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Abstract—This paper presents a system which combines a
zero-velocity-update-(ZUPT-)aided inertial navigation system (INS),
using a foot-mounted inertial measurement unit (IMU), with
opportunistic use of multi-frequency received signal strength
(RSS) measurements. The system does not rely on maps or
pre-collected data from surveys of the radio-frequency (RF)
environment. Instead it builds its own database of collected
RSS measurements during the course of the operation. New
RSS measurements are continuously compared with the stored
values in the database, and when the user returns to a previously
visited area this can thus be detected. This enables loop-closures
to be detected online and used for error drift correction. The
system utilises a distributed particle simultaneous localization and
mapping (DP-SLAM) algorithm which provides a flexible 2D
navigation platform that can be extended with more sensors. The
experimental results presented in this paper indicates that the
developed RSS SLAM algorithm can, in many cases, significantly
improve the positioning performance of a foot-mounted INS.

I. INTRODUCTION

A reliable and accurate positioning system is expected

significantly improve the safety for first responders and to

enhance their operational efficiency. To achieve this, a first

responder positioning system must be able to provide at least

room level accuracy during extended indoor operations, and

in other global navigation satellite system (GNSS)-challenged

environments. There are also other important requirements

besides raw performance, such as weight and cost, to con-

sider when designing a personal positioning system intended

for safety-of-life applications. The system should be able to

operate in unknown environments without relying on any pre-

installed infrastructure [1]. An overview of the challenges

associated with reliable indoor positioning for first responder

applications, as well as sensor types that could be considered

when implementing such systems, is given in [1].

Wearable mobile indoor positioning systems, intended for

first responders and other pedestrian applications (such as

location-based services, pervasive gaming, and navigation sup-

port), have received increased attention the last decade or so.

A first approach to the problem is to use inertial sensors. With

This work was funded by the Swedish Armed Forces through the Command
and Control R&D program, reference AF.9220209. The work has also been
supported by the project Cooperative Localization (CoopLoc) funded by
Swedish Foundation for Strategic Research (SSF), the Swedish strategic
research center Security Link and the Vinnova Industry Excellence Center
LINK-SIC

the rapid progress of sensor miniaturization (micro electro

mechanical systems, MEMS) technology, inertial measurement

units (IMUs) have become both small and affordable enough

to be used in pedestrian and professional applications. Exam-

ples of operational systems employ pedestrian dead-reckoning

(PDR) type of algorithms are [2, 3]. In these the data from

accelerometers, gyroscopes, magnetometers are used to detect

when the person takes a step and to determine the orientation

of the IMU. Motion classification and models can then be

applied to decide upon the direction of the step.

Lately, many research groups have turned their focus to-

wards foot-mounted IMUs, which has the potential to provide

improved accuracy and robustness [1]. An early example using

shoe-mounted inertial and magnetic sensors was presented

in [4], and since then several similar systems have been

developed [2, 5–8]. The key idea is to detect and utilize the

stand-still phase of the foot during each gait cycle in a zero-

velocity-update (ZUPT). This limits the drift caused by double

integrating imperfect measurements, but cannot completely

alleviate the effect which results in a degrade in the position

estimate over time and/or travelled distance [8]. To obtain long

time stable estimates, additional sensor information must be

used.

One approach to improve the long term stability is to

incorporate information about beforehand measured received

signal strength (RSS) maps or floor plans to support the

positioning. In [9] a method for acquiring RSS measurements

to create a map is described and it is represented using

Gaussian processes (GP). An early example of utilizing such

map information is the RADAR system [11]. These methods

have gained attention as they are suitable for implementation

on smartphones, which have the required sensors. Relying

on pre-collected map information works well where this is

possible [12], e.g., in shopping malls or office buildings [13].

However, first responder applications are more demanding as

RSS maps cannot be obtained beforehand and, if they exist, are

prone to change. In these situations simultaneous localization

and mapping (SLAM) approaches can be employed instead.

