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Abstract

Location based services are becoming an indispensable part of the life.

Wide adoption of the Global Positioning System in mobile devices, com-

bined withWi-Fi and cellular networks, have practically solved the problem

of outdoor localization and opened a new market. This, however, is the

case only for outdoors. There are numerous areas of ubiquitous computing,

which require the knowledge of user position indoors. Awareness of user’s

location is important in such areas as smart environments, assisted daily

living, behaviour analysis studies.

Over the past years, a significant effort has been dedicated to devel-

opment of indoor localization systems. The results vary in characteris-

tics, performance, and cost. Despite the effort, the existing indoor posi-

tioning systems are still limited: they either require expensive infrastruc-

ture (UWB, ultrasound), have limited coverage (Wi-Fi, Bluetooth, RFID,

DECT) or low accuracy (cellular networks). The cost of commercial sys-

tems is prohibitive for their wide adoption (Ubisense).

The main objective of this thesis was to determine the feasibility of

indoor positioning using FM radio signals, generated either by local trans-

mitters or by broadcasting FM stations. The performance of FM localiza-

tion cannot be simply predicted from other technologies, such as Wi-Fi or

GSM, due to significantly lower frequencies (around 100 MHz vs. units of

GHz) leading to differences in signal propagation. Moreover, FM repre-

sents a popular and well-established technology, readily available in many



mobile devices. At the infrastructure side, broadcasting FM stations pro-

vide almost ubiquitous coverage, while short-range FM transmitters are

available license-free from conventional electronics markets.

The results indicate that indoor positioning using broadcasting FM sta-

tions outperforms in terms of accuracy both Wi-Fi and GSM indoor local-

ization systems (for confidence levels up to 90% and in all cases, respec-

tively). Due to the passive nature of the client devices, the system can

be used in sensitive areas where local radio transmission, such as Wi-Fi

or GSM, is prohibited for safety or security reasons. Finally, an FM re-

ceiver has significantly lower power consumption than a Wi-Fi module and

provides 2.6 to 5.5 times longer battery life in localization mode.
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Chapter 1

Introduction

Positioning systems have a long history, traceable back to the ancient

guiding-star navigation. Since then, technological advances and the Global

Positioning System (GPS) have practically solved the problem of outdoor

localization. Mobile devices with GPS receivers made the technology avail-

able to wide public and created the market of location-based services.

However, there are numerous pervasive computing applications which

would benefit from position information within indoor environments, where

GPS signal is too weak. Indoor location awareness is important for such

fields as ambient intelligence, assisted daily living, behavior analysis, social

interaction studies, and myriads of other context-aware applications.

Despite the substantial research and development efforts, the existing

indoor positioning systems remain too limited for wide adoption. The

current de-facto standard, Wi-Fi based localization, has a limited cover-

age. Other systems, based on RFID, infrared, ultrasound or ultra-wide

band (UWB) approaches, require specialized hardware and dedicated in-

frastructure, and therefore have high costs. The systems based on cellular

networks, in turn, provide a good coverage, but low positioning accuracy.

FM radio is a popular and well-established technology. Broadcasting

FM stations provide almost ubiquitous worldwide coverage, while short-
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CHAPTER 1. INTRODUCTION

range license-free FM transmitters are available at low cost from conven-

tional supermarkets. FM receivers, already embedded in many mobile

devices, have low power consumption and do not interfere with sensitive

equipment or other wireless technologies. The described features make FM

radio an interesting option for a positioning system.

However, there are very few publications which have investigated the

suitability of FM radio signals for localization [1, 2]. Moreover, all authors

considered only outdoor scenarios. The achieved accuracy discouraged any

indoor applications; no works have been published about indoor position-

ing using FM radio. The outdoor results, however, cannot be directly

projected onto indoor scenario, as indoor and outdoor environments are

notably different with regard to signal propagation [3].

The main objective of this thesis was to determine whether FM radio

signals are suitable for indoor positioning. The operational frequencies

of FM radio are significantly (9 to 50 times) lower than those of other

technologies, such as Wi-Fi or GSM, which results in different properties

of signal propagation. Thus, the FM positioning performance cannot be

simply predicted from other technologies.

The main contributions of this thesis are:

• identification of FM signal features suitable for localization and dis-

covering their limitations;

• demonstration that indoor positioning using FM signals produced by

local short-range transmitters is feasible and its accuracy is compara-

ble to Wi-Fi positioning;

• demonstration that indoor localization using signals transmitted by

broadcasting FM stations (without in-building infrastructure) is fea-

sible and outperforms GSM and, for confidence levels of up to 90%,

Wi-Fi based systems;

2



CHAPTER 1. INTRODUCTION

• a novel approach for maintaining the performance of a fingerprinting-

based positioning system affected by accuracy degradation;

• an analysis of how people’s presence affects the FM and Wi-Fi signal

strengths.

The thesis is organized as follows.

Chapter 2 reviews the related work, motivates the selection of used meth-

ods and provides a brief review of relevant features of FM radio tech-

nology.

Chapter 3 describes the proposed approach and identifies the properties

of FM signals relevant for localization, with focus on indoor environ-

ments. It also introduces the spontaneous recalibration method to

counter accuracy degradation.

Chapters 4 and 5 present the experimental evaluation of FM position-

ing performance, spontaneous recalibration approach and compare the

stability of FM and Wi-Fi signals in the presence of people.

Chapter 6 details an application scenario of FM positioning.

Chapter 7 provides the summary of contributions and directions for fu-

ture work.

3





Chapter 2

Background

A localization system is a technological setup employed to determine the

location of a mobile client within an environment. Typically, such systems

also include a set of stationary devices (called beacons hereinafter) which

interact with the mobile part. Once the position is identified, it can be

reported in different formats:

Physical The physical location is expressed as a point within some coor-

dinate system, either local or global (such as WGS-84 [4]).

Relative The relative position is expressed with regard to a local reference

point. Often, the reference point is represented by a system beacon; in

some cases it can also be a previously estimated client position (dead

reckoning [5]). If the absolute coordinates of the reference point are

known, it is possible to transform the relative client position into the

absolute one.

Symbolic The symbolic position is represented by an identifier of the

place the client is at. This type of position is similar to relative posi-

tion, but unlike the latter, it does not have a concept of distance. A

symbolic location can be converted to a physical one using a database

associating location identifiers with their coordinates.
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CHAPTER 2. BACKGROUND

Depending on the target environment, a positioning system can be clas-

sified as either indoor, outdoor, or mixed type. This thesis focuses on lo-

calization within indoor environments, such as buildings or other enclosed

spaces. For a wireless positioning system, indoor settings have a number

of important differences in comparison to outdoors:

• Smaller dimensions;

• Higher density of obstacles;

• Inherently multipath propagation: signals are reflected and attenu-

ated by walls and furniture [6];

• Large number of small-sized obstacles which scatter the signal;

• Highly dynamic environment, due to movement of people, furniture,

doors, and other factors [7];

• Lower movement velocities (walking instead of driving);

• Minimal influence of weather conditions, except the cases when exter-

nal beacons are used; and

• Mostly non-line-of-sight (NLOS) reception.

The relatively small dimensions of indoor environments and high density of

their internal structure put stricter requirements to the positioning accu-

racy. Indeed, while a hundred-meter accuracy is enough to find a shopping

mall, it is utterly insufficient to locate a specific shop inside. Moreover,

numerous internal obstacles result in very complex propagation conditions,

so that even a small change of position may lead to a significant change

of signal properties. This is particularly important when the positioning

system relies on distant external beacons, such as cellular or broadcast-

ing radio stations. The signals of these beacons are powerful enough to

6



CHAPTER 2. BACKGROUND 2.1. INDOOR POSITIONING METHODS

propagate across tens of kilometers, and free-space propagation losses are

negligible at the indoor scale; in this case, signal variations inside buildings

are caused mainly by fast fading due to the obstacles. In more detail this

effect is analyzed in Section 5.2.1.

The following sections present an overview of state-of-the-art indoor

positioning methods and some of their most notable implementations.

2.1 Indoor positioning methods

2.1.1 Proximity based

One of the simplest varieties of positioning methods is the proximity based

approach, sometimes called connectivity-based. This method employs bea-

cons with known positions and limited range, so that only one or few bea-

cons are visible to the mobile unit at any point. The client location is then

approximated as that of the nearest beacon. A more accurate estimate can

be obtained by evaluating a centroid of nearby beacons’ positions [8].

For a uniform grid of beacons, the worst-case accuracy of the connectivity-

based approach is the grid step. While this provides an opportunity to

boost the positioning accuracy by installing additional beacons, the accu-

racy improvement is limited due to the rapidly increasing hardware costs.

Although in comparison to other methods the proximity based approach

provides relatively low per-beacon accuracy, it is widely used for its sim-

plicity. This method is used with several wireless positioning technologies,

including GSM (Cell-ID) [9], RFID [7, 10], infrared [11], Bluetooth [12],

and custom radio devices [8].
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2.1. INDOOR POSITIONING METHODS CHAPTER 2. BACKGROUND

2.1.2 Direction based

The direction-based approach leverages the information about the angle at

which a signal transmitted by the mobile client arrives to the beacons (see

Figure 2.1).

Figure 2.1: Angle-of-arrival positioning method.

In contrast to the previous method, which required a large number of

beacons, the angle-of-arrival (AOA) approach requires only two beacons to

estimate position in 2D (three beacons for 3D localization). On the other

hand, however, angle-of-arrival measurements require highly directional

antennas or antenna arrays, which increase both the cost of the system

and beacons’ size, so that the system might be too large for some areas.

Moreover, applicability of this method in indoor environments is further

limited by multipath and NLOS propagation of signals, along with reflec-

tions form walls and other objects. These factors can significantly change

the direction of signal arrival and thus severely degrade the accuracy of an

indoor AOA-based positioning system.

8
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2.1.3 Time based (multilateration)

Time-based methods leverage the fact that the distance travelled by a sig-

nal is proportional to the propagation time. There are two main approaches

based on timing information:

Time of arrival (TOA) approach requires that the client device and the

beacons are accurately synchronized. For localization, the client de-

vice transmits a timestamped signal; when the beacons receive this

signal, they calculate its travel time and thus the distance to the mo-

bile unit. Three beacons are required to perform 2D positioning. The

major drawback of the TOA approach is the need for precise synchro-

nization of all the devices.

Time difference of arrival (TDOA) method uses the difference of time

it takes the signal from the client to reach each of the synchronized

beacons. Each time-difference measurement defines a hyperbolic line

with constant distance difference between a pair of beacons; this curve

specifies the possible locations of the client. Thus, two TDOA mea-

surements (three beacons) are sufficient to acquire 2D position of the

mobile unit. Clearly, the reverse approach is also possible, where the

client receives timestamped signals from the beacons with known po-

sitions. The most prominent example of this class of methods is the

Global Positioning System (GPS) [13], where the mobile receivers es-

timate their location using timestamped signals from synchronized

satellites and information about satellites movement (ephemeris)).

Using the signals from a set of GPS satellites, a basic GPS receiver is

able to compute its position with the accuracy of about 8 m [13, p. 22].

Unfortunately, GPS signal is too weak in buildings which makes the

system inoperative indoors.

In contrast to the TOA method, the differential approach does not re-
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quire time synchronization of the client device. The beacons, however,

still must be precisely synchronized.

Due to the requirement of precise synchronization, the time-based methods

require expensive specialized hardware (GPS satellites use atomic clocks

for timekeeping [13]). Moreover, the accuracy of these methods indoors

is limited because of inherently multipath and NLOS propagation. These

issues can be alleviated by installation of a high-density beacon infrastruc-

ture, which, however, increases the hardware and deployment costs of the

system.

2.1.4 Signal property based

In contrast to previous approaches, which exploited either signal presence,

propagation time or direction, this group of localization methods considers

the characteristics of the received signal itself. These characteristics include

such properties as phase, signal-to-noise ratio (SNR), and signal strength.

The most popular feature employed in wireless localization systems

is received signal strength (RSS), or its representation in device-specific

units, received signal strength indication (RSSI). There are two general

approaches to localization using RSSI: propagation modelling and finger-

printing.

2.1.4.1 Propagation modelling

The propagation modelling approach leverages the physical laws of signal

propagation in order to correlate the signal strength with the travel dis-

tance. Having acquired RSSI values for three or more beacons, the mobile

unit can use the propagation model in order to estimate the distances to

each of the beacons, and thus own location.

Propagation models are typically expressed in terms of path loss, which

represents how much a signal is attenuated as it propagates through space [14].

10
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Total path loss is a rather complex function with multiple components [14,

p. 15], such as:

• propagation distance (free-space loss),

• signal properties (such as frequency),

• terrain (hills, mountains, bodies of water),

• atmosphere condition,

• ground cover (trees, buildings) [15–17].

Indoor scenarios introduce additional components, which consider interac-

tions with internal obstacles (reflection, refraction and attenuation) [6, 18].

Therefore, indoor propagationmodels should take into account layout plans

of the environment.

To provide a good accuracy, a propagation model should consider as

many loss factors as possible, which is often unfeasible in practice. Con-

sequently, there are multiple different propagation models varying in com-

plexity and included loss components [3]. However, many localization sys-

tems based on propagation modelling commonly employ simplified models,

such as the one defined by the International Telecommunication Union (for

indoor settings):

Ltotal = 20 log10 f +N log10 d+ Lf(n)− 28 dB (2.1)

where, Ltotal is the total path loss, N is a distance power loss coefficient, d is

the travel distance, f is signal frequency in MHz, Lf(n) is floor penetration

loss factor in dB, and n is the number of floors between transmitter and

receiver [6]. The attenuation by walls and obstacles is implicitly included

into distance power loss coefficient N .

Clearly, such parameters as Lf(n) and N are environment-specific and

their values should be evaluated empirically during system calibration.

11
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Moreover, signal attenuation by floors (and walls) depends both on building

materials and signal frequency (9 dB at 900 MHz and 16 dB at 5.2 GHz [6,

Table 3]). If the beacons are located outdoors, the model must also con-

sider building penetration loss, which depends on building orientation, wall

materials, internal layout, floor height and windowing area [18], and varies

from 7 to 27 dB [3] or from -2 to 24 dB, increasing with frequency[18].

The major advantages of the propagation modelling are straight-forward

localization phase and good scalability. Creation of an accurate model,

however, requires a considerable effort for evaluation of site-specific char-

acteristics, such as power loss coefficients and floor layout. This approach is

best suited for line-of-sight (LOS) and obstacle-free propagation, — condi-

tions which are rarely met indoors. The positioning accuracy is determined

by the model complexity and the quality of the environment layout plan,

and is generally worse than that of fingerprinting [19, 20].

2.1.4.2 Signal fingerprinting

The signal fingerprinting is an empirical approach, which makes no assump-

tions about the environment or signal propagation paths therein [21]. This

method includes two stages: calibration and localization. The calibration

phase is a site survey comprising the collection of signal characteristics

(signal fingerprints) at predefined points, and building a database which

matches fingerprints with their locations. During the localization phase,

the mobile client acquires a fingerprint and the positioning system utilizes

the calibration data and appropriate algorithms to determine the location

to which the collected fingerprint most probably belongs.

The machine learning methods which associate fingerprints with posi-

tions during the localization phase, employ various approaches: determin-

istic and probabilistic [20, 22–24], classification and regression [25–27]. The

most popular approach is k-nearest neighbour [28], which can be attributed
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to its intuitiveness and good positioning results [22, 23, 25]. However, more

advanced methods can also be used: artificial neural networks [22, 23],

Bayesian inference [1, 29], support vector machines [30] or their combina-

tions [31].

The major drawback of the fingerprinting approach is the laborious

and time-consuming calibration process. Several works found that the

calibration efforts can be significantly reduced with minimal impact on

localization accuracy [19, 27, 32, 33]. Also, there are methods for automatic

acquisition of the calibration data, either with [7, 19] or without auxiliary

hardware [32, 34].

Another problem is that the localization performance of a fingerprinting

based system is prone to degradation due to changing conditions in the

environment, which result in changes in signal propagation. The dynamic

factors are air humidity, opening doors and windows, movement of people

and furniture [7, 35, 36]. To maintain the positioning accuracy in a dynamic

environment, the calibration process should be periodically repeated to

update the training dataset.

To address this, some projects employ a variety of sensors that provide

the system with updated fingerprints from predefined points in the area of

interest. Chen et al. [7] designed a Wi-Fi based positioning system that

uses RFID based sensors to provide the system with reference locations as

a user passes by. Assuming that the user walking speed is constant, the

system is able to periodically update the calibration data even between

the RFID readers. Another approaches employ a set of stationary signal

sniffers [37] or a mobile robot capable of autonomously collecting Wi-Fi

signal strength measurements in different locations [19].

This thesis, in turn, addresses the problem by introducing the novel

concept of spontaneous recalibration, which does not require any additional

hardware (see Section 3.5.1). The literature suggests that this method has
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never been presented before.

Despite the described limitations, the fingerprinting approach provides

the best accuracy in complex environments [20, 21], such as indoors, and

works well with reflected, diffracted, and scattered signals with either LOS

or NLOS reception. Moreover, in contrast to all other methods, fingerprint-

ing does not require any knowledge about beacon positions, which makes

this method the only option for a positioning system leveraging external

beacons, such as cellular network nodes or broadcasting FM stations. The

described reasons have motivated the use of the fingerprinting approach in

this thesis.

2.1.5 Summary

Table 2.1 summarizes the localization methods discussed above.
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Table 2.1: Summary of indoor positioning methods.

Method Indoor
accu-
racy

LOS/
NLOS

Affected
by mul-
tipath

Cost Note

Proximity low to
high

both no low to
high1

• Accuracy can be improved
by additional beacons, which,
however, increase the cost.

• Beacon locations must be
known.

Direction
(AOA)

medium LOS
only

yes high • Accuracy depends on antenna’s
angular characteristics.

• Beacon locations must be
known.

Time
(TOA,
TDOA)

high LOS
only

yes high • Requires precise time synchro-
nization.

• Beacon locations must be
known.

Propagation
modelling

medium LOS
only

yes medium • Requires the knowledge of floor
layout and building materials.

