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Induced Drag Minimization: A Variational Approach
Using the Acceleration Potential

Luciano Demasi∗

University of Washington, Seattle, Washington 98195-2400

A method of predicting the minimum induced drag conditions in conventional or innovative lifting systems
is presented. The method is based on lifting-line theories and the small perturbation acceleration potential. As-
suming linearity and rigid wake aligned with the freestream, the optimal conditions are formulated using the
Euler–Lagrange integral equation subject to the conditions of fixed total lifting force and wing span. The Lagrange
multiplier method is applied, and equations for the design optimum are obtained and solved directly. Particular
attention is paid to the Hadamard finite-part integrals involved in the solution process. Munk’s drag theorems
are also applied in order to verify the quality of the solutions. In this paper, where the theoretical/computational
foundation is laid for the induced drag minimization of general lifting-line configurations, the case of the biplane
under optimal conditions is extensively analyzed. It is demonstrated that, under optimal conditions, the two wings
(which have the same wing span) have the same circulation distribution. Cases of finite, infinite, and infinitesimal
distances between the wings are analyzed as well. It is shown that the optimal distribution is, in general, not ellip-
tical. The proposed theoretical approach is general, and it offers a valuable tool for direct prediction of minimum
induced drag in both planar and nonplanar lifting systems. Results obtained by the proposed approach shed light
on some of the mathematical issues involved, and they can be used for verifying results obtained by numerical
math-programming-based optimization.

Nomenclature
CDi = coefficient of induced drag
(CDi )opt = coefficient of induced drag under

optimal condition
[(CDi )opt]ref = coefficient of induced drag under optimal

condition for a cantilevered wing
CL = coefficient of lift
C̄L = prescribed value of the coefficient of lift
C1, C2 = constants
C̄ = prescribed value of the constraint
c = auxiliary function used in the definition

of the constraint
Di = induced drag
d j = integral of the square of the Legendre

polynomial of order j
F = aerodynamic force per unit of length
Fa = aerodynamic force per unit of area
g = known function
H = distance between the two wings in a biplane
h = nondimensional distance between the two wings

in a biplane
hi = i th Gauss weight
I Had
lk = particular Hadamrd’s integral

J = functional
L = aerodynamic lift
L̄ = prescribed value of the lift
L̄guess = value of the lift corresponding to mguess

l = Chord
M = number of points used in the quadrature formula

of Hadamard’s integrals
m = unknown function, doublet distribution
ma = doublet distribution (chord direction)
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mguess = solution of the Euler–Lagrange equation
corresponding to λguess

m1, m2 = unknown functions, doublet distributions
m10

, m11
= boundary values of m1

m1opt, m2opt = candidate functions that minimize J , optimal
doublet distributions

m20
, m21

= boundary values of m2

m̄ = amplitude of the elliptical doublet distribution
Pj = Legendre polynomial of order j
PN = legendre polynomial of order N
p = pressure
p∞ = freestream pressure
Q j = Cauchy integral used in the calculation of w I

i
s = nondimensional coordinate
si = i th node used in the numerical integration of

Hadamard’s integrals
t = time, nondimensional coordinate
tl = lth zero of PN (t), collocation point
un = normalwash
V∞ = freestream velocity
w I

i = i th weight used in the numerical integration of
Hadamard’s integrals

x, y, z = coordinate system
xd , yd , zd = coordinates of the point in which the

doublet is positioned
RȲ = symmetric regular kernel
SȲ = symmetric singular kernel
α = twist distribution
αi = induced angle of attack
� = circulation
γ = ratio of the specific heat coefficients for

unit mass (1.4 for air)
δ1, δ2, δ3 = variation functions
λ = Lagrange multiplier
λguess = arbitrarily chosen Lagrange multiplier
ρ∞ = freestream density (constant in all field)
σ = auxiliary variable
	 = acceleration potential, small perturbation

acceleration potential
φ = small perturbation velocity potential
2bw = wing span
=
∫

= Hadamard’s finite-part integral
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Subscript

opt = referred to the optimal condition

Introduction

M ETHODS for induced-drag prediction and minimization have
been pursued since the early days of aviation.1,2 Reviews

of procedures for induced-drag prediction can be found in the
literature.3−5 To calculate the induced drag generated by a lifting
surface, it is required4 that all, or at least a portion, of the velocity
field has to be determined in the vicinity of the wing. Linear poten-
tial flow methods generally solve for the velocity over only a small
part of the flowfield and can, thus, lead to significant computational
savings.

Such linear methods can be of the lifting-line theory type.4,6−11

Lifting surface theories and solution methods such as the vortex-
lattice method4,6,12−23 account for chordwise as well as spanwise
effects on thin wings.

Panel methods24,25 can account for wing thickness and for volume
distributions. It is not straightforward, however, to calculate induced
drag by integration of drag forces on individual panels in panel and
lifting surfaces because the result can be sensitive to discretization,
and, thus, both surface integration and Trefftz-plane integration can
be used.

Optimal lift distributions for minimum drag on straight high-
aspect-ratio wings were already obtained in the early years of
the 20th century, and interest in induced-drag minimization kept
place with the evolution over the years of more complex wing
configurations.26 With the growing availability of digital comput-
ers and math-programming algorithms, first lifting surface/math-
programming optimum wing designs for minimum induced drag
were reported in the 1960s and early 1970s. Development of math-
programming-based wing design for induced drag minimization
continued in the 1980s and 1990s, and the technology was ap-
plied to emerging unconventional wing configurations, such as the
box wing and C wing.3 Some of the main advantages of the math-
programming induced-drag-minimization methods are that they are
efficient and can be applied to general configurations subject to
constraints of various types. The early analytical induced-drag-
minimization methods were applicable only to simple configura-
tions. In this paper a new theoretical approach for induced-drag
minimization that can tackle planforms of quite general form and
can be applied to nonconventional wing configurations is presented.
The method is based on a variational approach and leads to a set of
equations for the optimum solution directly. Under the hypotheses
of steady, incompressible, and inviscid flow, the induced drag is min-
imized considering the wake rigid and aligned with the freestream
velocity. (The wake can also be modeled as deformed wake).27−29

The new method is not intended to replace math-programming-
based induced-drag minimization techniques. It complements such
methods by shedding light on some of the analytical and numer-
ical issues involved and can provide benchmark test cases for the
verification of accuracy and convergence characteristics of other
minimization methods.

The paper is organized as follows: the Euler–Lagrange inte-
gral equation involving Hadamard finite-part integrals is derived.
A numerical solution technique for such an equation is presented.
Hadamard integrals appear in the expressions of the induced drag,
and their accurate numerical evaluation is required in any direct
minimum induced-drag solution using variational calculus based
optimality criteria. Thus, a quadrature formula for the Hadamard
finite-part integral is introduced. Finally, the present minimization
procedure is applied to the biplane case as a demonstration, and
results are presented and discussed.

The power of the proposed technique is not limited to planar
wings. Important three-dimensional wing configurations can be ad-
dressed by the method. The present paper, however, focuses on the
presentation of the technique and its demonstration using biplanes
only. Applications to more complex configurations will be presented
in a subsequent paper.

