresponds to a specific dataset, i.e., a specific combination of
parameters for the propagation model. The orange line highligths the smallest error among the datasets.

2.36 m. Also, we can see that the combination with 81

datasets (highlighted row) resulted in the best performance.

Finally, for any combination with more than 36 datasets, the

positioning error does not change significantly, ranging from

2.36 m to 2.41 m, actually increasing slightly for a higher

number of datasets (e.g., 400 datasets resulted in 2.41 m).

To better understand the behavior of the positioning error

for each of the individual datasets without using data fusion,

Figure 6 shows the error resulted from each of the 81

synthetic datasets (highlighted row in Table 3). Each bar

corresponds to a specific dataset, i.e., a specific combination

of parameters for the propagation model. As we can see,

the error obtained by the individual datasets can vary a lot,

depending on how well the propagation model parameters

represent the real-world scenario. For example, some bases

have an error of almost 5 m, while others have the smallest

error of 2.84 m. However, as we will see in the next section,

we can reduce even more this error by using data fusion.

B. DATA FUSION TECHNIQUE

Another key aspect of our proposed SynTra solution is to

combine the positions estimated by the several synthetic

datasets into a single, more precise position. For this, we

have proposed four different data fusion techniques: Voting,

Dist, Avg, and WAvg. In this section, we evaluate their

performance. For this, we used the combination of the

81 synthetic datasets highlighted previously in Table 3 with

propagation model parameters detailed in Table 2.

Figure 7 shows the average error resulted when using each

data fusion techniques. As we can see, SynTra WAvg resulted

in an average error of 2.36 m, being the most accurate

technique, followed by SynTra Avg with 2.42 m. The worst

result observed was 2.93 m, from SynTra Voting. In the

last section, we saw that by using only a single synthetic

dataset, without data fusion, we could get an average error of

2.84m in the best dataset. Thus, only SynTra Avg and WAvg

really resulted in a better solution than any of the individual

datasets, with SynTra Dist being very close. However, it is

important to note that in a real-life application, we do not

which of the individual datasets would be the best without

doing the laborious real-world training.
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FIGURE 7. Comparison of the average positioning error for the different data
fusion techniques.
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FIGURE 8. Error distribution of the estimates positions for the different data
fusion techniques.

Figure 8 shows the distribution of the positioning errors.

As we can see, in the case of SynTra WAvg, almost 60%

of the errors are between 2 m and 4 m, while more than

20% are less than 2 m. Figure 9 presents the cumulative

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3105188, IEEE Access

Assayag et al.: Indoor Positioning System using Synthetic Training and Data Fusion

0 2 4 6
Error (m)

0

20

40

60

80

100

Fr
eq

ue
nc

y 
(%

)

SynTra Voting
SynTra Dist
SynTra Avg
SynTra WAvg

FIGURE 9. Cumulative error of the position estimations for the different data
fusion techniques.

error of the position estimations for each of the data fusion

techniques. This graph shows the percentage of estimations

(Y-axis) with an error smaller than the X-axis. The sharper

the curve, the better since most of the estimations have

smaller errors. As we can see, SynTra WAvg were able

to achieve the lowest errors, having almost 85% of the

estimations with an error smaller than 4 m.

The main reason SynTra Avg and WAvg resulted in the

best solutions is that they use all of the 81 predictions from

the synthetic datasets to compute their positions. In these

solutions, the final estimated position is taken by averaging

the coordinates from all predicted positions in each synthetic

dataset.

In the case of SynTra Avg, the estimated position can

be affected by outliers caused by datasets with unrealistic

propagation model parameters. As can be seen in Figure 6,

the accuracy is different according to the use of each offline

synthetic dataset. In this figure, the orange line highlights

the dataset with the smallest average error, in this case,

2.84 m, while other datasets resulted in a 4.75 m average

error. To better observe and compare the behavior of some

specific datasets, Figure 10 shows the cumulative error of

3 synthetic datasets that resulted in the smallest, average,

and largest positioning errors. In this figure, the best dataset

is generated by the parameters RSSId0 = −55, α = 4,

Li = 3 dBm, Xσ = 3, while the mean dataset is generated

the parameters RSSId0 = −50, α = 3.5, Li = 2 dBm,

Xσ = 3, and finally, the worst dataset is generated by

the parameters RSSId0 = −60, α = 4.5, Li = 4 dBm,

Xσ = 1. We can see that just by varying some parameter

values, the average positioning error is very different. In

the best dataset, more than 70% of the position estimations

resulted in errors lower than 4 m, while in the worst dataset,

only 40% of the estimations were lower than the same error.