• Beacon locations must be
known.

Finger-
printing

high both no medium • Requires laborious calibration.
• Beacon locations are not re-

quired.

1The cost of a proximity-based system depends on the number of beacons, which, in turn, depends
on the desired accuracy.
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2.2 State of the art wireless indoor positioning

systems

This section presents a review of most notable state-of-the-art indoor posi-

tioning systems. The main focus is put on the radio based systems, because

unlike other signals, such as ultrasound, infrared or visible light, the ra-

dio waves can penetrate walls and thus are suitable for NLOS conditions

inherent to indoor environments.

2.2.1 Wi-Fi-based systems

Wi-Fi networks (IEEE 802.11 standard) are a popular basis for indoor posi-

tioning systems. Their popularity among the researchers can be explained

by high availability of the network infrastructure, Wi-Fi-enabled mobile

devices, and a good localization performance. Wireless networks are de-

ployed in many office buildings and homes, and the positioning system can

exploit already existing beacons.

One of the pioneering projects in RSSI-based Wi-Fi positioning was

RADAR [20]. The authors applied both propagation modelling and finger-

printing and achieved 2.94 m median error [20]; with some enhancements,

the accuracy could be increased to 2 m [38]. Ferris et al. [26] designed

a Wi-Fi localization system using Gaussian processes in conjunction with

graph-based tracking. They modeled users moving through the rooms on

the same floor, as well as more complicated patterns of moving, such as

going up and downstairs. When tested over the 3 km of test data in

a three-floor building with 54 rooms, the average error was 2.12 meters.

With advanced probabilistic methods, the median error of a Wi-Fi based

system can reach 1.2–1.45 m [39, 40].

Brunato and Battiti [30] compared the performance of Wi-Fi fingerprint-

ing localization for several machine learning methods, such as multi-layer

16



CHAPTER 2. BACKGROUND 2.2. STATE OF THE ART SYSTEMS

perceptron (MLP), support vector machine (SVM) and k-nearest neigh-

bour (kNN), both weighted and unweighted. The SVM approach demon-

strated the best median accuracy (2.75 m). Notably, the median perfor-

mance of a simple unweighted kNN classifier was only 0.16 m less, while

95th percentile errors were almost the same (6.09 m for SVM and 6.10 m

for kNN).

Chen et al. [7] investigated the dependence of the Wi-Fi positioning

accuracy on such environmental factors as humidity, doors, and people

presence. Door states (open or closed) and people presence in receiver’s

vicinity were found to have a significant impact on positioning error (236%

and 86% increase, respectively), while the humidity had smaller effect (43%

increase). While such degradation of performance is typical for fingerprint-

ing based systems, the impact of each component varies with signal fre-

quency: when the obstacles are small in comparison to wavelength, their

interaction with the wave is negligible [41, p. 132]. Therefore, environmen-

tal factors could have smaller impact on lower-frequency FM radio waves.

However, most indoor propagation measurements have been done for fre-

quencies above 1 GHz [3] and there is a lack of results for lower frequencies.

The environment dynamics also create a possibility that some beacons

present in calibration data are missing from the test set, or vice versa. This

can be caused by rearrangements of network infrastructure; a more frequent

reason, however, is the limited sensitivity of Wi-Fi modules, which cannot

detect beacon presence if its signal strength is below certain threshold. An

explicit consideration of such cases can significantly improve the positioning

accuracy [42].

Wi-Fi based positioning systems have several advantages, such as: lever-

aging the existing infrastructure, wide availability in mobile devices, and

good accuracy. However, there are also certain limitations:

Limited coverage. Despite the popularity, the coverage of Wi-Fi net-
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works are mostly concentrated in office buildings and dense urban

areas. Wi-Fi networks are rare in less populated cities and developing

countries [43]. Broadcasting FM stations, in contrast, transmit at high

power levels and cover areas with radius of up to several hundreds of

kilometers [44], providing almost world-wide availability. Short-range

FM transmitters, in turn, provide a cost-effective alternative to Wi-

Fi access points in areas where Wi-Fi infrastructure is not readily

available.

Interference. The 2.4 GHz industrial, scientific and medical (ISM) band

used by Wi-Fi is shared by many other electronic devices, such as

cordless phones [45] and microwave ovens [46], which may interfere

with Wi-Fi signals and affect the positioning accuracy. The FM radio

is more protected in this regard, as it operates in a dedicated frequency

band with minimal interference from other devices. Moreover, Wi-

Fi transmissions can be prohibited in sensitive environments, while

the passive FM tuners can be safely used to receive the signals from

broadcasting stations.

Power consumption. Another factor, rarely taken into account [22], is

power efficiency of the positioning system, especially on the battery-

powered mobile devices. Wi-Fi modules have a substantial power

consumption (about 300 mW in idle power-saving mode [47]), which

shortens the battery life of the mobile device. FM receivers are signifi-

cantly simpler than Wi-Fi units, and operate in passive receiving-only

mode, which results in notably longer battery life.

2.2.2 Cellular network-based systems

Cellular networks, such as GSM and CDMA, provide noticeably better

coverage than Wi-Fi. However, for a long time they were not considered
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for indoor localization due to the low accuracy demonstrated in outdoor

settings [43, 48, 49].

The first results for GSM indoor positioning performance have been

published by Otsason et al. [50]. They used a GSM modem to collect wide

RSSI fingerprints which included information from 6 strongest base sta-

tions, extended by up to 35 channels which could report the RSSI but not

the Cell-ID. The experimental results for different buildings have demon-

strated a median accuracy from 3.4 to 11 m with six strongest stations,

and from 2.5 to 5.4 m with wide fingerprints. In many cases the GSM

accuracy with wide fingerprints was comparable to the Wi-Fi positioning

performance. The authors also reported that the RSSI of GSM signals was

more stable than Wi-Fi RSSI [50].

In contrast to GSM, CDMA base stations networks can dynamically

adjust their transmission power according to the network load [51], which

makes RSSI fingerprinting impractical. However, the CDMA stations are

synchronized to a common time reference (provided by GPS), which en-

ables application of time based localization methods. Using a CDMA scan-

ner, ur Rehman et al. [51] were able to evaluate signal delays from nearby

stations. Unlike the RSSI, signal delays were found to be rather stable

in time. The median localization accuracy of a system using signal delay

fingerprints reached 4.5 m (with all channels employed).

Cellular network based indoor positioning systems have three main ad-

vantages:

Coverage Unlike Wi-Fi, the GSM/CDMA networks are currently widely

available in most countries; the size of large macrocells can reach

30 km [9].

Low cost While GSM/CDMA base stations are themselves very expensive

(up to $1 million [50]), the costs are covered by the cellular network op-
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erator (and ultimately, the subscribers). Thus, the positioning system

can exploit readily available stations and does not require installation

of a dedicated indoor infrastructure as Wi-Fi does.

Battery life Although a cellular transceiver module is rather battery-

consuming even in an idle state [52], in many scenarios it remains

powered in order to provide the voice or data connectivity. Thus, the

overhead introduced by a positioning system relates only to location

estimation and excludes powering additional wireless module, which

is often the case for Wi-Fi.

However, GSM/CDMA positioning has also several shortcomings:

Low accuracy The presented works rely on the use of wide fingerprints

in order to provide a good accuracy. Acquisition of extended data,

however, required special hardware (programmable GSM modem and

CDMA scanner). With the narrow fingerprints which could be ac-

quired with conventional hardware, the localization accuracy was rather

low.

Low reliability Given that GSM/CDMA beacons are situated outdoors,

the signal propagation conditions vary due to environmental factors,

such as weather and terrain. In particular, radio signals with frequen-

cies above 1 GHz are affected by rain scatter interference [53, p. 8] and

terrain vegetation [17]; trees in leaf can cause a 20% higher attenuation

than leafless trees [17, p. 3]. In theory, these factors can significantly

affect the positioning performance; however, no experimental studies

are available yet.
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2.2.3 FM radio-based systems

There are only few works dedicated to FM radio based positioning. The

first localization system based on FM radio signals was presented by Krumm

et al. [54]. It was an outdoors-only positioning system that employed a pro-

totype wristwatch device (with an FM receiver) to distinguish six districts

of Seattle using the signals broadcast from public FM stations. The au-

thors were able to identify the correct district in about 80% of cases. More

advanced algorithms, combined with propagation modelling, enabled the

system to locate the user with 8 km median accuracy [1].

Fang et al. [2] presented a comparison of FM and GSM outdoor localiza-

tion within 20 reference points in an urban area of about 1 km2. Using the

data collected with a professional spectrum analyzer, the authors demon-

strated that with six-channel fingerprints the GSM accuracy was better

than that of FM; however, when the number of FM channels was increased

to 11 the situation reversed (error below 20 m in 67% of cases). In a rural

area, however, GSM signals were weaker and 5-channel FM positioning

outperformed the 8-channel GSM based system; the FM positioning error

was within 35 m with 67% probability. Unfortunately, the reported data

is not suffucient to compare FM accuracy in urban and rural areas for

equal number of used channels. The authors also reported better temporal

stability of FM signals in comparison to GSM.

Recently, the same group evaluated the positioning performance of mul-

tiple wireless technologies (FM, GSM, DVB, Wi-Fi) in both outdoor and

indoor settings. However, FM measurements were performed only out-

doors [55] and therefore FM positioning was not included into comparison

of indoor localization systems.

All the systems described above utilize the differences of signal strength

between different locations. The two main sources of signal attenuation

(leading to spatial variation of the fingerprints) in outdoor settings are:
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free-space propagation loss (in order of 20 log d, where d is travel distance)

and shadowing by terrain and buildings [14, 56]. In [2], the distance be-

tween test points was about 100 m, and free-space propagation loss con-

tributed about 40 dB to the signal strength differences between locations.

At indoor scales, however, the free-space propagation loss is negligible and

the main source of spatial signal variation is fast fading caused by indoor

obstacles and multipath propagation [6, 14]. Thus, the discussed FM po-

sitioning systems rely on outdoor-only propagation phenomena and their

results cannot be simply scaled down to indoor scenario.

In 1994, Giordano et al. [57] proposed (and patented [58–60]) an FM

based outdoor localization system which leverages differences of FM stereo

pilot phase (see Section 2.3.3), as received by the mobile unit and a fixed

observer. The authors claimed the accuracy “on the order of 10–20 m de-

pending on channel conditions” [57, p. 1144]. However, the origins of these

numbers are questionable, since the authors have not provided any exper-

imental proofs of the claimed performance. Moreover, there are certain

indications that the pilot tone, although transmitted with a good stability,

is distorted by multipath [61, 62] and non-linear effects in the receiver [63,

p. 5]. For instance, typical peak-to-peak pilot phase fluctuations observed

by Howe [62] were of about 2 µs, which corresponds to about 600 m dis-

tance for a 19 kHz pilot tone. Such a low accuracy is unsuitable for indoor

positioning, and the phase-difference approach is listed in this thesis only

for completeness.

Broadcasting FM stations can also be employed as “illuminators of op-

portunity” for passive coherent location (PCL) systems [64, 65]. PCL sys-

tems exploit civilian ground-based stations such as FM radio, digital and

analog TV, cellular networks as the transmitters in bistatic radar setup

(spatially separated stationary transmitter and receiver). This setup is ef-

fective against stealth technology, while passive receivers make the radars
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less vulnerable for electronic counter measures. By correlating the direct

and target-scattered signals, a PCL system is able to estimate the distance

to the target. FM-based PCL systems have a theoretical range resolution

of up to 1 km [66] with the coverage of tens of kilometers [64]. PCL sys-

tems, however, are largely out of the scope of this thesis and are mentioned

only for completeness.

As the literature shows, the previous works have focused only on outdoor

localization using broadcast FM signals and special receivers (prototype

wristwatch [1], professional spectrum analyzer [2] and special radar equip-

ment [64, 66]). This thesis, in contrast, focuses on indoor positioning with

consumer-grade mobile devices. This is first study of indoor localization

using FM-band radio signals.

2.2.4 Other systems

While Wi-Fi and cellular networks represent the prevailing infrastructures

for indoor localization due to their availability, there are many other posi-

tioning technologies. This section presents a short overview of the relevant

systems and an analysis of their properties.

Practically every Wi-Fi enabled mobile device, such as cellphone or

computer, also has an embedded Bluetooth module. The distance range

of the typical class-II devices is 10 m. Moreover, Bluetooth hardware and

communication protocol have been designed with a focus on low power

consumption. All of this makes Bluetooth an interesting technology for

indoor positioning, and there are several works dedicated to Bluetooth

based localization systems [67, 68]. However, the coverage of such systems

is very limited due to the short range of Bluetooth modules, and, more

importantly, the lack of stationary Bluetooth devices. Another drawback

is that each location acquisition runs the device discovery procedure; this

significantly increases both the localization latency (10–30 s) and power
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consumption. Therefore, Bluetooth is commonly agreed [67] to be unsuit-

able for localization systems.

Ultra-wide band (UWB) systems, on contrary, demonstrate very good

localization accuracy. The commercially available indoor localization sys-

tem Ubisense [69] employs TDOA and AOA methods for UWB radio sig-

nals and is capable of achieving 15 cm accuracy in three dimensions. How-

ever, the system has a very high cost which severely impacts wide adoption.

Radio Frequency IDentification (RFID) technology is widely used for

asset tracking and shop security systems. Due to the short communication

range (dozens of centimeters), it provides a good localization accuracy. The

short reading distance, however, also significantly limits its possible appli-

cation areas. While RFID based systems can accurately detect proximity

and are used for activity recognition [70], a wide-scale indoor localization

requires a dense infrastructure of either tags (for mobile reader) or readers

(for mobile tags). The limited coverage and sporadic location updates make

RFID based systems unsuitable for general-purpose indoor localization.

An interesting approach to indoor positioning has been proposed by [71].

The system included two beacons which injected radio frequency (RF) sig-

nals into domestic powerline. These signals were then detected by a spe-

cialised receiver and associated with the user’s location using the finger-

printing approach. An extended, wide-band version of the system achieved

a room-level accuracy of 90% [72]. While only two beacons are sufficient for

an entire building, the system relies on specialised hardware with limited

availability.

Digital Enhanced Cordless Telecommunication (DECT) phones, despite

their popularity in Europe, have received little attention with regard to

their suitability for indoor localization. This can be explained by limited

availability of DECT systems capable of providing signal information to

external devices (such as computers or smartphones) and high cost of such
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systems. However, recently, Kranz et al. [73] presented a DECT position-

ing system employing an open DECT stack implementation. The authors

demonstrated that in all indoor scenarios DECT localization outperformed

the Wi-Fi based system. This can be explained by the relatively high trans-

mission power of DECT stations (up to 250 mW [74, p. 27]), which results

in significantly higher number of DECT stations in each fingerprint, in

comparison to Wi-Fi.

Contrary to indoor results, the accuracy of DECT localization in out-

door scenario was lower than Wi-Fi, despite the larger number of DECT

stations. This demonstrates that the differences between indoor and out-

door environments with regard to localization accuracy vary depending on

the environment, and a low accuracy outdoors is not necessarily the case

indoors. Thus, the low outdoors accuracy of FM radio based systems dis-

cussed in previous section, cannot constitute a basis for assumptions about

FM radio’s applicability for indoor localization.

While DECT presents an interesting opportunity for localization sys-

tems, its coverage is currently limited to European urban environments; no

DECT signals were detected in US [75]. DECT based localization would

also require hardware modifications of the mobile devices. These reasons

significantly limit the feasibility of DECT localization at the present time.

2.2.5 Summary

A summary of the wireless positioning technologies discussed above is pre-

sented in Table 2.2.
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Table 2.2: Summary of wireless indoor localization technologies.

Technology Accuracy Coverage Power
consumption

Cost of
infrastructure

Note

Wi-Fi medium low high low Low cost if the infrastructure is already avail-
able; however, initial deployment is expen-
sive.

Cellular low medium high low4 Subject to environmental influence; low ac-
curacy with standard hardware.

Bluetooth medium low high1 high5 High localization latency.
RFID high low low/high2 low/high2 Sporadic location updates.
Powerline medium low not reported high Requires specialized hardware.
DECT medium medium/

low3

low [76] low Mobile device requires special (expensive)
hardware.

FM
(outdoor)

low
high low [77] low

Receivers are readily available in mobile
devices.

FM
(indoor)

?

1Bluetooth localization requires device discovery procedure, which is power-consuming.
2RFID tags are cheap and either have low power consumption or powered by readers [78]. Mobile RFID readers are more costly and have

relatively low battery life [79].
3DECT coverage is high in Europe and non-existent in US. No data is available for other regions.
4While the actual costs of cellular base station hardware are high, its is typically covered by the cellular network operator. A positioning

system employs the already existing cellular infrastructure rather than deploying a new one, therefore from the localization system’s perspective
the costs are low.

5Bluetooth infrastructure costs are high because Bluetooth devices are typically mobile; the stationary Bluetooth access points are not
commonly found.
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2.3 FM radio technology

This section provides background information about FM radio technology

and its specifics. This material is necessary for complete understanding of

some aspects of the proposed approach.

2.3.1 Overview

Despite its considerable age, FM radio is still very popular. It is widely

available across the world, and most households have even more than one

receiver [80, p. 7]. Car manufacturers consider FM radio as a de-facto

standard feature [80]. Although currently there are global trends of sub-

stituting analog broadcasts by digital ones, the European Radio Spectrum

Policy Group notes that “there is no indication of any progress anywhere

to cease analogue radio in the foreseeable future” [80].

FM radio employs the frequency-division multiple access (FDMA) ap-

proach which splits the band into a number of separate frequency channels

that are used by stations. FM band ranges and channel separation dis-

tances vary in different regions (Table 2.3).

Table 2.3: FM broadcast frequencies and channel spacing for different countries [81].

