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Induced energy-momentum tensor in de Sitter scalar QED and its implication for

induced current
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Department of Physics, University of Kashan, 8731753153 Kashan, Iran

The aim of this research is to investigate the vacuum energy-momentum tensor of a quantized,
massive, nonminimally coupled scalar field induced by a uniform electric field background in a four-
dimensional de Sitter spacetime (dS4). We compute the expectation value of the energy-momentum
tensor in the in-vacuum state and then regularize it using the adiabatic subtraction procedure.
The correct trace anomaly of the induced energy-momentum tensor that confirmed our results is
significant. The nonconservation equation for the induced energy-momentum tensor imposes the
renormalization condition for the induced electric current of the scalar field. The findings of this
research indicate that there are significant differences between the two induced currents which are
regularized by this renormalization condition and the minimal subtraction condition.

I. INTRODUCTION

In the past several decades quantum field theory in curved spacetime has played a major role in the study of
the effects of gravity on quantum fields; for an pedagogical introduction see [1–3]. A precise understanding of the
quantum effects in curved spacetime was acquired by the late 1960s by Parker [4–6] and followed by investigations of
others. Indeed, these early investigations focused primarily on the physical consequences of particle creation in the
cosmological spacetimes. It has been illustrated that a time-varying gravitational field creates elementary particles
from the vacuum. Parker discovered that this particle creation process can be analyzed by using the Bogoliubov
transformations method [5]. Formulating a general framework of quantum field theory in curved spacetime involves
nontrivial questions. The problem of particle concept is a deep one, and it is associated with one of the most
fundamental difficulties of quantum field theory in curved spacetime, that there is no an unambiguous or unique
vacuum state; a detailed discussion can be found in [1, 2]. This ambiguity is reflected in the theory by the absence of
an unambiguous or unique preferred mode solutions of the field equation, which is in turn a consequence of symmetry
group of the spacetime. Since in a general nonstatic curved spacetime there is generically no any timelike Killing
vector field, it is not possible to classify modes as positive-frequency or negative-frequency. Indeed, it is possible to
construct a compleat set of modes, however the problem is that there are many of such sets and we will not have
any criterion available to select a unique privileged choice of the modes. One of the key lessens learned from the
development of this subject is that the notion of particle number does not generally have universal significant. Hence,
the expectation value of the energy-momentum tensor in a suitable vacuum state is perhaps more physically relevant
object to probe the structure of quantum fields in curved spacetime rather than particle number quantity [1]. Part of
reason is that the expectation value of the energy-momentum tensor in a fixed vacuum state transforms according to
the usual tensor transformation law. In particular, if the vacuum expectation value of the energy-momentum tensor
vanishes for an observer, it will vanish for all observers. On the contrary, the expectation of particle number is an
essential observer-dependent quantity. The energy-momentum tensor is also important, because it is directly relevant
to explore the consequences of the quantum field dynamics for the geometry of the spacetime through the Einstein
equation. Hence, it is interesting to investigate the expectation value of the energy-momentum tensor in a suitable
vacuum state.
Since the mid-seventies, significant advances have been made in the computation of the energy-momentum tensor of

the quantum fields as well as its applications in the cosmological context. An essential feature of these computations
is that they all involve the ultraviolet divergencies. In fact, such divergencies occur naturally in quantum field
theory calculations. Various prescriptions have been developed for rendering the energy-momentum tensor finite.
Among these prescriptions, Pauli-Villars regularization [7, 8], dimensional regularization [9–11], and zeta-function
regularization [11–14] were originally developed for use in Minkowski spacetime. Several sets of fictitious fields may
be necessary to remove all of the divergences, making Pauli-Villars regularization rather complicated. In [13], it was
pointed out that dimensional regularization procedure is ambiguous in curved spacetime due to the fact that in some
classes of spacetimes, there is no natural way to generalize the dimensionality of the spacetime and the answer would
be different in different extensions to D dimensions. This method also suffers from limitation that one needs, in
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principle, to solve the field equations exactly. Another often used regularization procedure is point-splitting technique
[15–18] which is intrinsically designed to be used in the position-space representation of the composite operators.
This regularization is implemented by placing the two quantum fields at distant points separated by an infinitesimal
distance in a nonnull direction and then the divergencies that arise in the coincidence limit are absorbed into the
renormalized parameters. Although point-splitting technique is the most applicable regularization scheme, it involves
considerable technical complication. An alternative regularization prescription is adiabatic subtraction [19–23] which
was originally invented by Parker [5] to obtain the average density of the scalar particles created in a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. This approach is only applicable in spacetimes with slowly
varying curvature, and in fact an adiabatic expansion is an expansion in number derivatives of the spacetime metric.
Hence, it is especially useful for studies that involve numerical techniques and problems of cosmological interest
[22]. In order to arrive a sensible semiclassical backreaction theory of quantum fields in curved spacetime, Wald has
propounded [24] a minimal set of properties that the renormalized energy-momentum tensor should satisfy. These
properties which are often called the Wald axioms, in the weaker set of axioms, can be expressed as follows [1, 3]:
(1) The expectation value of the energy-momentum tensor in any state at a point p in spacetime is covariant under
general coordinate transformations (diffeomorphisms) and is independent of spacetime geometry at any point q 6= p.
(2) The off-diagonal matrix element of energy-momentum tensor between any orthogonal pairs of states is finite and
unambiguous. (3) For all states, the expectation value of the energy-momentum tensor is covariantly conserved.
(4) The expectation value of the energy-momentum tensor vanishes in the relevant vacuum state in the Minkowski
spacetime. It was shown in [18] that the fifth axiom of Ref. [24] cannot be satisfied. Wald then proved a remarkable
result, i.e., the uniqueness theorem, which states that if the expectation value of the energy-momentum tensor satisfies
the Wald axioms (1)-(3), then it is unique up to the addition of a local conserved tensor [24]. Hence, the final results
for the renormalized energy-momentum tensor do not depend on the employed regularization method [1, 3]. Using
these regularization techniques, the regularized and renormalized energy-momentum tensor of a neutral scalar field
has been widely investigated in FLRW universes [19–22, 25–33] and its physical implications for cosmological issues
have been explored [34–36].

It is thought that the very early universe can be approximately described by de Sitter spacetime (dS) [2], which
motivates us to study the quantum field theory in this spacetime. Gibbons and Hawking [37] originally discovered
that an inertial observer with a particle detector at rest perceives the de Sitter invariant vacuum state as a bath of
thermal radiation which apparently comes from the cosmological event horizon. In this context, a relatively simple
model problem is that of a neutral scalar field with no self-interactions whose regularized and renormalized energy-
momentum tensor has been analyzed [11, 38–45]. In [39–41], it was subsequently shown that the vacuum state of the
quantum field in dS is unstable to particle creation. Furthermore, the study of semiclassical backreaction effect of
the quantum corrections onto the Hubble rate in [42] indicated that these contributions can potentially result in a
superacceleration phase, i.e., a phase when the Hubble rate increases as the dS expands. The spontaneous creation
of pairs of charged particles from the vacuum by a strong electric field background in Minkowski spacetime is a
well-known nonperturbative feature of quantum field theory [46–48]. Since the clearest version of this effect was
worked out by Schwinger, it is named the Schwinger effect; reviews of this subject can be found in, e.g., [49, 50]. The
phenomenon of particle creation has revealed the close analogy between quantum field theory in dS and a constant,
uniform electric field in Minkowski spacetime [40, 41, 51, 52]. This analogy motivates us to explore the combined
implications of the dS Gibbons-Hawking effect and the Schwinger effect. Aside from this analogy, there are arguments
and evidences that require the existence of strong electromagnetic fields in the early universe [53, 54]. This logical
possibility provides a further reason for studying quantum field theory in the presence of an electric field in dS.

