
  

  

Indoor Positioning Using Ultrawideband and 

Inertial Measurements 

  

  

Manon Kok, Jeroen D. Hol and Thomas B. Schon 

  

  

Linköping University Post Print 

  

  

 

 

N.B.: When citing this work, cite the original article. 

  

  

Manon Kok, Jeroen D. Hol and Thomas B. Schon, Indoor Positioning Using Ultrawideband 

and Inertial Measurements, 2015, IEEE Transactions on Vehicular Technology, (64), 4, 1293-

1303. 

http://dx.doi.org/10.1109/TVT.2015.2396640 

 

©2015 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE.  

http://ieeexplore.ieee.org/  

 

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118060 
 

http://dx.doi.org/10.1109/TVT.2015.2396640
http://ieeexplore.ieee.org/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118060
http://twitter.com/?status=OA Article: Indoor Positioning Using Ultrawideband and Inertial Measurements http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-118060 via @LiU_EPress %23LiU


1

Indoor positioning using ultrawideband and inertial

measurements
Manon Kok, Jeroen D. Hol, and Thomas B. Schön Senior Member, IEEE

Abstract—In this work we present an approach to combine
measurements from inertial sensors (accelerometers and gyro-
scopes) with time of arrival measurements from an ultrawide-
band system for indoor positioning. Our algorithm uses a tightly-
coupled sensor fusion approach, where we formulate the problem
as a maximum a posteriori problem that is solved using an opti-
mization approach. It is shown to lead to accurate 6D position and
orientation estimates when compared to reference data from an
independent optical tracking system. To be able to obtain position
information from the ultrawideband measurements, it is imper-
ative that accurate estimates of the ultrawideband receivers’
positions and their clock offsets are available. Hence, we also
present an easy-to-use algorithm to calibrate the ultrawideband
system using a maximum likelihood formulation. Throughout this
work, the ultrawideband measurements are modeled by a tailored
heavy-tailed asymmetric distribution to account for measurement
outliers. The heavy-tailed asymmetric distribution works well on
experimental data, as shown by analyzing the position estimates
obtained using the ultrawideband measurements via a novel
multilateration approach.

Index Terms—Ultrawideband, inertial sensors, calibration, sen-
sor fusion, heavy-tailed noise distribution.

I. INTRODUCTION

ULTRA-WIDEBAND (UWB) is a relatively new and

promising radio technology with applications in for

example radar, communication and localization. UWB tech-

nology typically makes use of impulse radio with very short

pulses. These are typically in the order of 1 ns, opening up

for high spatial resolution. This characteristic makes UWB

very suitable for localization purposes. It has successfully been

applied in a wide variety of localization applications, such

as industrial [1], health-care [2], [3] and motion capture [4].

UWB positioning accuracy is reported to be in the order of

decimeters [1], [2]. Although UWB systems do not necessarily

require line-of-sight visibility [5], the UWB measurements do

suffer from multipath and non-line-of-sight (NLOS) condi-

tions, resulting in measurement outliers.

Inertial sensors consist of accelerometers and gyroscopes

measuring the acceleration and angular velocity of the sensor.

The inertial sensor measurements need to be integrated to

obtain position and orientation estimates. These position and
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Fig. 1. Example application showing a subject with 17 inertial sensors placed
on the body and 3 UWB transmitters placed on the head and on both feet. The
pose estimates are visualized by the “skeleton” overlayed in the images. As
shown (right), the solution remains valid even in non-line-of-sight conditions.

orientation estimates are accurate on a short time scale, but

suffer from integration drift. Inertial sensors have successfully

been used to estimate 6D position and orientation (pose) in

combination with systems providing position information such

as GPS and UWB, see e.g. [6] and the references therein.

In this work we present an indoor positioning approach

using inertial sensors and time of arrival (TOA) measurements

from an UWB system. We use a setup where a number of

UWB receivers are placed in an indoor environment. Our focus

is on combining information from an UWB transmitter and an

inertial measurement unit (IMU) to estimate the 6D pose of

the IMU. The IMU and the transmitter are assumed to be

rigidly attached to each other. Our approach can be extended

to for example estimate the 6D pose of a human body where a

subject wearing multiple IMUs and multiple UWB transmitters

walks through the UWB measurement volume, as shown in

Fig. 1. This work builds on [6], [7], where an extended Kalman

filter (EKF) was used in combining the inertial and UWB

measurements to estimate the 6D pose of the sensor. Outlier

rejection was used to remove UWB measurements affected

by multipath and NLOS. In this work we instead solve the

problem using an optimization-based approach similar to the

approach used in [8]. Using this approach, it is possible to

assume more general measurement distributions. Hence, we

model the UWB measurements using a heavy-tailed asymmet-

ric distribution which is specifically tailored for this particular

application. This distribution naturally handles the possibility

of measurement delays due to multipath and NLOS while not

allowing for the possibility of measurements arriving earlier,

i.e. traveling faster than the speed of light. We will show that

accurate position and orientation estimates are obtained by

comparing our results to those obtained from an independent

http://users.isy.liu.se/en/rt/manko/
http://users.isy.liu.se/en/rt/manko/
http://user.it.uu.se/~thosc112/
http://user.it.uu.se/~thosc112/
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optical reference system.