There are several SLAM systems relying on RSS mea-

surements, e.g., WiFi GraphSLAM [14], an application of

GraphSLAM [15] to use RSS measurements from WiFi; the

GP based SLAM solution in [16]; and in [17] information from

both previously known and unknown WiFi access points are
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used for positioning. RSS measurements have also been used in

conjunction with foot-mounted INS systems, in the WiSLAM

method [18].

WiFi RSS measurements may fail in many first responder

scenarios for several reasons, the electricity in the building

may be lost or WiFi may not be installed at all. A less explored

alternative is to employ multi-frequency RSS measurements

of other opportunistic radio sources, e.g., FM radio and TV

stations. These are more or less available everywhere. The

study presented in [19] indicates that a combination of FM

and WiFi RSS measurements can be used to distinguish

between different rooms with a high level of accuracy. This

is collaborated by [20], which, however, also concludes that

the RSS may vary significantly over time. A SLAM system

utilizing opportunistic radio signals to navigate a small robot

is described in [21], where the RSS map is modeled as a

piece-wise linear function. A SLAM system, based on IMU,

magnetometer, and FM RSS measurements and using a PDR, is

described and evaluated in [22]. The system developed in this

paper uses a similar approach, however, it integrates the multi-

frequency RSS measurements with a foot-mounted INS which

has the potential to provide higher accuracy and robustness

in first responder applications. Furthermore, the presented RSS

SLAM method differs from [22] as it incorporates a GP directly

in the SLAM map to model the RSS field variation [23].

The system presented here adopts the occupancy grid based

distributed particle SLAM (DP-SLAM) [24]. The occupancy

grid allows for limiting the memory requirements of the

algorithm, and the grid size provides a suitable positioning

resolution. Using the occupancy grid also provides for an

efficient way to determine if there are measurements available

in a certain region of space.

This paper is organized the following way. After this

introduction, the theory needed to perform RSS SLAM based

on a ZUPT-aided foot mounted-system is provided in Sec. II,

followed by a description of the experimental setup used to

validate the approach in Sec. III. Results from the experiments

are presented in Sec. IV, concluding remarks and a discussions

of possible future work are provided in Sec. V.

II. THEORY

In this section the basic underlying concepts and theory

which are used throughout the paper are presented.

A. SLAM

A general SLAM system can be described by the following

equations

xk+1 = f(xk, uk, vk), (1a)

mk+1 = mk, (1b)

yk = h(xk,mk) + ek, (1c)

where xk is the state, mk the map, uk known or measured

input, vk process noise, yk a measurement, and ek measure-

ment noise, all at time k. The model is divided into the motion

model (1a), the map dynamics (1b), and the measurement

model (1c).

A more in-depth explanation of the ZUPT-aided INS type

motion model and the RSS measurement model is provided

in this section. The map model follows the occupancy grid

concept described below, where it is also described how new

observations are added to the map at every iteration.

B. Map Representation

Distributed particle SLAM [24] is a particle filter based

SLAM method which uses an ancestry tree together with an

occupancy grid as map instead of landmarks. This way the

ancestry of each particle and all its modifications to the grid

can be tracked. When a particle is removed by resampling all

its entries in the grid are also removed. When a particle is

duplicated as a result of the resampling there is no need to

copy the entire map over to the new particle. Instead, a new

branch is created in the ancestry tree and the resampled particle

and its siblings share all entries made by their ancestors in the

occupancy grid made up to that point.

As the user moves in the environment and collects RSS

measurements these are stored in an occupancy grid. Since

the grid is combined with a particle filter this means that

at every iteration the particle cloud is spread out across a

number of cells. When a measurement update occurs, an RSS

fingerprint from the user’s true location will be recorded. Every

particle will then enter the recorded fingerprint along with their

identity, the current time and location into the grid cell which

they currently occupy.

C. Motion Model

The pedestrian motion model is based on a ZUPT-aided

INS [1] using a foot-mounted IMU. The state vector is given

by xk = (px, py, β, β̇)
T and comprises: 2D position (px, py),

a heading bias β, and a heading bias rate β̇. The motion model

takes the input uk, which is calculated using the current and

the previous position estimates from the foot-mounted INS

(using only position updates during consecutive zero-velocity

instances). The input consist of the travelled distance and the

heading angle

uk =

(
∣

∣pINS
k+1

− pINS
k

∣

∣

∠
(

pINS
k+1

, pINS
k

)

)

=

(

rk
φk

)

, (2)

where ∠(·, ·) is the quadrant compensated arctangent function.

