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ABSTRACT

Context. The induced gravitational collapse (IGC) scenario has been introduced in order to explain the most energetic gamma ray
bursts (GRBs), Eiso = 1052−1054 erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hypernovae
(BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron
star (NS). Their evolution is characterized by a rapid sequence of events: 1) the SN explodes, giving birth to a new NS (νNS). The
accretion of SN ejecta onto the companion NS increases its mass up to the critical value; 2) the consequent gravitational collapse is
triggered, leading to the formation of a black hole (BH) with GRB emission; 3) a novel feature responsible for the emission in the
GeV, X-ray, and optical energy range occurs and is characterized by specific power-law behavior in their luminosity evolution and
total spectrum; 4) the optical observations of the SN then occurs.
Aims. We investigate whether GRB 090423, one of the farthest observed GRB at z = 8.2, is a member of the BdHN family.
Methods. We compare and contrast the spectra, the luminosity evolution, and the detectability in the observations by Swift of
GRB 090423 with the corresponding ones of the best known BdHN case, GRB 090618.
Results. Identification of constant slope power-law behavior in the late X-ray emission of GRB 090423 and its overlapping with the
corresponding one in GRB 090618, measured in a common rest frame, represents the main result of this article. This result represents
a very significant step on the way to using the scaling law properties, proven in Episode 3 of this BdHN family, as a cosmological
standard candle.
Conclusions. Having identified GRB 090423 as a member of the BdHN family, we can conclude that SN events, leading to NS for-
mation, can already occur, namely at 650 Myr after the Big Bang. It is then possible that these BdHNe stem from 40−60 M⊙ binaries.
They are probing the Population II stars after the completion and possible disappearance of Population III stars.
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1. Introduction

The induced gravitational collapse (IGC) paradigm (Ruffini
2011; Rueda & Ruffini 2012; Izzo et al. 2012b) has been pro-
posed to explain a class of very energetic (Eiso ∼ 1052–1054 erg)
long gamma ray bursts (GRBs) associated with supernovae
(SNe). A new class of systems, with progenitor a tight binary
composed by a FeCO core and a companion neutron star (NS),
has been considered. These systems evolve in a very rapid se-
quence lasting a few hundred seconds in their rest frame: 1) the
SN explodes giving birth to a new NS (νNS); 2) the accretion of
the SN ejecta onto the companion NS increases its mass, reach-
ing the critical value; 3) the gravitational collapse is triggered,
leading to the formation of a black hole (BH) with GRB emis-
sion. Such systems have been called binary-driven hypernovae
(BdHN Ruffini et al. 2014a).

Observationally, this authentic cosmic matrix is character-
ized by four distinct episodes, with the “in” state represented

by a FeCO core and a NS and the “out” state by a νNS and
a BH. Each episode contains specific signatures in its spectrum
and luminosity evolution. Up to now, the IGC paradigm has been
verified in a dozen GRBs, all with redshift up to z ∼ 1 (Izzo et al.
2012a; Penacchioni et al. 2012, 2013; Pisani et al. 2013; Ruffini
et al. 2013).

Various approaches have been followed to reach an under-
standing of long GRBs. One of these has been the use of statis-
tical tools to obtain general results that examine the most com-
plete source catalog (see, e.g., Nousek et al. 2006; Kann et al.
2011; Salvaterra et al. 2012; Margutti et al. 2013, and references
therein).