To be able to obtain position information from the UWB

measurements, the positions of the receivers must be known

and the receiver clocks have to be synchronized. To avoid the

typically labor-intensive and time-consuming process of manu-

ally surveying the receiver positions, we present an easy-to-use

calibration method that automates this process. Our previous

solution presented in [9] assumed “clean” measurements, i.e.

it was assumed that no outliers were present. In this work, we

will instead solve the calibration problem modeling the UWB

measurements using the heavy-tailed asymmetric distribution

mentioned earlier to naturally handle the measurement outliers.

To experimentally validate the UWB model using the heavy-

tailed asymmetric distribution, we will use the UWB mea-

surements in a novel multilateration approach to determine

the position of a mobile transmitter. Here, we assume that

the UWB system has previously been calibrated using our

calibration algorithm. We will show that the position estimates

obtained using the heavy-tailed asymmetric distribution are

considerably better than the ones obtained using either a

Gaussian distribution or a heavy-tailed symmetric Cauchy

distribution.

In Section II, we provide more background to our work

by relating it to previous work in the area. In Section III

we clearly formulate the problem. The sensors and their

corresponding measurement models are introduced in Sec-

tion IV. The UWB calibration problem is subsequently solved

in Section V. The solution to the sensor fusion problem, where

we also make use of the inertial measurements can be found in

Section VI. The experimental results and the conclusions are

then provided in Section VII and Section VIII, respectively.

II. RELATED WORK

In this work we make use of TOA measurements from

an UWB system. Our UWB setup consists of a network of

synchronized and stationary (rigidly fixed, mounted) receivers,

all acquiring very precise TOA measurements of signals origi-

nating from a mobile transmitter. The low-cost transmitters in

our setup have an inaccurate clock and can hence not provide

accurate information concerning the time of transmission. For

a general introduction to UWB technology and its use in

positioning applications, see e.g. [3], [10].

The process of determining the transmitter position from

TOA measurements is referred to as trilateration or, more

accurately, multilateration. It is a well-studied topic and many

algorithms have been reported in the literature, see e.g. [3],

[10]–[12]. A common multilateration technique is to eliminate

the time of transmission by constructing time difference of

arrival (TDOA) measurements from pairs of TOA measure-

ments. The resulting set of hyperbolic equations can then

be solved for position [13]. The drawback of this approach

is that the constructed TDOA measurements are no longer

independently distributed which complicates the calculations.

In this work we use a well-known equivalent approach where

we instead model the time of transmission as an unknown

quantity.

Ideally, the UWB signal travels directly from the transmitter

to the different receivers. In that case, the TOA measurements

are directly related to the distance traveled. In case the signal

encounters a medium which delays or reflects the signal,

however, the time of flight is prolonged and the pulse will

be delayed. This can result in large estimation errors when

assuming that the UWB measurements are Gaussian dis-

tributed, as will be illustrated in Section VII-A. The problem

of how to robustly deal with outliers in the measurements

has received a lot of attention, see e.g. [14] for a good

survey containing relevant entry-points into the literature on

this topic commonly referred to as robust statistics. A common

approach is to model the outliers in terms of the probability

of NLOS and introduce a delay represented by a heavy-tailed

positive-mean probability density function (PDF) such as a

shifted Gaussian or an exponential, see e.g. [15], [16]. Based

on [15], the localization approach presented in [17] builds

spatial models representing the probability of NLOS in a

certain area. In our approach we do not specifically model the

probability of the number of outliers. Instead, we model the

UWB measurements using a specifically tailored asymmetric

heavy-tailed noise distribution. By estimating the width of this

distribution, the algorithm can automatically adapt the width to

the specific measurement data. The use of this distribution can

straightforwardly be incorporated in any maximum likelihood

(ML) or maximum a posteriori (MAP) estimation algorithm,

without including any additional parameters.

UWB approaches typically assume that the receiver po-

sitions are known and that their clocks are synchronized,

explaining why there are relatively few UWB calibration

algorithms available in the literature, see e.g. [6], [7]. However,

ideas for UWB calibration can be obtained from the wide

range of literature on sensor localization, see for instance [18].

The challenge again comes down to the possibility of mea-

surement errors due to NLOS and/or multipath, resulting in a

reduced quality of the calibration results. Hence, we assume a

tailored asymmetric heavy-tailed distribution in our calibration

algorithm to represent these errors.

When combining inertial measurements with UWB mea-

surements, a tightly-coupled or a loosely-coupled approach can

be used. In a loosely-coupled approach, the UWB measure-

ments are used to obtain position estimates using a multilatera-

tion approach. These position estimates are subsequently used

as artificial position measurements in the sensor fusion ap-

proach, see e.g. [19]–[21]. A tightly-coupled approach instead

makes direct use of each individual TOA measurement, see for

instance [7], [22]. An advantage of a tightly-coupled approach

is that it does not suffer from the loss of information that typ-

ically arises from pre-processing of the UWB measurements

that has to be performed in a loosely-coupled approach. This

is mainly due to approximations of statistical distributions,

but in extreme cases measurements are also ignored, for

instance when there are not enough TOA measurements for

multilateration. By instead making direct use of the sensor

measurements, we can make maximal use of the available

information. The advantage of a tightly-coupled approach is

experimentally shown for the case of UWB measurements in

for instance [23].

One way to solve the sensor fusion problem is then to use

an EKF. To allow for the presence of delayed measurements,
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approaches based on outlier rejection [6], [7] and robust

EKF formulations [24] have previously been used. In this

work we will instead formulate a tightly-coupled approach

by formulating and solving an optimization problem. This

also straightforwardly opens up for exploiting non-Gaussian

distributions and for estimating additional parameters.