The complete motion model is given by

xk+1 = xk +









rk cos(φk − β)
rk sin(φk − β)

T β̇

0









+









0
0
T 2

2

T









vk, (3)

where vk ∼ N (0, Q) and T is the time difference between

updates. The process noise compensates for errors in the INS

estimate, its covariance, Q, should reflect typical INS error

behavior and can as such be considered a tuning parameter.

The task of the particle filter is to constrain long term error

drift, and it is necessary to include the position in the state

vector since it is required for the grid mapping. The error

accumulation model is based on the model for foot-mounted
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IMUs suggested in [25]. Similar error accumulation behavior

has been observed by others, see e.g., [26]. The model used

here is based on the following assumptions:

• All position errors are due to heading drift.

• The heading error can be modeled with constant growth

rate.

• The heading error is a function of time, not distance.1

D. Input From ZUPT-aided Foot-mounted INS

When walking or running the human foot is stationary for

a short time when it is in contact with the ground. The idea

behind zero-velocity updates is to detect this moment when

the velocity of the foot is approximately zero and use this

information to update the states in whatever positioning filter is

being used. The moment the user’s foot comes to rest (during

the stance phase) and zero-velocity is detected, the 3D velocity

vector, as well as the pitch and roll angles, becomes observable

which can then be used to constrain the position error in the

system. For a foot-mounted INS to work well there are some

general guidelines:

• the foot should be on the ground often (stand still phase);

• a robust zero-velocity detection algorithm is needed; and

• performance depends on the user’s movements, but to a

lesser degree than for PDR-type systems.

In this work a foot-mounted IMU with three-axis accelerom-

eters and gyroscopes is utilized. An extended Kalman fil-

ter (EKF) is used to estimate the user’s position. A zero-

velocity detection algorithm is then introduced which takes

the gyroscope and accelerometer signals as inputs. There are

several way of constructing zero-velocity detection algorithms

but one which relies on both gyroscope and accelerometer

data usually performs better than those relying on just one of

these sensors [8]. Whenever zero-velocity is detected this is

introduced as a pseudomeasurement in the EKF.

E. RSS Fingerprints

The RSS of electromagnetic signals in indoor environments

are subject to rapid spatial variations due to multipath-induced

fading. These spatial variations are caused by the electro-

magnetic signals interacting with the environment, which can

be described in terms of well-known phenomena such as

reflection, scattering, and diffraction [27]. This can however

be exploited in positioning algorithms by using a technique

called fingerprinting. An RSS fingerprint is a set of mean signal

strength values collected at different frequencies. Generally a

number of samples are recorded at each frequency and the

mean values of the recorded sequences are stored in a vector.

In short, if the mean RSS value at a specific frequency is Λi

then the entire fingerprint vector is

Λ =
(

Λ1 Λ2 . . . Λn
)T

, (4)

1The error characteristics depends on the implementation. For instance,
some implementations of foot-mounted INS do not allow the error to grow
during a ZUPT. This assumption might thus be ill suited for such imple-
mentations, especially in scenarios where the user stands still for extended
periods of time. A better model would then be to instead let the error grow
with the travelled distance instead. Furthermore, the type of movement can
significantly affect the error statistics.

where n is the total number of frequencies used in the

fingerprint. A reason to use a set of n frequencies instead of

just one is that RSS values from one frequency may be found

at other locations. If a larger set of frequencies is used, then

the chance of finding a unique fingerprint is increased.

Adding more frequencies to the set can improve the unique-

ness of the fingerprint. However, blindly adding more frequen-

cies is not guaranteed to improve the fingerprint and some care

should be put into the selection process [20]. There are mainly

two aspects to consider when choosing which frequencies

to include in a fingerprint. The first being the frequency

(and wavelength) of the radio signal as it directly affects

how the signal interacts with objects in the environment. It

is therefore a good idea to include signals from different

frequency bands in the signal, as they will interact differently

with the environment. The second important aspect to consider

are the locations of the transmitters. If possible, signals should

be included which are transmitted from different directions and

distances relative to the operating area.