There has been numerous studies to investigate the Schwinger pair creation by a uniform electric field background
with the constant energy density in a dS. Seminal contributions have been made by [55, 56]. The Bogoliubov
transformation method has been used to analyze the Schwinger effect for the charged scalar field in two- [55–60],
four- [61], and arbitrary-dimensional [62] de Sitter spacetimes. The Bogoliubov transformation method has been
used to investigate the Schwinger effect for the Dirac field in dS [63–67], in a manner similar to that used for the
corresponding charged scalar field. In this method of analysis, which bring its own insights, the expectation value for
the number of particles is related to the Bogoliubov coefficients which, in turn, can be determined by specifying the
in-vacuum and out-vacuum states. A reasonable definition of the out-vacuum state requires that the parameters mass
of the quantum field and the electric field strength to satisfy the semiclassical condition. For a created semiclassical
particle, this condition implies that either or both the mass and the magnitude of its electric potential energy acroses
one Hubble radius must be much greater than the energy scale determined by the spacetime curvature [60, 61]. An
immediate consequence of the semiclassical condition is that the entire physical ranges of the parameters mass and
electric field strength cannot be probed by this method. A useful alternative approach for studying the Schwinger
effect in dS was introduced in Ref. [60]. In this approach the expectation values of the objects such as the electric
current and the energy-momentum tensor of the quantum field in the in-vacuum state are investigated. The choose
of the in-state as the vacuum is justified form various viewpoints; see [55]. Regarding the regularity properties, it is a
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Hadamard and adiabatic state [56, 60]. The regularized expectation value of the electric current (also called induced
current) in the in-vacuum state of the charged scalar field coupled to a constant, uniform electric field background
has been evaluated in two- [60], three- [62], and four-dimensional [61, 68] de Sitter spacetimes. In those analyses the
behavior of the induced current can be probed in the infrared regime for which the quantum field mass is smaller than
the magnitude of the electric potential energy acroses one Hubble radius which in turn is smaller than the energy scale
determined by the spacetime curvature. The authors found that, although the induced current has been computed
using different regularization method, in the infrared regime the induced current increases with deceasing electric field
strength [60–62, 68]. This peculiar behavior was first observed in [60] and is called the infrared hyperconductivity. In
[69], the authors gave an alternative derivation of the infrared hyperconductivity phenomenon in dS4 using the uniform
asymptotic approximation method. For a charged scalar field coupled to a uniform electromagnetic field background
with a constant energy density electric field parallel to a conserved flux magnetic field in dS4, the Schwinger effect
using Bogoliubov transformation method [70–72] and the induced current [70, 71] in the in-vacuum state have been
investigated; and a period of infrared hyperconductivity was found. The in-vacuum induced current of the Dirac field
coupled to a constant, uniform electric field background in two- [65] and four-dimensional [73] de Sitter spacetimes
has been analyzed in a manner similar to that used for the corresponding scalar field. It was subsequently found that,
in contrast to the case of corresponding scalar field, the infrared hyperconductivity phenomenon does not occur in the
induced current of the Dirac field. Another peculiar behavior of the induced current occurs when the direction of the
induced current is opposite the direction of applied electric field background. This phenomenon which is called the
negative current, has been reported for both the scalar field [61, 68] with essentially small mass and the Dirac field
[73] with any mass in the four-dimensional de Sitter spacetime. For the scalar field case the negative current occurs in
a finite interval of the electric field strength, and for the Dirac field case it occurs below a certain value of the electric
field strength which depends on the mass. In Refs. [74, 75], some notable attempts have been made to explain and
remedy these peculiarities of the induced current. Beside the induced current, the regularized expectation value of the
energy-momentum tensor (also called the induced energy-momentum tensor) in the in-vacuum state of the charged
scalar [76–78] and Dirac [79] quantum fields coupled to a constant, uniform electric field background has been analyzed
in different dimensions of dS. In two-dimensional dS, the induced energy-momentum tensor of the charged scalar field
has been analyzed in [76], and subsequently the nonperturbative, regularized, one-loop effective Lagrangian of scalar
QED has been constructed; the induced energy-momentum tensor of the corresponding Dirac field has been derived
in [79], and then applied to study of the gravitational backreaction effect. The trace of the induced energy-momentum
tensor of the charged, massive scalar field conformally coupled to the Ricci scalar curvature of three- [77] and four-
dimensional [78] de Sitter spacetimes has been computed; and to examine the evolution of the Hubble constant, the
induced energy-momentum tensor has been obtained from the trace, along with the assumption that the created pairs
act like a perfect fluid with a vacuum equation of state. By applying the Bogoliubov transformation method, the
energy-momentum tensor of the Schwinger scalar pairs created by a constant, uniform electric field background in an
arbitrary dimensional dS has been computed under the two limiting conditions, i.e., the heavy scalar field [62] and
the strong electric field [80]. In both these cases, it was found that the Hubble constant decays as a consequence
of the Schwinger pair creation. Before closing the present section, it is worthwhile to mention that the Schwinger
effect has been studied in FLRW spacetimes [81] and in the framework of cosmological models [69, 82–92]. The role
of strong electromagnetic fields in astrophysics and cosmology was reviewed in [93]. The objectives of this article
are to investigate the induced energy-momentum tensor of the charged scalar field coupled to a uniform electric field
background in dS4, and to analyze its nonconservation equation. The importance and originality of this study are that
it calculates the induced energy-momentum tensor and explores a relation between the induced energy-momentum
tensor and the induced current which leads to new insights into the regularization and behavior of the induced current.

The remaining part of the article proceeds as follows: In Sec. II, we define and construct the basic elements of
the formalism that will be necessary in our subsequent discussions. We then carry out explicit computation of the
induced energy-momentum tensor in Sec. III. The properties of the induced energy-momentum tensor are explored
in detail in Sec. IV. In Sec. V, we analyze the nonconservation equation of the induced energy-momentum tensor,
this investigation yields a relation between the induced energy-momentum tensor and the induced current. Then the
properties of the resulting induced current are discussed in detail. In Sec. VI, we present the findings of the research.
In the Appendix we present further supplementary data associated with the calculation of the expectation values of
the components of the energy-momentum tensor.

II. BASIC DEFINITIONS AND CONSTRUCTIONS

In this section we shall define and construct the basic elements of the formalism that will be necessary in our
subsequent discussions.



4

A. Specification of the model

We have already mentioned that we consider a massive complex scalar field ϕ(x), coupled to the electromagnetic
vector potential Aµ(x), which describes a uniform electric field background with a constant energy density in the
conformal Poincaré patch of dS4. To represent this region of dS4 which is conformally related to a region of Minkowski
spacetime, we choose the coordinates xµ = (τ,x) that the ranges of the conformal time τ , and the comoving spatial
coordinates x are given by

τ ∈
(

−∞, 0
)

, x ∈ R
3. (1)

In terms of these coordinates the metric of the spacetime takes the form

gµνdx
µdxν = Ω2(τ)

(

dτ2 − dx · dx
)

, (2)

with the conformal scale factor

Ω(τ) = − 1

Hτ
, (3)

where H is the Hubble constant. The nonzero Christoffel symbols for the metric (2) are given by

Γ0
00 =

Ω̇

Ω
, Γ0

ij =
Ω̇

Ω
δij , Γi

0j =
Ω̇

Ω
δij , (4)

where the roman indices i, j denote only three spatial components and run from 1 to 3. We use the overdot to denote
differentiation with respect to the conformal time τ . From Eq. (4) the Ricci tensor and hence the Ricci scalar can be
calculated

Rµν = 3H2gµν , R = 12H2. (5)

We put a uniform electric field background with a constant energy density on the Poincaré patch represented in
Eq. (2). Without loss of generality, we choose our coordinates so that this electric field to point in the x1 direction.
Thus the nonzero components of the electromagnetic field tensor are

F01 = −F10 = Ω2(τ)E, (6)

where E is a constant. It is convenient to express this electromagnetic field tensor in terms of a vector potential in
the Coulomb gauge [60–62] as

Aµ(τ) = − E

H2τ
δ1µ. (7)

The compleat action Stot of this theory can be represented as sum of a pure gravitational piece, an electromagnetic
piece, and a scalar field piece

Stot = Sgr + Sem + S. (8)

Here Sgr is the Einstein-Hilbert action that only includes the gravitation piece of the compleat action, and is given by

Sgr =
1

16πG

∫

d4x
√−g

(

R− 2Λc

)

, (9)

where G is Newton’s gravitational constant, g is the determinant of the metric, R is the Ricci scalar of the spacetime,
and Λc is the cosmological constant. The electromagnetic piece of the compleat action is expressed in terms of the
electromagnetic field tensor as

Sem = −1

4

∫

d4x
√−gFµνF

µν . (10)

The dynamics of the complex scalar field ϕ(x) of mass m coupled to the electromagnetic vector potential (7) with
coupling e is governed by the last piece of the compleat action which can be written as

S =

∫

d4x
√−g

[

gµν
(

∂µ + ieAµ

)

ϕ
(

∂ν − ieAν

)

ϕ∗ − (m2 + ξR)ϕϕ∗
]

, (11)
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where ξ is a dimensionless nonminimal coupling constant which describes the strength of the coupling ϕ to the Ricci
scalar (5). The Euler-Lagrange equations of motion give the Klein-Gordon equation for the scalar field

1√−g ∂µ
(√−ggµν∂νϕ

)

+ 2iegµνAµ∂νϕ− e2gµνAµAνϕ+ (m2 + ξR)ϕ = 0, (12)

and the Maxwell equation for the electromagnetic field

∇νF
νµ = jµ, (13)

where ∇ denotes the covariant derivative operator, and jµ is the electric current of the scalar field caused by the
electric field background (6) which is defined by

jµ(x) = iegµν
[

(

∂νϕ+ ieAνϕ
)

ϕ∗ − ϕ
(

∂νϕ
∗ − ieAνϕ

∗
)

]

. (14)

It is straightforward to verify that ∇µj
µ = 0, i.e., the electric current is conserved.

B. Preliminary definition of the energy-momentum tensor

The classical Einstein equation can be derived from the compleat action (8) by demanding the invariance of Stot

under infinitesimal variation of the metric δgµν , or equivalently, infinitesimal variation of the inverse metric δgµν .
This condition requires that

2√−g
δStot

δgµν
=

2√−g

(

δSgr

δgµν
+
δSem

δgµν
+

δS

δgµν

)

= 0. (15)

The Variation of expression (9) with respect to δgµν leads to

2√−g
δSgr

δgµν
=

1

8πG

(

Rµν − 1

2
Rgµν + Λcgµν

)

. (16)

The variations of the electromagnetic action Sem, and the scalar field action S, with respect to δgµν define the

energy-momentum tensor of the electromagnetic field T
(em)
µν , and the energy-momentum tensor of the scalar field Tµν ,

respectively, as

2√−g
δSem

δgµν
= T (em)

µν , (17)

2√−g
δS

δgµν
= Tµν . (18)

Plugging expressions (10) and (11) into Eqs. (17) and (18), respectively, and following the standard calculus of
variations procedure yields the energy-momentum tensor of the electromagnetic field

T (em)
µν =

1

4
gµνFρσF

ρσ + gρσFµρFσν , (19)

and a preliminary expression for the energy-momentum tensor of the scalar field

Tµν =
[

(

4ξ − 1
)

gρσ
(

∂ρ + ieAρ

)

ϕ
(

∂σ − ieAσ

)

ϕ∗ +
(

1− 4ξ
)

m2ϕϕ∗ +
(1

2
− 4ξ

)

ξRϕϕ∗
]

gµν

+
(

1− 2ξ
)

(

∂µϕ∂νϕ
∗ + ∂νϕ∂µϕ

∗
)

+ ieAµ

(

ϕ∂νϕ
∗ − ∂νϕϕ

∗
)

+ ieAν

(

ϕ∂µϕ
∗ − ∂µϕϕ

∗
)

+ 2e2AµAνϕϕ
∗ + 2ξΓρ

µν

(

ϕ∂ρϕ
∗ + ∂ρϕϕ

∗
)

− 2ξ
(

∂µ∂νϕϕ
∗ + ϕ∂µ∂νϕ

∗
)

. (20)

Plugging three expressions (16)-(18) into Eq. (15) gives the Einstein equation

Rµν − 1

2
Rgµν + Λcgµν = −8πG

(

T (em)
µν + Tµν

)

. (21)
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An important property of the Einstein equation is that both sides of Eq. (21) have identically vanishing covariant
divergences, which implies

∇µT
µν = −∇µT

(em)µν . (22)

Using the Klein-Gordon Eq. (12), it is straightforward to show that the covariant divergence of expression (20) is
given by

∇µT
µν = −jµFµν , (23)

Apparently, the energy-momentum tensor of the scalar field is not covariantly conserved in the presence of the
electromagnetic field, as the consequence of the electromagnetic interactions. We show that the nonconservation of

Tµν is compatible with the nonconservation of T
(em)
µν so that the relation (22) is satisfied, and hence the total energy

momentum tensor is covariantly conserved. By taking the covariant divergence of the expression (19) and using the
Maxwell equation (13), it is seen that

∇µT
(em)µν = jµF

µν . (24)

As a result of Eqs. (23) and (24), it is evident that the relation (22) is satisfied. Hence, the total energy-momentum

tensor Tµν + T
(em)
µν is manifestly conserved.