Mathematical Preliminaries
Euler–Lagrange Equation Involving Hadamard Finite-Part Integrals

Presented here is an extension of the well known Euler–Lagrange
equation30−32 in a particular case, where the integral has to be in-
terpreted in the Hadamard33−35 finite-part sense. A particular func-
tional is presented here (later it will represent the induced drag in a
biplane):

J = C1

∫ +bw

−bw

m1(yd)

∫
=

+bw

−bw

m1(y)SȲ (y, yd) dy dyd

+ C1

∫ +bw

−bw

m1(yd)

∫ +bw

−bw

m2(y)RȲ (y, yd) dy dyd

+ C1

∫ +bw

−bw

m2(yd)

∫
=

+bw

−bw

m2(y)SȲ (y, yd) dy dyd

+ C1

∫ +bw

−bw

m2(yd)

∫ +bw

−bw

m1(y)RȲ (y, yd) dy dyd (1)

where SȲ (y, yd) is a singular kernel of order 2 [in the case of the
biplane SȲ (y, yd) = 1/(y − yd)

2; in a generic wing system this func-
tion is more complex, but the singularity is still of order 2 (Refs. 32
and 36)]. The kernel is also a symmetric function in y and yd : if
the variables y and yd are switched, the kernel does not change:
SȲ (y, yd) =SȲ (yd , y). RȲ (y, yd) is a regular and symmetric func-
tion: RȲ (y, yd) =RȲ (yd , y). Notice that the external integrals of the
functional should be Hadamard’s integrals as well. However, in this
paper the doublet (or circulation) distribution will be zero at the
tips of the wings. Therefore, the singularity is always internal, and,
thus, considering that the order of the singularity is 2, the external
integrals are defined as standard integrals.

Suppose that the goal is to find the functions m1 and m2 that
minimize J . Consider, also, a constraint of the following type (later
the constraint will be represented by the total lifting force):

C̄ = C2

∫ +bw

−bw

m1(yd)g(yd) dyd + C2

∫ +bw

−bw

m2(yd)g(yd) dyd (2)

where g(yd) is a known function. Later the functions m1 and m2 will
represent the doublet distributions over the wings. The functions m1

and m2 have to satisfy the following conditions:

m1(−bw) = m10
m1(+bw) = m11

m2(−bw) = m20
m2(+bw) = m21

(3)

In the case of the biplane, m10
= m11

= m20
= m21

= 0. Consider
now two variation functions δ1 and δ2 that satisfy the conditions

δ1(−bw) = δ1(+bw) = 0, δ2(−bw) = δ2(+bw) = 0 (4)

With these variation functions, a solution for the problem can be
found using the following relations (the subscript opt indicates the
optimal condition: J is minimized):

m1(·) = m1opt(·) + σδ1(·), m2(·) = m2 opt(·) + σδ2(·)
σ ∈ (−1, 1) (5)

where σ is an auxiliary variable. Notice that in Eq. (5) m1 and m2

satisfy the boundary conditions (3), if

m1 opt(−bw) = m10
, m1 opt(+bw) = m11

m2 opt(−bw) = m20
, m2 opt(+bw) = m21

(6)

Notice, also, that m1 opt and m2 opt are the candidate functions to min-
imize J . To apply the Lagrange multiplier method for optimization,
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constraint (2) has to be manipulated. It can be written as

c(yd) = C2

∫ yd

−bw

m1(ȳ)g(ȳ) dȳ + C2

∫ yd

−bw

m2(ȳ)g(ȳ) dȳ

⇒ c′(yd) − C2m1(yd)g(yd) − C2m2(yd)g(yd) = 0 (7)

where

c(+bw) = C̄, c(−bw) = 0 (8)

As can be seen,32 in order to apply the Lagrange multiplier method
the following steps must be taken:

1) Step 1 is substitution of Eq. (5) into the expression representing
the functional J [Eq. (1)] and calculation of the derivative with
respect to σ . The derivative has to be evaluated for σ = 0.

2) Step 2 is substitution of c( · ) = c( · )opt + σδ3( · ) and Eq. (5)
into Eq. (7). Notice that δ3(+bw) = δ3(−bw) = 0, copt(+bw) = C̄ ,
and copt(−bw) = 0. After the substitution, the derivative with respect
to σ has to be calculated and evaluated for σ = 0.

Following these steps (details in Appendix A), the Euler–
Lagrange equations can be written as

+2C1

∫
=

+bw

−bw

m1opt(y)SȲ (yd , y) dy

+ 2C1

∫ +bw

−bw

m2 opt(y)RȲ (yd , y) dy − C2λg(yd) = 0 (9)

+2C1

∫
=

+bw

−bw

m2 opt(y)SȲ (yd , y) dy

+ 2C1

∫ +bw

−bw

m1 opt(y)RȲ (yd , y) dy − C2λg(yd) = 0 (10)

Equations (9) and (10) represent a system of Euler–Lagrange equa-
tions. (Notice that in usual variational problems differential equa-
tions are found; in this particular problem, the system is a system of
integral equations.)

The constraint for the functions m1 opt and m2 opt [see Eq. (2)] has
to be satisfied as well:

C̄ = C2

∫ +bw

−bw

m1 opt(yd)g(yd) dyd + C2

∫ +bw

−bw

m2 opt(yd)g(yd) dyd

(11)
Several important observations can be made. First of all, if other
wing systems are analyzed the number of Euler–Lagrange equa-
tions can be different. For example, in a rectangular box wing37 the
equations that have to be satisfied are four Euler–Lagrange equa-
tions (in the unknown distributions over the horizontal wings and the
vertical joints) and the constraint equation (the total lift imposed).
Moreover, the distribution, for example, over the upper wing is not
zero at the endpoints of the integrals. Therefore, the Hadamard in-
tegrals have the singularity not included in the integration domain.
This fact does not allow, a priori, the possibility to change the vari-
ables (in order to solve the integrals numerically) as in the standard
integrals. However, the changing of the variables is allowed if a few
extra terms are added.34 The quadrature formula for the Hadamard
integrals is also different than the quadrature formula used when
the singularity is internal in the integration domain. In addition, the
external integrals that appear in the definition of J (the induced drag
expression) have to be defined as Hadamard integrals as well.

Considering these observations, the extension to a general wing
system is possible, but particular care has to be devoted to the
Hadamard integrals.34 The author has applied the present minimiza-
tion procedure to other wing geometries (nonplanar and closed-wing
systems). The results will be shown in subsequent papers.

Minimum Induced-Drag Problem—Demonstration
Using the Biplane Configuration

In some publications, it is said that the minimum induced drag
in a biplane is obtained when the distribution of each wing is el-

Fig. 1 Biplane: geometry and notations.

liptical and when the wings have the same load distribution. This
statement is false. The misunderstanding is from an article,38 where
Prandtl assumed the elliptical distribution for each wing in a biplane
and obtained that, under this condition, the best biplane had wings
with the same wing span. But Prandtl never stated that the elliptical
distribution is the optimal distribution for any biplane. It will be
demonstrated that the elliptical circulation distribution is the opti-
mum only if the distance between the two wings is either near zero
or infinity.

Consider a biplane (see Fig. 1; even if the wings have sweep an-
gles, the biplane depicted in the figure is useful because Munk’s
stagger theorem39 can be applied) with wing span 2bw and distance
between the wings H . The upper wing (here called wing 1) is posi-
tioned at z = z1 = +H/2, while the lower wing (here called wing 2)
is positioned at z = z2 = −H/2 in the reference system shown in
Fig. 1.

Direct Problem: Weissinger’s Approach
Weissinger’s lifting-line theory can be used to describe the wings.