Country Frequency range Channel spacing

Europe 87.5–108.0 MHz 100 kHz
US 87.5–108.0 MHz 200 kHz
Japan 76.0–90.0 MHz 100 kHz

While the “FM” part of the “FM radio” originally refers to frequency

modulation of the signals, it is now customarily used as a reference to

commercial radio broadcasts occupying their dedicated frequency band (see

Table 2.3). In this thesis, “FM” generally refers to the radio waves of

the corresponding frequencies rather than to the modulation type, unless

explicitly stated otherwise. The transmitters employed by broadcasting
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FM stations are powerful: a typical radiated power is 50 kW [74, p. 11],

while for large stations it may reach 250 kW [82]. High transmission powers

and elevated antennas result in high availability of FM signals. Figure 2.2

Figure 2.2: FM radio coverage in Europe (only stations with power above 5 kW are
shown) [44].

demonstrates the FM coverage in Europe, provided by the stations with

transmission power above 5 kW (less powerful stations are not shown to

improve picture clarity).

2.3.2 Properties of FM radio signals

The major difference of FM radio signals from other technologies, such as

Wi-Fi, GSM or DECT, is defined by the significantly (9 to 50 times) lower

operational frequencies. The low frequency provides the FM localization a

number of advantages described below.
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Firstly, FM signals are less affected by weather conditions. The rec-

ommendations of the International Telecommunication Union suggest that

rain scatter interference is negligible for frequencies below 1 GHz [53, 83,

p. 8], while fog and clouds can be ignored for up to 10 GHz [16].

Secondly, low frequency radio waves are less sensitive to the terrain

conditions. In particular, the specific attenuation in woodland at 100 MHz

is typically about 0.04 dB/m, while for GSM frequencies (0.9/1.8 GHz)

the attenuation increases to 0.1–0.3 dB/m, with additional 20% for trees

in leaf [17]. The foliage movement due to wind may produce additional

attenuation at higher frequencies [17]. FM signals are thus not affected by

these minor influences.

Thirdly, the attenuation of radio waves by building materials increases

with frequency [41, 74] and thus FM signals penetrate walls more easily

than Wi-Fi or GSM. This ensures high availability of positioning signals

in indoor settings.

Finally, the FM wavelength of about 3 m results in different interac-

tion with most indoor objects, as compared to 0.12 m Wi-Fi waves. At

low frequencies, when the obstacles are small compared to wavelength,

they do not interact significantly with the electromagnetic fields of the

wave [41, p. 132]. However, when the size of an obstacle is comparable to

the wavelength, interaction is very strong and produces complex interfer-

ence patterns [14, 41]. Ultimately, this means that most indoor objects are

transparent for long FM radio waves, but do interact with shorter Wi-Fi

and GSM signals. Clearly, this makes FM signals less perceptive to small

object movements than Wi-Fi or GSM.

The described considerations suggest that FM based indoor positioning

has a number of theoretical advantages over the current high-frequency

systems.
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2.3.2.1 Capture effect

For amplitude modulated signals, when two stations broadcast on the same

or nearby frequencies, both of them will be heard at the receiver side. This,

however, is not the case for frequency modulation, which is inherently

more robust to interference. Due to the so-called FM capture effect, only

the station with the strongest signal will be demodulated and reach the

receiver’s output, while the other will be attenuated to a high degree [84]

(assuming that both signal levels are above the capture threshold [85]).

The capture effect enables situations when several FM beacons can oc-

cupy the same frequency channels without interfering with each other. The

receiver will notice only the strongest beacon.

2.3.3 Stereo FM and RDS

Due to relatively wide channels, FM broadcasts may include more infor-

mation than just monophonic audio, and transmit also stereo sound and

digital data.

The currently used stereophonic multiplexing scheme has been proposed

by Zenith Corp. and General Electric Company [86]. Although its stereo-

phonic quality was somewhat lower than that of a competing system, it

had smaller losses for monophonic reception and had significantly lower

cost [63]. To ensure the compatibility with monophonic receivers, left (L)

and right (R) audio channels are encoded as a summary L+ R and a dif-

ferential L − R signals (Figure 2.3). The L − R sub-channel modulates a

38 kHz sub-carrier, which is not transmitted but instead is restored at the

receiving side from a 19 kHz stereo pilot tone. This design decision was

motivated by the fact that higher frequencies of the baseband are subject

to increased noise [61, Fig. 9 and 12]. The noise in the stereo pilot and

the differential L − R sub-channel explains why mono transmissions have
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Figure 2.3: Spectrum of a multiplexed FM signal (the noise level is scaled up for clarity).

higher SNR than the stereo ones.

The 57 kHz sub-carrier of the multiplexed FM signal is reserved for the

Radio Data System (RDS) [87], which delivers a differentially-coded 1187.5

bit/s datastream to the RDS-enabled receivers. The data carried over the

RDS contains various information, such as station identifier, programme

name, alternative transmission frequencies; some data slots are available

for Open Data Applications which allow the broadcasters to deliver cus-

tomized data [87]. However, due to the position of the RDS carrier in the

multiplexed spectrum, the RDS is very sensitive to noise.

2.3.4 Short-range FM transmitters

Apart from the broadcasting FM stations, there also are short-range FM

transmitters available for private use. These devices, available at a low

cost in conventional electronics markets, are commonly used to deliver

high-fidelity sound from various sources to home or car audio system. Ap-

proximately 3.4 million devices were sold in US in 2005 [88].

In most countries the usage of radio transmitters is governed by special
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regulations. While Wi-Fi is widely adopted and generally does not re-

quire licensing, different rules may apply to short-range FM transmitters,

depending on local laws.

In EU countries, the usage of short-range FM transmitters operating

within 88–108 MHz frequency band is governed by European Commission

Decision 2009/381/EC [89]. According to it, the FM transmitters with

effective radiated power of less than 50 nW do not require licensing. Com-

plying devices bear the “CE” certification mark. In US, all radio devices

must comply with the FCC Part 15 regulations. In particular, a short-

range FM transmitter must produce less that 250 mV field strength in an

average receiver placed 3 m away [90, Section 15.239b]. The device can be

used only with the antenna furnished with it [90, Section 15.203] (Euro-

pean regulations do not include this requirement). Certified devices have

an explicit statement of their conformity to the FCC Part 15 regulations.

For home-build transmitters, there is an additional limit of no more than

five devices per person [90, Section 15.23a].

2.4 Summary

The analysis of the state of the art demonstrates that at the moment there

are no perfect indoor localization systems reported in the literature. The

major problems are limited coverage (Wi-Fi, Bluetooth, RFID, powerline,

DECT), high power consumption (Wi-Fi, cellular, mobile RFID readers),

low accuracy (GSM) and high hardware costs (Bluetooth access points,

powerline, RFID readers, specialized DECT receivers).

FM radio stations, in contrast, provide worldwide coverage; FM re-

ceivers are already embedded in many mobile devices and have small power

consumption. However, in the current literature the accuracy of FM based

positioning has been evaluated in outdoor settings only and there are no
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results for its indoor performance. This gap is addressed by the present

thesis.
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Chapter 3

Indoor positioning using FM radio

signals

This chapter introduces the FM radio based positioning system, analyze

the features it relies upon and provide an in-depth description of the used

methods and techniques.

3.1 Proposed approach

The indoor positioning system proposed in this thesis is based on finger-

printing of FM radio signals. As stated in Section 2.1.4.2, the fingerprinting

approach is well-suited for indoor conditions, characterized by multipath

and non-line-of-sight (NLOS) propagation, refraction and attenuation by

internal obstacles, such as walls, furniture and smaller objects [3]. De-

spite the complex conditions, fingerprinting provides a good accuracy with

minimal infrastructure costs [21, 91]. Clearly, while the proximity-based

systems are easy to implement, their accuracy directly depends on the

spatial density of the beacons. Better accuracy requires more beacons and

increases both hardware and deployment costs. The systems based on the

direction of signal arrival require sophisticated antenna arrays which are ex-

pensive and can be too large for some environments. Time-based systems,
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as mentioned in Section 2.1.3, can provide high positioning accuracy, but

require precise synchronisation of beacon clocks and suffer from multipath

and NLOS propagation typical for indoors. The systems based on finger-

printing are well-suited for complex environments and demonstrate good

performance with relatively small number of beacons (Section 2.1.4.2).

In this work, two types of FM radio transmitters (beacons) are consid-

ered:

• local beacons, such as short-range transmitters deployed in the indoor

environment (referenced as FML hereinafter);

• external beacons, such as broadcasting FM stations (referenced as

FMB).

Local beacons can be installed at arbitrary locations, where the positioning

system is to be used. Additional beacons improve the accuracy of the

system (which depends on the spatial density of the beacons), but increase

the infrastructure costs. An FM positioning system with local beacons

has substantionally lower cost than an equivalent Wi-Fi based system, yet

demonstrates comparable or better performance (see Chapter 4).

In the case of broadcasting stations, it is impossible to set the posi-

tion of the beacons, their number or the transmitted signals. Thus, it is

difficult to predict the accuracy of the system in different areas without

actual measurements. However, this kind of system does not require any

additional infrastructure, which can be a significant advantage over other

indoor positioning systems. An experimental evaluation of this approach

(Chapter 5) demonstrates that accuracy of an FMB positioning system is

comparable with that of other systems.

This thesis focuses mainly on self-positioning paradigm [91], whereby

the mobile device estimates its location using the signals received from the

beacons. An inverse approach, where a number of interconnected station-
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ary receivers estimate the location of a mobile transmitter, could also be

possible. However, this approach has a number of disadvantages in compar-

ison to self-positioning using FM radio signals. A radio transmission from

the mobile device would significantly impact its battery life. Moreover, it

could also possibly affect user’s privacy, as in a network-based positioning

system the user has no control over processing of the location information.

In the FM-based self-positioning approach, in contrast, the mobile unit is

merely a receiver, invisible to the beacons, and sensitive location data can

be processed locally by the mobile device, thus ensuring user’s privacy. Due

to the described reasons, the proposed FM localization system employs the

self-positioning approach.

In any positioning system, there are two core components:

• a method for distinguishing different reference points (beacons), and

• a measure of distance or angle between the mobile unit and the bea-

cons.

Beacon identity is usually encoded in the signal it transmits. While in

many systems this information is easily available from the hardware layer

(MAC address for Wi-Fi and Bluetooth, Cell-ID for GSM, tag number

for RFID), FM radio has not been initially designed to deliver machine-

understandable station ID. This thesis proposes several ways to identify

a beacon within an FM positioning system, such as: by radio channel,

using audio-encoded message, and using RDS data. An analysis of these

methods, their features and limitations, will be presented in Section 3.3.

The literature review in Section 2.1 suggests a variety of distance-

dependent features of radio signals. The most prominent and widely used

feature is the strength of the received radio signal (RSS), or its representa-

tion by the receiver’s hardware, called the received signal strength indicator

(RSSI ). An FM radio signal, however, also carries a lower-frequency audio
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component which could provide distance information. This thesis identified

four distance-dependent features suitable for FM-based localization:

• received signal strength indicator (RSSI),

• audio signal-to-noise ratio (SNR),

• stereo channel separation (SCS), and

• phase of the stereo pilot tone.

Although the last feature has been found to be unsuitable for indoor po-

sitioning, it is included for completeness. The audio-based methods (SNR

and SCS) demonstrated limited dependence on the transmitter-to-receiver

distance. The main focus of this thesis is dedicated to the RSSI, which

yielded the best positioning performance. A detailed analysis of distance-

dependent features is presented in the following section.

3.2 Distance-dependent features of FM radio signal

The relative position of the user with regard to a beacon can be char-

acterised by the angle between directed antennas, signal propagation time

and certain properties of the received signal. For the FM radio, a set of four

distance-dependent feature candidates have been identified within this the-

sis, namely: received signal strength, audio signal quality (represented by

signal-to-noise ratio), separation of stereo channels, and pilot tone phase.

The following sections discuss each feature in detail.

3.2.1 Received signal strength

Received signal strength indicator (RSSI) is one of the most popular feature

used for positioning (see Section 2.1.4.2). The RSSI corresponds to the

amplitude of the received radio-frequency signal. It can be expressed in
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decibels or in abstract units, such as percents or even categorical values

like “excellent” or “poor”. Most of the current FM receivers employ the

RSSI to provide seek tuning functionality [77]; some of them also provide

the RSSI value to the software layer.

Theoretically, received signal strength is inversely proportional to the

square of travel distance (see Section 2.1.4.1). In practice, however, the

RSSI dependence on distance is subject to multiple factors, such as envi-

ronment properties, transmitter and receiver characteristics (power, sensi-

tivity, signal processing methods).

In order to evaluate the applicability of the RSSI for FM positioning, two

tests with local short-range FM transmitters [92] were performed. The re-

ceiver employed in both tests was Nokia N800, which distinguishes 16 RSSI

levels (see Appendix B.1).

The first test evaluated the RSSI dependence on the distance from the

transmitter. To avoid any interference from furniture, this test was per-

formed outdoors. The results are presented in Figure 3.1. The RSSI de-

pendence on distance is relatively smooth and monotone starting from

0.5 m, and proves the RSSI to be a suitable feature for positioning1. The

plateau-looking areas can be explained by the limited number of RSSI

levels recognized by the receiver used in the test.

In the second test, the measurements were performed indoors. Fig-

ure 3.2a shows the RSSI from three transmitters (represented by antenna

signs in Figure 3.2b) while the user was moving from Transmitter 1 to

Transmitter 3 along the dashed line in the floorplan. Although the depen-

dencies are not very smooth, which is caused by the distortions from the

furniture and multipath propagation, the general trends, nevertheless, are

clearly observable.

1The RSSI values at distance “0” have been measured in the close vicinity of the transmitter’s antenna,
which constitutes the near-field region of the radiation, where reactive component dominates the distance
one [74, p. 46]. Therefore the RSSI near the antenna does not follow the general trend.
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Figure 3.1: RSSI dependence on distance.

The results of the tests prove that the RSSI, commonly used by other

localization technologies, is a suitable feature for FM positioning. The

RSSI value monotonically decreases from its maximum to zero; the depen-

dence is observable within the whole coverage area of the beacon. Due to

these characteristics, the RSSI has been chosen as a candidate feature for

positioning experiments (see Chapter 4).

3.2.2 Audio signal-to-noise ratio

The primary purpose of FM radio is to deliver sound. The audio informa-

tion is encoded into the RF signal by means of modulation, and the quality

of extracted audio depends on the quality of the received RF signal, which

degrades with the distance due to path losses. Thus, it is reasonable to

assume that audio signal quality depends on the distance between receiver

and transmitter: as the signal strength decreases with the distance, the

signal-to-noise ratio (SNR) for the RF signal drops, and the demodulated
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(a) RSSI

(b) Movement path

Figure 3.2: RSSI variation while moving along the room.

noise passes through to the audio part, thus decreasing the SNR of the au-

dio signal. Therefore, the audio SNR can be used as a distance-dependent

feature of an FM radio signal.

Previously, the SNR method has been successfully used as a measure of

receiver-transmitter distance in a positioning system based on amplitude-

modulated (AM) signals [71]. Frequency modulation, however, is more

robust to noise than the AM [93], therefore a separate experiment has
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been performed to evaluate the relationship between distance and audio

SNR of FM radio.

To test the applicability of audio SNR method for FM positioning, a

short-range FM transmitter has been set to broadcast a continuous dual

tone multi-frequency (DTMF) signal for digit “1”, compose of 1209 Hz and

697 Hz sine waves. At the client side, the signal was received by a conven-

tional FM radio (Creative MuVo TX FM). The audio signal was sampled

by a laptop sound card at 8 kHz sampling frequency and transformed to

the frequency domain using 1024-band FFT. For each distance, 32 spectra

were recorded and then averaged. The SNR was then calculated as follows:

SNR =
band697Hz + band1209Hz

mean(all bands)

The experiment discovered no clear dependency of audio SNR from the

distance to the transmitter (see Figure 3.3). The distances from 0 to about

Figure 3.3: Audio SNR dependence on distance.

0.6 m correspond to near field of the antenna[74, p. 46] and are not relevant

for positioning. In range from 0.9 m to 3.6 m the mean SNR value remained
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almost constant (varied within 5%), between 3.6 m and 4.5 m it became

unstable, and then rapidly degraded to the noise level. Such behaviour can

be explained by the FM capture effect which improves the post-detection

SNR for non-linear modulations (such as FM) when the pre-detection SNR

is above a certain level, called “capture threshold”; below this threshold the

SNR drops dramatically [85].

However, the observed behavior can also be attributed to the receiver’s

noise-reduction circuitry which automatically mutes the audio output if

the received signal is too weak [94]. To verify this hypothesis, a separate

experiment has been performed with a programmable FM tuner with auto-

mute feature disabled.

Figure 3.4: Audio SNR dependence on distance (auto-mute off).

The results in Figure 3.4 confirm the assumption, and demonstrate that

audio SNR does in fact reflect the distance from the signal source, even

though the dependence is less smooth than in the case of RSSI (see Fig-

ure 3.1). At short distances, the reception quality is almost perfect, and

SNR is limited by the SNR characteristics of the transmitter and receiver.
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As the distance increases, the SNR declines.

Thus, audio SNR can be utilized as a distance-dependent feature, pro-

vided that audio quality augmentation features of the receiver are switched

off. The positioning performance of the SNR approach is evaluated in Sec-

tion 4.1.3.

3.2.3 Stereo channel separation

The FCC rules [95] define “stereophonic separation” as

The ratio of the electrical signal caused in sound channel A to

the signal caused in sound channel B by the transmission of only

a channel B signal. Channels A and B may be any two channels

of a stereophonic sound broadcast transmission system.

The motivation for considering the stereo channel separation (SCS) as

a measure of distance is two-fold. Firstly, the stereophonic signal is more

sensitive to noise than the monophonic one [63]. At the same RSS level,

the SNR difference between the two modes can reach 20 dB [61, Fig. 12].

The inherent white noise of the RF signal transforms after the detection

to a noise linearly increasing with the frequency [61, Fig. 9]. As described

in Section 2.3.3, this noise mostly affects the pilot subcarrier and the dif-

ferential L − R part of the stereo signal, where L and R denote the left

and the right audio channels, respectively. The summary L + R signal,

however, is less affected. Secondly, the quality of the stereo signal strongly

depends on the quality of the received pilot subcarrier and distortions in

the pilot affect the quality of the stereo signal. When the distance to the

beacon increases and the RF signal quality degrades, the differential L−R

part of the audio signal is affected the most, and the receiver gradually

combines the stereo channels to maintain the sound quality [77, p. 17].
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Consequently, the L + R part will dominate in the output of the receiver,

which results in the reduction of stereo channel separation.