It will be important to state that we will treat the classical gravitational field (2) and the classical electromagnetic
field (7) as fixed field configurations which they are unaffected by the dynamics of the quantum complex scalar field
ϕ(x) in response to these backgrounds. In fact, the Einstein equation (21) describes the backreaction effects on the
gravitational field, and the Maxwell equation (13) and Eq. (24) describe the backreaction effects on the electromagnetic
field. Indeed, due to the conceptual importance of Eq. (23) in our subsequent discussions, we have presented Eqs. (13),
(21), and (24) to provide a fairly detailed discussion of its derivation. It is then clear that we do not discuss these
equations further in this article.

C. Quantizing the complex scalar field

Quantizing the complex scalar field ϕ(x), in the classical gravitational (2) and electromagnetic (7) field backgrounds
is completely straightforward and follows exactly the same route as that of a complex scalar field in Minkowski
spacetime. We will solve the Kline-Gordon Eq. (12), and then adopting canonical quantization method, we can define
the in-vacuum state to obtain the expectation value of the energy-momentum tensor operator.
Taking account of the fact that the gravitational (2) and electromagnetic (7) backgrounds are invariant under

spatial translations, it is convenient to write the mode solution of Eq. (12) as

Uk(x) = Ω−1(τ)eik·xf(τ), (25)

where k is the comoving momentum. Plugging Eqs. (2), (7), and (25) into Eq. (12), we can put the differential
equation in a standard form by the change of variable z = 2ikτ so that k = |k|. Then it becomes

d2f

dz2
+

(

− 1

4
+
κ

z
+

1/4− γ2

z2

)

f(z) = 0, (26)

where the dimensionless parameters are defined through

µ =
m

H
, λ = − eE

H2
, ξ̄ = ξ − 1

6
,

r =
kx
k
, κ = −iλr, γ =

√

1

4
− λ2 − µ2 − 12ξ̄. (27)

Two values of ξ are of particular interest that are the minimally coupled case ξ = 0, and conformally coupled
case ξ = 1/6 which implies ξ̄ = 0. The variable kx which appears in the definition of the parameter r, denotes
the component of the comoving momentum k along the electric field background. Equation (26) is the Whittaker
equation, and the solutions are called Whittaker functions; see, e.g., [94]. We define the in-vacuum state |in〉 so
that in the remote past (τ → −∞) where the spacetime is asymptotically Minkowskian, an inertial observer there
would identify this state with a physical vacuum. This vacuum state may be represented by a mode solution of the
Whittaker Eq. (26) which behaves like a mode function in Minkowski spacetime in the limit of τ → −∞. Hence, the
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solution of Eq. (26) with the desired asymptotic form in the limit of |z| → ∞ which can be represented in terms of a
Mellin-Barnes integral [94] is

Wκ,γ(z) =
e−

z

2

Γ
(

1
2 + γ − κ

)

Γ
(

1
2 − γ − κ

)

∫ +i∞

−i∞

ds

2πi
Γ
(1

2
+ γ + s

)

Γ
(1

2
− γ + s

)

Γ
(

− κ− s
)

z−s, (28)

with the condition that the phase of the variable z and the values of the parameters γ and κ must satisfy the following
inequalities

∣

∣ph(z)
∣

∣ <
3π

2
,

1

2
± γ − κ 6= 0,−1,−2, · · · . (29)

In expression (28), the factors denoted by Γ are the gamma functions. The contour of the Mellin-Barnes integral (28)
consists of a straight vertical line from minus infinity to infinity, parallel to imaginary axis in the complex plane, and
of a semicircle at infinity with indentations if necessary to avoid poles of the integrand in a way that separates the
poles of Γ

(

1
2 + γ + s

)

and Γ
(

1
2 − γ + s

)

from the poles of Γ
(

− κ− s
)

. The normalized mode functions which behave
like the positive frequency Minkowski mode functions in the remote past are given by [61, 62],

Uk(x) =
1√
2k
e

iπκ

2 Ω−1(τ)eik·xWκ,γ

(

2ikτ
)

. (30)

Besides, the normalized mode functions which behave like the negative frequency Minkowski mode functions in the
remote past are found to be [61, 62],

Vk(x) =
1√
2k
e−

iπκ

2 Ω−1(τ)e−ik·xWκ,γ

(

− 2ikτ
)

. (31)

We have conventionally normalized the mode functions (30) and (31) such that their Wronskian to be

UkU̇
∗
k
− U∗

k
U̇k = V ∗

k
V̇k − VkV̇

∗
k
= iΩ−2(τ). (32)

These mode functions will be orthonormal with respect to the conserved scalar product integrated over the constant

τ hypersurface [62]. The usual canonical quantization will proceed by introducing the creation a†
k
, and annihilation

ak operators for each of mode functions Uk, and similarly the creation b†
k
, and annihilation bk operators for each of

mode functions Vk. The creation and annihilation operators satisfy the commutation rules

[

ak, a
†
k′

]

=
[

bk, b
†
k′

]

= (2π)3δ
(

k− k
′
)

, (33)

with all other commutators vanishing. Then, the complex scalar field operator can be expanded in terms of the
creation and annihilation operators in the standard manner as

ϕ(x) =

∫

d3k

(2π)3

[

akUk(x) + b†
k
Vk(x)

]

. (34)

The in-vacuum state |in〉 is characterized by the fact that it is annihilated by each of ak and bk operators

ak
∣

∣in
〉

= bk
∣

∣in
〉

= 0, ∀k. (35)

III. CONSTRUCTION OF THE INDUCED ENERGY-MOMENTUM TENSOR

Having built a foundation for our discussion and presented the definition for the energy-momentum tensor of the
scalar field in Eq. (20), we will proceed to present the regularized in-vacuum expectation value of the energy-momentum
tensor of the scalar field.

A. Unregularized expectation values in the in-vacuum state

Integral representations for the in-vacuum expectation values of the components of the energy-momentum tensor
can be obtained by substituting the mode expansion (34) for the quantum scalar field ϕ(x) into the definition (20),
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and then calculating the expectation values in the in-vacuum state using relations (33) and (35). By using Eq. (12)
and some algebra, we have the following integral expressions in terms of the positive frequency mode function (30)
for the expectation values of the components. The integral expression of the timelike component is given by

〈

in
∣

∣T00
∣

∣in
〉

=

∫

d3k

(2π)3

[

U̇kU̇
∗
k − 6ξτ−1

(

UkU̇
∗
k + U̇kU

∗
k

)

+ τ−2
(

k2τ2 + 2λrkτ + λ2 + µ2 + 6ξ
)

UkU
∗
k

]

. (36)

For the diagonal spacelike components we get

〈

in
∣

∣T11
∣

∣in
〉

=

∫

d3k

(2π)3

{

(

1− 4ξ
)

U̇kU̇
∗
k
− 2ξτ−1

(

UkU̇
∗
k
+ U̇kU

∗
k

)

+ τ−2
[

(

4ξ − 1 + 2r2
)

k2τ2 + 2
(

4ξ + 1
)

λrkτ

+
(

4ξ + 1
)

λ2 +
(

4ξ − 1
)

µ2 + 6ξ
(

8ξ − 1
)

]

UkU
∗
k

}

, (37)

and

〈

in
∣

∣T22
∣

∣in
〉

=
〈

in
∣

∣T33
∣

∣in
〉

=

∫

d3k

(2π)3

{

(

1− 4ξ
)

U̇kU̇
∗
k − 2ξτ−1

(

UkU̇
∗
k + U̇kU

∗
k

)

+ τ−2
[

(

4ξ − 1
)

k2τ2

+ 2k2zτ
2 + 2

(

4ξ − 1
)

λrkτ +
(

4ξ − 1
)

λ2 +
(

4ξ − 1
)

µ2 + 6ξ
(

8ξ − 1
)

]

UkU
∗
k

}

. (38)

The only nonvanishing in-vacuum expectation values of the off-diagonal components can be expressed as

〈

in
∣

∣T01
∣

∣in
〉

=
〈

in
∣

∣T10
∣

∣in
〉

= iτ−1

∫

d3k

(2π)3
(

rkτ + λ
)

(

UkU̇
∗
k − U̇kU

∗
k

)

. (39)

Using the asymptotic expansion of the Whittaker function (28) for large values of its argument [94], it can be shown

that the mode function (30) is proportional to k−
1

2
−iλr in the limit of k → ∞. Then, inspection of integrals in

Eqs. (36)-(39) shows that these expressions are ultraviolet divergent. Thus, we first regulate them by cutting them
of at a large momentum K. Further description of the calculation of the expressions (36)-(38) is available in the
Appendix. We find the final expression for the unregularized in-vacuum expectation value of the timelike component

〈

in
∣

∣T00
∣

∣in
〉

= Ω2(τ)
H4

8π2

{

Λ4 +
(

µ2 − 6ξ̄ +
2λ2

3

)

Λ2 −
(µ4

2
+ 6ξ̄µ2 − λ2

6

)

log
(

2Λ
)