If the small perturbation acceleration potential40 is used, the writing
of the integral equations (as will be seen, in this case there are two
integral equations containing the unknown doublet distributions on
the wings 1 and 2) can be accomplished using the procedures shown
in the following steps:

1) Step 1: The lift distribution over the wings is modeled using
doublet lines along the span. Then, the small perturbation accelera-
tion potential of the doublet distribution m1 and m2 over the wings
is written.

2) Step 2: The small perturbation velocity potential is obtained
by integration of the small perturbation acceleration potential. This
operation is necessary because the wall tangency condition (WTC) is
written using the components of the velocity, which can be obtained
by derivation of the small perturbation velocity potential.

3) Step 3: The WTC is imposed using Weissinger’s8,9 approach.
These operations are defined as direct problem because they allow

calculation of the lift distribution over the wings once the twist
distribution is assigned.

Small Perturbation Acceleration Potential
Consider wing 1. The generic expression for the small pertur-

bation acceleration potential of a doublet m1(yd) dyd positioned at
point P(xd , yd , zd) is

d	1(x, y, z) =

−m1(yd) dyd

4π

ndx (x − xd) + ndy(y − yd) + ndz(z − zd)[
(x − xd)2 + (y − yd)2 + (z − zd)2

] 3
2

(12)

where ndx , ndy , and ndz are the components of the unit vector, which
defines the axis of the doublet m1(yd) dyd . Now, choosing the dou-
blet axis to be directed along +z (the opposite choice is equivalent;
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however, in some equations the sign has to be changed), it can be
deduced that ndx = ndy = 0 and ndz = 1. Substituting into Eq. (12)
and remembering that zd = z1 = +H/2 and integrating along the
span of wing 1:

	1(x, y, z) = −
∫ +bw

−bw

m1(yd)

4π

(z − H/2)[
x2 + (y − yd)2 + (z − H/2)2

] 3
2

dyd

(13)
	1(x, y, z) is the small perturbation acceleration potential obtained
by adding all contributions of all doublets on wing 1.

The same operations can be repeated for wing 2:

	2(x, y, z) = −
∫ +bw

−bw

m2(yd)

4π

(z + H/2)[
x2 + (y − yd)2 + (z + H/2)2

] 3
2

dyd

(14)
The theory that is being developed is linear. Therefore, the superim-
position of the contributions is possible. Thus, the small perturbation
acceleration potential of the biplane is obtained by adding Eqs. (13)
and (14)

	(x, y, z) = 	1(x, y, z) + 	2(x, y, z) (15)

Small Perturbation Velocity Potential
To impose the boundary conditions, the small perturbation veloc-

ity potential has to be written by integrating the expression of the
small perturbation acceleration potential:

φ(x, y, z) = φ1 + φ2

= 1

V∞

∫ x

−∞
	1(τ, y, z) dτ + 1

V∞

∫ x

−∞
	2(τ, y, z) dτ (16)

whereφ1 andφ2 are the contributes of the wings 1 and 2, respectively.
Calculating the integrals, the explicit form of the small perturbation
velocity potential can be written as

φ1 = − 1

4πV∞

∫ +bw

−bw

m1(yd)(z − H/2)

(y − yd)2 + (z − H/2)2

×
[

x√
x2 + (y − yd)2 + (z − H/2)2

+ 1

]
dyd (17)

φ2 = − 1

4πV∞

∫ +bw

−bw

m2(yd)(z + H/2)

(y − yd)2 + (z + H/2)2

×
[

x√
x2 + (y − yd)2 + (z + H/2)2

+ 1

]
dyd (18)

WTC Imposition Using Weissinger’s Approach
The WTC has to be imposed on both wings. Thus,

−α1(y, z1) = 1

V∞

[
∂φ

∂z

]
z = z1, x = xWTC

−α2(y, z2) = 1

V∞

[
∂φ

∂z

]
z = z2, x = xWTC

(19)

where xWTC = l/2, z1 = +H/2 and z2 = −H/2. Notice that the dou-
blet distributions are positioned at x = 0 (first quarter line), but the
boundary conditions are imposed at xWTC = l/2.

There is no requirement that imposes m1(y) = m2(y) because the
wings can have different aerodynamic properties (for example, the
twist distribution); hence, in general, m1(y) �= m2(y). The system
of integral equations [see Eq. (19)] can be used to solve the direct
problem: when the velocity V∞ and the twist distributions α(y, z1)
and α(y, z2) are known, the unknown doublet distributions m1(y)
and m2(y) over the wings 1 and 2 can be calculated, and from those
quantities the calculation of the lifting force and induced drag is
straightforward. The direct problem41 will not be solved here.

Normalwash
The normalwash un is involved in the induced drag formula, as it

will be shown in the next section. Then un follows from the definition
of the small perturbation velocity potential. Consider wing 1. The
induced velocity has the expression

un1 =
[

∂φ

∂z

]
z = z1,x = 0

=
[

∂φ1

∂z

]
z = z1,x = 0

+
[

∂φ2

∂z

]
z = z1,x = 0

(20)

Using Eqs. (17) and (18), and remembering that z1 = +H/2,
Eq. (20) can give the normalwash for wing 1:

un1(y) = − 1

4πV∞

∫
=

+bw

−bw

m1(yd)

(y − yd)2
dyd

− 1

4πV∞

∫ +bw

−bw

m2(yd)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dyd (21)

Similarly for wing 2, it can be shown that

un2(y) = − 1

4πV∞

∫
=

+bw

−bw

m2(yd)

(y − yd)2
dyd

− 1

4πV∞

∫ +bw

−bw

m1(yd)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dyd (22)

Aerodynamic Force per Unit of Length of Wing Span
The definition of acceleration potential is

	 = −
∫

dp

ρ
− G(t) (23)

where G(t) is a function of time t and furnishes the value of 	 at
the start of the integration domain. In the isentropic case, it is not
difficult to show that

	 = [γ /(γ − 1)]
(

p1/γ
∞

/
ρ∞

)[
p(γ − 1)/γ

∞ − p(γ − 1)/γ
]

(24)

Using the hypothesis of small perturbations, the pressure can be
expanded from the value p∞ by using the following Taylor series:

p(γ − 1)/γ = p(γ − 1)/γ
∞ {1 + [(γ − 1)/γ ](p/p∞ − 1)} (25)

Substituting Eq. (25) into Eq. (24), the small perturbation accelera-
tion potential becomes

	 = (p∞ − p)/ρ∞ (26)

which shows that the small perturbation acceleration potential is
directly related to the pressure. To show how to calculate the aero-
dynamic force using the doublet distributions, consider an airfoil
(two-dimensional case). The x direction is the direction of the chord
and the freestream velocity V∞; the z direction is the direction of
the lifting force. The small perturbation hypothesis signifies that the
airfoil can be studied using a distribution of doublets ma(x) along
the chord of the airfoil. Suppose that the axes of the doublets are
directed along +z. Notice that the airfoil can be thought as a section
in y = yd of a wing in the x − y plane. The ma(x) should not be con-
fused with m(yd): ma(x) is the distribution of doublets in the chord
direction of the airfoil positioned at y = yd ; m(yd) is its integral:

m(yd) =
∫ + 3

4
l

− 1
4

l

ma(x) dx (27)

The small perturbation acceleration potential of the doublets ma(x)
is (notice that this is a two-dimensional case)

	(x, z) = − 1

2π

∫ + 3
4

l

− 1
4

l

ma(ξ)
z

(x − ξ)2 + z2
dξ (28)
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From Eq. (28), it follows that

