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Nomenclature

α angle of attack, rad

Γ circulation, m2s−1

λ wake wavelength, m

ρ∞ free-stream air density, kgm−3

τ panel tangential vector

ω angular velocity, rad s−1

a non-dimensional distance between aerofoil mid-chord and centre of rotation

A panel area, m2

b semi-chord, m

∆b panel span, m

B wingspan, m

c aerofoil chord, m

∆c panel chord, m

C Theodorsen’s function, C(k) = F (k) + iG(k)

Cd sectional drag coefficient

CD wing drag coefficient

Cl sectional lift coefficient

Cs sectional leading-edge suction coefficient
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d sectional drag, Nm−1

D panel drag contribution, N

F force vector, N

h plunge displacement, m

k reduced frequency

l sectional lift, Nm−1

l vortex segment vector, m

L panel lift contribution, N

M number of chordwise panels

n panel normal vector

N number of spanwise panels

P orthogonal projection operator

s reduced time

S leading-edge suction term, m3/2s−1

∆t time step, s

U velocity vector, ms−1

U∞ free-stream velocity, ms−1

Subscript

i panel index in the chordwise direction

j panel index in the spanwise direction

Superscript

(•̇) time derivative

(•̂) unit vector

(•̄) amplitude

I. Introduction

The Unsteady Vortex Lattice Method (UVLM) solves unsteady, potential flows around

thin lifting surfaces using a lattice of rectilinear vortex rings. Perhaps the most comprehen-

sive modern description of the UVLM is given by Katz and Plotkin,1 however this text, and

the literature as a whole, lack a thorough discussion of induced drag calculations. Accurate

prediction of unsteady induced drag is of great importance in flexible aircraft flight dynam-

ics2 and flapping flight applications3 in which all components of the aerodynamic forces play

an important role. The main difficulty associated with induced drag calculations in lifting-

surface methods, such as the UVLM and Doublet Lattice Method (DLM)a, is the inclusion

aWe refer to the linearised frequency-domain formulation commonly used in aeroelasticity.4 Since the
velocity induced by a constant strength doublet panel is the same as that induced by a vortex ring of the same
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of leading-edge suction effects.

The simplest example of a solution to the leading-edge suction problem comes from thin-

aerofoil theory. In the steady case the component of pressure force in the free-stream direction

is cancelled by the leading-edge suction force; the drag is therefore zero – D’Alembert’s

paradox. However, in the unsteady case there may be drag, or thrust, depending on the

details of the unsteady motion. Garrick5 introduced a closed-form solution for the propulsion

of a sinusoidally oscillating aerofoil by considering the suction force due to the contribution of

infinite, but integrable, vorticity at an infinitely-small, rounded leading-edge.6 The sectional

drag has the form

d = αl − πρ∞S2, (1)

where S is the leading-edge suction term, which for harmonic plunging and pitching motions

is5

S =

√
b

2

[
2C(k)

(
U∞α + ḣ+ b

(
1

2
− a
)
α̇

)
− bα̇

]
, (2)

where C(k) = F (k) + iG(k) is Theodorsen’s function.7 This term arises from downwash at

the leading-edge induced by the bound vorticity, and wake vorticity, relative to the unsteady

motion of the aerofoil.

An equivalent approach in three dimensions is found in solutions built by superposition

of horseshoe vortices, such as the Unsteady Lifting-Line Method.8 The unsteady force con-

tribution from an incremental segment of vorticity, described by vector δl orientated in the

spanwise wing direction along the quarter-chord, is calculated using the unsteady vector

form of the Joukowski theorem yielding δF = δFst + δFunst, where

δFst = ρ∞Γ (U× δl) , (3)

and

δFunst = ρ∞
∂Γ

∂t
c
(
Û× δl

)
. (4)

In the above equations Γ is the circulation around an incremental vortex segment of

length δl, and U is the local flow velocity which is assumed normal to δl. The unit vector

Û = U/ |U| describes the direction of the local flow velocity. The force component in the

free-stream direction is referred to as induced drag.