+ 54ξ̄2 − 2λ4

15
+
µ2

4
+ 6ξ̄µ2 +

µ4

8

− 19λ2

72
− 2λ2ξ̄ − λ2µ2

2
+

γ

24π

(

45

π2
− 6− 96ξ̄ + 4λ2 − 26µ2

)

cosh
(

2πλ
)

sin
(

2πγ
) − γ

48π2λ

(

45

π2
− 6− 96ξ̄ + 64λ2 − 26µ2

)

× sinh
(

2πλ
)

sin
(

2πγ
) + i csc

(

2πγ
)

∫ +1

−1

C0r

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr

+
iπ

12

(

3µ4 + 36ξ̄µ2 − λ2
)

}

, (40)

where the coefficient C0r is given by

C0r = −5

8
λ4r4 +

1

8

(

6µ2 + 6λ2 + 36ξ̄ + 1
)

λ2r2 − 1

8

(

µ2 + λ2
)(

µ2 + λ2 + 12ξ̄
)

. (41)

The final results of our evaluation of the unregularized in-vacuum expectation values of the diagonal spacelike com-
ponents are

〈

in
∣

∣T11
∣

∣in
〉

= Ω2(τ)
H4

8π2

{

Λ4

3
+
(

2ξ̄ − µ2

3
+

14λ2

15

)

Λ2 +
(µ4

2
+ 6ξ̄µ2 − λ2

6

)

log
(

2Λ
)

− 54ξ̄2 − 26λ4

105
− 7µ4

24
− 8ξ̄µ2

− 18ξ̄

5
λ2 − µ2

4
+

19λ2

72
+
λ2µ2

30
− γ

24πλ2

[

15

π2

(

105π−2 − 15− 132ξ̄ + 35λ2 − 11µ2
)

− 66λ2 − 336ξ̄λ2 − 4λ4

− 46λ2µ2

]

cosh
(

2πλ
)

sin
(

2πγ
) +

γ

48π2λ3

[

15

π2

(

105π−2 − 15− 132ξ̄ + 175λ2 − 11µ2
)

− 366λ2 − 2976ξ̄λ2 + 136λ4

− 266λ2µ2

]

sinh
(

2πλ
)

sin
(

2πγ
) + i csc

(

2πγ
)

∫ +1

−1

C1r

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr − iπ

12

(

3µ4 + 36ξ̄µ2 − λ2
)

}

, (42)
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where the coefficient C1r is given by

C1r =
35

8
λ4r6 − 1

8

(

70λ4 + 30λ2µ2 + 360ξ̄λ2 + 25λ2
)

r4 +
1

8

(

39λ4 + 3µ4 + 30λ2µ2 + 396ξ̄λ2 + 72ξ̄µ2 + 20λ2

+ 6µ2 + 432ξ̄2 + 72ξ̄
)

r2 − 1

8

(

4λ4 + 4λ2µ2 + 60ξ̄λ2 + 12ξ̄µ2 + 2λ2 + 2µ2 + 144ξ̄2 + 24ξ̄
)

, (43)

we also have

〈

in
∣

∣T22
∣

∣in
〉

=
〈

in
∣

∣T33
∣

∣in
〉

= Ω2(τ)
H4

8π2

{

Λ4

3
+
(

2ξ̄ − µ2

3
− 2λ2

15

)

Λ2 +
(µ4

2
+ 6ξ̄µ2 +

λ2

6

)

log
(

2Λ
)

− 54ξ̄2 +
2λ4

35

− 7µ4

24
− 8ξ̄µ2 +

4ξ̄

5
λ2 − µ2

4
− 19λ2

72
+

2

5
λ2µ2 +

γ

16πλ2

[

5

π2

(

105π−2 − 15− 132ξ̄ + 38λ2 − 11µ2
)

− 24λ2

− 144ξ̄λ2
]

cosh
(

2πλ
)

sin
(

2πγ
) − γ

32π2λ3

[

5

π2

(

105π−2 − 15− 132ξ̄ + 178λ2 − 11µ2
)

− 124λ2 − 1024ξ̄λ2 +
200λ4

3

− 220

3
λ2µ2

]

sinh
(

2πλ
)

sin
(

2πγ
) + i csc

(

2πγ
)

∫ +1

−1

C2r

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr − iπ

12

(

3µ4 + 36ξ̄µ2 + λ2
)

}

, (44)

where the coefficient C2r is given by

C2r = −C1r

2
− 5

16
λ4r4 +

1

16

(

6λ2 − 6µ2 + 36ξ̄ + 1
)

λ2r2 +
1

16

(

3µ4 + 2λ2µ2 + 12ξ̄λ2 + 36ξ̄µ2 − λ2
)

. (45)

Plugging the resulting expression given in Eq. (32) for the Wronskian of the mode functions Uk into Eq. (39) and
integrating over momentum phase space, we obtain the unregularized expression for the only nonvanishing off-diagonal
components

〈

in
∣

∣T01
∣

∣in
〉

=
〈

in
∣

∣T10
∣

∣in
〉

= Ω2(τ)
H4λ

6π2
Λ3. (46)

The expressions (40), (42), (44), and (46) clearly have ultraviolet divergences when Λ → ∞. This was expected,
because the expectation values in the Hadamard in-vacuum state suffer from the same ultraviolet divergence properties
as Minkowski spacetime.

B. Construction of the counterterms and adiabatic subtractions

To render the in-vacuum expectation values given by Eqs. (40), (42), (44), and (46) finite, we provide a set of
needed adiabatic counterterms. The adiabatic regularization method consists of subtracting the appropriate adiabatic
counterterms from the corresponding unregularized expressions. To adjust the set of appropriate counterterms, we will
treat the conformal scale factor Ω(τ), and the electromagnetic vector potential Aµ(τ) as quantities of zero adiabatic
order. As pointed out by Wald [18], in four dimensions, to obtain a renormalized energy-momentum tensor which
is consistent with the Wald axioms, the subtraction counterterms should be expanded up to fourth adiabatic order;
see also [1, 2]. Thus, to construct the expectation value of the energy-momentum tensor with the desired physical
properties, we expand the subtraction counterterms up to fourth adiabatic order. To construct the appropriate
counterterms, we need an expansion for the mode functions up to fourth adiabatic order. We use the definition
z = 2ikτ to turn the Klein-Gordon Eq. (26) into the convenient form

d2FA

dτ2
+
(

ω2
0(τ) + ∆(τ)

)

FA = 0, (47)

where FA is the positive frequency adiabatic solution and the conformal time dependent frequencies read

ω0(τ) =
(

k2 + 2eA1kr + e2A2
1 +m2Ω2

)
1

2

, (48)

∆(τ) = 12ξ̄
( Ω̇

Ω

)2

. (49)
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It is then obvious that ω0 is of zero adiabatic order and ∆ is of second adiabatic order. The adiabatic form of FA is
the Wentzel-Kramers-Brillouin (WKB) solution of Eq. (47). This WKB solution can be written as

FA(τ) =
1

√

2W(τ)
exp

[

− i

∫ τ

W(τ ′)dτ ′
]

, (50)

where W satisfies the exact equation

W2 = ω2
0 +∆− Ẅ

2W +
3Ẇ2

4W2
. (51)

To put the solution into the desired form, it is convenient to write W as

W = W(0) +W(2) +W(4), (52)

where the superscript numbers in parentheses denote the adiabatic order approximation to W . Substituting the
expansion (52) into Eq. (51), we find the zero adiabatic order approximation

W(0) = ω0. (53)

The next iteration gives the second adiabatic order approximation

W(2) =
∆

2ω0
− ω̈0

4ω2
0

+
3ω̇2

0

8ω3
0

. (54)

Repeated iteration yields the fourth adiabatic order approximation

W(4) = −W(2)2

2ω0
− Ẅ(2)

4ω2
0

+
ω̈0W(2)

4ω3
0

+
3ω̇0Ẇ(2)

4ω3
0

− 3ω̇2
0W(2)

4ω4
0

. (55)

It should be remarked that all terms in the adiabatic expansion of W of odd adiabatic order vanish. Assembling the
pieces given in Eqs. (25), (50), and (52)-(55), we find the positive frequency adiabatic solution to fourth adiabatic
order approximation

U
[4]
k

(x) = Ω−1(τ)
1√
2ω0

(

1− W(2)

2ω0
− W(4)

2ω0
+

W(2)2

2ω2
0

)

exp
[

ik · x− i

∫ τ

W(τ ′)dτ ′
]

. (56)

We use the superscript symbol [4] to indicate that the cross terms from the field expansion products that are of
adiabatic order greater than 4 are to be discarded. To obtain expansions of the required counterterms to adiabatic

order four, it is only necessary to calculate (36)-(39) with Uk replaced by U
[4]
k
. Doing this, we find the counterterm

to adiabatic order four for the timelike component

T [4]
00 = Ω2(τ)

H4

8π2

[

Λ4 +
(

µ2 − 6ξ̄ +
2λ2

3

)

Λ2 −
(µ4

2
+ 6ξ̄µ2 − λ2

6

)

log
(2Λ

µ

)

+ 72ξ̄2 − λ4

15
+
µ2

6
+ 9ξ̄µ2 +

µ4

8

− 2λ2

9
− 2λ2ξ̄ − λ2µ2

3
− 1

60
+

7λ4

240µ4
+

λ2

30µ2
− 3ξ̄λ2

2µ2

]

. (57)

We find the counterterms to adiabatic order four for the diagonal spacelike components

T [4]
11 = Ω2(τ)

H4

8π2

[

Λ4

3
+
(

2ξ̄ − µ2

3
+

14λ2

15

)

Λ2 +
(µ4

2
+ 6ξ̄µ2 − λ2

6

)

log
(2Λ

µ

)

− 72ξ̄2 − 13λ4

105
− 7µ4

24
− 11ξ̄µ2

− 14ξ̄

5
λ2 − µ2

6
+

7λ2

18
− λ2µ2

15
+

1

60
− 7λ4

240µ4
+

λ2

18µ2
+

3ξ̄λ2

2µ2

]

, (58)

and

T [4]
22 = T [4]