For this reason, the SynTra WAvg is proposed to penalize

outliers and benefit from estimates closer to the real position.
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FIGURE 10. The cumulative error for the individual datasets with smallest
(2.84 m), mean (3.52 m), and largest (4.75 m) positioning error.
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FIGURE 11. Positioning error by Euclidean Distance. Higher Euclidean
distances can be used to identify higher positioning errors. Higher distance
values can increase the positioning error by almost 1 m.

For this, we use a quality measurement based on the

Euclidean distance from the estimated sample to the real-

world sample, as explained in Sections III-B2 and III-B4.

Then, we use all of the 81 predictions to estimate the final

beacon position, penalizing the predictions more distant.

To better visualize how the Euclidian Distance between

the estimated sample and the real-world sample can predict

outliers, Figure 11 shows the average positioning error by

this distance. As we can see, even though this metric is not

able to indicate how small an error will be, it can indeed

identify the position estimations with higher errors.

C. COMPARISON WITH OTHER SOLUTIONS

In this section, we compare the performance of our SynTra

WAvg to traditional IPS approaches from the literature. We

analyze the results provided by the different approaches in

our scenario. The evaluated approaches are:
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1) Model-based: a multilateration-based solution that

uses the log-distance propagation model, as in [19],

[21].

2) Best Dataset: a fingerprint-based IPS using our best,

single synthetic dataset, similar to [31].

3) Real Training: a fingerprint-based IPS with a com-

plete, laborious training of the whole area, as in [12],

[23], [24].

Model-based IPSs require only minimal training to es-

timate an unknown position. This training is required for

finding the log-distance model parameters that allow the

estimation of distances between the mobile devices and

the anchor nodes through the measured signal strengths.

In this evaluation, we used the log-distance model with

the parameters RSSId0 = −55, and α = 4.2. We chose

these values based on the signal samples collected during

our training, and we confirmed those were the best possible

values, resulting in the smallest positioning errors. The posi-

tioning estimate was done using the least-squares algorithm.

For the Best Dataset, we carried out an experiment to find

the best log-distance model parameters for a single synthetic

dataset. This solution represents the one proposed in [31],

as mentioned in the related work section. However, in this

case, the authors generate only a single synthetic dataset

to represent the signal behavior in the whole environment.

To be fair in our comparisons, we consider this single

dataset to be the best synthetic dataset generated by the

propagation model. However, as mentioned earlier, finding

such parameters remains a challenge and requires real-

world training. In addition, for large-scale scenarios, this

approach is not ideal to characterize the signal behavior in

the different regions of the scenario.

Finally, to evaluate the performance of the traditional

fingerprint using a Real Training, we separated our real-

world data collection into training and testing, in which

the measurements from 8 beacons were used to train the

model, and the measurements from the other 3 beacons were

used for testing. The KNN algorithm with the parameter

K = 10 was used to find the reference point with signals

most similar to those measured in the online phase. This

approach can be seen as the best-case scenario since we

gathered real-world RSSI data from the experimented area.

The main goal of our solution is to get as close as possible

to this approach but without requiring the laborious training

phase.

Figure 12 shows the average positioning error of the

evaluated approaches. As we can see, the average error

for the model-based solution is 3.60 m, being the highest

error among all approaches. The main reason for this is

that the signal transformation into distance using a signal

propagation model with fixed parameters is unreliable. In

addition, the high RSSI variance, which is natural in indoor

environments, makes this task even more complex. Hence,

fingerprint-based techniques are most widely used since they

result in lower positioning errors.

Still in Figure 12, we can see that the positioning error de-

creased when we used only one synthetic dataset generated

by the best parameter values, resulting in 2.84 m. However,

as mentioned earlier, although there is no need to transform

the signal into the distance, in a real-world application, we

would not know which of the several datasets would result

in the smallest error without requiring a real-world training

phase.
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FIGURE 12. Average error of the evaluated methods: model-based IPS,
fingerprint with the best, single synthetic dataset, conventional fingerprint with
a real training dataset, and our proposed solution.
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FIGURE 13. Error distribution of the evaluated IPS techniques.

Our proposed SynTra WAvg, resulted in better position

estimations than the previous approaches with an average

of 2.36 m, being almost 20% lower than the best, single

synthetic dataset and 35% better than a model-based solu-

tion. Figure 13 shows that our approach contains a higher

number of measurements with lower positioning errors when

compared to these approaches, behind only the fingerprint

with real-world training, which is the best case possible.