We follow a different approach here. We first identified the
specific class of BdHNe of GRBs related to SNe, as mentioned
above, widely tested at z ≈ 1. We furthermore explore the mem-
bers of this class by extending our analysis to higher values of
the cosmological redshifts. We do that by taking the scaling laws
for the cosmological transformations into account, as well as the
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Fig. 1. Space-time diagram of the induced gravitational collapse applied
to GRB 090618 (Enderli 2013; Ruffini 2013). The sequence is summa-
rized as follows: A) the explosion as a SN of the evolved FeCO core
which creates a ν-NS and its remnant; B) the beginning of the accre-
tion of the SN ejecta onto the companion NS, emitting Episode 1; C) a
prolonged interaction between the ν-NS and the NS binary companion;
D) the companion NS reaches its critical mass by accretion, and a BH
is formed with the consequent emission of a GRB; E) the arrival time
at the separatrix between Episodes 2 and 3; F) the optical emission of
the SN due to the decay of 56Ni after td

a ∼ 10(1+ z) days in the observer
frame (Episode 4).

specific sensitivities of the GRB detectors (in this case Swift,
Gehrels et al. 2005; and Fermi, Meegan et al. 2009).

Our aim is to verify that such BdHNe, originating in a SN
and a companion NS, did form in the earliest phases of the uni-
verse. If this is confirmed, we go on to examine the possibility
that all GRBs with Eiso ∼ 1052−1054 erg are indeed associated to
SN and belong to the BdHN family independently of their space
and time location.

2. The four episodes of BdHNe sources

In order to achieve this goal, we recall the four above-mentioned
episodes, present in the most general BdHN (see Fig. 1):

Episode 1 has the imprint of the onset of a SN in the tight
binary system with the companion neutron star (NS; see Fig. 2).
It stemmed from the hyper-critical accretion of the SN matter
ejecta (∼10−2 M⊙ s−1) (Rueda & Ruffini 2012). Decades of con-
ceptual progress have passed from the original work of Bondi &
Hoyle (1944) and Bondi (1952) to the problem of a “hypercriti-
cal” accretion rate. This problem has acquired growing scientific
interest as it moved from the classical astronomical field to the

Fig. 2. Sketch (not in scale) of the accretion induced gravitational col-
lapse (IGC) scenario.

domain of the relativistic astrophysics. The crucial role of neu-
trino cooling, earlier considered by Zel’dovich et al. (1972) and
later on by Bisnovatyi-Kogan & Lamzin (1984) in SN fallback,
has been recognized to play a crucial role in describing binary
common envelope systems by Chevalier (1989, 1993). In the
work by Fryer et al. (1996), and more recently in Fryer (2009),
it was clearly shown that an accretion rate Ṁ ∼ 10−2 M⊙ s−1

onto a neutron star (NS) could lead in a few seconds to the
formation of a black hole (BH), when neutrino physics in the
description of the accreting NS is taken into due account. The
data acquired in Episode 1 of GRB 090618 (Izzo et al. 2012a),
as well as the one in GRB 101023 (Penacchioni et al. 2012),
GRB 110709B (Penacchioni et al. 2013), and GRB 970828
(Ruffini et al. 2013), give for the first time the possibility to probe
the Bondi-Hoyle hypercritical accretion and possibly the associ-
ated neutrino emission, which was theoretically considered by
Zel’dovich et al. (1972); Chevalier (1993); Fryer et al. (1996),
and Fryer (2009).

Episode 2 is the canonical GRB emission, which originated
in the collapse of the companion NS, which reached its critical
mass by accretion of the SN ejecta and then collapsed to a black
hole (BH), indeed emitting the GRB.

Episode 3 observed in X-rays by Swift-XRT, shows very pre-
cise behavior consisting of steep decay, starting at the end point
of the prompt emission, and then a plateau phase followed by
a late power-law decay (see Pisani et al. 2013 and also Fig. 3).
The late X-ray luminosities of BdHNe, in their rest-frame energy
band 0.3–10 keV, show a common power-law behavior with a
constant decay index clustering around α = −1.5 ± 0.2. The oc-
currence of such a constant afterglow decay has been observed
in all the BdHN sources examined. For example, see in Fig. 4
the data for GRB 130427A, GRB 061121, GRB 060729, respec-
tively. It appears an authentic nested structure, in the late X-ray
emission of GRBs associated to SNe, and it has indeed to be
indicated as the qualifying feature for a GRB to be a member
of the BdHNe family (Ruffini et al. 2014a). It is clear that such
a phenomenon offers a strong challenge for explaining by any
GRB model.