F. Gaussian Process Measurement Model

Each frequency in the RSS fingerprint vector is assumed

to be a function of its position in 2D space which can be

modelled with a GP. A GP is fully specified by its mean

function M(x) and its covariance function K(x, x′). The

expression

F ∼ GP(M,K), (5)

should then be interpreted as the function F is distributed as a

GP with mean function M and covariance function K. Given

a set of (possibly noisy) training samples from F and a prior

in the form of a mean function and covariance function, GPs

can be used to infer information about unobserved function

values. Let F be the known training samples and let F∗ be

the unobserved function values corresponding to the test inputs

x∗. The joint distribution of F and F∗ is
(

F
F∗

)

= N

((

µ

µ∗

)

,

(

Σ Σ∗

ΣT
∗ Σ∗∗

))

, (6)

where µi = M(xi), for i = 1, . . . , n, is the ith component

of µ and analogously for µ∗. The Σ matrices is shorthand

notation for the covariances between all combinations of test

and training inputs. The predictive distribution of the unknown

function values given the training samples becomes

F∗|F ∼ N
(

µ∗ +ΣT
∗ Σ

−1(F − µ),Σ∗∗ − ΣT
∗ Σ

−1Σ∗

)

. (7)

The corresponding posterior process given the training data

set D with both inputs and observed function values is

F|D ∼ GP(MD,KD), (8a)

MD(x) = M(x) +K(x, x′
∗)

TK(x, x′)−1(F − µ), (8b)

KD(x, x
′) = K(x∗, x

′
∗)−K(x, x′

∗)
TK(x, x′)−1K(x, x′

∗),
(8c)

where the functional dependence on x and x′ indicates that

the posterior process can be computed for an arbitrary set of

test cases. These expressions can also be found in e.g., [10].
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1) Sparse Approximation Methods: A well-known problem

with Gaussian processes for on-line applications is the com-

putational complexity. The main bottleneck is the inversion

of the covariance matrix which has computational complexity

O(n3), where n is the number of data points used to construct

the GP. One popular solution is to use a sparse approximation

of the full GP and a number of available methods are compared

and analyzed in [28]. This paper picks up on the ideas used in

[29] where an assumption is made about the structure of the

kernel function instead of the conditional distribution or the

likelihood. Consider the radial basis kernel function (RBF)

K(x, x′) = σ2
F exp

(

− |x−x′|2

2l2

)

. (9)

This kernel function has local support which means that

entries in the covariance matrix corresponding to measurement

locations which are far away from each other will be close to

zero. What is meant by far away is determined by the length

scale parameter l in (9), which determines how quickly the

correlation between points drop off.

If the correlation would be exactly zero, and not just close

to zero after a certain distance, this would enable efficient

implementations of GPs since only measurements from posi-

tions close to a predicted position would have to be included

when constructing the GP. This can be achieved by using

kernels with compact support. The RBF kernel in (9) can be

compactified as

K(x, x′) = σ2
F exp

(

− |x−x′|2

2l2

)

max
(

0,
(

1−
∣

∣

x−x′

d

∣

∣

)ν
)

, (10)

where d defines the compact region over which the kernel has

support and ν = 2⌊n
2
⌋ + 1 where n is the dimension of the

input to the GP. By compactifiying the RBF kernel in this way

it is guaranteed to remain positive definite [30]. By using (10)

and only data which is inside the compact region the results

will be almost as accurate as when also including data outside

of the compact region.

2) Hyper-parameter Selection: Given a set of measurement

values y, their corresponding positions x and a kernel function

K(x, x′), it is possible to make inference about the kernel’s

hyper-parameters. The marginal log-likelihood of the measure-

ment values given their positions and the hyper-parameters is

L = log p(y|x, θ) = − 1

2
log |Ky| −

1

2
yTK−1

y y − n
2
log(2π),

(11)

where K−1
y is the covariance matrix produced using the kernel

and the n data points and the mean function is assumed

zero, M(x) ≡ 0, for simplicity. It is worth to note that this

expression balances model fit and complexity automatically.