33 = Ω2(τ)
H4

8π2

[

Λ4

3
+
(

2ξ̄ − µ2

3
− 2λ2

15

)

Λ2 +
(µ4

2
+ 6ξ̄µ2 +

λ2

6

)

log
(2Λ

µ

)

− 72ξ̄2 +
λ4

35

− 7µ4

24
− 11ξ̄µ2 +

2ξ̄

5
λ2 − µ2

6
− 7λ2

18
+
λ2µ2

5
+

1

60
+

7λ4

720µ4
− λ2

45µ2
− ξ̄λ2

2µ2

]

. (59)
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We obtain the counterterms to adiabatic order four for the only nonvanishing off-diagonal components

T [4]
01 = T [4]

10 = Ω2(τ)
H4λ

6π2
Λ3. (60)

Then, the adiabatic regularization procedure is carried out by subtracting the counterterms (57)-(60) from the corre-
sponding unregularized in-vacuum expectation values (40), (42), (44), and (46). Thus we obtain our final expression
for the timelike component of the regularized energy-momentum tensor

T00 =
〈

in
∣

∣T00
∣

∣in
〉

− T [4]
00

= Ω2(τ)
H4

8π2

{

1

60
− 7λ4

240µ4
− λ2

30µ2
+

3ξ̄λ2

2µ2
− 18ξ̄2 − λ4

15
+
µ2

12
− 3ξ̄µ2 − λ2

24
− λ2µ2

6

+
γ

24π

(

45

π2
− 6− 96ξ̄ + 4λ2 − 26µ2

)

cosh
(

2πλ
)

sin
(

2πγ
) − γ

48π2λ

(

45

π2
− 6− 96ξ̄ + 64λ2 − 26µ2

)

sinh
(

2πλ
)

sin
(

2πγ
)

+ i csc
(

2πγ
)

∫ +1

−1

C0r

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr

−
(µ4

2
+ 6ξ̄µ2 − λ2

6

)

log
(

µ
)

+
iπ

12

(

3µ4 + 36ξ̄µ2 − λ2
)

}

. (61)

We obtain our final expressions for the diagonal spacelike components of the regularized energy-momentum tensor

T11 =
〈

in
∣

∣T11
∣

∣in
〉

− T [4]
11

= Ω2(τ)
H4

8π2

{

− 1

60
+

7λ4

240µ4
− λ2

18µ2
− 3ξ̄λ2

2µ2
+ 18ξ̄2 − 13λ4

105
+ 3ξ̄µ2 − 4ξ̄λ2

5
− µ2

12
− λ2

8
+
λ2µ2

10

− γ

24πλ2

[

15

π2

(

105π−2 − 15− 132ξ̄ + 35λ2 − 11µ2
)

− 66λ2 − 336ξ̄λ2 − 4λ4 − 46λ2µ2

]

cosh
(

2πλ
)

sin
(

2πγ
)

+
γ

48π2λ3

[

15

π2

(

105π−2 − 15− 132ξ̄ + 175λ2 − 11µ2
)

− 366λ2 − 2976ξ̄λ2 + 136λ4 − 266λ2µ2

]

sinh
(

2πλ
)

sin
(

2πγ
)

+ i csc
(

2πγ
)

∫ +1

−1

C1r

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr

+
(µ4

2
+ 6ξ̄µ2 − λ2

6

)

log
(

µ
)

− iπ

12

(

3µ4 + 36ξ̄µ2 − λ2
)

}

, (62)

and

T22 = T33 =
〈

in
∣

∣T33
∣

∣in
〉

− T [4]
33

= Ω2(τ)
H4

8π2

{

− 1

60
− 7λ4

720µ4
+

λ2

45µ2
+
ξ̄λ2

2µ2
+ 18ξ̄2 +

λ4

35
+ 3ξ̄µ2 +

2ξ̄λ2

5
− µ2

12
+
λ2

8
+
λ2µ2

5

+
γ

16πλ2

[

5

π2

(

105π−2 − 15− 132ξ̄ + 38λ2 − 11µ2
)

− 24λ2 − 144ξ̄λ2
]

cosh
(

2πλ
)

sin
(

2πγ
)

− γ

32π2λ3

[

5

π2

(

105π−2 − 15− 132ξ̄ + 178λ2 − 11µ2
)

− 124λ2 − 1024ξ̄λ2 +
200λ4

3
− 220

3
λ2µ2

]

sinh
(

2πλ
)

sin
(

2πγ
)

+ i csc
(

2πγ
)

∫ +1

−1

C2r

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr

+
(µ4

2
+ 6ξ̄µ2 +

λ2

6

)

log
(

µ
)

− iπ

12

(

3µ4 + 36ξ̄µ2 + λ2
)

}

. (63)

We see that the nonvanishing unregularized expectation values of the off-diagonal components, given by Eq. (46), are
exactly cancelled by their counterterms (60),

T01 = T10 =
〈

in
∣

∣T10
∣

∣in
〉

− T [4]
10 = 0. (64)

Thus we have arrived at the desired expressions for the regularized in-vacuum expectation values of all the components
of the energy-momentum tensor, also called the induced energy-momentum tensor.
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FIG. 1. The absolute value of T 0
0 component of the induced energy-momentum tensor is plotted in unit of H4 as a function of

the electric field parameter λ = −eE/H2. The graphs correspond to different values of the mass parameter µ = m/H , and the
coupling constant ξ as indicated. Both axes have logarithmic scales.

IV. PROBING THE INDUCED ENERGY-MOMENTUM TENSOR

The nonvanishing components of the induced energy-momentum tensor are given by Eqs. (61)-(63). Observe that
all the off-diagonal components of the induced energy-momentum tensor are zero, and the components T22 and T33 are
equal as consequences of the underlying symmetries of the backgrounds (2) and (6). Furthermore, since the electric
field background (6) is not invariant under full symmetries of de Sitter spacetime, indeed violates the time reversal
symmetry [51], and causes an electric current along its direction, we observe that T00, T11, and T22 are not equal
to one another. Thus we expect that in the limit of vanishing electric field background that the in-vacuum state
possesses the full set of de Sitter invariances, the induced energy-momentum tensor takes the maximally invariant
form under the transformations of de Sitter group, i.e., must be proportional to the de Sitter metric. By setting λ = 0
in Eqs. (61)-(63), which corresponds to vanishing electric field background, the induced energy-momentum tensor
reduced to the form

Tµν =
H4

32π2

{

1

15
− 72ξ̄2 − 12ξ̄µ2 − 2µ2

3
+ µ2

(

12ξ̄ + µ2
)[

ψ
(3

2
+ γ0

)

+ ψ
(3

2
− γ0

)

− log
(

µ2
)

]

}

gµν , (65)

where γ0 =
√

(1/4)− µ2 − 12ξ̄ is obtained by setting λ = 0 in the definition of γ. The expression (65) accords with
the result of computing the renormalized vacuum energy-momentum tensor of a real scalar field in dS4 obtained in
Refs. [11, 38], except for the overall factor of 2 in Eq. (65). This factor 2 is consistent with the complex scalar field
as being made of two real scalar fields with the number of degrees of freedom doubling up.

A. Behavior of the induced energy-momentum tensor

Figures 1-3 provide some useful insight into the general behavior of the induced energy-momentum tensor. The
absolute values of the expressions (61)-(63) as functions of the electric field parameter λ, for various values of the scalar
field mass parameter µ, and two values of the coupling constant ξ are shown on the graphs in Figs. 1-3, respectively.
Note especially that the scales are logarithmic on both axes, hence on the graphs zero values of the expressions, where
the signs of the plots change, are displayed as singularities. Therefore, these figures signal that the induced energy-
momentum tensor is analytic and varies continuously with the parameters λ, µ, and ξ, this statement consistent with
the requirements discussed in [95]. Figures 1-3 also illustrate the outstanding qualitative features of the induced
energy-momentum tensor. For fixed values of µ and ξ, the absolute values of the nonvanishing components of induced
energy-momentum tensor are increasing functions of λ, but by excluding a neighbourhood of the zero value points this
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FIG. 2. The absolute value of T 1
1 component of the induced energy-momentum tensor is plotted in unit of H4 as a function of

the electric field parameter λ = −eE/H2. The graphs correspond to different values of the mass parameter µ = m/H , and the
coupling constant ξ as indicated. Both axes have logarithmic scales.

behavior is assured. For fixed values of λ and ξ, the absolute values of the nonvanishing components are decreasing
functions of µ. For fixed values of λ and µ, the nonvanishing components do not vary significantly with the parameter
ξ in the range 0 ≤ ξ ≪ λ, µ. The qualitative behaviors shown in Figs. 1-3 can be given quantitative treatments by
inspection of expressions (61)-(63) in the limiting regimes. We concentrate our attention on three regimes of interest:
(1) The strong electric field regime with the criterion λ ≫ max(1, µ, ξ). (2) The heavy scalar field regime with the
criterion µ≫ max(1, λ, ξ). (3) The infrared regime with the criteria µ≪ 1, λ≪ 1, and ξ = 0.

1. Strong electric field regime

In the strong electric field regime λ ≫ max(1, µ, ξ), it is appropriate to find approximate behavior of the induced
energy-momentum tensor in the limit λ→ ∞. By expanding expressions (61)-(63) around λ = ∞ with µ and ξ fixed,
we find the dominant terms in the components of the induced energy-momentum tensor

T00 = −T11 = 3T22 = 3T33 = −Ω2 H
4

8π2

( 7λ4

240µ4

)

. (66)

Thus, in this regime the absolute value of the nonvanishing components of induced energy-momentum tensor increase
monotonically with increasing λ but decrease monotonically with increasing µ, as we see on the right end of any
graphs in Figs. 1-3.