III. PROBLEM FORMULATION

To determine an IMU’s 6D position and orientation, its

measurements are combined with those originating from an

UWB transmitter that is rigidly attached to the sensor. The

UWB transmitter sends pulses to a number of stationary UWB

receivers as illustrated in Fig. 2. The receivers measure the

times of arrival of the pulses at their different locations.

Provided that the receiver positions are known and that their

clocks are synchronized, the position of the transmitter can

be inferred from these measurements. Although the receivers

are synchronized to a central clock, they each have a small,

constant clock offset due to for instance differences in cable

lengths. The receiver positions and clock offsets are computed

using our calibration algorithm.

UWB transmitter

UWB receiver

UWB pulse

Fig. 2. The UWB setup consists of a number of stationary receivers acquiring
TOA measurements of signal pulses originating from a mobile transmitter.

Let us denote the model parameters estimated by the cali-

bration algorithm by θ. The calibration algorithm computes an

ML estimate θ̂ML. For a setup with m = 1, . . . ,M receivers

and l = 1, . . . , L transmitters, the UWB measurements are

denoted yu,mlk for k = 1, . . . ,K UWB pulses. Note that

the absolute receiver positions and clock offsets are neither

observable, nor relevant. We are interested in estimating the

receivers’ relative positions and clock offsets. Hence, an

arbitrary choice of an UWB coordinate frame and a reference

clock offset are used as constraints in the ML problem. The

problem of calibrating the UWB setup is therefore formulated

as a constrained ML problem according to

max
θ∈Θ

K∏

k=1

L∏

l=1

M∏

m=1

pθ(yu,mlk),

s.t. Aθ = b,

(1)

where pθ(y) denotes the PDF of y parametrized by θ. The

matrix A and the vector b are used to describe the linear

constraints on the parameter vector θ, due to the choice

of the coordinate frame and the reference clock offset. The

calibration problem (1) is solved in Section V where we also

provide the resulting calibration algorithm. In that section, the

constraints in (1) are also defined more explicitly.

When the UWB system has been calibrated, the UWB

measurements can be combined with inertial measurements

to determine the 6D pose of the sensor. Hence, we estimate

the state vector x1:N which contains the position of the

sensor, its orientation and additional information. Denoting

the accelerometer measurements by ya,t for t = 1, . . . , N , the

gyroscope measurements by yω,t and the UWB measurements

by yu,mk for k = 1, . . . ,K pulses and m = 1, . . . ,M
receivers, the state is computed by solving the following MAP

problem,

max
x1:N

p(x1:N | {ya,t, yω,t}
N

t=1 , {{yu,mk}
M

m=1}
K
k=1). (2)

Here, p(x1:N | y1:N ) denotes the conditional PDF of the state

vector x1:N given the measurements y1:N . The subscript k

used for the UWB measurements indicates that the UWB

measurements do not necessarily have the same sampling

frequency as the inertial measurements. The solution to the

sensor fusion problem (2) is provided in Section VI, together

with the resulting algorithm.

IV. SENSOR MODELS

Our UWB system consists of a network of stationary

receivers which can track a large number of small, battery-

powered inexpensive transmitters [2]. A transmitter and a

receiver are shown in Fig. 3. In our sensor fusion approach,

we combine UWB measurements with inertial measurements.

The IMU is shown in Fig. 4.

Fig. 3. Hardware used in an UWB setup. More specifically, an UWB receiver
and a small, battery-powered UWB transmitter.

Fig. 4. An IMU containing a 3-axis accelerometer and a 3-axis gyroscope.

In this section we will introduce our sensor models, starting

with the UWB measurement model in Section IV-A. Subse-

quently, the inertial measurement models will be introduced

in Section IV-B.



4

A. Modeling the ultrawideband measurements

For the UWB setup with m = 1, . . . ,M receivers and l =
1, . . . , L transmitters, the TOA measurement yu,mlk of receiver

m, originating from transmitter l and pulse k, is modeled as

yu,mlk = τlk + 1
c
‖rn

m − tn
lk‖2 +∆τm + eu,mlk. (3)

Here, c denotes the speed of light, τlk is the time of trans-

mission of pulse k from transmitter l, tn
lk is the position of

transmitter l at the time of transmitting the kth pulse, rn
m is

the position of the mth receiver and ∆τm is its clock-offset.

The superscript n denotes the navigation frame. It is a local

coordinate frame that is aligned with the earth’s gravity and

with the axes of the frame defined during the UWB calibration,

as already discussed in Section III.

Due to NLOS conditions and/or multipath we expect a small

number of measurements to be delayed. Hence, it does not

make sense to model eu,mlk using a Gaussian distribution.

In [6], a new multilateration approach was presented, where

the possibility of delayed measurements was modeled by

including a positive parameter δu,mk explicitly representing

the delay of pulse k to receiver m in the measurement

equation (3). The parameters δu,mk were assumed to have an

exponential prior. Hence, [6] models the delay of each pulse to

each receiver as a parameter to be estimated. This was shown

to lead to accurate position estimates, but it also introduced

M additional model parameters for each pulse k.