	(x, 0±) = ∓ma(x)/2 (29)

Using the relation between the small perturbation acceleration po-
tential and the pressure [Eq. (26)] and Eq. (29), the aerodynamic
force per unit of area Fa is

Fa(x) = −ρ∞[	(x, 0−) − 	(x, 0+)]

= −ρ∞[ma(x)/2 + ma(x)/2] = −ρ∞ma(x) (30)

In Weissinger’s approach, all doublets ma(x) of the generic airfoil
positioned at y = yd are concentrated at the point x = xd = 0 (first
quarter), and the WTC is imposed at the point xWTC = + 1

2
l. There-

fore, in the generic airfoil the aerodynamic force (per unit of length
of wing span) is obtained as follows:

F(yd) =
∫ + 3

4
l

− 1
4

l

Fa(x) dx = −ρ∞

∫ + 3
4

l

− 1
4

l

ma(x) dx = −ρ∞m(yd)

(31)
If the doublets are chosen with axes direct along −z, the preceding
equation has the + sign. Considering what has been proved here,
it is not difficult to relate the doublet distribution to the circulation
�(yd). This can be done by considering the local Kutta–Joukowsky
theorem:

F(yd) = ρ∞V∞�(yd) (32)

Comparing Eqs. (31) and (32), the relation between the circulation
distribution and the doublet distribution is

�(yd) = −m(yd)/V∞ (33)

Therefore, when in the next sections the optimal doublet distribution
is found, the optimal circulation distribution can be obtained by
multiplying the doublet distribution by a constant [see Eq. (33)].

Relation (33) can be also applied in the geometrical derivation32

of the normalwash. In fact, it is possible to use the circulation dis-
tribution over the wings and calculate the induced velocity using
Biot–Savart6 law. Then integrating by parts and recalling that the
circulation has to be zero at the tips, the normalwash as a function
of the circulation (and not of its derivatives) can be calculated. Fi-
nally, using Eq. (33), the normalwash equations can be shown to
be coincident with expressions (21) and (22) obtained deriving the
velocity potential.

Induced Drag
The goal is to minimize the induced drag. To do that, the mathe-

matical expression of the induced drag has to be formulated in terms
of m1(y) and m2(y).

Consider the upper wing (wing 1). The axes of the doublets are
directed along +z. Hence, the aerodynamic force per unit of length
is

F1(yd) = −ρ∞m1(yd) (34)

The induced incidence on the wing 1 is calculated using the nor-
malwash:

αi1(yd) = −[un1(yd)]x = 0/V∞ (35)

The induced drag per unit of span is F1(yd) tan[αi1(yd)]. Integrating
over the wing span and remembering that the formulation is valid for
small perturbations (i.e., the trigonometric tangent is approximated
with the angle), the induced drag contribute of the wing 1 is

Di1 =
∫ +bw

−bw

F(yd) tan[αi1(yd)] dyd 

∫ +bw

−bw

F1(yd)αi1(yd) dyd

(36)

Using Eqs. (34) and (35) and the normalwash expression on the
wing 1 [Eq. (21)], the contribution on the induced drag of the upper
wing is

Di1 = − ρ∞
4πV 2∞

∫ +bw

−bw

m1(yd)

∫
=

+bw

−bw

m1(y)

(y − yd)2
dy dyd

− ρ∞
4πV 2∞

∫ +bw

−bw

m1(yd)

∫ +bw

−bw

m2(y)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dy dyd

(37)

Notice that both wings give a contribution on the induced drag.
Repeating the same procedure for the wing 2,

Di2 = − ρ∞
4πV 2∞

∫ +bw

−bw

m2(yd)

∫
=

+bw

−bw

m2(y)

(y − yd)2
dy dyd

− ρ∞
4πV 2∞

∫ +bw

−bw

m2(yd)

∫ +bw

−bw

m1(y)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dy dyd

(38)

The total induced drag is the summation of the contributes of wings 1
and 2:

Di = Di1 + Di2 (39)

Total Lifting Force
Recalling the expression of the aerodynamic force [Eq. (34)], the

expression for total lifting force can be written as

L = L1 + L2 = −ρ∞

∫ +bw

−bw

m1(yd) dyd − ρ∞

∫ +bw

−bw

m2(yd) dyd

(40)

Derivation of the Euler–Lagrange Equations
The purpose is to minimize the induced drag under the condition

of fixed total lifting force and wing span. To achieve this goal, the
methods explained in the preceding sections have to be applied. The
functional that has to be minimized is represented by Eq. (39); the
constraint is represented by the condition of fixed total lifting force
L = L̄ [see Eq. (40)]. Comparing Eqs. (39), (37), (38), and (40) with
Eqs. (1) and (2), it follows that

C1 = − ρ∞
4πV 2∞

C2 = −ρ∞ g(yd) = 1 C̄ = L̄

SȲ = 1

(y − yd)2

RȲ = (y − yd)
2 − H 2[

(y − yd)2 + H 2
]2

(41)

Therefore, Eqs. (9) and (10) can be written as∫
=

+bw

−bw

m1 opt(y)

(y − yd)2
dy +

∫ +bw

−bw

m2 opt(y)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dy

− λ · 2πV 2
∞ = 0 (42)∫

=
+bw

−bw

m2 opt(y)

(y − yd)2
dy +

∫ +bw

−bw

m1 opt(y)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dy

− λ · 2πV 2
∞ = 0 (43)

The following can be observed:
1) One equation is identical to the other if the subscripts 1 and

2 are switched. This implies that, under optimal conditions, the
distributions on the wings must be the same: m1 opt = m2 opt.

2) Under optimal condition the induced velocity over the wings
must be constant. This can be seen considering the expressions
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valid for un1 and un2 [Eqs. (21) and (22)] and comparing them with
Eqs. (42) and (43). (Notice that λ · 2πV 2

∞ is a constant.)
3) Munk’s minimum induced drag theorem39 is satisfied because

un = const in both wings. Notice that if other optimality conditions
are imposed (like the structural weight), then this theorem is no
longer valid,42,43 and the Euler–Lagrange equations are different.

4) Setting m1 opt = m2 opt = mopt, the system of Euler–Lagrange
equations becomes a single Euler–Lagrange equation in the un-
known mopt. Therefore, from now on only a single Euler–Lagrange
equation and the constraint will be considered:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy +

∫ +bw

−bw

mopt(y)
(y − yd)

2 − H 2[
(y − yd)2 + H 2

]2
dy

−λ · 2πV 2
∞ = 0

L̄ = −2ρ∞

∫ +bw

−bw

mopt(y) dy
(44)

The numerical procedure adopted to solve the system (44) is reported
in Appendix B. The general case, in which more constraints are
applied, is discussed in Appendix B as well. The quadrature formula
for the Hadamard integral is reported in Appendix C.