This approach has been extended to the UVLM,1,9 although the resulting methods have

not been discussed thoroughly, or compared. Therefore, this technical note seeks to present

and compare the two force calculation methods currently used in the UVLM in which induced

shape and strength,1 vortex and doublet lattices are actually equivalent. However, the UVLM is typically
formulated in the time domain with the non-penetration boundary condition enforced on the instantaneous
deformed surface geometry.
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drag is predicted including leading-edge suction effects. For validation purposes a comparison

with analytical solutions5,7 to limit cases is first presented. Following this the convergence

of both methods is investigated for a finite wing application; firstly for a steady-state case,

and then for a series of related unsteady cases of increasing reduced frequency.

II. Method

Capturing leading-edge suction effects in the UVLM requires that force contributions

from all bound singularities are included. The force from each of the ring segments is given

by Eq. (3) and is quasi-steady in nature. The unsteady contribution presented in Eq. (4)

is a force originating from the unsteady part of Bernoulli’s equation that, in the absence

of a surface, is approximated to act in the direction Û × δl. Since the UVLM resolves the

mean aerodynamic surface the unsteady force component from Bernoulli’s equation can be

orientated, as intended, along the normal of each vortex ring (panel).9 This leads to an

unsteady contribution from each panel

Fij = ρ∞
∂Γij
∂t

Aijnij, (5)

where Aij is the panel area, nij is the panel normal vector, and i and j are panel indices in

the chordwise and spanwise directions respectively. Therefore the force on each vortex ring

is obtained by adding the steady contribution from each of its vortex segments (3) to the

unsteady component from the panel (5). For the proceeding discussion, this method will be

referred to as the Joukowski method.

A second force calculation method is given by Katz & Plotkin.1 The unsteady Bernoulli

equation is applied to the top and bottom surfaces of each panel in order to find the pressure

jump, which results in a local lift contribution

Llocalij = ρ∞

((
Um
ij + Uw

ij

)
.τ cij

Γij − Γi−1,j

∆cij

+
(
Um
ij + Uw

ij

)
.τ sij

Γij − Γi,j−1

∆bij
+

∂Γij
∂t

)
Aij cosαij,

(6)

where Um
ij and Uw

ij are velocity contributions from the surface motion (relative inertial ve-

locity) and the wake vorticity respectively, at the panel collocation point. The contribution

of bound vorticity is approximated by two components arising from the gradient of cir-

culation along the direction of panel tangential vectors τ cij and τ sij, in the chordwise and

spanwise directions respectively. Katz & Plotkin1 note that the force resulting from the

pressure jump does not include leading-edge suction effects and is only adequate for lift pre-
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diction. Hence, the local angle of attack αij has been introduced, which for general motions

is αij = tan−1
(
Um
ij .nij / Um

ij .τ
c
ij

)
.3 Note that Eq. (6) does not account for sideslip.

The induced drag is then calculated using the component of downwash that acts along the

local lift vector. The local lift vector is found by linear transformation of the panel normal

vector to a plane perpendicular to the relative inertial velocity, which is achieved using an

orthogonal projection operator,10 PÛm
ij

= I − Ûm
ij Ûmᵀ

ij , where I is the identity matrix. The

local drag is then

Dlocal
ij = ρ∞

[
−
(
Ubc
ij + Uw

ij

)
.
(
PÛm

ij
nij

)
(Γij − Γi−1,j) ∆bij +

∂Γij
∂t

Aij sinαij

]
, (7)

where the superscript bc indicates a velocity is calculated considering bound, chordwise-

orientated vorticity only. At the leading-edge Γi−1,j is set to zero. The total force contribution

from each panel is then, Fij = Dlocal
ij Ûm

ij + Llocalij PÛm
ij
nij.

In addition to its complexity for general motions, this approach also has the drawback that

the drag is approximated based on velocities calculated at the collocation points, not directly

on the vortex segments, introducing additional discretisation error. Also, only chordwise-

orientated vorticity contributes to the local drag term. In contrast, in the Joukoswki Method

the velocity is calculated at the midpoint of every vortex segment. For a given discretisation,

the Joukowski method carries a slight computational overhead compared to that of Katz and

Plotkin,1 but it is easier to implement for general cases with complex kinematics.