2. Heavy scalar field regime

In the heavy scalar field regime µ ≫ max(1, λ, ξ), it is appropriate to find approximate behavior of the induced
energy-momentum tensor in the limit µ→ ∞. By expanding expressions (61)-(63) around µ = ∞ with λ and ξ fixed,
we find the dominant terms in the components of the induced energy-momentum tensor

T00 = Ω2 H
4

8π2

(

a

µ2
+

b

µ4
+
c0λ

2

µ4
+O(µ−6)

)

,

T11 = −Ω2 H
4

8π2

(

a

µ2
+

b

µ4
+
c1λ

2

µ4
+O(µ−6)

)

,

T22 = T33 = −Ω2 H
4

8π2

(

a

µ2
+

b

µ4
+
c2λ

2

µ4
+O(µ−6)

)

, (67)
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where the coefficients a, b, c0, c1 and c2 are given by

a = − 2

315
+
ξ̄

5
− 72ξ̄3, b = − 1

210

(

1− 32ξ̄ + 504ξ̄2 − 90720ξ̄4
)

,

c0 = − 1

315
− 7ξ̄

15
+ 12ξ̄2, c1 = − 22

315
+

3ξ̄

5
+ 12ξ̄2, c2 =

2

105
− ξ̄

3
. (68)

The asymptotic forms in Eq. (67) reveal that the induced energy-momentum tensor falls off as H2/m2 in the limit
(m/H) → ∞. Thus, the behavior of the induced energy-momentum tensor is inconsistent with the behavior of the
semiclassical energy-momentum tensor [39, 62] that falls of as exp(−2πm/H) in the heavy scalar field regime where
m ≫ H . A similar feature arises for the induced electric current of both scalar [61] and Dirac [73] fields in dS4.
Studies [74, 75] have proposed explanations in physical terms for this feature of the induced electric current.

3. Infrared regime

To find approximate behavior of the induced energy-momentum tensor in the infrared regime, where µ≪ 1, λ≪ 1
and ξ = 0, it is appropriate to make Taylor series expansions of the expressions (61)-(63) around µ = 0 and λ = 0,
and set ξ = 0. We find that the dominant terms in the expansions of (61) and (63) are given by

T00 = Ω2 H
4

8π2

(

61

60
− 17λ2

60µ2
− 7λ4

240µ4
+O

(

λ2, µ2
)

)

, (69)

T22 = T33 = −Ω2 H
4

8π2

(

61

60
+

11λ2

180µ2
+

7λ4

720µ4
+O

(

λ2, µ2
)

)

, (70)

which are valid for µ≪ λ≪ 1 as well as λ≪ µ≪ 1. The expansion of expression (62) for µ≪ λ≪ 1 takes the form

T11 = Ω2 H
4

8π2

(

299

60
+

7λ2

36µ2
+

7λ4

240µ4
+O

(

λ2, µ2
)

)

, (71)

while for λ≪ µ ≪ 1 it is approximated by

T11 = −Ω2 H
4

8π2

(

61

60
− 223λ2

36µ2
+

1433λ4

240µ4
+O

(

λ2, µ2
)

)

. (72)
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Observe that all the asymptotic expansions (69)-(71) diverge as m−4 in the exactly massless case, i.e., m = 0. We
can understand the origin of these infrared-divergent terms by looking at the counterterms (57)-(59). These terms
arise from the contribution of the zero modes in the massless case to the counterterms. And therefore signal that
for the massless case the method of adiabatic regularization cannot be used because it leads to singularities in the
counterterms, as pointed out in [19, 20, 61]. We emphasize that the result (72) is an approximation valid only for
λ≪ µ≪ 1, and hence we cannot use it in the limit of zero mass for a fixed value of λ.

B. Trace anomaly

It will be reassuring to do a consistency check, to see that whether the induced energy momentum tensor yields the
well-known predicted trace anomaly for a free, massless, conformally invariant scalar field in dS4. Putting the metric
(2) and components (61)-(63) together, we obtain the trace of the induced energy-momentum tensor

T = gµνTµν =
H4

8π2

{

1

15
− 7λ4

180µ4
− λ2

45µ2
+

2ξ̄λ2

µ2
− 72ξ̄2 +

µ2

3
− 12ξ̄µ2 − λ2

6
− 2λ2µ2

3
− 3µ2γ

2π2λ sin
(

2πγ
)

×
(

2πλ cosh
(

2πλ
)

− sinh
(

2πλ
)

)

+
iµ2

2 sin
(

2πγ
)

∫ +1

−1

(

3λ2r2 − λ2 − µ2 − 12ξ̄
)

[

(

e2πλr + e2iπγ
)

× ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr − µ2
(

µ2 + 12ξ̄
)

log
(

µ2
)

+ iπµ2
(

µ2 + 12ξ̄
)

}

. (73)

We see that the trace anomaly of the free, massless, conformally coupled complex scalar field is given by

lim
λ→0

lim
µ→0

lim
ξ→ 1

6

T =
H4

120π2
=

2

2880π2

(1

3
R2 −RµνR

µν
)

, (74)

in arriving at the second equality, we have expressed H4 in terms of a combination of the Ricci tensor and the scalar
curvature of dS4 which are given by Eq. (5), to put the result into a familiar form. The trace anomaly (74) is in
agreement with the result of computing the trace anomaly [96] of a free, massless, conformally coupled real scalar
field in dS4, except for the overall factor of 2 in Eq. (74) as explained below Eq. (65).

V. IMPLICATIONS FOR THE INDUCED CURRENT

The generalization of the nonconservation equation (23) for the classical energy-momentum tensor of the scalar field
to the induced energy-momentum tensor Tµν , and the induced current jµ of the scalar field has important implications
for the induced current. Recall that the nonvanishing components of Tµν are given by Eqs. (61)-(63), and the nonzero
components of Fµν are given by Eq. (6). The only nontrivial relation that arises from Eq. (23) is obtained by setting
ν = 0, which leads to

∂0T
00 +HΩ

(

5T 00 + T 11 + T 22 + T 33
)

= −Ω−2Ej1, (75)

where we have used Eqs. (4) and (6). The relation (75), along with the relations

∂0T
00 = −2HΩ(τ)T 00, T = gµνT

µν , −Ω−2Ej1 = HΩ−1A.j, (76)

suffice to show that the timelike component of the induced energy-momentum tensor can be written in terms of the
trace T , and the effective electromagnetic potential energy A.j as

T00 =
1

4
Ω2

(

T +A.j
)

. (77)

The induced current jµ is defined as the regularized expectation value of the scalar field electric current operator (14)
in the in-vacuum state specified in Eq. (35). It can be verified that the induced current jµ is conserved and whose
only non-vanishing component is j1. Thus, the induced current flows along the electric field background direction.
For convenience we write the induced current as

jµ = Ω(τ)J[n]δ
1
µ, (78)
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here we use the subscript [n] to indicate the adiabatic order n of the subtracted counterterms to obtain the induced
current J[n]. Comparison of Eqs. (61), (73), and (77) allows us to read off the effective electromagnetic potential
energy A.j, and then we will use the last relation in Eq. (76) and definition (78) to extract J[4]. This gives

J[4] =
eH3

8π2

{

4ξ̄λ

µ2
− λ

9µ2
− 7λ3

90µ4
+
λ

3
log

(

µ2
)

− iπλ

3
− 4λ3

15
+

γ

6πλ

(45

π2
− 6− 96ξ̄ + 4λ2 − 8µ2

)cosh
(

2πλ
)

sin
(

2πγ
)

− γ

12π2λ2

(45

π2
− 6− 96ξ̄ + 64λ2 − 8µ2

) sinh
(

2πλ
)

sin
(

2πγ
) − iλ

2 sin
(

2πγ
)

∫ +1

−1

(

5λ2r4 −
(

1 + 36ξ̄ + 6λ2 + 3µ2
)

r2

+ λ2 + µ2 + 12ξ̄
)

[

(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

−
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

]

dr

}

, (79)

where the subscript [4] indicates J[4] has been derived from the expressions which have been regularized by the
counterterms expanded up to fourth adiabatic order. This should be clear from Eqs. (61), (77), and (78). To verify
our result (79), we have evaluated directly the induced current by calculating the expectation value of the current
operator (14) in the in-vacuum state and then subtracting the corresponding counterterms expanded up to fourth
adiabatic order. The expression for J[4] that follows from this direct analysis reproduces exactly the expression given
by Eq. (79).
In Ref. [61], the induced current of the massive, minimally coupled ξ = 0, scalar field has been evaluated by

calculating the expectation value of the current operator (14) in the in-vacuum state which is represented by the mode
functions given in Eqs. (30) and (31) with ξ = 0 for this case. In order to regularize the expectation value, the method
of adiabatic subtraction was employed. Those authors expanded the required counterterm up to second adiabatic
order that it suffices to remove the divergences and the regularized expression resulting from use of it reduces to the
expected results in the Minkowski spacetime limit. We refer to this prescription as minimal subtraction. Furthermore,
they argued that including the contribution of fourth adiabatic order in the counterterm spoils the expected behavior
in the Minkowski spacetime limit. Following these restrictions and arguments, it was subsequently found in Ref. [61]
that the induced current is given in terms of J[2] as in Eq. (78) by

J[2] =
eH3

8π2

{

λ

3
log

(

µ2
)

− iπλ

3
− 4λ3

15
+

γ̄

6πλ

(45

π2
+ 10 + 4λ2 − 8µ2

)cosh
(

2πλ
)

sin
(

2πγ̄
) − γ̄

12π2λ2

(45

π2
+ 10 + 64λ2 − 8µ2

)

× sinh
(

2πλ
)

sin
(

2πγ̄
) − iλ

2 sin
(

2πγ̄
)

∫ +1

−1

(

5λ2r4 +
(

5− 6λ2 − 3µ2
)

r2 + λ2 + µ2 − 2
)

[

(

e2πλr + e2iπγ̄
)

× ψ
(1

2
+ γ̄ + iλr

)

−
(

e2πλr + e−2iπγ̄
)

ψ
(1

2
− γ̄ + iλr

)

]

dr

}

, (80)

where γ̄ =
√

9/4− λ2 − µ2 is obtained by setting ξ = 0 in the definition of γ, and the subscript [2] indicates J[2] has
been regularized by the counterterms expanded up to second adiabatic order. It is important to note that there are
two differences between expressions (79) and (80). First, the coupling constant ξ is treated as arbitrary real value
parameter in the expression (79), whereas the expression (80) has been computed for fixed value ξ = 0. Second,
expression (79) contains contributions from the fourth adiabatic order expansion of the counterterm. With these two
differences, (79) is a generalization of (80). Therefore, the difference J[4]

(

ξ = 0
)

− J[2] would give only the fourth
adiabatic order contribution of the counterterm to J[4], that is

J[4]
(

ξ = 0
)

− J[2] = −eH
3

8π2

(

7λ

9µ2
+

7λ3

90µ4

)

. (81)

In our subsequent discussion, we demonstrate that the expected behavior of J[4] in Minkowski spacetime is not spoiled
by these fourth adiabatic order contributions. Furthermore, we show that these contributions alter the behavior of
the J[4] when compared to J[2], especially in the two regimes of the infrared hyperconductivity and the strong electric
field.