Figure 3.5: Stereo channel separation (SCS) dependence on distance.

Figure 3.5 shows the experimental results for SCS dependence on dis-

tance to the beacon (the experimental setup is described in Appendix B.2).

As the distance increases, the SCS quickly deteriorates, reaches its mini-

mum and remains constant while the distance grows further. The minimum

of the SCS corresponds to no channel separation, or monophonic mode.

The use of stereo channel separation as a measure of distance is unique

for FM positioning and, according to the literature, has never been evalu-

ated before. However, it has certain limitations. First of all, the beacons

must transmit a known stereo signal, so that the client can estimate the

cross-talk between the channels. This limits the SCS approach to local bea-

cons only, as the signal of broadcasting FM stations (voice, music) changes

dynamically and is generally unknown. Secondly, the SCS method is usable

in a smaller range of distances than the RSSI one, as when the distance

— and hence the noise — increases, it becomes impossible to maintain

the stereo decoding, and the receiver switches to monophonic mode, ef-
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fectively converging the channel separation to zero. The RSSI, however,

remains non-zero and sufficient to keep mono reception. The experimental

evaluation of the FM positioning system based on the SCS approach is

presented in Section 4.1.3

3.2.4 Stereo pilot phase

All stereophonic FM transmissions contain a special signal, known as pi-

lot tone, which is required to decode the multiplexed audio signal (Sec-

tion 2.3.3). The stability of this 19 KHz pilot defines the quality of the

output stereo signal and therefore the accuracy of the pilot tone is guar-

anteed by the corresponding standards [96].

Provided that the pilot signal is very stable, it might be possible to use

the phase difference of pilot tones from multiple stations to estimate the

client position. This idea is presented in [57] and a number of patents [60,

97]. For example, US patent #5689270 [60] proposes to estimate distance

between the client and a reference point using the the phase difference of

the pilot measured at these two locations. To acquire the position of the

client, multiple FM signals (pilot tones) must be collected.

However, this approach is unsuitable for indoor positioning. Despite

the pilot stability at the transmitting side, in real world its phase at the

receiver is subject to distortions caused by RF channel conditions, receiver

noise [63, p. 5], and multipath propagation [61, 62, Fig. 17], which is typical

for indoor environments. The experiments conducted by Howe [62] show

that a typical jitter of the pilot tone phase is about 2 µs; given the pilot

frequency of 19 kHz and thus the wavelength of about 15 km, the jitter

would result in about 600 m positioning error. Clearly, such a high error

is insufficient for an indoor positioning system.

46



CHAPTER 3. FM POSITIONING 3.2. DISTANCE-DEPENDENT FEATURES

3.2.5 Summary

A summary of distance-dependent features is presented in Table 3.1.

Table 3.1: Summary of distance-dependent features of FM radio signal.

Method Working
range

Computation
complexity

Note

RSSI all low • Directly provided by radio hardware.
SNR far high • Beacons must transmit a specific or known

signal (inapplicable to broadcasting sta-
tions).

• Audio sample acquisition takes some time.
• Requires noise-reduction functions to be

switched off (impossible for some receivers).
SCS near medium • Beacons must transmit a specific or known

signal (inapplicable to broadcasting sta-
tions).

• Effective algorithms exist for extracting sep-
arate frequency components [98].

• Audio sample acquisition takes some time.
• Requires stereo-capable hardware.
• Highly sensitive to noise.

Stereo
pilot
phase

— high • Too low potential accuracy for indoors.
• Highly sensitive to noise.
• Pilot phase has large fluctuations [62].

As the table shows, the RSSI approach is the best candidate for FM

positioning system. The audio-signal based methods, SNR and SCS, have a

number of limitations, but can also be used for localization. The estimated

minimal accuracy of the pilot phase method is about 600 m, which is far

larger than most of indoor dimensions; therefore, this method was not

considered any further.

The experimental evaluation of the positioning performance of the RSSI,

SNR and SCS methods will be presented in Chapter 4.
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3.3 Beacon identification methods

3.3.1 Radio channels

FM radio broadcast utilizes the frequency division multiple access (FDMA)

model, where each transmitting station occupies one or more radio chan-

nels. The number of channels and their frequencies are defined by the

corresponding standards; in Europe this results in 205 RF channels (from

87.5 to 108.0 MHz, with 100 KHz spacing [77]).

In this approach, each beacon transmits FM radio signals on its own

predefined frequency channel and the mobile unit can identify the beacon

by simply checking the current frequency of the FM receiver. Essentially,

the primary purpose of this method is beacon selection; the identification

comes as side effect, subject to the “one beacon — one channel” condition.

While this method is very simple and has minimal computational re-

quirements, there are several limitations that should be taken into account.

Firstly, the number of RF channels is limited, therefore a careful network

planning is required to ensure that nearby beacons do not interfere with

each other. In this case, the RF channels of N nearest (strongest) beacons

heard by the receiver at any location should constitute a unique set. This

would allow reuse of frequency channels by more distant beacons, and thus

improve the scalability of this beacon identification approach.

Secondly, with the the RF channel identification method the mobile unit

only assumes that there is an active beacon transmitting on the selected

channel. This, however, might not always be the case, as there can be a

hardware failure of the beacon, or its signal could be suppressed by a more

powerful interfering transmitter. The mobile unit has no means of detect-

ing such cases and thus it will unwarily rely on the parameters extracted

from the interfering signal or noise, instead of those from the positioning

beacon. Obviously, such events might significantly affect the localization
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accuracy. The robustness of the system to such errors can be improved

by increasing the number of beacons scanned by the mobile unit. In this

case, individual channel failures would have less impact on the position-

ing. A further stability improvement can be achieved by combining the

RF channel approach with other beacon identification methods discussed

below.

Apart from the already mentioned simplicity, this method is very fast, as

the current frequency is immediately available from the receiver’s hardware,

in contrast to other beacon identification methods, which require relatively

long data acquisition step. Another advantage of this approach is that it

can be used with either local or broadcasting beacons in a uniform manner

and even work transparently with a mix of different beacons. Due to

the described advantages and low computational requirements, the beacon

identification by RF channel has been selected as the main approach for

this thesis.

3.3.2 Audio signals

Apart from the transmission frequency, positioning beacons can be iden-

tified by the information they deliver in the sound part of the FM radio

signal. The information can be embedded into the audio in several ways,

from continuous pilot tones with specific frequencies, to advanced mod-

ulation schemes [93]. It is important, however, to take into account the

following consideration.

Firstly, audio processing requires acquisition of a sound sample. Given

that during the localization step the mobile device typically has to query

multiple beacons, it is important to keep the length of the identification

sound sample minimal (but sufficient for reliable analysis).

The second factor, complimenting the previous one, is that an erroneous

recognition of the beacon ID may severely affect the positioning accuracy.
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Therefore, when the received sound is noisy and the ID recognition is

ambiguous, the processing algorithm should discard the result rather than

return the most probable result. The validity of the ID can be verified by

a checksum attached to the transmitted data packet. If the mobile unit is

unable to recognize the beacon ID, or the received signal is too noisy so that

the checksum verification fails, the corresponding beacon will be considered

as “out of range” (which is often the case for noisy reception) and will not

be used for positioning. Thus, in contrast to RF channel approach, failed

or unreliable beacons do not introduce any additional positioning error.

In comparison to the RF channel method, the audio ID approach is

more demanding to the mobile device resources due to the need to decode

the beacon sound signal. It also takes some time to acquire the sound

sample and analyze it, while in the RF channel approach the beacon ID

is known immediately. Also, as the beacons must emit a specific signal,

the audio-based beacon ID approach is limited only to local beacons and

cannot be used with broadcasting FM stations.

On the other hand, the audio approach has a number of advantages as

compared to identification using RF channel.

• The client is able to detect a beacon failure (no ID transmitted) and to

ignore the missing beacon during localization. In case of identification

based only on RF channel, the mobile unit is unable to distinguish a

failed local beacon from a distant same-channel station, and will rely

on the latter for position estimation.

• The audio beacon identification can be easily combined with the audio-

based distance estimation methods like SNR or SCS (Section 3.2), as

both identification and distance-dependent feature extraction meth-

ods can use the same sound sample and share some audio processing

steps, thus reducing resource requirements and overall processing time.
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In the combined approach, each beacon uses one of the stereo chan-

nels to transmit several sound tones with non-interfering harmonics.

The client calculated the spectrum of the received sound signal and

recognizes the pilot frequencies, which identify the beacon. The ratio

of their magnitudes to the rest of spectrum bands is the SNR. That

ratio calculated on the other (silent) stereo channel provides the value

of channel cross-talk (reciprocal of channel separation).

• The audio ID method does not rely on specific RF channels, so the

positioning system has more flexibility with regard to network plan-

ning.

• Multiple beacons can be used on one RF channel. Due to the FM

capture effect (see Section 2.3.2.1), only the sound from the strongest

beacon will be heard by the mobile client, while the signal from other

beacons will be attenuated. The possible number of beacons is no

longer limited by the available radio channels, as in case of RF-channel

approach. With appropriate network planning, it is possible to cover

an arbitrarily large areas using only three RF channels (Figure 3.6).

3.3.3 RDS data

The Radio Data System (RDS) [87] is a standard way of transferring digital

data over conventional FM radio channels (see Section 2.3.3). The RDS is

widely used to deliver additional information about the radio station, such

as station name, alternative frequencies, current playing title, or local traf-

fic information. The RDS format is extensible with open data applications

(ODA) which enable the stations to deliver arbitrary custom data.

There are two approaches for beacon identification using RDS. In the

first approach, the beacon transmits its ID directly, either as an 8-character

Programme Station (PS) name RDS field, or as ODA data. This method,
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Figure 3.6: A possible beacon network structure utilizing only three RF channels. Circles
represent beacons, digits represent channel numbers.

however, is suitable only for local beacons that are programmable. The

second approach combines beacon selection using RF-channel approach

(Section 3.3.1) and validation of the beacon by its PS name. This approach

is suitable for broadcasting stations.

The RDS approach has a number of advantages. Firstly, the RDS pro-

cessing is done in the receiver hardware, and the decoded data is readily

available for the client device, which saves computational and battery re-

sources. Secondly, the RDS envisages error-correcting encoding of all data.

Finally, the RDS specification suggests that the program station name

should be invariant for the channel [87, Section 6.1.5], which provides a

reliable way of identification of broadcasting FM stations.

However, the RDS employs 57 kHz subcarrier, which is subject to in-

creased noise (see Section 2.3.3). The reception and decoding of PS name

takes at least 470 ms (RDS synchronization takes about 120 ms [99], af-

ter this, the PS name is transmitted in four 104-bit groups with duration
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87.6 ms each [87]). Moreover, the acquisition time may significantly in-

crease in case of noisy reception. Nevertheless, the RDS approach is the

only method of validating the identity of a broadcasting beacon.

3.3.4 Summary

A summary of the beacons identification methods discussed above is pre-

sented in Table 3.2.

Table 3.2: Summary of beacon identification methods for FM radio.

Method Beacon
selection

Beacon
ID check

Beacon
type

Acquisition
time

Sensitivity
to noise

Resources
required

RF channel yes no local,
broadcasting

short n/a low

Audio no yes local only medium medium high
RDS no yes local,

broadcasting
high high low

Although audio and RDS based methods provide a reliable recognition

of beacon ID and are capable of detecting beacon failures, they have long

acquisition times, high computational complexity (audio) and require spe-

cific hardware support (RDS). The RF-channel approach, in contrast, pro-

vides almost instantaneous results with minimal resource requirements; the

beacon failure detection feature was irrelevant for controlled tests. There-

fore, this thesis employed the RF channel approach for the performance

evaluation experiments.
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3.4 Data analysis methods for positioning

In a positioning system based on fingerprinting, the data analysis meth-

ods solve the problem of associating acquired fingerprints with locations,

using the data collected during calibration phase. There are two groups

of machine learning methods applicable for this task: classification and

regression.

The classification approach considers each calibration point as a dis-

crete class. Given a fingerprint, a classifier returns the class to which this

fingerprint most likely belongs. This methods considers all locations as in-

dependent and is most suitable for symbolic positioning, as it immediately

returns the location name or ID. Nevertheless, the classification approach

can be easily extended to coordinate-based positioning by including point

coordinates into class labels and parsing them later from the classifier out-

put.

The regression approach, in turn, is best suited to work with continuous

values. The calibration data is used to train a model (or fit a curve) which

associates fingerprints with floating-point values, such as coordinates. At

the positioning stage, the acquired fingerprint is fed into the model, which

subsequently produces the corresponding coordinate values as its output.

Due to the continuous nature of the regression method, it is not suitable

for symbolic localization.

The difference between classification and regression is defined by the

difference of their output formats: categorical class labels for the first one

and continuous values for the second. A classifier can produce only those

class labels that were present in the training data. Thus, the positioning

accuracy of the classification approach is limited by the granularity of the

calibration data, that is the spatial density of the calibration points. If

the calibration dataset has been collected for points forming a 1-m grid,
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a classifier can either recognize the location correctly, or make at least

1-meter error. With leave-one-out evaluation (see Section 3.4.3), correct

recognition is not possible and thus the classification error is always larger

or equal to the grid step.

The regression approach is free from this limitation, as the regression

model effectively interpolates the data between training points. Thus, the

positioning error for a regression can be smaller than the calibration points

spacing. However, the accuracy of the regression approach heavily depends

on the choice of the fitting model. If the chosen model does not correspond

to data, the positioning accuracy remains low, regardless the amount or

the spatial density of the calibration data.

The following sections describe the classification and regression methods

employed in this thesis.

3.4.1 K-nearest neighbour classifier

There are various classifiers that have been successfully used for posi-

tioning, such as: neural networks [22, 30], support vector machines [30],

Bayesian models [1, 29]. However, as the literature shows, the k-nearest

neighbour (kNN) classifier provides very good [30] or best localization ac-

curacy [22].

KNN is a simple yet powerful classification method, widely used in in-

door localization systems based on fingerprinting approach [20, 22, 50].

Given a fingerprint to classify, the algorithm evaluates the distances in sig-

nal space from this fingerprint to the fingerprints in the training set, and

selects k nearest ones. From the corresponding k labels, the most frequent

one is returned as the classification result [28]. The algorithm works with

any suitable distance measure. The commonly utilized Euclidean distance
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measure has been used in this thesis:

d(~a,~b) =
√

∑

i

(ai − bi)2 (3.1)

The method has one parameter, k, the number of considered neighbors.

The optimal value of k is task-specific. The optimal values of k are found

using leave-one-out cross-validation (see Section 4.1.2).

While the kNN method is computationally intensive and does not scale

well, it does have a number of advantages, such as very simple and fast

training phase (which comprises only storing the training data) and often

the best positioning performance [22, 27, 100]. Moreover, kNN demon-

strates superior performance in obstructed areas [25] (such as indoors).

The described reasons have motivated the application of kNN as the main

classification approach in this thesis.

3.4.2 Gaussian processes regression

The Gaussian process (GP) regression [101] is widely used for location

estimation [26, 27, 102]. Ferris et al. [26] specifically emphasize the GP

regression method for RSSI-based localization, because GP is suitable for

approximation of a wide range of non-linear functions; moreover, the GP

provides uncertainty estimates for its predictions; finally, the algorithm’s

parameters can be learned from training data via well-know algorithms.

This motivated the use of the GP regression algorithm in some experiments

(see Chapter 4).

For fingerprint-based localization, the output values of a localization

algorithm (that is, coordinates) can be represented as yi = f(x)+ ǫ, where

x are input fingerprints, and ǫ is a Gaussian noise with zero mean and

variance σ2
n, since in practice only noisy observations of the dependence

are available. These observed outputs are jointly Gaussian:
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y ∼ N(0, K + σ2
nI) (3.2)

where K is a matrix of covariance functions. A covariance function,

or kernel, reflects the underlying idea of the GP that the function values

at different points are correlated. While there are many different covari-

ance functions, the most commonly used one is the squared exponential

covariance function:

k(xp, xq) = σ2
fexp

(

−
1

2l2
|xp − xq|

2
)

(3.3)

where l is the length-scale and σ2
f is signal variance. The free parameters

l, σ2
f and σ2

n are called hyper-parameters and have a strong influence on

the smoothness of the estimated functions [101].

Taking into account training data (X, y), one can write the joint distri-

bution of the target values y and the function values f∗ for a new input

vector x∗ as:







y

f∗





 ∼ N





0,







K(X,X) + σ2
nI k(X, x∗)

k(x∗, X) k(x∗, x∗)











 (3.4)

The optimal hyper-parameter values are estimated by log likelihood

maximization [101]. Training of the GP model (that is, estimation of

hyper-parameters) is a computationally intensive process, and its complex-

ity rapidly grows with the dimensionality of the input data. As the FMB

fingerprints are rather wide (dozens of stations), the GP regression has been

used only in FML localization experiments with few beacons (Chapter 4).

3.4.3 Performance evaluation

Supervised machine learning methods (such as kNN and GP) typically

require two datasets: for training and for testing. However, collecting
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two separate datasets can be rather laborious and time-consuming process

in fingerprinting-based systems, due to the number of locations and the

measurement time.

A possible solution is to collect a single extensive dataset and split it to

the training and testing sets. However, if signal fingerprints are relatively

stable (or acquisition time is short), this approach may result in the same

data being present in both datasets, which would significantly boost the

recognition accuracy (up to 100%), but provide little information about

the real localization accuracy of the system.

Therefore, the positioning performance of localization systems is com-

monly evaluated with leave-one-out approach [20, 30, 50, 51]. From a single

dataset, this method at each step extracts one point to be used for test-

ing, while all the other points are used for training. When all the points

are processed, the resulting set of recognized coordinates is processed in

order to build the cumulative distribution function (CDF) of localization

error. It should be noted, however, that leave-one-out approach provides

a pessimistic estimate of the real localization accuracy when used with a

classifier, since the classifier cannot return a point which was not present

in the training set, and thus the best achievable accuracy is defined by the

grid step [20].