In addition to these X-ray features, the observations of
GRB 130427A by the Swift, Fermi, and Konus-WIND satellites
and a large number of optical telescopes have led to the evi-
dence of such power laws at very high energies, in γ-rays and
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Fig. 3. Rest-frame, X-ray afterglow, luminosity light curves of some IGC GRBs-SNe belonging to the “golden sample” described in Pisani et al.
(2013). The overlapping after 104 s is clearly evident, confirming the presence of an Episode 3 in this GRB.

at the optical wavelengths (Fermi-LAT collaboration & Fermi-
GBM collaboration 2014; Melandri et al. 2014; see also Ruffini
et al. 2014b).

Episode 4 is characterized by the emergence of the SN emis-
sion after about 10–15 days from the occurrence of the GRB in
the rest frame of the source, which has been observed for almost
all the sources fulfilling the IGC paradigm with z ∼ 1.

3. GRB 090423 compared and contrasted

with GRB 090618

We first consider the data of GRB 090423, one of the farthest
GRB ever observed at z = 8.2 (Salvaterra et al. 2009; Tanvir
et al. 2009), with the prototypical member of the BdHNe class,
namely GRB 090618, and its associated SN (Izzo et al. 2012a).
In other words we proceed with a specific ansatz: we verify that
GRB 090423, at z = 8.2, presents analogous intrinsic features to
GRB 090618, which was observed at z = 0.54.

We proceed by examining (see Sect. 4) each one of the
above episodes for both sources, by a detailed spectral analysis
and simulations. We first verify that Episode 1 of GRB 090618
transposed at redshift z = 8.2 should not have triggered the
Swift-BAT detector. Indeed, no precursor in the light curve
of GRB 090423 was detected. Consequently, we do not ad-
dress any theoretical considerations of the hypercritical accre-
tion in Episode 1 of GRB 090423, since it is not observable
in this source (see Sect. 5). We also notice that the distance of

GRB 090423 prevents any possible detection of a SN associated
with this GRB, and therefore Episode 4 cannot be observed in
GRB 090423.

For Episode 2, we have found that indeed the transposed
emission of GRB 090618 should provide a positive trigger:
we show in Sect. 6 that the duration, the observed luminos-
ity and the spectral emission of Episode 2 in GRB 090423
present analogous intrinsic features to the transposed ones of
GRB 090618 and differ only in the spectral energy distribution
due to different circumburst medium properties.

For Episode 3, the crucial result, probing the validity of the
above ansatz, is that the late X-ray emission in GRB 090423,
computed in the rest frame of the burst at z = 8.2, precisely
coincides (overlaps) with the corresponding late X-ray emission
in GRB 090618, as evaluated in the rest frame of the source at
z = 0.54, see Sect. 7. The occurrence of this extraordinary coin-
cidence in Episode 3 proves that GRB 090423 is indeed a mem-
ber of the BdHN family. This in particular opens the possibility
of elaborating a role for the late X-ray emission in BdHNe as a
standard candle.

4. The data

GRB 090423 was discovered on 23 April 2009, 07:55:19
UT, T0 from here, by the Swift Burst Alert Telescope (BAT;
Krimm et al. 2009), at coordinates RA = 09h 55m 35s, Dec =
+18◦ 09′ 37′′ (J2000.0; 3′ at 90% containment radius). The
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Fig. 4. Rest-frame, (0.3−10) keV, and re-binned luminosity light curves of GRB 130427A (upper left), GRB 061121 (upper right), GRB 060729
(lower left) and a combined picture (lower right). The fits to their emission is done using a power-law function for the early steep decay and a
phenomenological function for the following emission, which is described well in Ruffini et al. (2014a).