In this work, we omit the parameters δu,mk and instead

model the possibility of delays in terms of the distribution of

the noise eu,mlk. We assume an asymmetric distribution where

a heavy-tailed Cauchy distribution allows for measurement

delays while a Gaussian distribution excludes the physically

unreasonable possibility of pulses traveling faster than the

speed of light as

eu,mlk ∼

{
(2− α)N (0, σ2) for eu,mlk < 0, (4a)

αCauchy(0, γ) for eu,mlk ≥ 0. (4b)

The presence of the constants α and 2− α is motivated by

the fact that the proposed asymmetric PDF needs to integrate

to one and hence
∫ 0

−∞
(2− α) 1√

2πσ2
exp

(
−

e2u,mlk

2σ2

)
d eu,mlk,+

∫ ∞

0

α 1
πγ


 1

1+
e2u,mlk

γ2


 d eu,mlk = 1

2 (2− α) + 1
2α = 1, (5)

where we have made use of the fact that the Gaussian and

Cauchy PDFs integrate to one and are symmetric. Imposing

the constraint that the distribution is continuous at eu,mlk = 0
allows us to express α in terms of σ and γ according to

α
πγ

= 2−α√
2πσ2

⇔ α = 2πγ√
2πσ2+πγ

. (6)

The proposed asymmetric PDF and its corresponding negative

log-likelihood, given by

− log p (eu,mlk) =

{
LG for eu,mlk < 0, (7a)

LC for eu,mlk ≥ 0, (7b)
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0
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Fig. 5. PDF (top) and negative log-likelihood (bottom) of a N (0, 1)
distribution (blue, dashed), a Cauchy(0, 1) distribution (green, dotted) and
the asymmetric distribution (4) asssuming σ = γ = 1 and α according to (6)
(red).

LG ,
e2u,mlk

2σ2 + 1
2 log σ

2 + 1
2 log 2π − log (2− α) ,

LC , log
(
1 +

e2u,mlk

γ2

)
+ 1

2 log γ
2 + log π − logα.

are both depicted in Fig. 5 in red. For comparison, the

Gaussian and Cauchy PDFs are also depicted, in blue and

green, respectively.

From the experimental results in Section VII-A it will

be shown that exploiting the asymmetry of the actual noise

distribution is especially helpful in the presence of a large

number of outliers.

B. Modeling the inertial measurements

An IMU containing a 3-axis accelerometer and a 3-axis

gyroscope was shown in Fig. 4. The inertial measurements

are resolved in the body frame b. Its origin lies in the center

of the accelerometer triad and its axes are aligned with the

casing. The gyroscope measures the sensor’s angular velocity

ωt. Its measurements yω,t are modeled as

yω,t = ωt + δω + eω,t, (8)
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where δω denotes the gyroscope bias and eω,t ∼ N (0,Σω).
We assume Σω = σ2

ωI3 where I3 denotes the 3 × 3 identity

matrix. The accelerometer measures the external specific force

f b
t exerted on the sensor. It consists of the sensor’s linear

acceleration an
t and the gravity vector gn, both resolved in the

navigation frame n. The accelerometer measurements ya,t are

modeled as

ya,t = f b
t + δa + ea,t = Rbn

t (an
t − gn) + δa + ea,t, (9)

where δa denotes the accelerometer bias and ea,t ∼ N (0,Σa).
We assume Σa = σ2

a I3. The rotation matrix Rbn
t represents

the rotation from the navigation frame n to the body frame b

at time t.

Both the gyroscope and the accelerometer biases δω and δa

are slowly time-varying, but we will treat them as constants

motivated by the short experimental times used in this work.

For longer experiments, δω and δa can be assumed to be time-

varying instead.

The inertial measurements provide information about the

position and orientation of the sensor. Integration of the angu-

lar velocity measured by the gyroscope leads to information

about the sensor’s change in orientation. Subtracting gravity

from the specific force measured by the accelerometer and

double integrating the resulting signal leads to information

about the sensor’s change in position. The process of estimat-

ing position and orientation from the inertial measurements is

schematically illustrated in Fig. 6.

V. ULTRAWIDEBAND CALIBRATION

In this section, we will derive a calibration algorithm

to determine the positions {rn
m}Mm=1 and the clock offsets

{∆τm}Mm=1 of the receivers using the ML formulation (1). The

algorithm makes use of data obtained by moving a single trans-

mitter through the measurement volume. The data collected in

this way is denoted D1. Since we do not place the transmitter

at known positions, but instead move it around freely, the

calibration algorithm aims at simultaneously localizing both

the moving transmitter and the receivers. The transmission

times of the different pulses {τ n
k}

K
k=1 are also considered

unknown. Note that we have omitted the subscript l since we

consider the case of using a single transmitter.

The UWB measurements are modeled according to (3),

where the noise eu,mk is assumed to be distributed according to

the asymmetric distribution (4). The parameters σ and γ are

considered unknown and to be estimated, i.e. the algorithm

tunes itself and does not rely on a priori knowledge about the

accuracy of the UWB measurements. The resulting parameter

vector is

θ =
(
{tn

k, τk}
K
k=1, {r

n
m,∆τm}Mm=1, σ, γ

)
. (10)

To make use of the measurement model (4) within our

calibration problem (1), we need the following relationship

pθ(yu,mk) = peu,mk
(yu,mk − τk − 1

c
‖rn

m − tn
k‖2 −∆τm),

(11)

where θ is defined in (10).