3.5 Fingerprint stability and accuracy degradation

An FM positioning system, similarly to other localization systems based

on fingerprinting approach, depends on the assumption that the signal

properties measured during the calibration phase do not drift over time.

Unfortunately, this assumption holds only for short intervals of time, while

in longer-term perspective fingerprints are prone to fluctuations caused

by various external factors (Section 2.1.4.2). Such fluctuations inevitably
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affect the positioning accuracy and consequently require a periodic re-

acquisition of the calibration data, thus increasing the maintenance costs

of the system. It has been demonstrated, that many current fingerprinting-

based systems are affected by the signal stability problems [72, 103].

A number of factors that may cause fluctuations of fingerprints for a

system using local beacons (Wi-Fi or FML), such as:

• Furniture layout in the room of interest;

• Furniture layout in nearby rooms;

• Air temperature and humidity;

• Temperature of the beacons’ components (Wi-Fi access points may

warm up under a heavy load);

• Presence of people.

The systems employing external beacons, such as GSM or FMB stations,

have additional sources of uncertainty:

• Buildings and other large structures (especially RF-reflective);

• Weather conditions (rain, clouds, thunderstorms);

• Vegetation, season of the year [104].

It is worth noting, however, that FM, Wi-Fi and GSM operate at signif-

icantly different frequencies (87.5–108 MHz, 2.4/5 GHz and 0.9/1.8 GHz,

respectively) and the above factors may have different impact on these sys-

tems. In particular, it has been shown that for nearby FM stations with

high RSS levels the long-term variations are relatively small [104, Figure 5].

Thus, an important step for ensuring the temporal stability of the FMB

positioning system is careful selection of beacon stations. The empirical
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results of FM RSSI statistics over several hours and days, as well as the

influence of people’s presence, are presented in Section 5.3.

The problem of maintaining the accuracy of a fingerprinting-based po-

sitioning system is addressed by the spontaneous recalibration approach

described in the following section.

3.5.1 Spontaneous recalibration

An effective, although rather näıve, approach of countering the accuracy

degradation is to perform a complete calibration for the whole environ-

ment. Acquiring a new set of fingerprints, however, is a labor-intensive

process which requires expert knowledge. Thus, full periodic recalibra-

tion results in high maintenance costs. To address this issue, a number

of projects rely on additional hardware (e.g. RFID or dedicated robot) to

obtain new measurements from well-known points [19, 37, 105]. However,

these auxiliary devices increase the installation and maintenance costs. In

contrast, the method proposed by this thesis does not rely on additional

hardware and is transparent for the users.

The spontaneous recalibration approach is based on the observation that

in indoor environments there are predefined locations where the position of

the mobile device can be derived from context sensors other than the po-

sitioning system. Examples of such locations include mobile phone cradle,

wall charger, night stand, inductive charging pad, or other places where the

device typically remains stationary for prolonged periods of time (hours).

These locations can often be easily identified (for example, when the mo-

bile device is placed into a cradle or being charged on a night stand during

night time). When the location is known, the device initiates acquisition

of updated fingerprints for this location. In contrast to other solutions, the

proposed method is capable of updating the signal fingerprints without any

additional hardware.
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The spontaneous recalibration counters the accuracy degradation by

exploiting well-known locations and updating the corresponding points in

the calibration dataset. The known locations can be recognized based

on certain events detected by the mobile device, such as start of battery

charging, or inferred from time, or from their combination. Whenever

the mobile device recognizes one of such places, it acquires a stable signal

fingerprint F and compares it with the fingerprint F0 from the training set.

If their difference δF is above a threshold, the calibration data is updated

with the new values.

Updating only the current location, however, is insufficient to obtain a

noticeable accuracy improvement, because in a typical indoor environment

there can be only few reference places with known locations, which con-

stitute only a small fraction of all the calibration points. Thus, updating

only few points would not result in a visible improvement of the real posi-

tioning performance; an evaluation with leave-one-out method would not

demonstrate any changes at all.

This problem can be solved using the following observations. First of

all, the reference locations often have a number of unobstructed calibration

points nearby. An example can be a nightstand, which is likely to have

a passage to it and a bed nearby. Secondly, the RSSI fingerprints of two

nearby points with no obstacles around them fluctuate in a correlated

manner, as the RF channel changes are insignificant over short distances [3,

p. 954], and the signal strengths in nearby points can thus be described by

the signal propagation model [20]:

P (d)[dBm] = P (d0)[dBm]− 10n log
d

d0
−WAF (3.5)

where n is path loss change rate, P (d0) is the signal power at a reference

distance d0 and P (d) is the signal power at the location at distance d

from the transmitter; WAF is a wall attenuation factor, which accounts
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for losses incurred by walls between transmitter and receiver. For two

nearby locations with no obstacles,WAF and P (d0) are constant, and P (d)

depends only on the distance d between the location and the transmitter.

As the signal fingerprints of a reference location and its immediate neigh-

bours change in a correlated manner, an increase of signal strength in the

reference point is reflected by the proportional increase in the adjacent

points, and vice versa. Unfortunately, as the distance between a calibra-

tion point and the reference location increases, so does the chance of finding

an obstacle. Therefore, when the calibration set is updated, the fingerprint

difference δF is added to the training points with a weighting coefficient

f(d), where d is the distance between the reference point and the point

being updated. An exponential weight function f(d) = e−1.5d led to the

best experimental results (Section 4.3).

A schematic one-dimensional representation of the spontaneous recali-

bration approach is presented in Figure 3.7. Figure 3.7a shows a possible

change of RSSI distribution over some line in the environment; the posi-

tions of the reference points are indicated by dashed lines. Figure 3.7b, in

turn, explains how the RSSI changes in reference positions are applied to

update the neighbouring points.

As shown in this section, the spontaneous recalibration approach coun-

ters the accuracy degradation by employing a number of fixed locations

with known positions. It recalibrates the system regularly, with no addi-

tional hardware or user effort. The experimental evaluation of the spon-

taneous recalibration approach, presented in Section 4.3, proves method’s

capability to maintain the positioning accuracy over time.
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(a) RSSI fluctuation along a coordinate axis.

(b) Propagation of the new calibration data to the reference point neighbours.

Figure 3.7: Spontaneous recalibration approach.
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Chapter 4

Evaluation of FM positioning using

local transmitters (FML)

This chapter presents the results of performance evaluation of FML po-

sitioning system, its dependence on user orientation and its comparison

to Wi-Fi positioning. The experimental evaluation of the positioning ac-

curacy decay and the spontaneous recalibration approach is also provided.

Finally, a comparison of battery life in FM and Wi-Fi fingerprinting modes

is presented.

4.1 FML positioning system performance

4.1.1 Experimental setup

The experimental evaluation of an FM indoor positioning system using

local short-range transmitters has been performed in a room with dimen-

sions 12 × 6 m; its shape, the beacon locations and the furniture setting

are shown in Figure 4.1.

Three short-range FM transmitters (König [92]) and three collocated

Wi-Fi stations (Cisco Aironet 1300) shown in Figure 4.2 served as the lo-

calization beacons. An initial scan of the FM band has been performed

to identify the frequency channels free from broadcast. The FM transmit-
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ters were then tuned to these free channels; two-meter wires were used as

transmitters’ antennas1.

Figure 4.1: Experimental testbed layout (UBiNT lab [106]).

Figure 4.2: FM transmitter and Wi-Fi access point.

1The use of short-range FM transmitters with third-party antennas is allowed in EU (where this
experiment was performed), but forbidden in US (see Section 2.3.4). The compliance with the US
regulations might have limited the coverage of the transmitters and possibly vary the experimental results,
but would not affect the concepts presented in this chapter.
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4.1.2 FML positioning using RSSI

The first experiment explored the accuracy of a system leveraging the RSSI

as a distance-dependent signal feature.

In this experiment, an HTC Artemis smartphone (see Appendix B.1)

has been used for data collection. The device features an embedded FM

receiver and a Wi-Fi module. The data acquisition software has been writ-

ten in C# using .NET Compact Framework. The FM tuner was controlled

through a custom, low-level library written in C++, while the Wi-Fi RSSI

values were provided by the OpenNetCF SDF library [27]. A standard

HTC headset has been used as an FM antenna.

Due to the firmware design, the mobile device used in the experiment

reported the Wi-Fi signal strength as one of six different levels. The FM

RSSI, in turn, is represented with 63 levels; the maximum RSSI values,

observed in the proximity of the transmitters, were below 45. In order to

ensure a fair comparison of FM and Wi-Fi, the precision of acquired FM

RSSI samples were reduced to 6 levels as shown in Table 4.1. Note that this

Table 4.1: Mapping of FM and Wi-Fi RSSI (HTC Artemis).

Original FM RSSI 6-level FM RSSI Wi-Fi RSSI
40 to 49 -50 Excellent
30 to 39 -60 Very good
20 to 29 -70 Good
10 to 19 -80 Low
1 to 9 -90 Very low

0 0 No signal

conversion has an adverse effect on FM positioning accuracy and has been

applied only for comparison with Wi-Fi. While FM transmitters were dis-

tinguished by their radio frequency, the different Wi-Fi access points were

recognized by their MAC addresses. The RSSI values received from dif-

ferent access points were assumed to be independent since the interference

does not have an important influence on the system [107].
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There are no guidelines for choosing the size of the grid which defines

the data collection points. Kaemarungsi and Krishnamurthy [108] demon-

strated that with smaller grid size the probability of exact location recogni-

tion drops. The issue, however, should be analyzed from a wider perspec-

tive: it might be acceptable to sacrifice some “exact match” accuracy for

better median precision or 95th percentile precision. Several works [42, 100]

showed that using a smaller grid spacing does improve the overall localiza-

tion performance; however, after a certain threshold the accuracy starts to

level off or even degrade [100].

Taking this into account, both Wi-Fi and FM signal measurements were

carried out in each accessible point in the room (see Figure 4.1) initially

following a grid of 1.0 m and then switching to 0.5 m grid (which resulted

in 30 cm lower median error). Since not all points were accessible in the

room, these datasets contained 40 and 140 points, respectively. The person

performing the experiment was always facing the same direction. (The

experiments which considered four different orientations will be presented

in Section 4.2.)

The location recognition has been performed by kNN classifier and GP

regression (see Section 3.4). For the kNN, k = 1 provided the best results.

The positioning accuracy was evaluated using the leave-one-out approach

of sequentially selecting one point from the dataset as a test point while

excluding the rest of the measurements that correspond to this point from

the training set (see Section 3.4.3). This procedure was then repeated

for the entire set and the errors were calculated as a Euclidian distance

between the location estimation and the ground truth. The cumulative

distribution function (CDF) of the error distances was then plotted and

used as the indicator of the system’s performance.

Initially, the system accuracy was tested using all the 100 signal samples

collected at each point. However, the results with only 20 samples per point
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yielded no notable degradation, thus suggesting that both FM and Wi-

Fi signal exhibit relatively stable behavior and 20 signal samples sufficed

without performance degradation.

Figure 4.3: FML positioning system performance.

Figure 4.3 shows the cumulative distribution function of the distance

error when kNN and GP methods are applied, using the training set with

a grid of 0.5 m.The median estimation error (50th percentile) of the RSSI-

based system is 0.97 m for GP and 0.93 m for kNN while 95th percentile

error is 2.65 m for GP and 3.88 m for kNN. The next section will present

the experimental results for the FM localization system based on audio

signal features.

4.1.3 FML positioning using audio signal features

As it has been mentioned in Section 3.2, there are several distance-dependent

features of FM signal, apart from RSSI. These features, namely audio

signal-to-noise ratio (SNR) and stereo channel separation (SCS), are cor-

related with the RSSI, but their effect on positioning accuracy cannot be
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directly inferred. This section provides an experimental evaluation of the

positioning accuracy of an FML positioning system based on audio SNR

and stereo channel separation.

The experiment has been conducted in the testbed described in the

previous section. The beacons were set to transmit a stereophonic audio

signal; each stereo channel contained a sinusoidal signal of specific fre-

quency. The frequencies were selected so that the sine waves from different

channels, nor their harmonics, did not overlap. This has been achieved by

employing a DTMF signal [109]: 1209 Hz for the left channel, and 697 Hz

for the right one (these correspond to DTMF signal for “1”). At the client

side, there was a laptop computer equipped with a Brando USB FM Ra-

dio receiver [110]. For each accessible point of a 1 m grid in the testbed,

the client recorded a 5 s long audio sample from each beacon (44100 Hz

sampling frequency, stereo) and simultaneously acquired the RSSI values

for the beacon being recorded (the RSSI was sampled every 100 ms).

The recorded audio samples were processed to estimate the SNR and

channel separation values. The procedure was the following. Firstly, the

right channel data was discarded and only left channel data has been used

for processing. Then, the spectrum of left channel signal was evaluated by

fast fourier transform (FFT) with Hanning window of length 8192. The

signal magnitude was the magnitude of 1209 Hz band, as 1209 Hz signal

was the one actually transmitted in the left channel. The 697 Hz band, in

turn, represented the magnitude of the right-channel signal leaked into the

left one due to channel cross-talk. Thus, the stereo channel separation was

evaluated as the difference between 1209 Hz and 697 Hz band magnitudes.

The SNR was evaluated as the ratio of 1209 Hz band magnitude to the

average magnitude of all the other bands. Finally, the SNR, RSSI and

channel separation measurements for each point were averaged.

The evaluation of the positioning accuracy for each method has been
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performed using a kNN classifier (k = 1) and leave-one-out approach,

implemented in R language [111]. The results are presented in Figure 4.4.

Figure 4.4: Accuracy of FM positioning system using audio signal features.

The results confirm the feasibility of FM positioning based on audio sig-

nal properties, as all methods perform better than the baseline (where the

system returned a random training point for any input fingerprint). The

SCS approach demonstrates a slightly better performance than the SNR

one, and provides the best median accuracy of 2.1 m over all competitors.

However, the best overall accuracy is demonstrated by the RSSI approach.

In order to understand the reasons behind the inferior performance of

audio-based approaches, let us analyze the dependencies between the col-

lected SNR, SCS and RSSI values, presented in Figure 4.5.

Figure 4.5a shows the relationship between SNR and RSSI. As one can

see, for low RSSI values the SNR increases linearly or quasi-linearly. At a

certain point, however, the SNR reaches its maximum of about 50 dB and

saturates. This means that the SNR approach is usable for positioning only
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(a) SNR vs. RSSI (b) SCS vs. RSSI

Figure 4.5: Relationship between SNR, SCS and RSSI.

at relatively long distances. At shorter range, when the signal strength is

high, the SNR’s dependence on distance is weak. This explains why SNR

demonstrated lower positioning accuracy than SCS: the power of the used

transmitters was sufficient to provide the good audio quality in most parts

of the test environment.

Figure 4.5b demonstrates the dependence of channel separation from

RSSI. When the signal is weak, the reception is monophonic and the chan-

nel separation is low. As the RSSI increases, the receiver eventually picks

up the stereo pilot tone and switches to stereophonic mode; the channel

separation improves with the further growth of the RSSI.

The experimental results demonstrate that SNR and SCS approaches

are more limited than the RSSI one. SCS works at shorter distances with

high RSSI values, while the SNR approach is more suitable at longer ranges

with low RSSI values. While SNR and SCS methods can be used for posi-

tioning, the RSSI is applicable for all ranges and provides better accuracy.

Therefore, all further experiments focus on the RSSI approach.
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4.1.4 Comparison of FML and Wi-Fi positioning accuracy

In order to understand how FM performance relates to other techniques,

and to ensure a fair comparison, another set of experiments has been per-

formed to evaluate the FM and Wi-Fi positioning systems performance in

the same testbed. As previously mentioned in Chapter 2, Wi-Fi localiza-

tion systems have gained a notable popularity due to the availability of

Wi-Fi infrastructure in many office buildings. This motivated the choice

of Wi-Fi as the localization technology to compare FM with.

(a) kNN (b) GP

Figure 4.6: FM versus Wi-Fi positioning system.

Figure 4.6 demonstrates the error distance CDFs for Wi-Fi and FM po-

sitioning systems utilizing two machine learning algorithms, namely kNN

and GP. As mentioned in Section 4.1.2, the test device (HTC Artemis) re-

ported Wi-Fi RSSI in a coarse-grained manner due to firmware limitations.

To ensure fair comparison of the two methods, the FM signal strengths were

mapped to a scale similar to Wi-Fi (see Table 4.1). Under these conditions,

Wi-Fi and FM systems demonstrate very similar performance (Figure 4.6).

From the comparison of the two graphs, one can note that the classi-

fication approach provides slightly better median accuracy, but it is more

prone to distant outliers, which increase the error for high confidence levels.
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The regression approach, in contrast, is more suitable for applications that

require high reliability of position information. Also, it should be noted

that the nature of classification method makes it impossible for kNN to

provide any estimation with an error smaller than the dimension of used

grid (in this experiment it was 1 m) while this is not the case for GP

regression.

4.1.5 Performance of a combined FML and Wi-Fi system

In the literature, there are a number of reports demonstrating that the

positioning systems which perform a fusion of different localization tech-

nologies usually provide better accuracy than any of these technologies in

isolation [10, 43, 112]. This section presents the performance results of a

system combining FM and Wi-Fi fingerprinting.

The data fusion has been done by merging the FM and Wi-Fi finger-

prints into wider FM+Wi-Fi fingerprints. Despite the simplicity of such

data fusion approach, it has been previously demonstrated as being capa-

ble to provide an improved localization performance [50, 51, 72]. In this

experiment, each wide fingerprint included 6 RSSI values: 3 for FM and 3

for Wi-Fi. The FM RSSI values were of full precision, without conversion

to the 6-level values.

The localization accuracy of the combined FM+Wi-Fi system is pre-

sented in Figure 4.7. For both data processing methods, the combined

system outperforms each of the underlying technologies alone. While for

GP the difference is minor, in the case of kNN even low-precision Wi-Fi

fingerprints can significantly improve the positioning accuracy of pure-FM

approach. The fusion of FM and Wi-Fi positioning technologies improved

the positioning accuracy by up to 22% (0.85 m at 95th percentile for kNN).