Validation—Optimal Doublet Distribution: H → 0 Case
When H → 0, the equation of the minimum induced drag [see

Eqs. (37) and (38)] becomes

(Di )opt = − ρ∞
πV 2∞

∫ +bw

−bw

mopt(yd)

[∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy

]
dyd (45)

The Euler–Lagrange equation and the constraint assume the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

πV 2∞

∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy + λ = 0

L̄ = −2ρ∞

∫ +bw

−bw

mopt(y) dy
(46)

It is not difficult to understand that the system is structurally similar
to the equivalent system obtained for the classical cantilevered wing
(see Appendix D). Therefore, the solution is still an elliptical dis-
tribution. (The difference between the two systems is only in some
constants.) Using the same procedure reported in Appendix D, it can
be concluded that when H → 0 the optimal distribution is elliptical
and the induced drag is the same as an optimally loaded classical
wing with the same total lift and wing span. In fact, from Eq. (46)
and assuming the elliptical distribution

mopt(y) = m̄
√

1 − y2
/

b2
w (47)

using the relations (see Appendix D for their derivation)∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy = −m̄

π

bw∫ +bw

−bw

mopt(y) dy = m̄
bwπ

2
(48)

The system (46) becomes{
−[

1
/(

πV 2
∞
)]

[−m̄(π/bw)] + λ = 0 ⇒ λ = L̄
/(

ρ∞πb2
wV 2

∞
)

L̄ = −2ρ∞[m̄(bwπ/2)] ⇒ m̄ = −L̄/(ρ∞πbw) (49)

Using the second relation of Eqs. (49) and (48), the minimum in-
duced drag [Eq. (45)] becomes

(Di )opt = − ρ∞
πV 2∞

(
−m̄

π

bw

)(
m̄

bwπ

2

)
= ρ∞π

2V 2∞
m̄2 =

= ρ∞π

2V 2∞

(
− L̄

ρ∞πbw

)2

= L̄2

2πρ∞b2
wV 2∞

(50)

which demonstrates that the minimum induced drag is the same
as the minimum induced drag of a cantileverd wing with the same
wing span and total lift (see Appendix D). Notice that it is correct
to have the negative sign in the expression of m̄ [see Eq. (49)]. The
meaning is that the doublets have to have an opposite axis direction
with respect to the initial choice (which was +z) in order to have
the lift directed along +z.

Validation—Optimal Doublet Distribution: H → ∞ Case
Calculating the limit H → ∞, the minimum induced-drag ex-

pression [compare the following expression with Eq. (45), valid for
the case H → 0] becomes

(Di )opt = − ρ∞
2πV 2∞

∫ +bw

−bw

mopt(yd)

[∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy

]
dyd

(51)
The system represented by the Euler–Lagrange equation and the
constraint is ⎧⎪⎪⎪⎨⎪⎪⎪⎩

− 1

2πV 2∞

∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy + λ = 0

L̄ = −2ρ∞

∫ +bw

−bw

mopt(y) dy
(52)

Again, the solution is represented by an elliptical distribution. In
particular, it is possible to find

m̄ = −L̄/(ρ∞πbw), (Di )opt = L̄2
/(

4πρ∞b2
wV 2

∞
)

(53)

Comparing Eqs. (50) and (53), it is possible to deduce that 1
2

the
induced drag of an optimally loaded cantilevered wing with the same
lift and wing span has been found.

Optimal Doublet Distribution: Finite H Case
Is the optimal distribution elliptical? To answer the question, it is

useful to change the variables and manipulate the Euler–Lagrange
equation [first relation in Eq. (44)]. Setting s = y/bw ⇒ y = sbw ,
t = yd/bw ⇒ yd = tbw and h = H/bw , the Euler–Lagrange equation
becomes∫ +1

−1

mopt(s)
(t − s)2 − h2

[(t − s)2 + h2]2
ds +

∫
=

+1

−1

mopt(s)

(t − s)2
ds

− λ · 2πbwV 2
∞ = 0 (54)

Suppose that the optimal distribution is elliptical. Then, the distri-
bution (m)opt should have the expression (m)opt(s) = m̄

√
(1 − s2).

Substituting this expression into Eq. (54), Eq. (54) has to be satisfied.
Now consider the Lagrange multiplier: it is constant. The Hadamard
finite-part integral is constant as well because the distribution is el-
liptical (see the demonstration in Appendix D). Therefore, it is evi-
dent that Eq. (54) can be satisfied under elliptical distribution only
if∫ +1

−1

mopt(s)
(t − s)2 − h2

[(t − s)2 + h2]2
ds

=
∫ +1

−1

m̄
√

1 − s2
(t − s)2 − h2

[(t − s)2 + h2]2
ds = const (55)

In other words, for a fixed value of the parameter h the integral
must not be dependent on the value of the variable t . For example,
consider h = −m̄ = 1. It is easy to see that the integral is not constant
with t . For example, using t = 0.2 and −0.5 yields different values:

−
∫ +1

−1

√
1 − s2

(0.2 − s)2 − 1

[(0.2 − s)2 + 1]2
ds = +0.8869751615

−
∫ +1

−1

√
1 − s2

(−0.5 − s)2 − 1

[(−0.5 − s)2 + 1]2
ds

= +0.7188925775 �= +0.8869751615 (56)
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Thus, it has been demonstrated that, under optimal condition, the
doublet distribution is not elliptical if the distance H between the
wings is finite (not zero). This will be further demonstrated in the
next section.

Numerical Evaluations
In preceding sections the optimization problem was examined

theoretically. Here, a few numerical solutions to the optimiza-
tion problem will be analyzed. All results are obtained using the
techniques shown in preceding sections. In particular, the Euler–
Lagrange equation is solved using the collocation method and guess-
ing the initial value of the Lagrange multiplier λ (see Appendix B).

Consider a biplane with the following data (the reference sur-
face for the nondimensional coefficients of lift and induced drag is
S = 4bwl): CL = 1.0 and bw/ l = 12 (l is the chord). The effect of the
parameter H/ l is now discussed. The following cases are analyzed:

1) Case 1 is the H → 0 case. It is studied considering
H/ l = 0.1 × 10−3.

2) Case 2 is the H → ∞ case. It is studied considering
H/ l = 0.1 × 10+3.

3) Case 3 is the finite H case. It is studied considering H/ l = 6.
Recall that, in the biplane with two wings of the same span 2bw ,

the optimal distribution is the same over the two wings. Therefore,
it is not important to specify the wing in which the distribution is
considered. In all of the examined cases, m(y) = −�(y)V∞, where
the negative sign is a consequence of the chosen positive direction of
the doublets and where �(y) is the circulation. The numerical drag
minimization solution using the technique presented here matches
the well-known elliptical load distribution solutions for single wings

Fig. 2 Optimal doublet distribution for finite H. Comparison with the
elliptical distribution.

Fig. 3 Optimal induced-drag coefficient ratio vs H/bw.