Finally, the fingerprint technique with a Real Training

dataset resulted in the lowest average error among all of
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TABLE 4. Table with average error per room comparing the different approaches, highlighting the smallest mistakes compared to our approach.

ROOM
SynTra

Voting

SynTra

Dist

SynTra

Avg

SynTra

WAvg

Model-based

IPS

Best

Dataset

Real

Training

Room 01 3.54 3.60 2.89 2.95 3.72 3.48 2.70

Room 02 3.67 3.39 3.26 3.16 3.90 3.21 2.02

Room 03 2.77 3.27 2.33 2.43 4.02 2.88 2.21

Room 04 2.68 3.34 2.27 2.38 3.59 2.74 2.40
Room 05 2.60 2.88 2.14 2.23 3.54 2.39 2.20
Room 06 3.29 3.38 2.45 2.44 4.29 3.10 2.31

Room 07 4.13 2.99 2.95 2.68 2.75 3.57 2.07

Room 08 3.14 2.80 2.28 2.05 3.07 3.23 1.80

Room 09 3.16 2.62 2.71 2.60 2.60 3.20 2.03

Room 10 3.74 3.43 2.81 2.93 3.23 3.68 1.86

Room 11 2.90 2.86 3.12 2.84 3.20 2.91 1.62

Hallway 1 1.49 1.36 1.31 1.30 4.49 1.4 0.84

Hallway 2 1.44 1.40 1.66 1.44 3.34 1.25 0.57

Hallway 3 0.77 1.19 0.87 0.92 5.69 0.91 0.74

Average 2.93 m 2.85 m 2.42 m 2.36 m 3.60 m 2.84 m 1.88 m

the mentioned techniques. The main reason is that this

technique uses the training dataset with signal measurements

from the real-world environment. Thus, despite the signal

propagation model being able to adjust its parameters to

generate synthetic signals similar to real-world signals, the

propagation channel has complex characteristics in indoor

environments. Thus, an approximation of this signal behav-

ior is the maximum that we can achieve.
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FIGURE 14. Cumulative error of the position estimations.

Figure 14 shows that the fingerprint with Real Training

dataset has about 55% of the position estimations with an

error smaller than 2 m, followed by our approach with

almost 40% of the estimations. On the other hand, in our

SynTra WAvg, more than 80% of the estimations have an

error smaller than 4 m, almost the same as the fingerprint

with Real Training. Thus, our solution was able to get close

to the best-case scenario, with a difference of only 0.48 m,

but without requiring any real-world training. As mentioned

earlier, a possible solution to bring our solution closer to the

real world would be to use crowdsourcing to supplement

synthetic datasets with real data and obtain a hybrid solution.

To better understand the behavior of the errors throughout

the evaluated scenario, in Table 4, we separate the average

error per room obtained by each approach. To facilitate

comparison, we use values in bold. In this table, we can

see, as expected, that the fingerprint with real training was

the one with the lowest errors per room. However, we

can see that the accuracy per room varies a lot according

to the approach used due to factors such as the number

of reference points, anchor nodes coverage, and obstacles.

Model-based IPS are the ones that result in the highest

average error per room, with high errors mainly in hallways,

rooms 2, 3, and 6. This happens because in these rooms,

the 3 anchor nodes with the strongest signals usually form

a linear organization, which makes positioning calculation

difficult by least-squares algorithms. On the other hand, in

almost every room, our SynTra Avg and SynTra WAvg data

fusion solutions had the lowest average error compared to

the model-based IPS, and best individual dataset. In this

case, the largest average error obtained by SynTra WAvg

was 3.16 m in room 2, still resulting in position estimates

close to the real position in the same room.

FIGURE 15. Heat-map of the average errors for all test points in the scenario.

In order to better visualize our solution, Figure 15 shows a

heat-map of the SynTra WAvg errors in the whole scenario.

In this heat-map, we can see problematic regions of the

scenario, such as rooms 1, 2, and 11. In these rooms,

the worst performance is due to the positions and lack of
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anchors coverage. In our scenario, the anchor nodes were

fixed in locations where it was somewhat convenient to

connect them to the power supply. Thus, increasing the

density of anchor nodes and centralizing them in the rooms

is an alternative to reduce the positioning error.