Swift-BAT light curve showed a double-peaked structure with
a duration of about 20 s. The X-ray Telescope (XRT; Burrows
et al. 2005) on board the same spacecraft started to observe
GRB 090423 72.5 s after the initial trigger, finding a fading
source and providing enhanced coordinates for the follow-up
by on-ground telescopes that have allowed the discovery of its
redshift (z = 8.2, Salvaterra et al. 2009; Tanvir et al. 2009). The
light curve is characterized by an intense and long flare
peaking at about T0 + 180, followed by a power-law de-
cay, observed from the second orbit of Swift (Stratta & Perri
2009). The prompt emission from GRB 090423 was also de-
tected by the Fermi Gamma-Ray Burst Monitor (GBM, trig-
ger 262166127/090423330; von Kienlin 2009a), whose on-
ground location was consistent with the Swift position. The
Large Area Telescope (LAT) on-board the Fermi satellite did
not detected any signal from GRB 090423. The GBM light
curve showed a single-structured peak with a duration of about
12 s, whose spectral energy distribution was best fit with a
power law with an exponential cut-off energy, parameterized as
Epeak = (82 ± 15) keV. The observed fluence was computed

from Fermi data to be S γ = 1.1 × 10−6 ergs/cm2 that, consid-
ering the standard ΛCDM cosmological model, corresponds to
an isotropic energy emitted of Eiso = 1.1 × 1053 ergs for the
spectroscopic redshift z = 8.2 (von Kienlin 2009b). With these
values for Epeak and Eiso, GRB 090423 satisfies the Amati rela-
tion, which is only valid for long GRBs (Amati et al. 2002).

5. The impossibility of detecting Episode 1

It has become natural to ask if observations of Episodes 1 and 2
in the hard X-ray energy range could be addressed for the case
of GRB 090423. We have first analyzed a possible signature of
Episode 1 in GRB 090423. Since the Swift-BAT, (15−150) keV,
light curve is a single-structured peak with duration of ∼19 s,
as detected by Swift-BAT, with no thermal emission in its spec-
trum and no detection of any emission from a precursor in the
Swift and Fermi data, we have considered the definite possibility
that Episode 1 was not observed at all. In this light, the best way
to check this possibility consists in verifying that the Episode 1
emission is below the threshold of the Swift-BAT detector, con-
sequently, it could have not triggered the Swift-BAT. We have
considered the prototype of Episode 1 as the one observed in
GRB 090618 (Izzo et al. 2012b), which is at redshift z = 0.54,
and then we transposed it at redshift z = 8.2, simulating the ob-
served emission of GRB 090618 as if it had been observed at
this large distance. Then, we performed a time-resolved spec-
tral analysis of Episode 1 in GRB 090618, using a Band func-
tion as spectral model, and finally we translated the specific
photon spectra obtained from the analysis at the redshift of
GRB 090423. This last operation consists in two transforma-
tions, concerning the peak energy Epeak of the Band function and
the normalization value KBand. The new value of the peak energy
is simply given by Epeak,8 = Epeak (1 + 0.54)/(1 + 8.2), while the
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normalization, which corresponds to the specific photon flux at
1 keV, requires knowledge of the luminosity distances of the two
bursts, dl(z) :

KBand,8 = KBand

(

1 + 8.2

1 + 0.54

)2 (

dl(0.54)

dl(8.2)

)2

· (1)

Another transformation concerns the observational time of
Episode 1 of GRB 090618 at redshift z = 8.2. At large distances,
any astrophysical event will be dilated in time by the cosmolog-
ical redshift effect, which in the current case modifies the time
interval by a quantity (1 + 8.2)/(1 + 0.54) = 5.97. The knowl-
edge of this time interval is fundamental since it represents the
exposure of a simulated spectrum translated at z = 8.2. We con-
sidered Fermi GBM data for analyzing the time-resolved spec-
tra of GRB 090618, as described by Izzo et al. (2012b). The
wide energy range of Fermi GBM NaI detectors, (8−1000) keV,
allows a more accurate determination of the Band parameters,
which are used as input values for the simulated spectra. We
also rebinned the Fermi data considering a signal-to-noise ratio
(SNR) = 10, and finally performed our spectral analysis. The
next step consisted in transforming the peak energy of the Band
function and of the normalization of all these time-resolved pho-
ton spectra N(E), as described above.