Table 1 Optimal induced-drag coefficient vs H/bw

H/bw 100 · (CDi )opt H/bw 100 · (CDi )opt

0.00 3.18 0.50 2.25
0.01 3.11 0.55 2.21
0.05 2.95 0.60 2.17
0.10 2.81 0.65 2.13
0.15 2.70 0.70 2.10
0.20 2.61 0.75 2.07
0.25 2.53 0.80 2.04
0.30 2.46 0.85 2.02
0.35 2.40 0.90 2.00
0.40 2.34 0.95 1.97
0.45 2.29 1.00 1.95

when in the biplane case the distance between the wings is taken to
the limit of H → 0 and also H → ∞. In the case of H → ∞, the
induced-drag coefficient is found to be 1

2
of its value when H → 0

(assuming the same total coefficient of lift in the two cases).
The optimal nondimensional doublet distribution along a wing is

plotted against the elliptical distribution for the case of finite H in
Fig. 2. In the numerical solution of the Euler–Lagrange equation, 20
collocation points are used. It is clear that the preceding theoretical
considerations are correct: in the general case, the optimal doublet
(or circulation) distribution along a wing in a biplane is not elliptical.
The optimal distribution is elliptical only when the distance between
the wings is near zero or infinity. The behavior of the induced drag is
more clear when Fig. 3 and Table 1 are analyzed. (For those analyses,
bw/ l = 10 and CL = 1.0 have been considered.) In particular, the
optimal induced drag starts from the same value as the classical
wing, and it decreases as H increases. This is a general result for
nonplanar wings.3,44

Conclusions
A general variational induced-drag minimization procedure has

been presented and used to study biplane wings. Optimality condi-
tions for lift distributions that minimize induced drag and are subject
to constant lift constraints are obtained in closed form, and the re-
sults can serve as test cases for the validation of other induced-drag
minimization techniques. It has been demonstrated that, for a bi-
plane under optimum conditions, the wings have the same doublet
distribution, which in general is not elliptical. The methods exposed
here can be used to study more general nonplanar lifting configura-
tions such as arcs or closed-wing systems. The present paper lays
the theoretical/numerical foundation of the new technique. Applica-
tions to arc wings and closed wings will be presented in subsequent
papers.

Appendix A: Derivation of the
Euler–Lagrange Equations

The first step is now performed.
Substituting Eq. (5) into the functional J , the resulting expression

is

J [m1 opt(·) + σδ1(·), m2 opt(·) + σδ2(·)]

= C1

∫ +bw

−bw

[m1 opt(yd) + σδ1(yd)]

×
∫
=

+bw

−bw

[m1 opt(y) + σδ1(y)]SȲ dy dyd

+ C1

∫ +bw

−bw

[m1 opt(yd) + σδ1(yd)]

×
∫ +bw

−bw

[m2 opt(y) + σδ2(y)]RȲ dy dyd
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+ C1

∫ +bw

−bw

[m2 opt(yd) + σδ2(yd)]

×
∫
=

+bw

−bw

[m2 opt(y) + σδ2(y)]SȲ dy dyd

+ C1

∫ +bw

−bw

[m2 opt(yd) + σδ2(yd)]

×
∫ +bw

−bw

[m1 opt(y) + σδ1(y)]RȲ dy dyd (A1)

From this expression, the derivative with respect to σ can be
calculated:

dJ

dσ
= C1

∫ +bw

−bw

δ1(yd)

∫
=

+bw

−bw

[m1 opt(y) + σδ1(y)]SȲ dy dyd

+ C1

∫ +bw

−bw

[m1 opt(yd) + σδ1(yd)]

∫
=

+bw

−bw

δ1(y)SȲ dy dyd

+ C1

∫ +bw

−bw

δ1(yd)

∫ +bw

−bw

[m2 opt(y) + σδ2(y)]RȲ dy dyd

+ C1

∫ +bw

−bw

[m1 opt(yd) + σδ1(yd)]

∫ +bw

−bw

δ2(y)RȲ dy dyd

+ C1

∫ +bw

−bw

δ2(yd)

∫
=

+bw

−bw

[m2 opt(y) + σδ2(y)]SȲ dy dyd

+ C1

∫ +bw

−bw

[m2 opt(yd) + σδ2(yd)]

∫
=

+bw

−bw

δ2(y)SȲ dy dyd

+ C1

∫ +bw

−bw

δ2(yd)

∫ +bw

−bw

[m1 opt(y) + σδ1(y)]RȲ dy dyd

+ C1

∫ +bw

−bw

[m2 opt(yd) + σδ2(yd)]

∫ +bw

−bw

δ1(y)RȲ dy dyd (A2)

The derivative, calculated for σ = 0, is[
dJ

dσ

]
σ = 0

= C1

∫ +bw

−bw

δ1(yd)

∫
=

+bw

−bw

m1 opt(y)SȲ dy dyd

+ C1

∫ +bw

−bw

m1 opt(yd)

∫
=

+bw

−bw

δ1(y)SȲ dy dyd

+ C1

∫ +bw

−bw

δ1(yd)

∫ +bw

−bw

m2 opt(y)RȲ dy dyd

+ C1

∫ +bw

−bw

m1 opt(yd)

∫ +bw

−bw

δ2(y)RȲ dy dyd

+ C1

∫ +bw

−bw

δ2(yd)

∫
=

+bw

−bw

m2 opt(y)SȲ dy dyd

+ C1

∫ +bw

−bw

m2 opt(yd)

∫
=

+bw

−bw

δ2(y)SȲ dy dyd

+ C1

∫ +bw

−bw

δ2(yd)

∫ +bw

−bw

m1 opt(y)RȲ dy dyd

+ C1

∫ +bw

−bw

m2 opt(yd)

∫ +bw

−bw

δ1(y)RȲ dy dyd (A3)

Switching yd and y, using the symmetry of the functions RȲ , and
SȲ and exchanging the order of integration (for the integrals defined
in the Hadamard finite-part sense this operation can be proven to be
correct32), Eq. (A3) becomes[

dJ

dσ

]
σ = 0

= 2C1

∫ +bw

−bw

δ1(yd)

∫
=

+bw

−bw

m1 opt(y)SȲ dy dyd

+ 2C1

∫ +bw

−bw

δ1(yd)

∫ +bw

−bw

m2 opt(y)RȲ dy dyd

+ 2C1

∫ +bw

−bw

δ2(yd)

∫
=

+bw

−bw

m2 opt(y)SȲ dy dyd

+ 2C1

∫ +bw

−bw

δ2(yd)

∫ +bw

−bw

m1 opt(y)RȲ dy dyd (A4)

Step 2 is now performed.
Calculating the derivative for the constraint written in Eq. (7), it

is possible to write[
d

dσ
{[copt(yd) + σδ3(yd)]

′

− C2[m1 opt(yd) + σδ1(yd)]g(yd)

− C2[m2 opt(yd) + σδ2(yd)]g(yd)}
]

σ = 0

= δ′
3(yd) − C2δ1(yd)g(yd) − C2δ2(yd)g(yd) = 0 (A5)

Multiplying this expression by λ(yd), integrating by parts the term
that contains the derivative of δ3 [δ3(+bw) = δ3(−bw) = 0] and
adding the result to Eq. (A4) yields the following expression:

2C1

∫ +bw

−bw

δ1(yd)

∫
=

+bw

−bw

m1 opt(y)SȲ dy dyd

+ 2C1

∫ +bw

−bw

δ1(yd)

∫ +bw

−bw

m2 opt(y)RȲ dy dyd

+ 2C1

∫ +bw

−bw

δ2(yd)

∫
=

+bw

−bw

m2 opt(y)SȲ dy dyd

+ 2C1

∫ +bw

−bw

δ2(yd)

∫ +bw

−bw

m1 opt(y)RȲ dy dyd

−
∫ +bw

−bw

λ′(yd)δ3(yd) dyd − C2

∫ +bw

−bw

δ1(yd)λ(yd)g(yd) dyd

− C2

∫ +bw

−bw

δ2(yd)λ(yd)g(yd) dyd = 0 (A6)

It can be observed that the functions δ1(yd), δ2(yd), and δ3(yd) are
arbitrary functions. Thus, it can be written that

δ2(yd) = δ1(yd) ≡ 0

⇒
∫ +bw

−bw

λ′(yd)δ3(yd) dyd = 0

⇒ λ′(yd) = 0 ⇒ λ(yd) = cost (A7)
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Using this result and imposing δ2 ≡ 0,