The first term is the complexity penalty term. The second term

is the data-fit measure and it is the only term which depends

on the measurement data y. The third term is a normalization

constant which can be left out from the optimization as it does

not depend on the data nor the hyper-parameters. It is now

possible to find the hyper-parameter values that maximizes

(11) using optimization routines.

3) Measurement Model: The measurement at time instant

k is an RSS fingerprint vector, yk =
(

y1k . . . ynk
)T

. Each

component, yik = Λi
k + eik, contain an RSS value for a

frequency as described in Sec. II-E and eik ∼ N (0, σ2
e) is the

measurement noise for component i. Using the current SLAM

estimate, the predicted measurement is distributed according

to

h(x̂k|k−1, m̂
i
k|k−1) ∼ N (ŷik,Σk) (12)

which is given by GP(Mi
k,K

i
k), where x̂k|k−1 and m̂i

k|k−1

are the predicted state and map for component i, respectively.

The compactified radial basis kernel function presented in

Sec. II-F1 with added measurement noise is used to construct

the GP covariance matrix

K(x, x′) = σ2
F exp

(

− |x−x′|2

2l2

)

·max
(

0,
(

1−
∣

∣

x−x′

d

∣

∣

)ν
)

+ σ2
eδxx′ , (13)

where δxx′ is the Dirac-delta function that is 1 if x = x′ and

otherwise 0.

The GP is created from training data which here corresponds

to previously recorded RSS values and their locations which

are stored in the map database. The number of recorded values

grows quickly during operation and it would be computa-

tionally intractable to use all of them in the GP. Instead

the approximation in Sec. II-F1 is used and only the RSS

fingerprints which are close to the RSS prediction are collected.

The parameter d corresponds to the size of the kernel’s

support.

The mean function in the Gaussian process is chosen as

the mean value of RSS values recorded in a region around the

predicted location at each frequency. The hyper-parameters are

pre-selected manually, to save computation time and to ensure

feasible values. Given the GP it is straightforward to compute

ŷik and Σk using (8b) and (8c), respectively. The likelihood

of the recorded measurement yk given the predicted state and

map is

p(yk|x̂k|k−1, m̂k|k−1)

=
exp(− 1

2
(yk − ŷk)(Σk +Rk)

−1(yk − ŷk)
T )

(2π)n/2
√

det(Σk +Rk)
(14)

where n is the number of RSS measurements used in the

fingerprint, and Rk is the covariance of the measurement noise.

III. EXPERIMENTAL SETUP

In this section, implementation details of the proposed RSS

SLAM prototype are discussed and the experiments used to

evaluate it are described.

A. Implementation Details

The proposed RSS SLAM algorithm has been implemented

and used together with the hardware shown in Fig. 1. In the

prototype implementation the ZUPT-aided foot-mounted INS

in [7] is used, together with the FUNCube Dongle Pro+ radio
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Fig. 1. Foot-mounted INS and antenna mounted on right leg of a user about
to perform one of the experiments.

receiver [31] and an omnidirectional antenna. A position esti-

mate is extracted every time a ZUPT is registered in the foot-

mounted INS, however only those in time with incoming RSS

fingerprints are used to perform the DP-SLAM time updates.

The filter update time delay is thus variable and bounded by

the RSS fingerprint sample rate, which is set to 5Hz, but also

by whether or not ZUPTs are detected. To compensate for INS

errors, the process noise was set to Q = 0.0005 rad2/s4.

RSS measurements were derived by sampling the signal for

seven different frequencies (94.4MHz, 95.5MHz, 97.3MHz,

99.8MHz, 103.2MHz, 106.9MHz, and 474.0MHz) one by

one at 192 kHz and then averaging the result over 4ms. The

covariance of the measured RSS was set to R = σ2
eI . To

model the RSS variations (the map), the GP was tuned with

the hyper-parameters σF = 8 dBm, l = 4m, σe = 1.5 dBm,

and d = 8m.