Following the work of Band (2003), the sensitivity of an
instrument to detect a burst depends on its burst trigger algo-
rithm. The Swift-BAT trigger algorithm, in particular, looks for
excesses in the detector count rate above expected background
and constant sources. There are several criteria for determin-
ing the correct BAT threshold significance σ0 for a single GRB
(Barthelmy et al. 2005), but in this work we have considered
the treatment given in Band (2003). Recently, the threshold of
Swift-BAT has been modified to allow detecting of subthreshold
events, but since GRB 090423 was detected before, the Band
(2003) analysis is still valid for our purposes. The preset thresh-
old significance for Swift-BAT can be expressed by the following
formula:

σ0 =
Aeff fdet fmask∆t

∫ 150

15
ǫ(E)N(E)dE

√

Aeff fdet∆t
∫ 150

15
B(E)dE

, (2)

where Aeff is the effective area of the detector, fdet the fraction of
the detector plane that is active, fmask the fraction of the coded
mask that is open, ∆t the exposure of the photon spectrum N(E),
ǫ(E) the efficiency of the detector, and B(E) the background.
We considered the values for these parameters as the ones given
in the Band work (with the exception of the detecting area, as-
sumed to be Aeff = 5200 cm2), while the efficiency and the back-
ground were obtained from the Swift-BAT integrated spectrum
of GRB 090423 using the XSPEC fitting package. Then we con-
sidered as input photon spectra N(E) the ones obtained from the
Fermi GBM analysis of Episode 1 of GRB 090618 and trans-
lated for the redshift z = 8.2. It is appropriate to note that the
transformations of spectra presented above are the correct ones:
since the sensitivity of Swift-BAT strongly depends on the peak
energy of the photon flux of the single spectra of the GRB (for
the Swift-BAT case, see e.g. Fig. 7 of Band 2003), we find that at
z = 8.2 the observed peak energies of any spectrum will be low-
ered by a factor (1 + 0.54)/(1 + 8.2). Our procedure also takes
this further effect of the cosmological redshift into account.

Since the threshold significance of Swift-BAT is variable
from a minimum value of σ0 = 5.5 up to a maximum value
of 111, with an average value of σ0 = 6.7, the results of this

1 http://swift.gsfc.nasa.gov/about_swift/bat_desc.html
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Fig. 5. Threshold significance σ0 computed using the treatment of Band
(2003) for any single time-resolved spectra of the first emission episode
in GRB 090618, as if they were emitted at redshift 8.2. The dashed lines
correspond to the values for the threshold significance of σ0 = 5.5 and
σ0 = 6.7.

Fig. 6. Swift-BAT (15−150 keV) light curve emission of GRB 090423.
The red line corresponds to the simulation of the GRB emission in the
fireshell scenario (Izzo et al. 2010).

first analysis suggest that an Episode 1 similar to the one of
GRB 090618 would not have been detected in GRB 090423 (see
Fig. 5).

6. Detection of Episode 2 and its analysis

Episode 2 emission of GRB 090423, detected by Swift-BAT, was
examined in the context of the fireshell scenario (Izzo et al. 2010;
Ruffini 2011). A Lorentz Gamma factor of Γ ∼ 1100 and a
baryon load B = 8 × 10−4 were obtained. The simulations of
the observed spikes in the observed time interval (0−440) s lead
to homogeneous circumburst medium (R = 10−8, see Bianco &
Ruffini 2005 for a complete description), and an average den-
sity of 10−1 particles cm−3. The simulation of the GRB 090423
emission is shown in Fig. 6.

We can now compare and contrast the emission observed in
GRB 090423, expressed at z = 8.2 (see Fig. 6, Izzo et al. 2010),
and the portion of the emission of GRB 090618 if observed at
z = 8.2, (see Fig. 7, Izzo et al. 2012a). In view of the Swift-BAT
threshold, only the dashed region in Fig. 8, lasting 6 s, would be
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Table 1. Results of the spectral fits of the T90 duration of GRB 090423 and of the ∆tA,obs time interval for GRB 090618.