The calibration problem is non-convex and hence needs

proper initialization. In Sections V-A and V-B, we introduce

a two-step procedure to compute such an initial estimate. In a

first step, we obtain an initial estimate of the receiver positions

{rn
m,0}

M
m=1 and their clock offsets {∆τm,0}

M
m=1 using a sec-

ond data set D2 for which the transmitter positions are known.

In a second step, initial estimates of the transmitter positions

{tn
k,0}

K
k=1 and the transmission times {τk,0}

K
k=1 are obtained

by assuming that the receiver positions and clock offsets are

known. This is done using a novel multilateration approach in

which the UWB measurements are assumed to be distributed

according to the asymmetric heavy-tailed distribution (4) with

unknown σ and γ. In Section V-C we will then introduce the

resulting calibration algorithm which is used to compute an

ML estimate of all the unknown parameters θ defined in (10).

A. Initial estimate: step I

As a first step of the initial estimation, a second data set,

denoted D2, is used to determine the positions and the clock

offsets of the receivers. This data is collected by placing a

number of UWB transmitters at known locations. To avoid

manual measuring of the positions of the transmitters, they are

rigidly attached to the receivers. Hence, the relative position

of each transmitter with respect to the corresponding receiver

is approximately known and constant. This relative distance

is denoted dn
rt. As discussed in Section III, an arbitrary choice

of the reference clock offset and the UWB coordinate frame

needs to be used as a constraint to the calibration problem.

Hence, the optimization problem can be written as

θ̂1 = argmin
θ1

−
M∑

m=1

L∑

l=1

K∑

k=1

log pθ1(yu,mlk), (12a)

s.t. A

(
vec (rn

1:M )
∆τ1:M

)
= b, (12b)

rn
m − tn

m = dn
rt, m = 1, . . . ,M, (12c)

where the UWB measurements yu,mlk are modeled accord-

ing to (3). Since it is not necessary to walk through the

measurement volume during the collection of this data, the

measurements in the data set D2 can typically be assumed to

have little problems with outliers. Hence, eu,mlk in (3) can

fairly accurately be modeled using a Gaussian PDF. Note that

this is the only instance in this work where we assume that the

UWB measurements are distributed according to a Gaussian.

By assuming that the standard deviation of this Gaussian is the

same for all m, l and k, we have reduced (12) to a constrained

least-squares problem. The parameter vector θ1 is given by

θ1 =
(
{rn

m,∆τm}Mm=1, {t
n
l,D2

, {τ n
lk,D2

}Kk=1}
L
l=1

)
. (13)

The subscript D2 on the (stationary) transmitter positions tn
l

and the transmission times τ n
lk is added to stress that these

parameters are only relevant for the dataset D2.
The constraints (12b) are defined as

A ,













01×3M 1 01×(M−1)

I3 03×(3M−3)

0(M+3)×M

02×3 e2 02×(3M−6)

01×6 e3 01×(3M−9)

01×9

. . . 01×(3M−12)













b ,
(

1 0 0 h1 0 h2 h3:M

)

T

(14)
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∫

rotate
remove
gravity

∫∫

angular velocity orientation

external specific force acceleration position

Fig. 6. Schematic illustration of the process of determining position and orientation from inertial measurements, assuming a known initial position, velocity
and orientation.

where e2 =
(
02×1 I2

)
and e3 =

(
0 0 1

)T
. The first

row in the matrix A is used to define the reference clock

offset. Note that the choice of which receiver to use for this

is arbitrary. The remaining rows are used to define the UWB

coordinate frame. The first receiver is used to define the origin.

The second receiver is used to define the x-axis. The height of

each receiver m = 1, . . . ,M is constrained to be equal to its

measured height hm. This ensures that the UWB coordinate

frame is gravity-aligned which is beneficial for our sensor

fusion approach in Section VI.

The constraint (12c) is used to incorporate the knowledge

of the location of the transmitters with respect to the receivers.

Note that we assume that each receiver has a transmitter

attached to it, i.e. we have M constraints (12c).

The problem (12) is again a non-convex optimization prob-

lem and therefore requires a reasonably good starting point.

Hence, we start the solver for (12) in a user-specified initial

receiver configuration, a noisy, rotated and scaled estimate of

the set of receiver positions.

B. Initial estimate: step II - multilateration

As a second step of the initialization, an initial estimate

of the transmitter positions {tn
k,0}

K
k=1 and the transmission

times {τk,0}
K
k=1 is determined for the calibration data set D1 in

which a transmitter is moved around in the UWB measurement

volume. This problem is solved using a novel multilateration

approach, which can also be used stand-alone as will be done

in Section VII-A. We model the UWB measurements using

the asymmetric heavy-tailed distribution (4). To avoid ad hoc

assumptions on σ and γ, we treat them as parameters in an

ML problem where we estimate the parameters θ2 with

θ2 =
(
{tn

k, τk}
K
k=1, σ, γ

)
. (15)

Using the fact that the logarithm is a monotonic function, the

resulting optimization problem is given by

θ̂2 = argmin
θ2

−
N∑

k=1

M∑

m=1

log pθ2(yu,mk), (16)

where the the UWB measurements are modeled as (3) and

their noise eu,mk is given by the asymmetric noise distribu-

tion (4). Hence, instead of solving N individual multilateration

problems, we solve one optimization problem to determine

the transmitter positions, the transmission times as well as the

parameters σ and γ.