Combining Wi-Fi and FM positioning systems also has a number of

other advantages. In the environments with existing Wi-Fi infrastruc-
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(a) kNN (b) GP

Figure 4.7: Performance of a combined FM and Wi-Fi positioning system.

ture, the positioning accuracy can be improved by installing additional

FM transmitters, which are more cost-effective than Wi-Fi access points.

FM can also be employed to provide positioning in areas not well covered

by Wi-Fi (such as passages and hallways). In sensitive or mixed environ-

ments, the mobile devices can switch between Wi-Fi + FM, Wi-Fi-only

(when no FM available), and FM-only positioning (where Wi-Fi is banned

or non-existent) transparently for the user. Finally, switching between pre-

cise Wi-Fi + FM positioning and power-effective FM technology enables

smart power management and enhances battery life, due to FM’s lower

power requirements (see Section 4.4).

All the experiments presented so far have assumed that the user always

faces the same direction. The next section presents an experimental eval-

uation of the FM localization system which takes into account the user

orientation.

75



4.2. RECOGNITION OF ORIENTATION CHAPTER 4. FML EVALUATION

4.2 Recognition of orientation

The orientation of a user might have a significant impact on the observed

signal strength and consequently on the localization accuracy. The reasons

for that lie in the direction of mobile unit’s antenna, reflections of the radio

signals and the fact that components of the mobile unit can partly shield

signals from certain directions [113]. For Wi-Fi signals, the user body

has a noticeable effect on the signal strength variations [20, 107]. This is

explained by the fact that a human body is 70% composed of water and that

the resonant frequency of water is 2.4 GHz (similar to Wi-Fi frequencies),

which ultimately results in the attenuation of Wi-Fi radio signals by up

to 9 dB [107] due to human body. Thus, changing the direction of the

mobile device will result in the change of the RSS, even if the position

remains fixed. The RADAR project [20] investigated the case in which the

training set points were acquired while facing a single direction, while the

test samples corresponded to the other three directions. In this case, their

results showed a significant (up to 67%) degradation of the localization

accuracy.

However, the frequencies of FM radio signals are by orders of magnitude

less than the resonant frequency of water, and the effect of user body orien-

tation on the positioning accuracy can be different from Wi-Fi results. The

following sections will examine the accuracy of the FML positioning sys-

tem considering the orientation, and test whether the orientation-induced

changes in RSS can provide means for detecting user’s facing direction.

4.2.1 Impact of orientation on positioning accuracy

This section considers two possible solutions for overcoming the problem

of user orientation affecting the RSS fingerprints.

• The first solution consists of having four different training sets (one
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for each orientation). To estimate the location, one of these sets would

be used depending on the user’s orientation at any given time. The

current orientation would be detected using an additional sensor, such

as a compass.

• The second solution is based on using one extensive training set that

is composed of signal strengths from the three FM beacons for all four

orientations in each physical point.

These two approaches have been tested experimentally in order to verify

whether having an additional sensor for orientation is an acceptable trade-

off in terms of localization accuracy.

The RSSI measurements have been performed in 40 physically accessible

points in the testbed, following a 1-meter grid (Figure 4.1). In each point,

20 samples were taken for all four directions: facing North, South, East and

West. This resulted in four training sets, one for each direction. The first

approach assumes that the orientation is known, so to estimate the user’s

position one of the four training sets is used accordingly. The accuracy for

each orientation has been evaluated by applying the leave-one-out method

on four training datasets separately (North, South, East and West graphs

in Figure 4.8). Note that the mobile device may be oriented in between

of two orientations, such as between North and West for example. In this

case, the closest of the four orientations should be taken as the actual user’s

orientation and the corresponding training set should be used. This means

that 45◦is the maximal error, which, according to the experimental results,

does not significantly affect the RSSI.

In order to compare this approach with the second solution, a leave-one-

out evaluation has been performed on the dataset composed of previously

used four datasets containing North, South, East and West orientations,

all merged together. For each physical point, the leave-one-out method
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(a) kNN

(b) GP

Figure 4.8: Positioning accuracy depending on orientation.
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excludes from the training set all the measurements (for all orientations)

that belong to the current point, and assigns all the other samples (for

all four orientations) to the training set. The results are presented in

Figure 4.8 for both kNN and GP localization methods.

From the obtained results it can be seen that one extensive training

set containing measurements for all four orientations provides a similar

localization accuracy to the case when the orientation is known and the

corresponding training set is used. In particular, the graphs show that the

localization accuracy of using the merged training set with four orientations

is very similar to the result of fixed orientation training sets West and East

for kNN and North and West for GP (Figure 4.8).

Intuitively, a number of different fingerprints associated to one physical

point would result in decreased localization accuracy, since the probability

of having similar fingerprints in two or more physical points is higher (for

example, facing North in one point may produce the same fingerprint as

facingWest in another point). Despite this intuition, however, the accuracy

of the FM localization system degrades negligibly even if the calibration

set includes fingerprints for all orientations. This may be attributed to

relatively small interaction of human body with the FM-band radio waves,

in comparison to higher-frequency Wi-Fi signals.

Thus, the experimental results demonstrate that the impact of the user

body orientation on the FM localization accuracy is minimal, which pro-

vides a good basis for a real-life localization system.

4.2.2 Analysis of user’s orientation

Although the user body orientation has been shown to have a minor impact

on the localization accuracy, the RSSI readings are nevertheless affected by

the orientation. This motivated the investigation of whether it is possible

to recognize the user facing direction from the RSSI readings.
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To investigate whether the correlation between signal strengths and ori-

entation is sufficient to estimate user’s direction, two datasets were acquired

by two different people. Out of these datasets, one was used as the training

set and the other as the test set. Both sets were composed of RSSI fin-

gerprints for 40 physical points following a grid of 1 m and including four

orientations. As in the previous experiments, the kNN and GP algorithms

were used for location recognition. For the kNN classifier, there were four

classes, one for each direction. For the GP regression, which has a con-

tinuous output, the different directions were annotated with angles (0 ◦ for

North, 90 ◦ for East, 180 ◦ for South and 270 ◦ for West). The angle esti-

mation provided by the GP algorithm fell into one of the ranges: 0 ◦±45 ◦,

90 ◦ ± 45 ◦, 180 ◦ ± 45 ◦, 270 ◦ ± 45 ◦, which were subsequently labelled as

one of the four orientations, North, East, South and West, respectively.

Figure 4.9: User orientation detection results.

The obtained results are shown in Figure 4.9. The bars in the graph

have the following meaning:

Exact describes the results when the estimated orientation matches the

ground truth;
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Adjacent corresponds to the cases when the estimated and real orienta-

tion are adjacent (for example, when the system recognizes the true

West orientation as North);

Opposite depicts the cases when the estimated and real orientation have

opposite directions.

It can be seen that the results are similar to a random prediction: around

25% for the accurate estimation, around 50% for one of two adjacent ori-

entations and almost 25% for the opposite directions.

Therefore, the correlation between signal strengths and orientations

proved to be insufficient for detection of user body orientation in an FM

localization system. These results are in line with the literature reports for

Wi-Fi signals. Saha et al. [114] found that while the variation of Wi-Fi sig-

nal due to user direction were within 3–4 dB, this value was less than RSSI

variation across different locations and even below the RSSI fluctuations

within a fixed location (5–7 dB) [114]. Thus, both FM and Wi-Fi systems

cannot recognize user body orientation from localization RSSI fingerprints.

4.3 Accuracy degradation

Radio signal propagation in an indoor environment is affected by a number

of factors, both dynamic (people movement) and long-lasting (furniture

layout changes, atmosphere conditions). These factors can change the

propagation conditions so that the previously collected fingerprints differ

from the current ones, which might significantly decrease the localization

accuracy [103].

To evaluate the long-term stability of the FM localization, a number of

fingerprint datasets have been collected over the period of seven months,

from December 2008 till July 2009. Unexpectedly, the test that was per-

formed in July using the set of fingerprints measured in June showed more
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degradation in comparison to the tests in June and July using the training

set acquired in December. Such results point to a conclusion that finger-

print fluctuations are derived from a random process and are difficult to

predict. The following experiments consider the datasets with the highest

accuracy degradation (June and July 2009).

4.3.1 Lessening the causes of degradation

The first step of addressing the performance degradation is to lessen the

causes of degradation through preprocessing the input data. Some environ-

mental factors, such as air humidity, simultaneously affect the RSSI from

all beacons. To compensate for such changes, the RSSI readings from the

three FM transmitters have been represented as a matrix with columns

ss1, ss2, and ss3 and preprocessed in the following way. Firstly, the ab-

solute RSSI values were converted to their pairwise differences (ss1− ss2,

ss2−ss3, ss1−ss3). Then, each column was divided by its maximum value

and finally the resulting values were centered around zero by subtracting

each column’s mean value. The idea behind this procedure was to miti-

gate the RSSI changes over time and to make new inputs less dependent

on their absolute values.

The described preprocessing has improved the performance of the GP

regression (even for the same dataset, see Figure 4.10), but had an adverse

impact on kNN results and therefore was used only with GP.

Applying the GP regression to the preprocessed data proved the as-

sumption that all transmitters generally follow the same pattern of change

or exhibit same degradation levels and that the described preprocessing

procedure can mitigate the system degradation to a certain extent. As

a result, the median accuracy of the system trained on the June dataset

and tested on the July one, improved from 2 m to 1.45 m only due to

preprocessing (Figure 4.10).
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Figure 4.10: Effect of preprocessing (PP) on the positioning accuracy.

4.3.2 Spontaneous recalibration approach

The second step of countering accuracy degradation is the spontaneous re-

calibration method introduced in Section 3.5.1. The method leverages the

existence of predefined locations where the position of the mobile device is

known or can be inferred. These locations may be associated with mobile

phone cradle, wall charger, night stand and other locations where a mobile

phone typically remains stationary. When the location is known, the sys-

tem starts fingerprint acquisition at that location and compares the current

fingerprints with those in the calibration dataset. If the fingerprints are

different, the calibration data will be updated with the new fingerprints.

In this experiment, five known locations have been defined (Figure 4.11),

and these points were sufficient to observe the effect of spontaneous recal-

ibration.

In order to spread the changes from the reference location to its closest
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Figure 4.11: Positions of the points used for spontaneous recalibration.

neighboring points, a propagation model has been employed (Formula 3.5

in Section 3.5.1). The parameters of the model have been found empirically

from the initial training set. The best suited value for the path loss change

rate n was 2, while the wall attenuation factor was set to zero, as there were

no walls between adjacent points. For each reference point, eight neighbor-

ing points have been adjusted using the propagation model. Thus, 45 out

of 140 points were updated (5 reference locations plus 5 × 8 neighboring

points). As a result, the spontaneous recalibration further improved the

median localization accuracy from 1.45 m to 1.2 m (Figure 4.12a).

(a) Using separate training and testing sets (b) Using leave-one-out approach

Figure 4.12: Effect of the spontaneous recalibration on system performance.
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To evaluate how spontaneous recalibration compares to the complete

recalibration scenario (“July over July”), the acquired results were com-

pared using the leave-one-out method (Figure 4.12b). The results depicted

in Figure 4.12b show a very similar performance of the spontaneous and

complete recalibration (only 12 cm difference in the median error). Thus,

using only 5 reference locations out of the complete set of 140 points, the

system can be regularly calibrated with no effort from the user and without

any additional hardware.

(a) 50th percentile (b) 95th percentile

Figure 4.13: Recalibrated accuracy vs. number of reference points.

In order to estimate how the effect of the spontaneous recalibration

depends on the number of reference points and their locations, the recali-

bration procedure has been performed 100 times for randomly selected sets

of points. The box-and-whisker diagrams in Figure 4.13 demonstrate the

distribution of the median and 95th percentile error for the corresponding

number of reference points. In the diagram, the thick horizontal lines cor-

respond to median values; bottom and top of each box correspond to the

first and third quartiles of distribution, and the whiskers extend up to 1.5

times the interquartile range; small circles represent outliers.

It can be seen that as the number of reference points increases, so does

the variance of the positioning error. This demonstrates that some sets

85



4.4. POWER CONSUMPTION ANALYSIS CHAPTER 4. FML EVALUATION

of reference positions are more effective than the others, and by carefully

selecting the reference points it is possible to significantly reduce the ac-

curacy degradation. The graphs also show that the accuracy of a recali-

brated system generally improves as the number of reference points grows.

As explained above, the accuracy gain can be further increased by careful

selection of the reference locations.

4.4 Analysis of FM and Wi-Fi power consumption

This section provides a theoretical and experimental comparison of FM

and Wi-Fi power consumption.

Unlike Wi-Fi modules, the FM tuners are designed for receiving signals

and cannot transmit them. Moreover, Wi-Fi requires complicated data pro-

cessing, while FM demodulation is rather straight-forward process. Due to

these two facts, FM receivers have considerably lower power consumption

than Wi-Fi modules. Depending on the complexity of its circuitry, an FM

receiver can consume from about 15 mW (TDA7088 [94], analog–only) to

about 50 mW (Si4703 [77] with RDS enabled). In contrast, Anand et al.

[47] have reported idle-state Wi-Fi power consumption varying from 190–

390 mW in power-saving mode to 1200 mW in constantly-active mode.

Evidently, FM tuners are significantly more power-effective than Wi-Fi

network modules. However, the runtime of a mobile device also depends

on other components (such as CPU and display) and CPU load. Therefore,

it is more appropriate to measure the total battery life of the device, rather

than the consumption of separate components.

The battery life tests were carried out using a Samsung Omnia 2 smart-

phone running My Experience tool [115] with FM and Wi-Fi fingerprinting

sensors. My Experience is a popular platform for acquisition of user experi-

ence data, which often includes location. Thus, the experiment simulated
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one of the real applications for a positioning system. During the tests,

My Experience periodically acquired location fingerprint and stored it in a

database; the device was kept in the “unattended” power state [116], with

screen and backlight turned off. All tests started with a completely charged

battery and continued until the device run out of power and switched off.

The running time was then extracted from My Experience logs.

Two groups of tests have been performed, separately for Wi-Fi and FM.

In order to minimize the influence of other components, all unused wireless

modules were switched off (GSM and Bluetooth — for all tests, Wi-Fi

— during FM tests, and FM — during Wi-Fi tests). The modules were

configured for localization purposes in the following way. For FM tests, a

standard headset was connected to the device to serve as an FM antenna;

Wi-Fi module was switched off; sound volume was set to zero. During

Wi-Fi tests, FM was switched off; Wi-Fi network card was not associated

with any nearby access points, to ensure that there are no background data

transfers. Both modules used the available power saving routines.

The FM-related tests took into account the number of beacons in fin-

gerprint. While for Wi-Fi the fingerprint acquisition time of 1 s was rela-

tively constant and independent on the number of beacons, an FM receiver

needed to switch from one beacon to another explicitly. Thus, wider FM

fingerprints imply longer duty cycles due to increased channel switching

and longer sample acquisition times; this potentially leads to higher power

consumption. FM sample acquisition times are presented in Table 4.2.

Table 4.2: FM RSSI sample acquisition time for different fingerprint width.

Beacons in fingerprint Acquisition time, s
3 0.4
10 1.5
45 9.0
205 36
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Figure 4.14: Battery life in FM and Wi-Fi fingerprinting modes. The baseline corresponds
to all wireless modules switched off.

Figure 4.14 presents the results of battery life measurements in FM

and Wi-Fi fingerprinting modes for different scan intervals. As expected,

the run time of the device grows as the time interval between scans in-

creases.Unfortunately, it was impossible to evaluate Wi-Fi performance

with 1 s update period, as the Wi-Fi driver was unstable at high sampling

rates and quickly crashed. From the general trend, however, it is evident

that the result would have been less than 7.4 h, which is still significantly

below the 27.9 h demonstrated by FM with 3 beacons. Overall, FM demon-

strates superior power efficiency, providing 2.6 to 5.5 times longer battery

life than Wi-Fi and closely approaching the baseline maximum.
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4.5 Summary

The evaluation presented in this chapter demonstrated the possibility of in-

door localization using signals of local short-range FM transmitters. Both

RF signal strength and audio signal characteristics, such as signal-to-noise

ratio (SNR) and stereo channel separation (SCS) can be used for position-

ing. It has been found, however, that SCS method works only at short

distances from transmitters while the SNR one — only at longer distances.

The RSSI, in turn, covers the whole range and provides superior positioning

accuracy.

FML provided similar accuracy to the Wi-Fi localization system in-

stalled in the same environment; the median error for FML was 0.9 m in a

50m2 room. It has been demonstrated that combination with FML can im-

prove performance of an existing Wi-Fi positioning system. The two data

analysis approaches used, classification (kNN) and regression (Gaussian

processes), demonstrated better median accuracy for classification, but re-

gression has faster convergence and excelled at high confidence levels. The

experiments on direction recognition have shown that RSSI is affected by

the user orientation. However, the accuracy of direction recognition us-

ing RSSI fingerprints was indistinguishable from random. The positive

result was that user orientation had only minimal impact on localization

accuracy.

This chapter also demonstrated that the gradual degradation of accu-

racy, which is inherent to any fingerprinting based system, can be countered

by fingerprint preprocessing and spontaneous recalibration. The latter is

capable of periodical updating the calibration dataset transparently to the

user and without any additional hardware.

Finally, the power consumption tests have shown that FM fingerprinting

is significantly more power-efficient than Wi-Fi. Depending on sampling
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rate and number of scanned beacons, the mobile device with FM position-

ing client provides 2.6 to 5.5 times longer battery life than in the case of

Wi-Fi localization, closely approaching the device’s maximum run time.
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Chapter 5

Evaluation of FM positioning using

broadcasting stations (FMB)

This chapter presents the results of experimental evaluation of indoor po-

sitioning based on broadcasting FM stations (FMB), the comparison with

other positioning systems, such as Wi-Fi and GSM. Also, an experimental

evaluation of FMB RSSI stability and its dependence on people’s presence

is provided.