α β Ep,i norm. χ̃2 ∆tobs

(keV) (keV) (ph/cm2/s/keV) (s)

090618 –0.66 ± 0.57 –1.99 ± 0.05 284.57 ± 172.10 0.3566 ± 0.16 0.924 6.1
090423 –0.78 ± 0.34 –3.5 ± 0.5 433.6 ± 133.5 0.015 ± 0.010 0.856 10.4

Notes. The latter is computed in a time interval corresponding to the one expected to be observed if GRB 090618 is transposed at the redshift z =
8.2, and in the observed energy range (89.6−896) keV.

Fig. 7. Light curve of Episode 2 in GRB 090618, ranging from 50 to
150 s. The dashed region represents the portion which would have trig-
gered the Swift-BAT if this GRB had been at the redshift z = 8.2. The
observed duration of that interval is approximately ∆t ≃ 6 s. The results
obtained in Fig. 6, when scaled to z = 0.54, provide ∆T ≃ 3 s.
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Fig. 8. Spectra of GRB 090423 (blue data) and of the spectrum of the
emission of GRB 090618 (red data) considered as possible Episode 2
if GRB 090618 had been observed at z = 8.2. The low-energy photon
index is ≈–0.8, which corresponds to the expectations from the Fireshell
scenario (Ruffini 2011; Patricelli et al. 2012).

detectable. The observed flux in Fig. 6 and the one of the dashed
region in Fig. 8 will be similar when compared in a common
frame.

For the above considerations, the analysis presented in the
previous section can be applied to Episode 2 of GRB 090618.
Assuming a detector threshold for Swift-BAT of σ0 = 6.7, see
Eq. (2), only the dashed region in Fig. 7 is detectable when
transposing GRB 090618 at z = 8.2. In the observer frame,
this emission corresponds to the time interval (T0,G + 63.0,
T0,G + 69.1) s, with T0,G the trigger time of Fermi GBM data

of GRB 090618. This time interval, at z = 8.2, has a duration
∆tA,obs = ∆tobs × 5.97 = 36.4 s, owing to the time dilation by the
cosmological redshift z (see Fig. 6). The remaining emission of
GRB 090618 is unobservable, since below the threshold of the
Swift-BAT detector. We note that ∆tA,obs is quite comparable to
the observed duration of GRB 090423 (see Fig. 6).

We turn now to comparing and contrasting the spectral
energy distributions in the rest frame of the two GRBs. We
consider the spectrum of GRB 090618 in the energy range
(89.6−896) keV, which corresponds to the Swift-BAT band
(15−150) keV in the rest frame of GRB 090423. As for the
time interval in GRB 090423, we consider the observational
time interval (63.0−69.1) s, determined from applying Eq. (2)
to the entire Episode 2 of GRB 090618 (see the dashed region in
Fig. 7). We fitted the spectral emission observed in GRB 090423
with a Band function (Band et al. 1993), and the results pro-
vide an intrinsic peak energy Ep,i = (284.57 ± 172.10) keV
(see Table 1). The same model provides for the spectral emis-
sion of GRB 090423, in the T90 time duration, an intrinsic peak
energy of Ep,i = (433.6 ± 133.5) keV. However, the break in
GRB 090423 is steeper, while in GRB 090618 it is more shal-
low. This is clear in Fig. 8, where we show the spectra of both
GRBs that are transformed to a common frame, which is the one
at redshift z = 8.2. Very likely, the difference in the steepen-
ing at high energies is related to the structure of the circumburst
medium (CBM): the more fragmented the CBM, the larger the
cutoff energy of the fireshell spectrum (Bianco & Ruffini 2005).
Another important result is that the low energy index α is quite
similar in both GRBs. This agrees with the expectation from the
fireshell scenario, where a photon index of ≈−0.8 is expected in
the early emission of a GRB (Patricelli et al. 2012).