The multilateration problem formulated in (16) can be

solved1 using standard Gauss-Newton solvers [25], [26] where

the negative log-likelihood, its gradient and approximate Hes-

sian are evaluated at the current iterate. Evaluating (3), the

sign of eu,mk for each pulse k = 1, . . . , N and each receiver

m = 1, . . . ,M can be used to determine whether the Gaussian

or Cauchy negative log-likelihood in (7) should be used.

C. Resulting calibration algorithm

The resulting calibration algorithm uses the data set D1 in

which a transmitter is moved around in the measurement vol-

ume. To obtain an ML estimate of the parameter vector (10),

the following constrained optimization problem is solved

θ̂ML = argmin
θ

−
M∑

m=1

K∑

k=1

log pθ(yu,mk), (17a)

s.t. A

(
vec (rn

1:M )
∆τ1:M

)
= b, (17b)

where we make use of the UWB measurement model (3) and

the asymmetric noise distribution (4). The constraints (17b)

have already been defined in (14). The problem can be solved

using standard constrained Gauss-Newton solvers [25], [26].

The calibration algorithm is summarized in Algorithm 1.

Algorithm 1 Ultrawideband calibration

1: Construct a setup consisting of M stationary receivers.

2: Place M transmitters in close proximity to the receiver

antennas and collect a data set D2.

3: Solve (12) using the data set D2 to obtain

{rn
m,0,∆τm,0}

M
m=1. The optimization is initialized

using a noisy, scaled and rotated estimate of the set of

receiver positions provided by the user.

4: Collect a data set D1 by moving a single transmitter

throughout the measurement volume.

5: Solve the multilateration problem (16) using the data

set D1 with the calibration values of Step 3 to obtain(
{tn

k,0, τk,0}
K
k=1, σ0, γ0

)
.

6: Solve (17) for D1. The optimization is started in

θ0 =
(
{tn

k,0, τk,0}
K
k=1, {r

n
m,0,∆τm,0}

M
m=1, σ0, γ0

)
,

using the results from Steps 3 and 5.

1As for any nonlinear optimization problem, good initial estimates help for
convergence. Hence, we first estimate a part of the parameter vector (15),
choosing σ = γ = 1. The resulting parameters are then used to determine a
first estimate of σ and γ. Finally, the obtained parameter values are used as
initial values for the final optimization.
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VI. SENSOR FUSION

In this section we describe our approach to combine UWB

measurements with inertial measurements to estimate the 6D

pose of the sensor. It is based on tightly-coupled sensor fusion

of the UWB and the inertial sensors. We formulate the sensor

fusion problem as a MAP problem (2), estimating the state

vector

x1:N =
{{

pn
t , v

n
t , q

nb
t

}N

t=1
, {τk}

K
k=1 δa, δω, σa, σω, σ, γ

}
, (18)

where pn
t and vn

t denote the sensor position and velocity at time

t, respectively. Both of these are expressed in the navigation

frame n. The sensor orientation is denoted qnb
t . Note that

we encode the orientation state using a three-dimensional

state vector around a linearization point represented by a

unit quaternion [6], [27]–[29]. The UWB system typically

obtains measurements at a lower frequency than the inertial

measurement frequency. Hence, we use a subscript k to denote

the UWB measurements while using a subscript t to denote

the inertial measurements. The state x1:N is modeled for each

time t.

In our approach, we make use of a dynamic model where

the inertial measurements can be thought of as inputs. Hence,

we model the position, the velocity and the orientation of the

IMU in terms of the sensor acceleration and angular velocity

as

pn
t+1 = pn

t + Tvn
t +

T 2

2 an
t

= pn
t + Tvn

t +
T 2

2 Rnb
t (ya,t − δa − ea,t) +

T 2

2 gn, (19a)

vn
t+1 = vn

t + Tan
t

= vn
t + TRnb

t (ya,t − δa − ea,t) + Tgn, (19b)

qnb
t+1 = qnb

t ⊙ exp(T2 ωt), (19c)

where T denotes the IMU sampling interval. The acceleration

an
t is obtained from (9). The orientation qnb

t is modeled in

terms of the angular velocity ωt obtained from (8). In (19c),

⊙ denotes the quaternion product and exp denotes the vector

exponential

exp(T2 ωt) =
(
cos ‖T

2 ωt‖2
ωT

t

‖ωt‖2

sin ‖T
2 ωt‖2

)T

. (20)

For more details on quaternion algebra, see e.g. [6], [30].

Note that we interchangeably make use of the unit quaternion

qnb and the rotation matrix Rnb as representations of the

orientation. Furthermore, we use the notation Rbn = (Rnb)T

for the inverse rotation.

In the measurement model, the UWB measurements, mod-

eled as in (3), are used to update the state. For this, the IMU

and the UWB transmitter are assumed to be rigidly attached

to each other. The position of the transmitter with respect to

the IMU is assumed to be known.

The state is computed using the following MAP problem

x̂MAP
1:N = argmin

x1:N

−
N∑

t=1

log p (xt+1 | xt, ya,t, yω,t)−

K∑

k=1

M∑

m=1

log p
(
yu,mk | xt(k)

)
, (21)

where the first term denotes the dynamic model described

by (19). The second term denotes the measurement model,

using the UWB measurement model (3), the asymmetric

heavy-tailed distribution (4) and the relative position of the

transmitter with respect to the IMU. The problem (21) can

be solved2 using a standard Gauss-Newton algorithm, see

e.g. [25], [26]. Since the sensor fusion problem is nonlinear,

parts of the problem are solved first to provide good initial es-

timates. The resulting pose estimation approach is summarized

in Algorithm 2.