III. Results

What follows is a comparison of the force calculation methods described above. Results

are also benchmarked against the analytical solutions of Theodorsen7 and Garrick.5 Gar-

rick’s work is useful for drag benchmarking yet it is very rare to find results for pitching

motions presented as a function of time – usually expressions for periodically time-averaged

coefficients are presented.11,12 In order to adapt the general 3D implementation of the UVLM

into a 2D problem a single rectangular surface was modelled with an extremely large aspect

ratio, O(103). Following the comparison with 2D analytical solutions, results are presented

from steady and unsteady simulations of a finite-wing in order to highlight differences in the

convergence of the methods for 3D problems.

A. Plunging and Pitching Aerofoils

The simulations here are of flat-plates exhibiting small-amplitude oscillations with fully-

developed linear wakes. For harmonic plunging motions, h = −h̄ cos(ks), Garrick’s solution
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can be written in non-dimensional form as13

Cd(s) = − 2πk2 h̄
2

b2
[G (k) cos (ks) + F (k) sin (ks)]2 , (8)

where the sectional drag coefficient, Cd, is presented as a function of non-dimensional time,

s = U∞t
b

. The reduced frequency is defined as k = ωb
U∞

. Inspection of Eq. (8) reveals that

there is a propulsive force for plunging motions at all reduced frequencies that is proportional

to both the square of the reduced frequency and the square of the plunging amplitude.

For pitching, an additional parameter defines the centre of rotation, a, which is non-

dimensionalised by the semi-chord and measured from the mid-chord as positive in the aft

direction. The induced drag is then given by Eq. (1), which in non-dimensional form is

Cd(s) = αCl(s)− Cs(s), (9)

where the suction force and lift coefficients, for pitching motions of the type α = ᾱ sin(ks),

are, respectively,

Cs(s) =
πᾱ2

2
[Υ1 sin(ks) + Υ2 cos(ks)]2 , (10)

and

Cl(s) = πᾱ
[
k cos(ks) + ak2 sin(ks)

+ 2F (k)

(
sin(ks) +

(
1

2
− a
)
k cos(ks)

)
+ 2G(k)

(
cos(ks)−

(
1

2
− a
)
k sin(ks)

)]
,

(11)

where Υ1 = 2
[
F (k)− kG(k)

(
1
2
− a
)]

, and Υ2 = 2
[
G(k) + kF (k)

(
1
2
− a
)]
− k. The results

of Eqs. (8) & (9) are compared to results computed with the UVLM in Fig. 1, where phase

plots of induced drag against kinematics are shown for a given discretisation at two reduced

frequencies. The agreement between the UVLM results and the linear theory is good with

the exception of the Katz & Plotkin method for k = 1 plunging (Fig. 1(b)) which requires

a finer mesh for convergence.

This is investigated further through a convergence exercise on both force calculation

methods with respect to the chordwise discretisation. The results for both plunging and

pitching motions can be found in Fig. 2, where the error is defined as

error =
RMS (CdUV LM

− CdGarrick
)

max
t
|CdGarrick

|
, (12)

where the maximum of the modulus is used in the denominator to avoid issues arising when
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(a) Plunging at k = 0.1
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(b) Plunging at k = 1
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(c) Pitching at k = 0.1
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(d) Pitching at k = 1

Figure 1. Unsteady induced drag for sinusoidal oscillations in plunge and pitch. In plunge αeff =

tan−1
(
k h̄b sin(ks)

)
with h̄

b = 0.2 at k = 0.1, and h̄
b = 0.02 at k = 1. In pitch ᾱ = 1 deg, and

a = −0.5. M = 16 and ∆t U∞
c = 1

16 in all cases.

calculating the relative error as CdGarrick
approaches zero. When prescribing the time step

in the UVLM it is useful to define a non-dimensional time step, ∆t U∞
c

. From this definition,

and assuming that the chord is split into M equally-sized panels, the time step can be set

as ∆t U∞
c

= 1
M

to ensure trailing-edge and newly-shed wake panels have the same area.

The convergence of both methods for plunging oscillations at k = 0.1 is shown in Fig.