5.1 Detection of active broadcasting stations

In Europe, the FM band spans from 87.5 to 108.0 MHz with 100 kHz

channel spacing. This results in 205 FM channels. While there are many

FM stations, usually not all of the available channels are utilized. Clearly, it

makes little sense for FM positioning to consider inactive channels without

transmission, as they introduce additional noise into fingerprints, increase

scanning time and storage requirements. Therefore, there is a need for a

method capable of detecting the channels with active transmission.

The common method of finding active broadcasting stations during seek

tuning, employed by virtually all FM receivers, is RSSI thresholding, where

the receiver registers a broadcasting station at a specific channel if its RSSI
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level is above the predefined threshold [77, 94, 117]. While this approach

is widely used due to its simplicity, it is not very robust, as setting the

threshold too low would increase the number of false-positive detections.

On the other hand, with a too high threshold the receiver may not rec-

ognize less powerful stations. The manufacturers of FM receiver solutions

address this problem by introducing additional channel validation criteria,

such as peak noise detectors [77] and SNR estimates [117, 118], interme-

diate frequency checks [119, 120]. These measures significantly decrease

the number of false channel detections. Unfortunately, in some cases the

additional seek tuning qualifiers are not available, either due to hardware

limitations or when the channel activity data has not been recorded.

In order to evaluate the possibility of detecting active FM channels using

only RSSI data, the following experiment has been performed. Initially,

the list of active channels has been acquired using the receiver’s hardware

seek tuning functionality. The receiver was Brando USB FM radio (based

on Si4700 chip [121]), the channel spacing was set to 100 kHz and the RSSI

threshold was set to 15/63. The procedure was repeated three times and

the channels detected in all three cases were listed. Totally, 54 channels

have been detected; 7 of them had very high level of audio noise. At the

next step, the whole FM band was scanned three times and mean RSSI

values for each channel were recorded. The acquired data is presented in

Figure 5.1.

According to the results, the assumption that active stations correspond

to peaks on RSSI graph, is not valid. Instead, the active stations usually

appear within 100 kHz from the peaks, which are produced by additive

interference of adjacent channels (see, for example, 91.6 MHz in Figure 5.1).

Such cases are usually associated with a sharp increase of the RSSI. If there

was no sharp increase of the RSSI, then the station is probably associated

with the peak. Finally, all the active stations found by seek tuning have
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RSSI above the threshold (15/63 in this experiment) and are separated by

at least 200 kHz. The algorithm implementing these considerations in R

language [111] is presented in Listing 5.1.

#I d e n t i f i e s a c t i v e FM channe l s us ing RSSI sweep data

#Input :

# r s s i − vec t or o f s t a t i on s ’ mean RSSI va lu e s

# r s s iThr e s ho l d − minimum l e v e l o f a c t i v e channe l s

#Output :

# boolean vec t or i n d i c a t i n g whether the channel i s a c t i v e

getActiveFMChannels <− function ( r s s i , r s s iTh r e s ho l d = 15) {

nChannels <− length ( r s s i ) ; # number o f FM channe l s in the RSSI data

#boolean vec t or marking l o c a l RSSI peaks wi th TRUE va lues

i sPeak = peaks ( r s s i , span = 3 ) ;

r e s u l t <− rep (FALSE, nChannels ) ;

#band bounds are always cons idered a c t i v e

r e s u l t [ 1 ] = ( r s s i [ 1 ] >= r s s iTh r e s ho l d ) ;

r e s u l t [ nChannels ] = ( r s s i [ nChannels ] >= r s s iTh r e s ho l d ) ;

for ( i in 2 : ( nChannels −1)) {

r e s u l t [ i ] =

( r s s i [ i ] > r s s iTh r e s ho ld ) && # RSSI must be above the t h r e s ho l d

(

#i t i s a sharp increase ( by at l e a s t 25%) j u s t b e f o r e the peak

#(25% parameter va lu e prov ide s b e s t p r e c i s i on / r e c a l l va lu e s )

( isPeak [ i +1] && ( ( r s s i [ i +1] − r s s i [ i ] ) / r s s i [ i ] < 0 . 2 5 ) ) | |

#i f no s t a t i o n de t e c t e d at the peak s lope , i t i s on the peak i t s e l f

( isPeak [ i ] && ! r e s u l t [ i −1])

) ;

}

return ( r e s u l t ) ;

}

Listing 5.1: Active station detection algorithm.
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Figure 5.1: Detection of active FM channels using RSSI data.
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The results of active channel detection using RSSI data are presented

in Figure 5.1. The algorithm found 45 active channels, with 80% precision

and 67% recall with regard to the 54 channels found by seek tuning. For

the FM positioning, it is more important to minimize the number of false

positive detections rather than false negatives; in other words, it is better

to miss some active stations rather than rely on high-power noise. The 80%

precision demonstrated by the presented algorithm provides a suitable basis

for identification of active FM channels using only RSSI data.

5.2 FMB positioning system performance

This section provides performance evaluation results of the positioning

system using RSSI fingerprints of broadcasting FM stations.

The experimental environment was the same as in the FML positioning

experiments (Figure 4.1 in Chapter 4). The furniture layout, however, has

changed since then, which changed the spatial distribution of RSSI and

also influenced the positioning accuracy results. Due to these changes, the

FML results presented in this section are different from the FML results

previously reported in Section 4.1.2.

Before the measurements, the list of active FM channels was acquired at

several parts of the room using Brando USB FM receiver’s “seek tuning”

capability (RSSI threshold was set to 15/63). All detected channels were

combined into a single list of 76 active FM stations. Three local FM

transmitters were installed at the locations shown in Figure 4.1 and tuned

to transmit DTMF “1” signal at frequencies not occupied by broadcasting

stations.

FM fingerprints were acquired by Samsung Omnia 2 smartphone. The

RSSI values were collected at the points defined by a 1 m grid; due to the

furniture, totally 40 points have been measured in the 12×6 m room. The
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experimenter was always facing the same direction. Each FM fingerprint

included 10 RSSI samples of each of 79 channels (76 broadcasting stations

and 3 local transmitters).

The preprocessing step comprised normalization of the fingerprints’ RSSI

values to 0..1 range in accordance with the characteristics of the corre-

sponding receivers (Appendix B.1). To recognize locations by fingerprints,

a k-nearest neighbour classifier (k = 1) has been used (see Section 3.4).

The positioning performance was evaluated using leave-one-out approach

(Section 3.4.3).

Figure 5.2: FMB and FML positioning accuracy.

The performance results of the FMB positioning system using all broad-

casting FM stations are presented in Figure 5.2 (local beacons are ex-

cluded). The median positioning error of the system is 0.91 m, the 95th

percentile error is 4.71 m. For confidence levels of up to 90%, FMB out-

performs the FML positioning based on three local beacons. Evidently,

such a high FMB performance should be attributed to the high number of
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used beacons: there is evidence in the literature that suggests that wider

fingerprints result in better positioning performance [2, 50, 51, 72].

5.2.1 Accuracy vs. number of beacons

In the previous section, all the beacons have been used for positioning.

However, wide fingerprints take more time to acquire and increase the

dimensionality of the classification task, thus increasing the computational

requirements of the positioning system. Therefore, it would be beneficial

to find a trade-off between the fingerprint width and localization accuracy,

assuming that not all of the beacons contribute to positioning equally.

Indeed, if the character of obstacles between the test environment and

certain broadcasting stations is the same for the majority of test points,

the signal properties from such station are likely to remain the same for the

large part of the environment and such a station can be safely excluded.

This section describes a number of FMB beacon selection approaches and

evaluates how number of beacons (fingerprint width) affects the positioning

accuracy.

One of the most obvious, although rather näıve, methods is to select the

stations with highest signal strength, which comes along with the inverse

approach of preferring the stations with low RSSI values. The results for

these approaches are presented in Figure 5.3. As one can see, the two

methods have similar performance in terms of median error (Figure 5.3a).

For higher confidence levels, the results are inconsistent: sometimes weaker

stations perform worse (at 67%), sometimes better (at 95%). The unstable

performance of strong stations at 95% confidence (Figure 5.3c) can be

explained by increased variation of the high RSSI levels, which results in

few points with high positioning error, which, in turn, significantly affect

the high-confidence positioning performance.

The presented findings are in contradiction with the results previously
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(a) 50th percentile (median) error

(b) 67th percentile error

(c) 95th percentile error

Figure 5.3: FM positioning accuracy vs. number of beacons (for different beacon selection
methods).
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Figure 5.4: RSSI difference caused by path loss at indoor and outdoor scales.

demonstrated for outdoors. Fang et al. [2] have found that in outdoor

scenarios selecting stations with stronger signals leads to better position-

ing accuracy than for weak-signal stations [2, Fig. 4]. To understand the

reasons of this inconsistency, let us consider the difference between indoor

and outdoor positioning using broadcasting beacons. In outdoor scenario,

the distances between test points are relatively large (100–150 m in [2]).

At such distances, the signals of nearby (strong-signal) stations are subject

to significant path loss (see Section 2.1.4.1). In indoor environments, the

distances between test points are by orders of magnitude smaller (1 m in

Section 5.2), and path loss has minimal effect on signal propagation (see

Figure 5.4). In this case, the FM signal RSSI varies between indoor loca-

tions mainly due to walls and other obstacles, which equally affect all bea-

cons transmitting from the same direction, despite their signal strengths.
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Therefore, in indoor scenarios stronger stations have no advantage over

weaker ones in terms of positioning performance.

As the results suggest, the averaged signal strengths of individual sta-

tions are not a good indication of their contribution to positioning per-

formance. Instead, the suitability of each station should be estimated by

taking into account the properties of the test environment. The third ap-

proach considers this by selecting the stations with the most diverse signals

across the test points. In particular, it evaluates the standard deviation

of signals from a beacon using averaged fingerprints of every test point. It

can be argued, that a high signal diversity might be caused by external

interfering factors rather than by the location of test points. Nevertheless,

the described approach outperforms the strongest/weakest station methods

for small number of beacons (see Figure 5.3). As the number of beacons

increases, the accuracy of this approach becomes similar to the others,

possibly due to the external interference mentioned above.

Figure 5.5: FMB positioning using 7 beacons with highest signal diversity.

The “highest diversity” graphs in Figure 5.3 have an evident local min-
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imum at 7 stations, for which the accuracy of the system is only slightly

inferior to that with all 76 beacons. Figure 5.5 confirms that the median

error of a system using only 10% of all beacons is 1.3 m, or only 0.4 m

worse than that of the full-scale system.

The presented results confirm that careful selection of broadcasting FM

beacons can reduce the fingerprint width by 90% with only minor degra-

dation of positioning accuracy.

5.2.2 Comparison of FMB and Wi-Fi positioning accuracy

This section provides a comparison of experimental results of FMB po-

sitioning performance and that of Wi-Fi, which is the current de-facto

standard of indoor localization.

The Wi-Fi fingerprints were collected with Samsung Omnia 2 device,

simultaneously with the FM data, as described in Section 5.2. 10 Wi-Fi

samples were acquired at each point with 1 s interval. Totally, there were

17 different Wi-Fi beacons in the dataset (many of them only at certain

points). The collected RSSI values were normalized to 0..1 range according

to the device specifications (Appendix B.1).

For classification was used the same kNN (k = 1) method as in the

FMB case. The beacons missing in particular fingerprints, were marked by

not-a-number (NaN) RSSI values and were ignored by the kNN. So, the

distance between fingerprints was evaluated using information only about

the beacons present in the test fingerprint. The classification accuracy was

evaluated using leave-one-out method.

The results are presented in Figure 5.6. The median error for the Wi-Fi

system is 1.6 m (versus 0.9 m for FMB) and in all cases the positioning

accuracy is within 4.5 m (6.0 m for FMB). As shown in the graph, FMB

outperforms Wi-Fi system for confidence levels of up to 90%. This can be

explained by the significantly higher number of FMB beacons (76 versus
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Figure 5.6: FMB and Wi-Fi positioning accuracy using all beacons (76 and 17, respec-
tively).

17 of Wi-Fi). On the other hand, all Wi-Fi beacons are installed in the

same building and are less affected by external interference sources.

5.2.3 Performance of a combined FMB and Wi-Fi system

In the related work, it has been demonstrated that a fusion of different

positioning methods can result in better positioning performance [43, 112,

122]. This section evaluates the performance of a combined FMB and Wi-

Fi positioning system.

A simple data fusion approach has been used to combine the two sys-

tems, where the FMB fingerprints acquired in previously described experi-

ments were widened with Wi-Fi fingerprints. A normalization of the RSSI

values according to specifications of the appropriate wireless module has

been performed to ensure balanced contribution of both technologies. It

should be noted, however, that the imbalance caused by different width

of the original fingerprints was not addressed, and the system with wider
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fingerprints influenced the similarity evaluation to a larger extent.

(a) Using all 76 FMB and all 17 Wi-Fi beacons

(b) Using 7 best FMB and all 17 Wi-Fi beacons

Figure 5.7: Combined FMB and Wi-Fi positioning accuracy .

Figure 5.7 provides the comparison of standalone and combined sys-

tem for the case when all FMB beacons are used and a more practical
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option, when only a subset of beacons is employed (the selection criteria

are described in Section 5.2). In both cases, the combined system slightly

outperforms the standalone ones, except for the 100% confidence level,

where Wi-Fi dominates. In practical use, when absolute accuracy is not

required, the combined FMB+Wi-Fi system employing all the beacons pro-

vides 2.8 m accuracy (with 90% confidence), which is better than for any

of the systems used alone.

5.2.4 Comparison of FMB and GSM positioning accuracy

Some promising results have been previously demonstrated for indoor GSM

localization (see Section 2.2.2). GSM networks are similar to FMB in the

sense that the beacons are external to the test environment and in most

cases provide zero-cost infrastructure for an indoor positioning system.

This section compares the performance of FMB and GSM indoor position-

ing systems.

The GSM data were collected simultaneously with the FM and Wi-Fi

fingerprints, as described in previous sections. An HTC Artemis smart-

phone was used to collect the RSSI fingerprints for 7 nearby GSM base

stations. For each test point, 6 GSM samples were recorded with 5 s inter-

val, which is the smartphone’s internal update rate of GSM information.

Totally, there were 15 different cell IDs in the dataset. The RSSI values

were normalized to 0..1 range; the values for beacons not detected in a

particular fingerprint were set to “not a number” (NaN) value.

As in the previous cases, the association between fingerprints and lo-

cations was performed by a kNN (k = 1) classifier and evaluated by the

leave-one-out approach (Section 3.4.3). Similarly to the Wi-Fi evaluation,

missing GSM beacons (labelled by “NaN” RSSI values) were ignored by

the kNN distance evaluation.

The results presented in Figure 5.8 are consistent with GSM position-
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Figure 5.8: FMB and GSM positioning performance.

ing results for other environments (3.4 m median error in a residential

house [50, Table 5]). Unsurprisingly, with 76 beacons FMB easily outper-

forms GSM. However, FMB also demonstrates superior performance even

when only 7 selected beacons are used (see Section 5.2.1 for the selection

method).

5.3 RSSI stability and people’s presence

From the radio waves perspective, people are complex-form objects con-

sisting primarily of water. As such, they can reflect and attenuate radio

waves and thus influence the signal distribution in the environment, just

like other indoor obstacles. Unlike other objects, however, people perform

such actions as moving, rotating, crouching, — and thus represent a highly

dynamic and hard-to-predict interfering factor that complicates signal dis-

tribution map even further.

Unfortunately, there are few experimental results on how people pres-
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ence and movement influence radio-based positioning system performance.

Moreover, the existing results are contradictory. Zemek et al. [35] per-

formed experiments in a shopping center and found that presence of mov-

ing people has little impact on positioning accuracy. In contrast, several

works evaluated Wi-Fi based positioning systems, and found that the posi-

tioning accuracy drops dramatically when the mobile client is surrounded

by people [7, 36].

In order to evaluate the RSSI dependence on people presence, two exper-

iments have been conducted in indoor environments with different crowd

intensity.

5.3.1 Experiment 1 (medium activity levels)

The first experiment took place in a university mensa (canteen). The envi-

ronment was a square-shaped room of about 30×30 meters; the maximum

capacity was 150 people. Two datasets of 50 minutes each have been col-

lected at canteen peak hours (13–14 o’clock) and at the evening (18–19

o’clock) when the room was empty. During the lunch-time phase of the

experiment, the canteen occupation varied from 70% in the beginning to

90% in the peak time and to about 20% near the closing time (Figure 5.9).

Figure 5.9: Canteen occupation profile during the “crowded” phase of the first experiment.
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The environment was highly dynamic: people were arriving, searching

for places, and eventually leaving. A Samsung Omnia 2 smartphone placed

in the middle of the room collected complete Wi-Fi RSSI fingerprints every

5 s, and complete FM fingerprints every 35 s (this corresponds to continous

scanning of all of 205 FM channels, from 87.5 to 107.9 MHz with 0.1 MHz

step). The second dataset has been collected about 4 hours later, at the

same conditions, but the room was empty.

At the preprocessing stage, 26 FM beacons were selected from 205

scanned channels using the procedure described in Section 5.1. For Wi-Fi,

some weak beacons were detected only few times and it was impossible to

calculate their statistics. Therefore, the beacons observed for less than 10%

of the dataset duration were excluded from analysis. To adjust the 6-fold

difference between Wi-Fi and FM sampling rates, only every sixth of the

preprocessed Wi-Fi samples was left in the dataset. After preprocessing,

each dataset contained 84 fingerprints both for FM and Wi-Fi. All RSSI

values were normalized to the 0..1 range, using the raw FM and Wi-Fi

RSSI ranges from device specifications (see Appendix B.1).

Figures 5.10 and 5.11 demonstrate the effect of people’s presence and

movement on the RSSI distribution for each of FM and Wi-Fi beacons.

The mean values represent the static influence of crowd presence, as any

dynamic changes get averaged out. The standard deviation (s.d.), in turn,

reflects the influence of dynamic component of the crowd, such as people

arriving, leaving and moving around.

It is easy to see that the mean RSSI values for most of the Wi-Fi beacons

in an empty room are about 20% higher than within a crowd (Figure 5.11a).