The DP-SLAM algorithm used to solve the SLAM problem

was implemented as described in Sec. II using the parameters

given above. The proposal distribution in the particle filter

was chosen as q(xk+1|xk, yk+1) = p(xk+1|xt, ut). To avoid

applying the expensive resampling step at each iteration of

the particle filter, the DP-SLAM implementation only performs

resampling when necessary using sampling importance sam-

pling (SIS). When to resample is determined by the estimated

effective sample size, N̂eff, and resampling is only performed

when N̂eff < 2

3
N , where N is the number of particles used

in the filter, as suggested in [32]. Furthermore, N = 1000 is

used as a compromise between computational complexity and

accuracy.

B. Experiments

The A-house at Campus Valla, Linköping University, was

chosen as place to conduct the experiments. The A-house was

chosen as a suitable test facility given that it is fairly large

and allows for many different ways to revisit the same place

while providing strict pathways to stick to.

The algorithm is evaluated using three different tracks. All

three tracks started and ended in the same point. A 5m straight

line at the start/end was provided for the user to walk on.

The line allows for evaluating both deviations in position and
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Fig. 2. Outline of the short loop-closure track.
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Fig. 3. Outline of the walked trajectory with backtracking.

heading at the end of the tracks. Note, however, that no ground

truth exists for any other parts of the track, so it is necessary

to resort to visual inspection comparing the solutions with and

without the SLAM algorithm and with the approximate route on

the map. Three different tracks were chosen; a short track with

loop-closure; a track where the user walks back in his own

foot-steps; and a longer track. All experiments were carried

out with the sensor package (IMU and antenna) mounted on

the right foot/leg as depicted in Fig. 1.

The first track, the short track with a loop-closure is depicted

in Fig. 2, and it is about 220m long and it takes the test

subject approximately 3min to walk. The track was designed

to test the algorithms ability to perform loop-closure. Data was

collected from walking the track ten times.

The second track, the track with backtracking approximately

half way through, is depicted in Fig. 3. This track is a bit

longer than the first one, approximately 340m, resulting in a

4min walk and it was repeated four times. This trajectory was

chosen to observe how the algorithm deals with immediately

revisiting a mapped region as a result of going back in the

same footsteps after the full turn half way through the track.

The third track is almost three times as long and intended

to evaluate drift over time. The track is depicted in Fig. 4 and

it is 1 100m long and it takes 13min to walk through it. This

track was only walked once.
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Fig. 4. Outline of the walk backtrack.

IV. RESULTS

In this section the results of the experiments described in

Sec. III-B are presented and evaluated. Furthermore, quantita-

tive results are presented to illustrate the effect of changing the

GP hyper-parameters, as well as what happens if the number

of particles are changed.

Overall, the behavior of the underlying foot-mounted INS

can in these experiments be categorized as:

• very slowly drifting, low position and heading errors at

the end of the track and a plausible trajectory throughout

the experiments;

• slowly drifting, moderate position and heading errors at

the end of the track and a roughly correct trajectory; and

• heavily drifting, considerable position and heading errors

at the end of the track and an obviously skewed trajec-

tory2.

A. Short track with loop-closure

The results from the first trajectory (a short track with loop

closure) are used to illustrate the different INS behaviors (see

Fig. 5–6).

First consider the case when the foot-mounted INS system

performs well, as illustrated in Fig. 5. In this case the RSS

SLAM solution follows that of the foot-mounted INS closely,

as expected, and only small adjustments are made to improve

the estimates on loop-closure.

The typical foot-mounted INS system behavior, a slow drift,

is illustrated in Fig. 6. In this case the INS estimate and the RSS

SLAM estimate slowly drift apart, and the particle cloud grows

with time. Once loop-closure is detected, the SLAM estimate

is rectified to reflect the fact that a position is revisited. At the

same time the particle cloud shrinks to reflect the fact that the

position is better known after loop-closure.