Algorithm 2 Pose estimation

1: Collect inertial data and UWB data.

2: Initialize the quaternions as identity and all other parts of

x1:N in (18) as zero.

3: Solve the state estimation problem (21) to obtain x̂MAP
1:N .

VII. EXPERIMENTAL RESULTS

In our experiments, we use an UWB setup consisting of

10 receivers deployed in a room with a size of approximately

8× 6× 2.5 m. A test-subject walks around the measurement

volume along a circular path for approximately 24 s. An IMU

and an UWB transmitter have been attached to his foot. The

UWB measurements are significantly affected by the NLOS

conditions and multipath since the transmitter is quite close

to the ground and since the body frequently blocks the direct

path to the receivers. Optical markers have also been placed

on the body to provide reference data. These optical markers

are tracked by a camera system [31]. This industry-standard

system has an accuracy that is an order of magnitude larger

than the accuracy expected from our UWB system. Hence

(using multiple markers), the camera system can provide both

ground truth position and orientation estimates.

In Section VII-A we will use the UWB data from the

transmitter on the subject’s foot to experimentally validate the

proposed asymmetric distribution (4). We will show that using

this distribution in the multilateration approach described in

Section V-B, considerably better position estimates are ob-

tained than when the same approach would be used assuming

Gaussian or Cauchy distributed noise. In Section VII-B we

will present our calibration results. In Section VII-C we will

present our sensor fusion results.

A. Experimental validation of the asymmetric noise distribu-

tion

In this section we will use the multilateration approach

introduced in Section V-B while assuming that the system

has previously been calibrated. We will use three different

assumptions on the noise used in (16), namely

1) the asymmetric noise distribution (4) with parameters

θA =
(
{tn

k, τk}
K
k=1, σ, γ

)
,

2Also for the sensor fusion problem, good initial estimates help for
convergence. Hence, we first estimate only a part of the state vector (18),
choosing the parameters related to the noise characteristics as a fixed value.
We also use a Gaussian prior for the sensor biases. The resulting parameters
are then used to determine a first estimate of σa, σω , σ and γ. Finally, the
obtained estimates are used as initial values for the final optimization (21).
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TABLE I
RMSE FOR THE POSITION USING THE MULTILATERATION APPROACH

INTRODUCED IN SECTION V-B AS COMPARED TO DATA FROM AN OPTICAL

REFERENCE SYSTEM ASSUMING THE NOISE TO BE DISTRIBUTED

ACCORDING TO THE ASYMMETRIC DISTRIBUTION (4), ACCORDING TO A

CAUCHY DISTRIBUTION AND ACCORDING TO A GAUSSIAN DISTRIBUTION.

x [cm] y [cm] z [cm]

Asymmetric distribution (4) 5.9 7.2 12.2

Cauchy distribution 22.0* 9.2* 19.1*

Gaussian distribution 53.4* 75.9* 176.9*

* One measurement has been discarded in computing these
RMSE values. These measurements arise around 11 s for
the Cauchy distribution and around 22 s for the Gaussian
distribution and deviate from the reference positions by more
than 100 m.

2) a Cauchy distribution with parameters

θC =
(
{tn

k, τk}
K
k=1, γ

)
,

3) a Gaussian distribution with parameters θG =(
{tn

k, τk}
K
k=1, σ

)
.

The resulting position estimates are shown in Fig. 7. The

dashed lines are the position estimates from the optical refer-

ence system. As can be seen, the position estimates are best

for the asymmetric distribution and worst for the Gaussian

distribution. This is also summarized in Table I in terms of

the root mean square error (RMSE) for the position. In Fig. 8

the residuals including their estimated PDFs are plotted for all

three cases. As can be seen, the Gaussian is clearly not a good

fit due to the large number of outliers. Although the estimated

Cauchy distribution seems to describe the residuals reasonably

well, this model allows for physically unreasonable negative

residuals, i.e. pulses traveling faster than the speed of light.

Hence, also from these histograms it can be concluded that the

asymmetric noise distribution (4) offers the best model for the

experimental data. Note that these results are highly dependent

on the number of outliers in the UWB data. On “cleaner”

UWB data, the difference in position accuracy between the

different distributions would of course be less.

B. Calibration

Algorithm 1 has been used to compute an estimate of

the positions and clock offsets of the receivers in the UWB

setup. The estimated trajectory of the transmitter and the ML

estimates of the receiver positions are depicted in Fig. 9. The

smoothness of the estimated transmitter trajectory suggests

that good multilateration results are obtained and hence gives

confidence also in the resulting calibration results. Fig. 10

shows a histogram of the residuals from the calibration al-

gorithm. As can be seen, the estimated PDF (shown in red)

fits the data reasonably well. Furthermore, the calibration has

been used in the sensor fusion algorithm with good results (as

will be discussed in the subsequent section), which indirectly

validates the quality of the calibration.

The results described in this section have been obtained

using an inefficient implementation of Algorithm 1 in Matlab.