A. Minkowski spacetime limit

Here we explore the behavior of the result (79) in the Minkowski spacetime limit. Note that in the limit where the
Hubble constant tends to zero, i.e., H → 0 we recover Minkowski spacetime. As was mentioned in the discussion of
Eq. (81), the difference between the expressions (79) and (80) comes from the contribution of fourth adiabatic order
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in the adiabatic expansion of the counterterm. Comparison of the expressions (79) and (80) shows that these fourth
adiabatic order contributions are

δJ =
eH3

8π2

(

4ξ̄λ

µ2
− λ

9µ2
− 7λ3

90µ4

)

= − e

8π2

( eE

m2

)

(

4ξ̄H3 − H3

9
− 7(eE)2

90m2
H

)

. (82)

where the second equality comes from using the definitions of λ and µ given in Eq. (27). It is clear from the second
equality in Eq. (82) that all these terms vanish in the limit H → 0 for fixed and finite values of E and m. This
observation will automatically insure the validity of (79) in the Minkowski spacetime limit. If the electric field
background E and the scalar field mass m are regarded as fixed and finite, then by taking the limit H → 0 of the
expressions (79), we find

lim
H→0

J[4] =
e3

12π3H
E2e−

πm
2

|eE| , (83)

which is exactly the same as the result obtained in Ref. [61] for the behavior of J[2], given by Eq. (80), in the
Minkowski spacetime limit. It has been argued [61] that in the expanding dS the inverse of the Hubble constant
H−1, in fact, is equivalent to the finite time interval between switching on and off the electric field background in
Minkowski spacetime. By this argument, we can see that the behavior (83) of the induced current in the Minkowski
spacetime limit agrees with the electric current of the charged scalar particles produced by the Schwinger mechanism
in Minkowski spacetime [40, 41].
A comparison of the result of this article for the induced current J[4] [see Eq. (79)] to the result of Ref. [61] for the

induced current J[2] [see Eq. (80)] is shown in Fig. 4. The figure is drawn for ξ = 0, and illustrates that, for the light
scalars µ < 1, the induced currents J[4] and J[2] differ considerably in the regime λ & µ. Subsequently, we set ξ = 0
and concentrate our attention on the regime λ & µ. We examine the behaviors of J[4] and J[2] in the two regimes:
The infrared hyperconductivity with the criterion µ < λ . 1, and the strong electric field λ≫ max(1, µ, ξ).

B. Behaviors in the infrared hyperconductivity regime

In Ref. [61], it was pointed out that, in the infrared hyperconductivity regime µ < λ . 1, the absolute value of the
induced current J[2] monotonically increases with decreasing the electric field parameter λ, as shown in Fig. 4. In this
regime, we can approximate expression (80) by

J[2] ≃
eH3

8π2

( 6λ

λ2 + µ2

)

. (84)
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From Fig. 4 it is obvious that in the infrared hyperconductivity regime, the absolute value of the induced current J[4]
reduces to zero at a certain value of the electric field parameter λ∗ which depends on the mass parameter µ. Indeed,
the sign of J[4] changes at λ∗. This figure also indicates that the absolute value of J[4] is a decreasing function of λ
in the interval µ < λ < λ∗ and is an increasing function for λ > λ∗. In the infrared hyperconductivity regime, we can
approximate expression (79) by

J[4] ≃
eH3

8π2

(

− 7λ3

90µ4
− 7λ

9µ2
+

6λ

λ2 + µ2

)

. (85)

This expression has a zero at λ∗ ≃ 2.090µ. In the range of λ > 2.090µ, the dominant contribution to J[4] comes from
the first two terms in Eq. (85) which its absolute value increases with increasing λ. Thus, in this range, the infrared
hyperconductivity phenomenon does not occur. On the other hand, in the interval µ < λ < 2.090µ, the dominant
contribution to J[4] comes from the last term in Eq. (85) which increases with decreasing λ. Thus, in the interval
µ < λ < 2.090µ, the infrared hyperconductivity phenomenon occurs. We therefore conclude that although there exist
a period of the infrared hyperconductivity in our result for the induced current J[4], but now this phenomenon occurs
in the more restricted interval µ < λ < 2.090µ.

C. Behaviors in the strong electric field regime

Figure 4 shows that although the absolute values of the two induced current J[2] and J[4] are increasing functions
of λ in the strong electric field regime λ ≫ max(1, µ, ξ), the induced current J[2] does not depend on the scalar field

mass, whereas the induced current J[4] is proportional to µ−4. We find that, in the limit λ → ∞ for a fixed µ, the
induced current J[4] is given approximately by

J[4] ≃ −eH
3

8π2

( 7λ3

90µ4

)

=
7He4

720π2

(E3

m4

)

. (86)

We observe that the behavior of the induced current J[4] in the Minkowski spacetime limit [see Eq. (83)] will be
different from that in the strong electric field limit, see Eq. (86). Whereas, in [61] it was pointed out that the induced
current J[2] has the same behavior in these two limits, indicated on the right side of Eq. (83). We note that in
the Minkowski spacetime limit, the electric field strength E, the scalar field mass m, and the coupling constant ξ,
are regarded as fixed and the Hubble constant H , tends to zero. Thus, in the Minkowski spacetime limit, although
λ = −eE/H2 and µ = m/H tend to infinity, but the ratio λ/µ2 remains finite. We also note that in the strong electric
field regime, the Hubble constant H , the scalar field mass m, and the coupling constant ξ, are regarded as fixed and
the electric field strength E, tends to infinity. Thus, in this regime, λ goes to infinity while µ is regarded as a fixed
and finite value.

VI. CONCLUSIONS

The aim of the present research was to examine the induced energy-momentum tensor of a massive, complex
scalar field coupled to the electromagnetic vector potential (7) which describes a uniform electric field background
with a constant energy density in the conformal Poincaré patch of dS4 where the metric takes the form (2). The
dynamics of the complex scalar field is governed by the action (11). The energy-momentum tensor of the scalar field
is not covariantly conserved in the presence of the electromagnetic field, as the consequence of the electromagnetic
interactions, see Eq. (23). The nonconservation of the scalar field energy-momentum tensor is compatible with the
nonconservation of the electromagnetic field energy-momentum tensor [see Eq. (24)], and hence the total energy
momentum tensor of the theory is covariantly conserved. We treated the classical gravitational field (2) and the
classical electromagnetic field (7) as fixed field configurations which they are unaffected by the dynamics of the
quantum complex scalar field in response to these backgrounds. We discussed canonical quantization of the scalar
field. The normalized positive and negative frequency mode functions of the scalar field which behave like the positive
and negative frequency Minkowski mode functions in the remote past are given by Eqs. (30) and (31). These mode
functions determine the in-vacuum state of the scalar field.
We calculated the expectation values of all the components of the energy-momentum tensor in the in-vacuum

state of the scalar field; the nonzero expectation values have been obtained in Eqs. (40), (42), (44), and (46). It is
expected that these expectation values contain ultraviolet divergences, because the expectation values in the Hadamard
in-vacuum state suffer from the same ultraviolet divergence properties as Minkowski spacetime. To render these in-
vacuum expectation values finite, we employed the adiabatic regularization method. To adjust the set of appropriate
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counterterms, we treated the conformal scale factor and the electromagnetic vector potential as quantities of zero
adiabatic order. As pointed out by Wald [18], in four dimensions, to obtain a renormalized energy-momentum tensor
which is consistent with the Wald axioms, the subtraction counterterms should be expanded up to fourth adiabatic
order. Under these assumptions, we then constructed the set of the appropriate adiabatic counterterms, which are
given by Eqs. (57)-(60). The adiabatic regularization procedure was carried out by subtracting the counterterms
from the corresponding unregularized in-vacuum expectation values. Thus we have arrived at our final expressions for
all the nonvanishing components of the induced energy-momentum tensor, which are given by Eqs. (61)-(63). This
research has shown that all the off-diagonal components of the induced energy-momentum tensor are zero, and the
components T22 and T33 are equal as consequences of the underlying symmetries of the backgrounds (2) and (6).
Furthermore, since the electric field background (6) is not invariant under full symmetries of dS, indeed violates the
time reversal symmetry [51], and causes an electric current along its direction, we observe that T00, T11, and T22 are
not equal to one another. The research has also shown that in the limit of zero electric field, our result for the induced
energy momentum tensor reduces to the form (65). The expression (65) accords with the result of computing the
renormalized vacuum energy-momentum tensor of a real scalar field in dS4 obtained in Refs. [11, 38], except for the
overall factor of 2 in Eq. (65). This factor 2 is consistent with the complex scalar field as being made of two real
scalar fields with the number of degrees of freedom doubling up. The absolute values of the expressions (61)-(63) as
functions of the electric field parameter λ, for various values of the scalar field mass parameter µ, and two values of the
coupling constant ξ are shown on the graphs in Figs. 1-3, respectively. These figures signal that the induced energy-
momentum tensor is analytic and varies continuously with the parameters λ, µ, and ξ, this statement consistent with
the requirements discussed in [95]. For fixed values of µ and ξ, the absolute values of the nonvanishing components
of the induced energy-momentum tensor are increasing functions of λ, but by excluding a neighbourhood of the zero
value points this behavior is assured. For fixed values of λ and ξ, the absolute values of the nonvanishing components
are decreasing functions of µ. For a fixed λ and µ, the nonvanishing components do not vary significantly with
the parameter ξ in the range 0 ≤ ξ ≪ λ, µ. The qualitative behaviors shown in Figs. 1-3 can be given quantitative
treatments by inspection of expressions (61)-(63) in the limiting regimes. The examination of the expressions (61)-(63)
has shown that in the strong electric field regime λ≫ max(1, µ, ξ), the components of the induced energy-momentum
tensor can be approximated by Eq. (66). In the heavy scalar field regime µ ≫ max(1, λ, ξ), the components can be
approximated according to Eq. (67). We also found that in the infrared regime, where µ ≪ 1, λ ≪ 1, ξ = 0, the
components can be approximated by Eqs. (69)-(72). To do a consistency check, we derived the trace anomaly of
the induced energy-momentum tensor for the case of a free, massless, conformally invariant scalar field in dS4; see
Eq. (74). This investigation shows that our result (74) is in agreement with the earlier result of computing the trace
anomaly [96] of a free, massless, conformally coupled real scalar field in dS4, except for the overall factor of 2 in
Eq. (74), as explained below Eq. (65).