The isotropic energy emitted in the time interval delineated
by the dashed region in Fig. 7 has been computed to be Eiso =

3.49 × 1052 erg, which is very similar to the one computed for
the T90 duration, in the same energy range, for GRB 090423,
Eiso = 4.99 × 1052 erg.

7. Striking observations of Episode 3

That in long GRBs the X-ray emission, observed by Swift-
XRT in energy range 0.3–10 keV, presents a typical structure
composed of a steep decay, a plateau phase and a late power-
law decay, was clearly expressed by Nousek, Zhang and their
collaborators (Nousek et al. 2006; Zhang et al. 2006). This struc-
ture acquires a special meaning when examined in the most ener-
getic sources, Eiso = 1052−1054 erg, and leads to the fundamental
proof that GRB 090423 is a BdHN source.

It has only been after applying the IGC paradigm to the most
energetic long GRBs associated to SNe that we noticed the most
unique characterizing property of the BdHN sources: while the
steep decay and the plateau phase can be very different from
source to source, the late X-ray power-law component overlaps,
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Fig. 9. Behavior of the Episode 3 luminosity of GRB 090423 (black dots) compared with the prototype case of GRB 090618 (green data).

when computed in the cosmological rest-frame (see Pisani et al.
2013 and Fig. 3). This has become the crucial criterion for assert-
ing membership of a GRB in the BdHN family. Indeed, when we
report the late X-ray emission of Episode 3 in GRB 090423 at
z = 8.2, and GRB 090618 at z = 0.54, we observe a complete
overlapping at times longer than 104 s, see Fig. 9.

7.1. Recent progress in understanding the nature
of Episode 3

We recall:

a) that the X-ray luminosity of Episode 3 in all BdHN sources
presents precise scaling laws (see, e.g., Fig. 3);

b) that the very high energy emission all the way, up to
100 GeV, in GRB 130427A, as well as the optical one, fol-
lows a power-law behavior similar to the one in the X-ray
emission described above. The corresponding spectral en-
ergy distribution is also described by a power-law function
(Kouveliotou et al. 2013; Ruffini et al. 2014b). These results
clearly require a common origin for this emission process in
Episode 3;

c) that an X-ray thermal component has been observed in the
early phases of Episode 3 of GRB 060202, 060218, 060418,
060729, 061007, 061121, 081007, 090424,100316D,
100418A, 100621A, 101219B, and 120422A (Page et al.
2011; Starling et al. 2012; Friis & Watson 2013). In partic-
ular, this feature has been clearly observed in GRB 090618
and GRB 130427A (Ruffini et al. 2014b). This implies an
emission region size of 1012−13 cm in these early phases of
Episode 3, with an expansion velocity of 0.1 < v/c < 0.9,
with a bulk Lorentz Γ factor . 2 (Ruffini et al. 2014a).

The simultaneous occurrence of these three features imposes
very stringent constraints on any possible theoretical models. In

particular, the traditional synchrotron ultra-relativistic scenario
of the Collapsar jet model (Woosley 1993; Meszaros & Rees
2000) does not appear suitable for explaining these observational
facts.

In Ruffini et al. (2014a), we have recently pointed out the
possibility of using the nuclear decay of ultra-heavy nuclei
originally produced in the close binary phase of Episode 1 by
r-process as an energy source of Episode 3. There is the remark-
able coincidence that this set of processes leads to the value of
the power-law emission with decay index α, similar to the one
observed and reported in Metzger et al. (2010). The total energy
emitted in the decay of these ultra-heavy elements agrees with
the observations in Episode 3 of BdHN sources (Ruffini et al.
2014a). An additional possibility of process-generating a scale-
invariant power law in the luminosity evolution and spectrum
are the ones expected from type-I and type-II Fermi acceleration
mechanisms (Fermi 1949). The application of these acceleration
mechanisms to the BdHN remnant has two clear advantages: 1)
for us, to fulfill the above-mentioned power laws, both for the lu-
minosity and the spectrum; and 2) for Fermi, to solve the long-
standing problem, formulated by Fermi in his classic paper, of
identifying the injection source to make his acceleration mecha-
nism operational on an astrophysical level.