However, the change is not that obvious for the FM measurements (Fig-

ure 5.10a). To clarify the dependence, Figure 5.12a provides a graph of

relative change of mean RSSI for “empty” over “crowded” rooms. The

histogram in Figure 5.12a is relatively symmetric and centered around
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(a) Mean FM RSSI

(b) FM RSSI standard deviation

Figure 5.10: FM RSSI statistics for empty and crowded environment.

(a) Mean Wi-Fi RSSI (b) Wi-Fi RSSI standard deviation

Figure 5.11: Wi-Fi RSSI statistics for empty and crowded environment.
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0.9–1.0, which means that the FM RSSI changes were random and did not

follow a specific trend, as in case of Wi-Fi; the number of FM stations with

increased RSSI is almost the same as those with decreased RSSI.

Thus, it is possible to conclude that in the presence of people Wi-Fi sig-

nal gets attenuated by bodies, while FM signals are generally not affected.

(a) “Empty” to “crowd” mean RSSI ratio (b) “Crowd” to “empty” RSSI s.d. ratio

Figure 5.12: Relative changes of RSSI characteristics.

The picture changes, however, when the dynamic behaviour of the sig-

nals, represented by their standard deviations, is considered (Figures 5.10b

and 5.11b). Both FM and Wi-Fi signals fluctuate significantly more within

a crowded environment than in an empty room. But while standard devia-

tion of the Wi-Fi fingerprints doubles, the FM signal fluctuations increase

manyfold (Figure 5.12b). A possible explanation for this fact is that radio

waves of FM band (about 100 MHz) are scattered by human bodies, while

Wi-Fi waves with much higher frequency (2.4 GHz) are mostly absorbed

due to increased conductivity of biological tissue at high frequencies [41,

p. 71].

The scatter plots in Figure 5.13b provide an alternative view of the

results, and Table 5.1 summarizes the signal statistics over all beacons.

It should be noted, that while the variance of FM signals significantly

increases in a dynamic crowded environment, it still remains below the

109



5.3. RSSI STABILITY CHAPTER 5. FMB EVALUATION

(a) Empty (b) Crowded

Figure 5.13: Mean vs. s.d. of FM and Wi-Fi RSSI in the empty and crowded canteen.

Table 5.1: RSSI statistics over all beacons (student canteen).

FM Wi-Fi
Mean SD Mean SD

Empty 0.147 4.60 · 10−3 0.259 1.12 · 10−2

Crowd 0.150 1.43 · 10−2 0.211 1.90 · 10−2

level of Wi-Fi’s fluctuations. Thus, FM fingerprints are more stable than

Wi-Fi ones in less populated environments; in crowded environments both

technologies are prone to similar amount of noise.

5.3.2 Experiment 2 (low activity levels)

The second experiment considered a less dynamic environment and focused

on the distortions of FM and Wi-Fi signals caused by people performing

conventional office activities. Signal characteristics have been compared

for three scenarios: empty room in daytime, populated room in normal

office hours, and empty room in nighttime. The two empty-room scenarios

(daytime and nighttime) have been considered in order to recognize FMB

signal distortions that could be introduced by external noise sources, such

as city traffic and activities in adjacent rooms. Such noises are generally
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attributed to human activities, which are minimal in the nighttime.

A Samsung Omnia 2 smartphone has been placed on a desk in the middle

of the office (Figure 4.1) and recorded FM and Wi-Fi RSSI fingerprints for

3 full days, Saturday to Monday. From the recorded data, three 6-hour

datasets have been extracted:

1. Sunday, 12 to 18 o’clock (“empty room, daytime”);

2. Monday, 0 to 6 o’clock (“empty room, nighttime”); and

3. Monday, 12 to 18 o’clock (“populated room”).

On Monday, two people were present in the room; the desk with the

smartphone remained unattended for the whole period. The collected FM

fingerprints included 205 channels and repeated every 36 s (this value cor-

responds to the maximum FM scanning speed of the device). Wi-Fi fin-

gerprints were acquired every 6 s.

The preprocessing phase included normalization of raw RSSI values to

the range 0..1, using the minimum and maximum RSSI values reported

in device specification (see Appendix B.1). In order to accommodate for

different sampling rates of FM and Wi-Fi, only every sixth Wi-Fi sample

has been considered. Some weak Wi-Fi beacons were detected only few

times during the experiment. In order to ensure a fair comparison, the

beacons present in less than 10% of fingerprints, were excluded. For the

FM data, the 205-channel fingerprints were narrowed to 23 active stations,

using the approach described in Section 5.1. After preprocessing, each

dataset contained 592 samples with 23 FM and 13 Wi-Fi beacons.

Figures 5.14 present a per-beacon comparison of RSSI statistics for each

scenario. Evidently, both FM and Wi-Fi signal characteristics in an empty

room remained virtually the same, irrespective of time. During the work

hours, however, the situation changes; both wireless modules detect in-

creased fluctuations of the received signals, reflected by significantly higher
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(a) Mean FM RSSI (b) Standard deviation of FM RSSI

(c) Mean Wi-Fi RSSI (d) Standard deviation of Wi-Fi RSSI

Figure 5.14: FM and Wi-Fi RSSI statistics for an office environment.

standard deviation of RSSI values. Although the increase is larger for the

FM, the FM RSSI deviation still remains well below that of Wi-Fi, partly

due to weaker signals. Remarkably, mean FM RSSI was not affected by

people’s presence. Average Wi-Fi readings, however, slightly decreased.

An integral view of mean values and their deviations is presented in Fig-

ure 5.15.

The results presented in Table 5.2 are in a good agreement with the

previous experiment (Section 5.3.1). Mean FMB RSSI values are indiffer-

ent to the presence of people, while Wi-Fi values slightly decrease. Both

technologies demonstrate stronger fluctuations of signals in populated envi-

ronments; moreover, the mean Wi-Fi RSS slightly decreases. This behavior
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(a) FM (b) Wi-Fi

Figure 5.15: Mean vs. s.d. of FM and Wi-Fi RSSI. Note the different scales of the axes.

Table 5.2: RSSI statistics over all beacons (office).

FM Wi-Fi
mean s.d. mean s.d.

Empty (day) 0.133 3.20 · 10−3 0.228 2.03 · 10−2

Empty (night) 0.132 3.40 · 10−3 0.228 2.06 · 10−2

Populated 0.136 8.01 · 10−3 0.216 3.20 · 10−2

is well-correlated with other reports about Wi-Fi RSS distribution [107].

In all cases, however, the FM jitter was less or equal to that of Wi-Fi.

From the above, it can be concluded that in comparison to Wi-Fi, FM

radio signals are more robust to people’s presence and movement in low

and medium crowd density.

5.4 Summary

This chapter presented the experimental results proving the feasibility of

indoor positioning with broadcasting FM stations (FMB). At the client

side, the system employs the FM radio hardware, already present in many

mobile devices. The passive receiver allows the utilization of the FMB

positioning in sensitive environments where other radio technologies, such

as Wi-Fi or GSM, are prohibited for safety reasons.
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Table 5.3: Summary of FMB, Wi-Fi and GSM indoor positioning accuracy.

Confidence FMB Wi-Fi GSM FMB (10% of beacons)

50% 0.9 1.6 3.1 1.3
67% 1.3 1.9 4.2 2.1
90% 3.4 3.5 6.2 4.0
95% 4.7 4.0 9.1 4.9

The summary of FMB, Wi-Fi and GSM positioning accuracy measured

in same environment is presented in Table 5.3. In comparison to Wi-Fi,

FMB provides superior accuracy at confidence levels of up to 90% in same-

environment tests. Using only 10% of stations, FMB performed similar to

Wi-Fi. In contrast to Wi-Fi systems, however, the FMB localization does

not require any in-building infrastructure and consequently has minimal

hardware costs. The GSM, which also uses external beacons, demonstrated

far inferior accuracy than either FMB or Wi-Fi.

This chapter also evaluated how the presence of small and medium num-

bers of people influences FM and Wi-Fi signal strengths. It has been found

that the average Wi-Fi RSSI consistently decreased in the presence of peo-

ple: by 20% in student canteen at peak hours and by 5% in a typical

office with few people. For FM, the mean RSSI changed differently across

stations; for most (80%) of the stations the shift was within 10%. The

standard deviation of the signal strengths for both technologies signifi-

cantly increased in populated environments: by 50–70% for Wi-Fi and by

135–170% for FM. Despite the higher increase, the standard deviation of

FM RSS was in all cases lower or equal to that of Wi-Fi.

114



Chapter 6

Application scenario

The FM positioning system described in previous chapters has been suc-

cessfully used within a research project which studied variations of psycho-

logical state in office workers [123, 124].

The hypothesis of the project was that people who spend most time

sitting at their desks would have worse mood at the end of the day than

those who make regular pauses, such as coffee breaks or socialization with

colleagues. Another hypothesis was that some working activities may have

higher impact and induce more negative mood than others (for example,

missed lunch or repetitive meetings with a boss).

In this respect, the potential working activities and socialization events

were associated with the locations where they typically occur: office (work-

ing), conference room (being at a meeting), coffee room or balcony (having

a break), canteen or cafeteria (having lunch). Apart from the location, a

number of psychophysiological parameters were recorded to monitor the

mood state. The parameters were identified from clinical studies and in-

cluded body movements level, heart rate and its variability, sleep quality

and a number of mood characteristics. The monitoring platform consisted

of a Samsung Omnia 2 smartphone running MyExperience tool [115] cus-

tomized for the project, and an external Bluetooth-connected sensor from
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Shimmer Research [125], which combined an accelerometer and an ECG

sensor. The ground truth about psychological state has been collected via

self-rating questionnaire.

As the data recording sessions lasted for the whole working day (8 hours),

it was critically important that the smartphone had a sufficient memory

capacity and battery life. While memory is not an issue for current de-

vices, the battery life could be seriously affected by wireless modules used

for localization and connectivity with the external sensor.

The FM positioning was well suited to the localization task due to the

high power efficiency of FM receivers (see Section 4.4). A 5-minute long

recording of calibration fingerprints have been performed in five predefined

key locations (an office, a students’ lab, a meeting room, a coffee room,

and a balcony shared by the office and the lab). Initially, only broadcasting

FM stations were considered; however, preliminary tests showed that the

meeting and coffee rooms had similar fingerprints and thus were often

mixed up by the FMB-only positioning. The issue was resolved by installing

two local FM transmitters in the coffee room and the lab.

Figure 6.1: 5-day log of user location, objective and perceived activity levels.

Figure 6.1 presents a 5-day-long sample recording of one participant.
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The displayed values are averaged over 30-minute intervals and include

location and activity levels, both subjective (from questionnaires) and ob-

jective (from accelerometers in the phone and the on-body sensor). As the

graph shows, the FM localization system provided a good recognition of

known places. Moreover, it could also detect the cases when the person left

the building during lunch time: the FM fingerprints collected in canteen

were clearly dissimilar from the training samples in terms of signal space

distance (Figure 6.2).

Figure 6.2: Average signal-space distance between training FM fingerprints and those
acquired during experiments. Periodical peaks occurring at lunch time correspond to the
canteen building which has not been not included in the training set.

The results of the study demonstrated a noticeable correlation between

mood changes and some activities [124]. In particular, the project provided

an experimental proof that coffee breaks during the work are linked with

improving mood state, while the absence of any breaks is associated with

negative changes. The application of the power-efficient FM positioning

has enabled a full-day uninterrupted data acquisition, with good accuracy

and minimal distraction of the users.
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Conclusion

The current de-facto standard of indoor positioning, Wi-Fi based local-

ization, has a number of constraints, such as limited coverage and low

battery life. The solution proposed in this thesis leverages FM radio sig-

nals for indoor positioning; the system was proven to provide an accuracy

comparable to Wi-Fi, with significantly higher coverage and battery life.

Two types of signal sources have been considered: local FM transmitters

and broadcasting FM stations.

The first approach, FML, employed local short-range FM transmitters,

the consumer-grade devices which do not require licensing. FML localiza-

tion demonstrated the performance similar to Wi-Fi (see Figure 7.1 below).

A combination of FML and Wi-Fi provided a better positioning accuracy

than either of the systems used alone.

The second approach leveraged radio signals from broadcasting FM sta-

tions (FMB). FMB localization does not require any in-building infras-

tructure and thus has zero hardware costs. Moreover, the coverage of FM

broadcasts is much wider than that of Wi-Fi or cellular networks. Finally,

due to the high number of available stations, in the laboratory tests the

FMB system provided better accuracy than Wi-Fi in 90% of the cases

(Figure 7.1). The performance of GSM positioning, which also employs
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Figure 7.1: Accuracy of FML, FMB, Wi-Fi and GSM indoor positioning systems.

external beacons, was notably inferior to FMB or Wi-Fi.

To counter the degradation of positioning accuracy, inherent to all finger-

printing based positioning systems (including FM), this thesis has proposed

the spontaneous recalibration approach, which utilizes periods when de-

vice’s location is known, to update calibration data of the positioning sys-

tem. Unlike other recalibration methods, spontaneous recalibration does

not require additional hardware nor special efforts from the user.

A considerable part of the thesis has been dedicated to the study of

influence of human presence on FM and Wi-Fi signal strength. Both FM

and Wi-Fi signals were found to be sensitive to the presence of people and

exhibited increased variations in such cases; the deviation of FM, how-

ever, was lower than that of Wi-Fi, except for a medium-density crowd

where they were equal. Wi-Fi signal strength in populated environments

decreased by up to 20% in comparison to empty-room case; FM changes

were incoherent among stations. It has also been found that the FML RSSI

depends on user orientation, however, the dependence has minor effect on
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positioning accuracy and cannot be utilized to recognize user direction from

signal fingerprints.

The main contributions of this thesis are:

• demonstration of feasibility of accurate indoor localization using lo-

cal short-range FM transmitters, with accuracy comparable to Wi-Fi

based systems;

• demonstration of feasibility of accurate indoor positioning using sig-

nals of broadcasting FM stations, with accuracy superior to Wi-Fi

and GSM based systems (for confidence of up to 90% and in all cases,

respectively);

• an analysis and quantitative evaluation of the influence of human pres-

ence on the stability of FM and Wi-Fi signal strengths;

• a method for countering the accuracy degradation of fingerprinting-

based positioning systems.

The main advantage of the presented concepts is that they can be readily

deployed: FM receivers are available in many mobile devices. In compar-

ison to Wi-Fi, FM tuner has lower power consumption and as a result

provides 2.6 to 5.5 times longer battery life in localization mode. The

client-side FM radio is a passive receiver — thus, FM positioning may be

used in sensitive areas where radio transmission, such as Wi-Fi or GSM,

is prohibited for safety or security reasons. At the moment, FMB is the

only wireless indoor positioning technology capable to work in a completely

passive manner, without introducing any additional signals into the envi-

ronment. Other systems either require an infrastructure of transmitting

beacons (Wi-Fi, FML, Bluetooth, RFID, UWB, ultrasound, infrared) or

employ a transmitting mobile device (cellular networks).
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7.1 Future work

The FM positioning tests in this thesis comprised two separate phases: fin-

gerprints collection for the whole environment, followed by their analysis.

However, in real life people move along trajectories, so that the next lo-

cation depends on the previous one. Taking into account this information

could significantly improve the confidence of position estimates.

Another concern regarding real-time FM localization is the time re-

quired to collect a wide FM fingerprint. Scanning several dozens of FM

channels may take a considerable time; in the meanwhile, the location can

change. Constraining the scans to only a subset of channels would impact

the accuracy. A smart channel selection algorithm could be a more appro-

priate solution. Due to the heterogeneity of indoor environments, different

points require different number of beacons for localization. From the cal-

ibration data, the mobile device can calculate a policy which specifies the

beacon to be scanned next in order to minimize the ambiguity of location

estimation. Thus, the beacons can be scanned in the optimal order, de-

pending on the already acquired data. This will result in faster convergence

of location estimates and, consequently, fast yet accurate localization.

At the moment, it is unclear if or how often the broadcasting FM sta-

tions change their transmission site, so that the signal starts to arrive from

a different direction. Such changes would obviously affect the positioning

performance. It might be possible to detect such cases by clustering the

channels which fluctuate in a correlated manner as the client moves — this

would mean that these stations are broadcasted from the same site. A

station which changed its location would stand out from the correlation.

Finally, while FM radio waves are theoretically insensitive to atmo-

spheric conditions, the influence of outdoor factors (such as weather, vehi-

cles) on the FMB performance requires further experimental evaluation.
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Experimental details

B.1 Characteristics of experimental devices

The characteristics of the FM and Wi-Fi receivers used in the experiments

are presented in Table B.1.

Table B.1: Characteristics of the mobile devices.

Model FM RSSI range Wi-Fi RSSI range
Nokia N800 0–15 (not used)

HTC Artemis (P3300) 0–63 −50 to −90 dB (with 10 dB step)
Brando USB FM Radio 0–63 n/a

Samsung Omnia 2 (i8000) 0–255 0 to −100 dB

While the actual Wi-Fi RSSI range of the Samsung i8000 is not speci-

fied in its manual, the value of −100 dB has been assumed for the lower

limit; the typical sensitivity of most Wi-Fi adapters is −95 dB [126]. The

upper limit of 0 dB was assumed with a great reserve, as the typical values

for other devices are −10 to −50 dB [126]. Note, that normalizing the

Wi-Fi RSSI using the upper limit of −10. . .−50 dB would have only in-

creased the mean and standard deviation of normalized Wi-Fi RSSI values

in Section 5.3
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B.2 Experimental setup of stereo channel

separation measurements

The experiment has been performed outdoors, outside of UBiNT lab. A

König MP3 player with an embedded FM transmitter [92] was used as

beacon. A 2 m wire has been used as the antenna. The beacon transmitted

a stereo sound represented by the components of DTMF “1” signal (sine

wave of 1209 Hz on the left channel, and 697 Hz on the right one). The

receiver was Brando USB FM radio [110] connected to a laptop. A 10 s

long audio sample (44100 Hz sampling frequency) was recorded at every

0.5 m distance step.

Stereo channel separation was measured as a difference of magnitudes of

the corresponding bands of a spectrum acquired using FFT with Hanning

window with length 8192.

146