2(a). In this case the convergence is very fast, with errors less than 1% for all discretisa-

tions shown. For higher reduced frequencies the convergence pattern is similar, with the

Joukowski method converging marginally faster than the Katz and Plotkin method (Fig.

2(b)). Convergence is also shown for pitching oscillations at k = 0.1 in Fig. 2(a) using the

same error metric, Eq. (12). Convergence of the Katz & Plotkin method and the Joukowski

method are similar in this case. Interestingly, at k = 1 the Katz & Plotkin method shows

slightly better convergence (Fig. 2(b)) for pitching oscillations. This may be because this
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method uses velocities at the collocation point, and hence gives a better approximation of

the tangential velocities when there are linear variations of relative inertial velocity across

the panel. Finally, increased spatial resolution is required at higher reduced frequencies for

both pitch and plunge motions. Therefore, for a given discretisation, both methods show

increasing discrepancies with the analytical theory as the frequency increases.
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(a) k = 0.1

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

M

%
 R

M
S

 e
rr

or

 

 

Katz & Plotkin method (Plunging)
Joukowski method (Plunging)
Katz & Plotkin method (Pitching)
Joukowski method (Pitching)

(b) k = 1

Figure 2. RMS error in drag as a function of M, the number of chordwise panels. Plunging motion
with h̄

b = 0.2 at k = 0.1, and h̄
b = 0.02 at k = 1. Pitching motion with ᾱ = 1 deg, and a = −0.5.

∆t U∞
c = 1

M in all cases.

B. Pitching of a Finite-Wing

A low aspect-ratio finite wing (AR = 4) is simulated with the UVLM to further investigate

the convergence of both force calculation methods. The steady results, at a constant angle

of attack, are shown alongside results from pitching oscillations about the quarter-chord at

different reduced frequencies (Fig. 3) in order to ascertain any additional effect that reduced

frequency may have on convergence. The error has been normalized with respect to the

Joukowski method result from the most densely panelled simulation at each frequency.

There are three length scales in the oscillation of a finite wing:14 chord, c; span, B; and

the wake wavelength, λ = πc
k

. Analysis of a low-aspect-ratio wing (B ≈ c) is a highly three-

dimensional problem, and care must be taken to discretise the wing appropriately in both the

spanwise and chordwise directions. The steady result (at k = 0) where λ → ∞, shows the

convergence of the Katz & Plotkin method is far slower than the Joukowski method for such

a problem. This is almost certainly due to the discretisation error incurred by calculating

downwash at the collocation points. In the case of a high reduced frequency (i.e when λ ≈ c)

the problem becomes more two-dimensional.14 This effect is observed in the results of Fig.

3 as the coalescence of error curves with increasing reduced frequency.
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Figure 3. Convergence of steady drag, and unsteady mean drag, with respect to chordwise panelling
for a flat-plate of aspect-ratio 4. Results for α = 5o cos(ks), ∆t U∞

c = 1
M , and N = 50.

IV. Conclusion

Unsteady aerodynamics methods that use lifting-surface approximations require solution

of the leading-edge suction in their induced drag calculations. Results of two force calculation

methods used in the UVLM, the Joukowski method and the Katz & Plotkin method, have

been presented with a focus on the calculation of unsteady induced drag. Comparisons of

both methods have been made with analytical solutions for the induced drag of plunging

and pitching flat-plate aerofoils. It was shown that the methods converge equally well to the

analytical solutions as finer discretisations are used.

A 3D problem was also investigated to highlight convergence properties of the methods

with respect to chordwise panelling. For the low-aspect-ratio wing investigated the steady

drag was found to converge very slowly using the Katz & Plotkin method, whereas the

Joukowski method exhibited very fast convergence. This is attributed to the discretisation

error in the Katz & Plotkin method associated with evaluating velocities at panel collocation

points, rather than on vortex segments. It is known that if the reduced frequency of the

wing motion is very high the problem becomes locally two-dimensional, and this effect was

observed in the results presented here as the coalescence of error curves with increasing

reduced frequency. At moderate-to-low reduced frequencies the Joukowksi method was found

to offer the same level of accuracy for a much coarser discretisation and therefore presents

itself as a desirable option for 3D applications, such as the flight dynamics of very flexible

aircraft.
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