D. COMPUTATIONAL COSTS ANALYSIS

In this part, we discuss the computational costs of our

solution. The most significant and sensitive part is the

position estimation that uses a fingerprint dataset. This

dataset is composed of s samples measurements for each

m RPs and n different anchor nodes. Therefore, the dataset

total size is (s ∗m ∗ n).
During the online phase, signals from a mobile device

are used to estimate its position. As mentioned earlier, the

algorithm used for this process is KNN. The complexity of

KNN depends on the size of the input dataset [22]. Thus,

in the traditional fingerprint method, the cost of estimating

the mobile device position is O(s ∗ m ∗ n). However, our

approach creates T different synthetic datasets. In this case,

a mobile device will be classified by KNN into T different

datasets. Thus, the complexity of our approach is greater,

when compared to the traditional fingerprint, since it in-

volves one more variable T , thus being O(T ∗ s ∗m ∗ n).
There is still the data fusion cost, but it is at most O(T )
and, thus, can be ignored.

As we can see, our proposed solution requires a higher

processing load compared to traditional fingerprint systems

that run KNN only once. This is a key aspect since it limits

the number of position estimations per second. However,

since it is possible to combine several samples to be

classified at the same time using vector implementations of

KNN, this limitation can be eased when running in parallel

on different CPU cores or even using GPUs on a dedicated

IPS server.

VI. DISCUSSION
Fingerprint-based IPSs have an extensive training phase

that collects signal strengths at different reference points

to create a fingerprint radio map. This technique does not

require any prior knowledge of the scenario for radio map

creation. However, this radio map needs to be re-created in

the presence of changes in the scenario, such as changes

in the walls and insertion of new obstacles, making it

unfeasible to be maintained for large scenarios. On the other

hand, to reduce training cost, our solution requires a small

effort to get the floor plan information, and it also needs

prior knowledge of the anchor nodes’ positions to generate

the synthetic training dataset. Despite this effort, the located

mobile devices could be displayed on the same map of the

area, which could be used as the floor plan.

One can argue that the datasets generated by the RSSI

simulator do not represent the real behavior of the signal

for the whole scenario. However, when we generate a set of

synthetic datasets using different parameters for the signal

propagation model, we try to approximate the real signal

distribution dynamically in different regions of the system.

Some datasets can result in the best estimations in some

areas, while other datasets will have better results in other

areas. The proposed data fusion techniques try to combine

the best estimations into a single solution. Also, in our

experiments, we only considered 2D environments. For

more complex environments, such as multiple floors, the

log-distance model can be easily extended to also include

the higher loss from the floors and ceilings.

In our experiments, to perform the comparison with the

traditional fingerprint, we used 150 different RPs 2 m apart

from each other. It is known that increasing the density of

RPs, decreases the average error at the cost of increasing

the workload needed for the fingerprint collection. Our

solution can create an unrestricted number of virtual RPs,

and generate denser datasets, possibly lowering the average

error. However, in this case, the performance evaluation

could only be done by simulation, which would not be ideal

to represent the real scenario. Another important issue is

regarding the mobile devices. In our experiments, we used

11 different devices but with the same hardware from the

same manufacturer. However, when using mobile devices

with different hardware, such as different smartphones, the

signal behavior can vary. We believe that our use of several

propagation parameters, combined with data fusion, might

consider these hardware differences, resulting in better re-

sults than traditional fingerprint-based IPSs. In this work,

this aspect was not evaluated and will be studied in future

works.

VII. CONCLUSION
In fingerprint-based IPSs, building the training dataset in the

offline phase is an expensive and complex task. To reduce

the effort of data collection, we propose and evaluate a new

fingerprint-based IPS, that uses a signal propagation model

to generate several synthetic training datasets. We propose

four new techniques for the online phase that use data fusion

from the position estimations obtained through the different

synthetic datasets to estimate a single, more precise position.

Our experiments in a real-world scenario, show two

significant contributions: (1) the use of several synthetic

datasets to characterize the signal in different regions of the

scenario without the need for complex data gathering from

the environment, and (2) the use of data fusion techniques

to compute the final position of the mobile device. Our

performance evaluation shows that SynTra resulted in an

average error of 2.36 m, being almost 20% lower than the

best, single synthetic dataset, 35% better than a model-based

solution, and only 0.48 m from a traditional fingerprint-

based IPS, the best-case scenario.

In future works, we intend to experiment with other signal

propagation models for the RSSI simulation. We also intend

to evaluate the performance of different machine learning

algorithms other than KNN. Finally, we intend to propose

and evaluate the performance of other data fusion techniques

and crowdsourcing.
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