Finally, Fig. 7 illustrates the behavior of the system in the

case of heavy drift in the foot-mounted INS. The RSS SLAM

estimate initially follows the INS estimate, and as it drifts off

2Analysis of the raw INS data from these cases indicate that the large errors
are due to the gyro bias drifting during the walk, which is in turn likely due
to warm-up effects in the IMU [23]. The INS implementation used here only
estimates gyroscope bias at start-up.
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Fig. 5. Estimated trajectories using only foot-mounted INS (green) and with
RSS SLAM (blue). In this case the INS system is well behaved.

TABLE I
SHORT LOOP-CLOSURE TRACK PERFORMANCE RESULTS AT THE END OF

THE TRAJECTORY. EACH ROW IS DERIVED FROM 10 EXPERIMENTS.

(a) Position errors given in meters.

RSS SLAM Mean Median Std. dev Max Min

No 8.9 7.3 6.4 22.1 1.9

Yes 2.6 1.9 2.7 9.2 0.5

(b) Heading errors given in degrees.

RSS SLAM Mean Median Std. dev Max Min

No 14.2 9.4 9.9 31.9 4.8

Yes 2.0 1.4 2.1 7.2 0.1

the RSS SLAM particle cloud struggles to support the true

position. This is visible already in the top figure in Fig. 7.

This indicates an underestimated process noise and the case

in the illustration is an outlier in term of INS behavior. The

situation grows worse as time progress; however, when the

loop-closure occurs a few particles are available to support it.

Consequently, the RSS SLAM trajectory is improved compared

to the foot-mounted INS estimate.

All the experiments performed with the short track with

loop-closure are summarized in Table I. Both the median and

mean errors indicate significant improvements when using DP-

SLAM. The standard deviation and maximum of the errors are

also significantly lowered for both heading and final position

estimates, which indicate an increase in robustness.

B. Track with Back-Tracking

A typical result from the track with backtracking is pre-

sented in Fig. 8. Initially the foot-mounted INS and the

SLAM algorithm yield similar results, but as the user turns

and start to make his way back the SLAM algorithm starts

to recognize the previously visited radio environment. This

results in loop-closure, which reduces the uncertainty (the

spread of the particle cloud). The resulting SLAM estimate

seems to converge to a trajectory estimate which visually

seems accurate when compared to the trajectory outline in

Fig. 3.
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Fig. 6. Trajectories estimates using only foot-mounted INS (green) and with
RSS SLAM (blue). Typical behavior, the INS drifts slowly.
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Fig. 7. Trajectories estimates using only foot-mounted INS (green) and with
RSS SLAM (blue), when the INS drifts heavily.
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Fig. 8. Representative estimated trajectories using only foot-mounted INS

(green) and with RSS SLAM (blue) performing the track with backtracking.
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Fig. 9. Estimated trajectories using only foot-mounted INS (green) and with
RSS SLAM (blue) performing the track with backtracking, for a case with
worse than typical performance.

TABLE II
WALK BACK TRACK PERFORMANCE RESULTS. EACH ROW BASED ON 4

EXPERIMENTS.

(a) Position errors given in meters.

RSS SLAM Mean Median Std. dev Max Min

No 32.2 32.8 10.4 43.5 19.8

Yes 2.0 2.0 0.2 2.2 1.9

(b) Heading errors given in degrees.

RSS SLAM Mean Median Std. dev Max Min

No 54.7 53.5 19.0 76.5 35.4

Yes 2.9 3.1 1.9 5.0 0.5

Fig. 9 represents a less successful experiment, but the final

DP-SLAM estimate is still a significant improvement compared

to the foot-mounted INS. In this case the INS result drifts a little

more when compared to the case in Fig. 8, this minor increase

in INS drift probably causes the slightly worse trajectory

estimate.

Overall, using the suggested SLAM significantly improves

the trajectories obtained from the pure foot-mounted INS.

However, it seams that this type of scenario is a more difficult

challenge than the short loop-closure scenario when it comes

to estimating the entire trajectory correctly. The results from

the experiments are summarized in Table II. The improvement

in heading and position errors are excellent, which is expected

in this scenario since the person moves a long time in

previously mapped areas.

C. Long Track

The trajectories estimated based on the long trajectory data

is depicted in Fig. 10. The results are not as good as for the

two shorter scenarios; however, the results are still promising.