2C1

∫ +bw

−bw

δ1(yd)

∫
=

+bw

−bw

m1 opt(y)SȲ dy dyd

+ 2C1

∫ +bw

−bw

δ1(yd)

∫ +bw

−bw

m2 opt(y)RȲ dy dyd

− C2λ

∫ +bw

−bw

δ1(yd)g(yd) dyd = 0 (A8)

The preceding equation can be rewritten as∫ +bw

−bw

δ1(yd)2C1

∫
=

+bw

−bw

m1 opt(y)SȲ (yd , y) dy dyd

+
∫ +bw

−bw

δ1(yd)

[
2C1

∫ +bw

−bw

m2 opt(y)RȲ (yd , y) dy

− C2λg(yd)

]
dyd = 0 (A9)

Again, the function δ1(yd) is arbitrary. Therefore, in order to solve
Eq. (A9), the first Euler–Lagrange equation [relation (9)] has to
be satisfied. Operating similarly, imposing δ1 ≡ 0 and observing
that δ2 is an arbitrary function, the second Euler–Lagrange equation
[relation (10)] can be obtained.

Appendix B: Numerical Solution of the
Euler–Lagrange Integral Equation

The solution of the system (44) is straightforward.
1) Step 1: The variables are changed in order to have all inte-

grals with endpoints −1 and +1. Notice that the singularity in the
Hadamard integrals is internal and of order 2. Therefore, the chang-
ing of the variables is allowed.34 Using the transformation,

yd = tbw, y = sbw, H = hbw (B1)

The system represented by the Euler–Lagrange integral equation
and the constraint becomes [see Eq. (44)]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
=

+1

−1

mopt(s)

(s − t)2
ds +

∫ +1

−1

mopt(s)
(s − t)2 − h2

[(s − t)2 + h2]2
ds

−λ · 2πbwV 2
∞ = 0

L̄ = −2ρ∞bw

∫ +1

−1

mopt(s) ds
(B2)

2) Step 2: The value of λ is arbitrarily chosen: λ = λguess �= 0.
The guessed Lagrange multiplier is not coincident with the real
Lagrange multiplyer. Therefore, the solution of the first equation in
the system (B2) is not mopt(s). Let mguess(s) be called the solution
(for now unknown) of the Euler–Lagrange equation [first relation
in the system (B2)] corresponding to λ = λguess.

3) Step 3: The unknown function mguess(s) is expanded using a
series of known functions. (The unknowns will be the coefficients
of such functions.) Suppose the use of the Legendre polynomials.
(In this paper this approach is adopted.) Thus, the function mguess(s)
is written as

mguess(s) =
N − 1∑
k = 0

ck Pk(s) (B3)

where ck are the unknown coefficients and Pk(s) are the Legendre
polynomials of order k. Substituting this expression into the Euler–
Lagrange equation:
N − 1∑
k = 0

ck

∫
=

+1

−1

Pk(s)

(s − t)2
ds +

N − 1∑
k = 0

ck

∫ +1

−1

Pk(s)
(s − t)2 − h2

[(s − t)2 + h2]2
ds

− λguess · 2πbwV 2
∞ = 0 (B4)

4) Step 4: The Euler–Lagrange equation (B4) is solved for a
limited number of points (collocation points), which are chosen to
be the zeros of the Legendre polynomial PN (t). Thus, a linear system
in the unknown coefficients ck has to be solved. Considering the lth
collocation point tl [the lth zero of PN (t)], the lth equation of that
system is

N − 1∑
k = 0

ck

∫
=

+1

−1

Pk(s)

(s − tl)2
ds +

N − 1∑
k = 0

ck

∫ +1

−1

Pk(s)
(s − tl)2 − h2[
(s − tl)2 + h2

]2
ds

− λguess · 2πbwV 2
∞ = 0 (B5)

It is clear that the problem is the numerical evaluation of the inte-
grals. The regular integral does not represent a problem, and it can
be calculated using a Gaussian quadrature or an accurate adaptive
quadrature formula. The Hadamard integral requires special atten-
tion (see Appendix C).

5) Step 5: Once the linear system is solved, the coefficients ck are
found, and the function mguess(s) is then calculated using Eq. (B3).
The function mguess(s) is substituted into the constraint equation
[second relation in Eq. (B2)]. The integral is a standard integral
and can be calculated using a Gaussian quadrature formula. The
constraint is, in general, not satisfied and, therefore, instead of L̄ ,
L̄guess is found:

L̄guess = −2ρ∞bw

∫ +1

−1

mguess(s) ds (B6)

6) Step 6: Because of the linearity of the Euler–Lagrange equa-
tion, it can be concluded that

mopt(s) = (L̄/L̄guess)mguess(s) (B7)

General Case with More Unknowns and Multiple Constraints
The biplane with the constraint of fixed lift is only a particular

case. In the general case, the lifting line is described with more than
one equation. For example, consider a box wing obtained by joining
the upper and lower wing of a biplane: the lifting line is divided into
four different parts, and the distribution on each part is an unknown.
Also, the constraints can be more than just the total lifting force.
For example, the root moment or the weight can be considered as
additional constraints. How this problem is handled is explained
next.

Consider again the system (B2), valid for a biplane with a single
constraint (the total lift). Suppose that the unknown optimal distri-
bution mopt is written as a combination of Legendre’s polynomials
[similar to Eq. (B3)]. Applying the collocation method, the system
represented by the Euler–Lagrange equation (this equation is sat-
isfied in the collocation points; therefore, N equations are written)
and the constraint can be written in the following compact form:⎧⎪⎨⎪⎩

aklck − λ · 2πbwV 2
∞δl = 0l

k = 0, N − 1; l = 1, N ; δl = 1; 0l = 0

ckbk = L̄ (B8)

Notice that the quantities bk and akl are the integrals of the Legendre
polynomials multiplied by some functions (regular or singular, and
in the last case the integrals are Hadamard finite-part integrals). In
a matrix form, the preceding equation is written as{

A · c − λ · 2πbwV 2
∞δ = 0

bT · c = L̄ (B9)

The matrix A and the vectors δ and b are known, and their def-
inition is obvious from Eq. (B8). The unknowns are the vector c
of the coefficients of the Legendre polynomials and the Lagrange
multiplier λ.
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The system (B9) can be written in a more concise form if the
Lagrange multiplier λ is included in the vector of unknowns. Defin-
ing X as the vector of the new unknowns (vector c and Lagrange
multiplier), Eq. (B9) can be rewritten as

A · X = L (B10)

Notice that A is a (N + 1) × (N + 1) matrix and L is a known vec-
tor. By solving the preceding system, the coefficients of the unknown
optimal distribution and the Lagrange multiplier can be found. It has
to be clear that this method is equivalent to the method explained
in steps 1 through 6. However, this is more general and can be used
in the case with more than one unknown distribution and multiple
constraints.

The general case is more complex because the unknown distribu-
tion can be split into several parts and more constraints (here, only
linear constraints in the doublet distributions are considered) can be
applied. However, the Euler–Lagrange equations can be obtained by
using the procedure already explained. The fact that more constraints
are applied implies that more Lagrange multipliers have to be con-
sidered. But using the method that allowed the writing of Eq. (B10),
it is possible to solve a linear system and calculate the coefficients
of the Legendre polynomials and the Lagrange multipliers.