However, efficient implementation should be possible due to

the sparsity inherent in the problem and the typical problem
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Fig. 7. Position estimates from the multilateration approach (16) using the
measurements from the transmitter on the foot. The estimated positions using
the asymmetric heavy-tailed noise distribution (4) are depicted in (a). The
different colors denote the different directions with x in blue, y in green
and z in red. The estimated positions using a Cauchy and a Gaussian noise
distribution are depicted in (b) and (c), respectively. Data from an optical
reference system is included as dashed lines in each plot for comparison.

dimensions of less than 2 500 parameters (this corresponds

to collecting calibration data D1 for one minute at 10 Hz).

The sparsity pattern of the matrix that needs inversion in

the constrained Gauss-Newton algorithm, consisting of the

approximate Hessian and the gradients of the constraints

(see e.g. [25]), is shown in Fig. 11. Note that since our

calibration problem is nonlinear, this matrix inversion needs

to be performed several times.

C. Pose estimation

To evaluate the proposed pose estimation solution (Algo-

rithm 2), it has been used to track the motion of an IMU and an

UWB transmitter placed on the foot of a test-subject walking

in an indoor environment, using the experiment already intro-

duced in Section VII-A. The IMU provides 120 Hz inertial

measurements. The UWB pulses are transmitted at 10 Hz.

Fig. 12 shows an overview of the position estimated using

Algorithm 2. The positions of the UWB receivers are shown in
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Fig. 8. Residuals from the multilateration approach including their estimated PDFs using (a) the asymmetric distribution (4), a symmetric Cauchy distribution
(b) and a symmetric Gaussian distribution (c). The residuals outside of the scope of the figures have been collected in the outermost bins. Note the different
scales on the x-axes and the fact that the left plot is not centered around 0 to emphasize the asymmetric nature of this distribution. The quantities in the
measurement equation (3) are all expressed in meters resulting in residuals in meters.
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Fig. 9. Calibration results of the UWB setup. The estimated transmitter
positions are depicted in blue. The receivers in our UWB setup are either
placed close to the ground or close to the ceiling. The positions of the receivers
close to the ceiling are depicted in bright red and the positions of the receivers
close to the ground are depicted in light red.
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Fig. 10. Residuals from the calibration algorithm and the estimated PDF.
Note that the residuals outside of the scope of the figure have been collected
in the outermost bins and that the plot is not centered around 0 to emphasize
the asymmetric nature of the distribution. The quantities in the measurement
equation (3) are all expressed in meters resulting in residuals in meters.

Fig. 11. The sparsity pattern of the matrix that needs inversion in the
constrained Gauss-Newton algorithm, consisting of the approximate Hessian
and the gradients of the constraints. The block-diagonal part is due to the
independency of the different UWB pulses. The arrow-point is due to the
model dependency of each pulse on the receiver positions and their clock
offsets (see (3)). Only 5.7% of the matrix elements is non-zero.

red. The circular path is clearly recognizable. It only occupies

a small part of the measurement volume of the UWB tracking

system so that a performance comparison with an optical

reference system is possible.

Figs. 13 and 14 show the estimated position and orientation

as compared to those from the optical reference system. It can

be concluded that our solution is capable of producing a drift-

free and accurate pose estimate at a high output frequency. In

fact, the comparison shows 3 cm RMSE for position and less

than 1◦ RMSE for orientation, see Table II.

As for the UWB calibration algorithm, our implementation

has not been optimized in terms of computational speed.

However, the sensor fusion problem is inherently sparse due

to the Markov property of the state and can hence be solved

efficiently.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a sensor fusion approach to combine

inertial measurements with TOA measurements from an UWB

system for 6D pose estimation. The approach is experimentally

shown to result in accurate position and orientation estimates

when compared to data from an independent optical reference

system. To be able to use the UWB measurements in the sensor
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Fig. 12. Top view of the experiment where the subject walked along a circular
path. The estimated trajectory p

n
1:N of the IMU on the subject’s foot is shown

in blue. The positions of the receivers close to the ceiling are depicted in bright
red. The positions of the receivers close to the floor are depicted in light red.
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Fig. 13. Position of the IMU p
n
1:N on the subject’s foot. The estimates from

Algorithm 2 are depicted in blue. The estimates from the optical reference
system are depicted in thick red.

TABLE II
RMSE FOR THE POSITION AND ORIENTATION ESTIMATES FROM

ALGORITHM 2 AS COMPARED TO DATA FROM THE OPTICAL REFERENCE

SYSTEM.

x y z

position [cm] 3.0 3.0 2.3

orientation [◦] 0.37 0.44 0.69
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Fig. 14. Orientation of the IMU q
nb
1:N on the subject’s foot expressed using

Euler angles (roll, pitch, yaw). The estimates from Algorithm 2 are depicted
in blue. The estimates from the optical reference system are depicted in thick
red.

fusion approach, the UWB setup has to be calibrated, i.e. the

receiver positions and their clocks offsets have to be computed.

We have solved the UWB calibration problem using a novel

approach, taking into account the possibility of delayed UWB

measurements due to NLOS and/or multipath. Throughout this

work, we have used an asymmetric heavy-tailed distribution

to model the outliers in the UWB measurements. This model

is shown to lead to accurate position estimates even from

challenging data containing a fairly large amount of outliers

in a new multilateration approach.

An interesting direction for future work is to combine

the sensor fusion algorithm introduced in this work with the

motion capture approach in [8]. This would open up for the

possibility of combining information from multiple IMUs and

multiple UWB transmitters to determine the pose of multiple

body segments or even the entire human body or any other

objects with multiple connected parts.
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