The foot-mounted INS drifts considerably over time, and the

SLAM algorithm fails to completely compensate for this, but

the improvement is still significant for parts of the test.

The trajectory obtained from the SLAM system can still be

identified as the true trajectory even if is not perfectly aligned

with the floor plan.
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Fig. 10. Estimated trajectories using only foot-mounted INS (green) and with
RSS SLAM (blue) for the long track and l = 4.
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Fig. 11. Estimated trajectories using only foot-mounted INS (green) and with
RSS SLAM (blue) for the long track and l = 3.

D. Gaussian Process Hyper-Parameters

The GP hyper-parameters used when modelling the map

in the RSS SLAM algorithm is one source of uncertainty.

Therefore, the experimental data has been evaluated using

different parameter sets to quantify the difference. Tweaking

the hyper-parameters results in no significant difference in

the results obtained with the two shorter scenarios. For the

last, longer, scenario a slight performance improvement can be

observed by reducing the length-scale parameter from l = 4m

to l = 3m. This improvement is illustrated in Fig. 11.

E. Number of Particles

The number of particles used in a particle filter is an

important factor for its performance. Therefore, two data sets

from the short track with loop-closure (one with low INS drift

and one with large drift), and one data set from the track

with backtracking, were selected to evaluate the importance

of the number of particles used in the proposed RSS SLAM

algorithm. The algorithm was applied 100 times for each

number of particles to avoid random effects in the particle

filter. The result of the investigation is shown in Fig. 12.

The results indicate that in all of the tested scenarios the

particle count could be lowered without taking a big toll on

heading estimation performance. These results also indicate
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Fig. 12. Particle count effect on heading error estimation for typical short-
loop closure scenario (blue), quickly diverging short-loop closure scenario
(red) and walk-back scenario (green).

that performance in some scenarios are more sensitive to the

particle count. Judging from these results 200 particles seems

to be sufficient in favorable scenarios, while up to 600 particles

may be required in other scenarios.

V. CONCLUSIONS AND FUTURE WORK

A new online capable algorithm for performing opportunis-

tic radio received signal strength simultaneous localization and

mapping (RSS SLAM) in indoor environments have been devel-

oped. It incorporates Gaussian processes to iteratively model

the surrounding radio environment as it is being explored. The

algorithm has been evaluated together with a foot-mounted INS

and the experimental results indicate that it can successfully

constrain the error drift of such systems where the error usually

grows with time, as long as previously visited environments

are re-visited during the operation. The algorithm does not

rely on any pre-installed infrastructure or survey data and the

radio transmitter locations does not need to be known.

There are aspects that need to be investigated further such as

the GP hyper-parameter values. So far these have been selected

manually, but ideally they should be learned during operation.

A possible solution could be to, at regular intervals, pick the

most likely particle and solve the optimisation problem with

its corresponding data set and then apply the same hyper-

parameters to all particles.

The results indicate that it is possible to reduces the heading

error from a foot-mounted INS by up to 80%, and the final

position error by up to 70%, in simple scenarios using this

approach. In favourable scenarios, with a lot of back-tracking,

the heading and final position errors can be reduced by as

much as 93%–95% when compared to those of a lone foot-

mounted INS.

Another aspect that needs to be investigated further is the

particle count. The preliminary results indicate that the filter

should be able to perform reasonably well with a much smaller

particle count.

In addition, there are more areas which should be explored

before this algorithm can be a permanent part of a robust first

responder indoor positioning system such as:
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• Add compatibility with other movement types than walk-

ing, such as running and crawling, and investigate in what

ways the error model needs to be changed [23].

• Enable 3D tracking. This would enable the filter to make

corrections in height and it might be a good idea to also

add pitch error as a state in the filter since the height

estimate from the foot-mounted INS drifts slowly.

• Implement with a dual foot-mounted INS. This could

require a new error model as the heading error might

no longer be as dominant as it is in the walking case.

• Add a magnetometer to the system. The magnetic field

could be included in the fingerprint vector similar to the

way another radio frequency can be added.
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