One of the more significant findings to emerge from this research is that the nonconservation equation (23) implies
the relation (77) between the induced energy-momentum tensor and the induced current. This relation in turn implies
the renormalization condition for the induced current. We derived the expression (79) for the induced current of the
scalar field by using the expressions (61), (73), and relation (77). This result for the induced current has been derived
from the expressions which have been regularized by the counterterms expanded up to fourth adiabatic order. In
Ref. [61], the induced current of the massive, minimally coupled ξ = 0, scalar field has been evaluated by subtracting
the counterterm expanded up to second adiabatic order; see Eq. (80). In the discussion of Eq. (83), we remarked that
our result for the induced current in the Minkowski spacetime limit agrees with the electric current of the charged
scalar particles produced by the Schwinger mechanism in Minkowski spacetime [40, 41]. A comparison of the result
of this article for the induced current J[4] [see Eq. (79)] to the result of Ref. [61] for the induced current J[2] [see
Eq. (80)] is shown in Fig. 4. The figure is drawn for ξ = 0, and illustrates that, for the light scalars µ < 1, the
induced currents J[4] and J[2] differ considerably in the regime λ & µ. From Fig. 4 it is obvious that in the infrared
hyperconductivity regime µ < λ . 1, the absolute value of the induced current J[4] reduces to zero at a certain
value of the electric field parameter λ∗ which depends on the mass parameter µ. We found that in the infrared
hyperconductivity regime, the induced current J[4] can be approximated by Eq. (85) which has a zero at λ∗ ≃ 2.090µ.
In the interval µ < λ < 2.090µ, the dominant contribution to J[4] comes from the last term in Eq. (85) which increases
with decreasing λ. Thus, the infrared hyperconductivity phenomenon occurs in the interval µ < λ < 2.090µ. We
therefore conclude that although there exist a period of the infrared hyperconductivity in our result for the induced
current J[4], but now this phenomenon occurs in the more restricted interval µ < λ < 2.090µ. Figure 4 also shows
that the absolute value of the induced current J[4] is an increasing function of λ in the strong electric field regime

λ≫ max(1, µ, ξ), but decreases as µ−4 with increasing µ. We saw that in the limit λ→ ∞ for a fixed µ, the induced
current J[4] is given approximately by Eq. (86). The results of this investigation show that the behavior of the induced
current J[4] in the Minkowski spacetime limit [see Eq. (83)] will be different from that in the strong electric field limit,
see Eq. (86).

This would be a fruitful area for further work. A natural progression of this work is to analyse the backreaction of
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the induce energy-momentum tensor on the gravitational field of dS4 and the backreaction of the induce current J[4]
on the electromagnetic field. This is also an issue for future research to explore the induced energy-momentum tensor
of a Dirac field in the context of our discussion.
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Appendix: Evaluation of the momentum integrals over the mode functions

In the appendix we present further supplementary data associated with the calculation of the expressions (36)-(38).
It is convenient at this stage to switch to the three-dimensional spherical momentum space, and then we can perform
the entire three-dimensional integrals in three-dimensional spherical coordinates. We introduce a transformation from
the Cartesian momentum coordinates (kx, ky, kz) to the spherical momentum coordinates (k, θ, φ) by equations

kx = k cos θ, ky = k sin θ cosφ, kz = k sin θ sinφ, (A.1)

In this coordinates the variable r = kx/k is given by r = cos θ with range −1 ≤ r ≤ 1. The integration measure is then
d3k = k2 sin θdφdθdk. It is useful to covert the variables of integration from the momentum k to the dimensionless
physical momentum p = −kτ , and from the angle θ to the variable r. Thus, the previous expression for the integration
measure may be rewritten as

d3k = −H3Ω3(τ)dφdrp2dp. (A.2)

Accordingly, we use a dimensionless physical momentum cutoff Λ, which is related to the momentum cutoff K as
Λ = −Kτ . To begin the evaluation of (36)-(38), we change the integration measure according to (A.2) and substitute
the expression (30) for Uk(x). After integration over azimuth angle φ and some simplifications, the expressions
(36)-(38) reduce to

〈

in
∣

∣T00
∣

∣in
〉

= Ω2 H
4

8π2

∫ +1

−1

dr

{

2I1 − 4λrI2 +
(1

4
− γ2 − 18ξ̄ + λ2r2

)

I3 + 2ℑ
[

I4
]

− 2ℜ
[

(

6ξ − 1− iλr
)

I5
]

+ I6
}

, (A.3)

〈

in
∣

∣T11
∣
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〉

= Ω2 H
4

8π2

∫ +1

−1

dr

{

2r2I1 − 4λrI2 +
[

(

4ξ + 1
)

λ2 +
(

4ξ − 1
)
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(

4ξ − 1
)
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(

6ξ − 1
)(

8ξ − 1
)

]

I3 − 2ℑ
[

(

4ξ − 1
)

I4
]

+ 2ℜ
[

(

1− 6ξ + iλr − 4iλrξ
)

I5
]

−
(

4ξ − 1
)

I6
}

, (A.4)

and

〈

in
∣

∣T22
∣

∣in
〉

=
〈

in
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∣

∣in
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4

8π2
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I6
}

, (A.5)

where ℑ and ℜ stand for the imaginary and real parts of any expressions, respectively. In these expressions the
momentum integrals over the Whittaker functions have been defined by

I1 = eπλr
∫ Λ

0

dpp3
∣
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Wκ,γ(−2ip)
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∣
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2

, (A.6)

I2 = eπλr
∫ Λ

0

dpp2
∣

∣

∣
Wκ,γ(−2ip)

∣

∣

∣

2

, (A.7)
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I3 = eπλr
∫ Λ

0

dpp
∣

∣

∣
Wκ,γ(−2ip)

∣

∣

∣

2

, (A.8)

I4 =
(1

4
− γ2 − λ2r2 + iλr

)

eπλr
∫ Λ

0

dpp2Wκ−1,γ(−2ip)W−κ,γ(2ip), (A.9)

I5 =
(1

4
− γ2 − λ2r2 + iλr

)

eπλr
∫ Λ

0

dppWκ−1,γ(−2ip)W−κ,γ(2ip), (A.10)

I6 =
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∣

∣

1

4
− γ2 − λ2r2 + iλr

∣

∣

∣

2

eπλr
∫ Λ

0

dppWκ−1,γ(−2ip)W−κ−1,γ(2ip). (A.11)

The integrals in Eqs. (A.6)-(A.11) are of the same kind of those momentum integrals over the Whittaker functions
which encountered in the calculation of the induced current of a scalar field in two- [60] and four-dimensional [61]
de Sitter spacetimes. The first step in the evaluation of the integrals (A.6)-(A.11) by the method that explained in
Ref. [61], is to plug the Mellin-Barnes representation (28) for the Whittaker function W and make use of the theorem
of residues. It is rather straightforward, but rather lengthy, to show that our final results are
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22

I5 = − i

8

(

4γ2 + 4λ2r2 − 4iλr − 1
)

Λ− 1

8

(

4γ2 + 4λ2r2 − 4iλr − 1
)(

1 + 2iλr
)

log
(

2Λ
)

− 2γ2 − 10λ2r2

− 16

3
iλ3r3 − 4iγ2λr +

20

3
iλr +

3

2
− iγ

3 sin
(

2πγ
)

(

8γ2 + 12λ2r2 − 18iλr − 8
)(

cos
(

2πγ
)

+ e2πλr
)

+
i

16 sin
(

2πγ
)

(

4γ2 + 4λ2r2 − 4iλr − 1
)(

1 + 2iλr
)

[

π sin
(

2πγ
)

+
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

−
(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

]

, (A.16)

I6 =
1

64

(

16γ4 − 8γ2 + 16λ4r4 + 32γ2λ2r2 + 8λ2r2 + 1
)

log
(

2Λ
)

− 3γ4

16
+

7γ2

32
− 25

48
λ4r4 − 7

8
γ2λ2r2 − 29

96
λ2r2

− 11

256
− γ

48 sin
(

2πγ
)

(

16γ4 − 8γ2 + 16λ4r4 + 32γ2λ2r2 + 8λ2r2 + 1
)(

12λ3r3 + 20γ2λr + 7λr
)(

cos
(

2πγ
)

+ e2πλr
)

− i

128 sin
(

2πγ
)

(

16γ4 − 8γ2 + 16λ4r4 + 32γ2λ2r2 + 8λ2r2 + 1
)

[

π sin
(

2πγ
)

+
(

e2πλr + e−2iπγ
)

ψ
(1

2
− γ + iλr

)

−
(

e2πλr + e2iπγ
)

ψ
(1

2
+ γ + iλr

)

]

, (A.17)

where we use log(z) to denote the natural logarithm function, and ψ(z) to denote the digamma function. By substi-
tuting Eqs. (A.12)-(A.17) into expressions (A.3)-(A.5) and performing the integrals over r, we obtain the results (40),
(42), and (44), respectively.
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