Appendix C: Hadamard Finite-Part
Integrals—Quadrature Formula

In this section, a particular quadrature formula for the Hadamard
finite-part integrals33–35 is described. Consider the following hyper-
singular integral:

I Had
lk =

∫
=

+1

−1

Pk(s)g1(tl , s)

(s − tl)2
ds (C1)

Notice that in Eq. (B5) the function g1(tl , s) is 1. The integral I Had
lk

can be calculated using a particular quadrature formula34:

I Had
lk =

∫
=

+1

−1

Pk(s)g1(tl , s)

(s − tl)2
ds =

M∑
i = 1

w I
i (tl)

Pk(si )g1(tl , si )

(si − tl)2

(C2)

The last relation contains the following quantities:
1) The nodes si coincide with the zeros of the Legendre polyno-

mial PM (s). Notice that in general M �= N . Several numerical tests32

have been performed, and a good choice for the problems analyzed
in this paper is represented by N = 20 and M = 200.

2) The weights are

w I
i (tl) = hi

M − 1∑
j = 0

d−1
j Pj (si )[Q

′
j (tl)]

3) The Gauss weights hi are also included.
4) The integrals of the square of the Legendre polynomials are

d j =
∫ +1

−1

P2
j (s) ds = 2

2 j + 1

5) The derivative of the integrals interpreted in the Cauchy sense is

Q
′
j (tl) = d

dtl
Q j (tl) = d

dtl

∫
−

+1

−1

Pj (s)

s − tl
ds

The Hadamard finite-part integrals can be seen as derivative of the
Cauchy integrals. Thus, it is obvious that in the quadrature formula
Cauchy integrals appear as well.
Expressing Q j and their derivatives:

Q0(tl) =
∫
−

+1

−1

1

s − tl
ds = − ln(1 + tl) + ln(1 − tl)

Operating in a similar way,

Q1(tl) = lim
ε → 0

(∫ tl − ε

−1

s

s − tl
ds +

∫ +1

tl + ε

s

s − tl
ds

)
⇒ Q1(tl) = [1 + tl ln(1 − tl)] − [−1 + tl ln(1 + tl)]

A recursive formula is possible to use to determine the quantities
Q j (tl) and Q

′
j (tl) as follows:

Q j (tl) = (a j tl + b j )Q j − 1(tl) − c j Q j − 2(tl) (C3)

where a j = (2 j − 1)/j, b j = 0, c j = ( j − 1)/j . The final expres-
sions for the integrals interpreted in the Cauchy principal value sense
can be written as

Q j (tl) = tl [(2 j − 1)/j]Q j − 1(tl) − [( j − 1)/j]Q j − 2(tl)

Q
′
j (tl) = tl [(2 j − 1)/j]Q

′
j − 1(tl) − [( j − 1)/j]Q

′
j − 2(tl)

+ [(2 j − 1)/j]Q j − 1(tl) (C4)

This equation leads to calculating the weights w I
i (tl) and, as a re-

sult, the integral I Had
lk . All of these derivations are valid because

the singularity is contained in the integration domain. If this is not
true, different formulas have to be considered, and the changing of
variables has to be done carefully.34

Appendix D: Optimal Doublet Distribution in a
Classical Cantilevered Wing

In a cantilevered wing, it is well known that the optimal circulation
distribution is elliptical. Here the optimal distribution can be found
using the tools illustrated in the paper. Suppose that the doublets
axes are directed along −z. Applying the described procedure (the
coefficients of lift and induced drag are obtained by dividing the
lift and induced drag by 1

2
ρ∞V 2

∞2bwl), the coefficients of lift and
induced drag are written in terms of the doublet distribution as

CDi = − 1

4πV 4∞bwl

∫ +bw

−bw

m(y)

∫
=

+bw

−bw

m(yd)

(y − yd)2
dyd dy

CL = 1

V 2∞bwl

∫ +bw

−bw

m(y) dy (D1)

Using the methods applied in the biplane, the Euler–Lagrange equa-
tion becomes

1

2πV 2∞

∫
=

+bw

−bw

mopt(y)

(y − yd)2
dy + λ = 0 (D2)

With the constraint represented by the coefficient of lift,

C̄L = 1

V 2∞bwl

∫ +bw

−bw

mopt(y) dy (D3)

The fact that the optimal distribution is elliptical can be verified by
using an elliptical distribution written in the form

mopt(y) = m̄
√

1 − y2
/

b2
w (D4)

Notice that the chosen distribution is exactly zero at both tips of the
wing (the endpoints of the Hadamard integral). This is because the
circulation {which is related to the doublet distribution by a constant
factor [see Eq. (33) obtained for the doublets with axes in the +z
direction]} has to be zero at such points. Moreover, because the
doublet distribution has the property just mentioned, the Hadamard
integral has the singularity point always included in the interval
of integration, and this simplifies the mathematical calculation of



DEMASI 679

it.34 Substituting Eq. (D4) into Eqs. (D2) and (D3) and using the
substitutions y = bws and yd = bwt , the system becomes⎧⎪⎪⎨⎪⎪⎩

m̄

2πbwV 2∞

∫
=

+1

−1

√
1 − s2

(s − t)2
ds + λ = 0

C̄L = m̄π

2V 2∞l (D5)

The Hadamard integral is known35:∫
=

+1

−1

√
1 − s2

(s − t)2
ds = −π (D6)

Thus, the system represented by the Euler–Lagrange equation and
the constraint becomes⎧⎪⎪⎨⎪⎪⎩

− m̄

2πV 2∞bw

π + λ = 0 ⇒ λ = C̄Ll

πbw

m̄ = 2V 2
∞l

π
C̄L (D7)

The system is satisfied, and, thus, the distribution mopt(y) =
m̄

√
(1 − y2/b2

w) = (2V 2
∞l/π)C̄L

√
(1 − y2/b2

w) is the optimal dis-
tribution.

It has been proved that if the distribution is elliptical [see
Eq. (D4)], the following relations are valid:∫

=
+bw

−bw

mopt(y)

(y − yd)2
dy = −m̄

π

bw

,

∫ +bw

−bw

mopt(y) dy = m̄
bwπ

2

(D8)

Substituting Eq. (D8) into Eq. (D1), the coefficient of the minimum
induced drag can be found:(
CDi

)
opt

= − 1

4πV 4∞bwl

∫ +bw

−bw

[
mopt(y)

(
−m̄

π

bw

)]
dy

= π

8bwV 4∞l
m̄2 = π

8bwV 4∞l

(
2V 2

∞l

π
C̄L

)2

= lC̄2
L

2bwπ
(D9)

Instead of working with the coefficients of lift and induced drag, it
is possible to work with the lift and induced drag. This is useful for
the comparison with the biplane (because such comparison is done
using the same lift force). Remembering the relations

(Di )opt = 1
2
ρ∞V 2

∞2bwl
(
CDi

)
opt

, L̄ = 1
2
ρ∞V 2

∞2bwlC̄L

(D10)

it is possible to write

m̄ = 2L̄/(ρ∞πbw) (Di )opt = L̄2
/(

2πρ∞b2
wV 2

∞
)

(D11)
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Forschungsbericht der Berliner Zentrale fur wissenschaftliches Berichtswe-
sen, 1553, Berlin-Adlershof, 1942.

9Weissinger, J., “The Lift Distribution of Swept-Back Wings,” NACA
TM 1120, March 1947.

10Eppler, E., “Die Entwicklung der Tragflügeltheorie,” Zeitschrift für
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