8. Conclusions

The ansatz that GRB 090423 is the transposed of GRB 090618 at
z = 8.2 has passed scrutiny. It is viable with respect to Episodes 1
and 4 and has obtained important positive results from the anal-
ysis of Episodes 2 and 3:

– Episodes 1 and 4 have not been detected in GRB 090423.
This is consistent with the fact that the flux of Episodes 1
and 4 of GRB 090618 should not be observed by the
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Swift-BAT detector or by the optical telescopes, owing to the
very high redshift of the source and the current sensitivities
of X-ray and optical detectors;

– Episode 2 of GRB 090423 has definitely been observed by
Swift-BAT: its observed emission is comparable 1) to energy
emitted (3.49×1052 erg for GRB 090618 and 4.99×1052 erg
for GRB 090423); 2) to the observed time duration (34 s
for the observable part of GRB 090618 when transposed to
z = 8.2 and 19 s for GRB 090423); and 3) to the spectral
energy distribution: the low energy part of the spectra of
both GRBs is consistent with the expectation of the fireshell
model (Patricelli et al. 2012). There is a significant difference
only in the high energy part of the spectrum of GRB 090423,
where a cutoff is observed at lower energy than the one in
GRB 090618. This can be explained, in the fireshell sce-
nario, by the existence of a dense and homogeneous CBM
(Bianco & Ruffini 2005), which is expected for bursts at high
redshifts;

– Episode 3 shows the striking feature of the overlapping of
the late X-ray luminosities of Episode 3 in GRB 090618
and GRB 090423, when compared in their cosmological rest
frames (see Fig. 9). This result confirms the extension of the
relation presented in Pisani et al. (2013) for z ≤ 1, all the
way up to z = 8.2.

From an astrophysical point of view, all the above results clearly
indicate that

a) GRB 090423 is fully consistent with being a member of the
BdHN family, and the associated SN did occur already at
z = 8.2: the possibility of having an evolved binary system
about 650 Myr after the Big Bang is not surprising, since the
lifetime of massive stars with a mass up to 30 M⊙ is ∼10 Myr
(Woosley et al. 2002), which is similar to expectations from
normal Population II binary stars also at z = 8.2, as pointed
out by Belczynski et al. (2010);

b) the FeCO core and the NS companion occurring at z = 8.2
also implies the existence, as the progenitor, of a massive bi-
nary ∼40−60 M⊙

2. Such massive binaries have recently been
identified in η Carinae (Damineli et al. 2000). The very rapid
evolution of such very massive stars will lead first to a binary
X-ray source, like Cen-X3 (see, e.g., Gursky & Ruffini 1975)
and Giacconi & Ruffini (1978), which will further evolve in
the FeCO with the binary NS companion. A similar evolu-
tion starting from a progenitor of two very massive stars was
considered by Fryer et al. (1999) and by Bethe & Brown
(1998), leading to the formation of binary NSs or postulat-
ing the occurrence of GRBs. They significantly differ from
the IGC model and also differ in their final outcomes;

c) the results presented in this article open the way to consider-
ing the late X-ray power-law behavior in Episode 3 as a dis-
tance indicator and represents a significant step toward for-
mulating a cosmological standard candle based on Episode 3
of these BdHN sources.

We turn now to fundamental issues in physics.

1) The traditional fireball jet model (Meszaros 2006) describes
GRBs as a single phenomenon, originating in a collapsar
(Woosley 1993) and characterized by jet emission moving
at Lorentz Γ factor in the range ≈200−2000. This contrasts
with the BdHN model where the GRB is actually composed

2 http://nsm.utdallas.edu/texas2013/proceedings/3/1/

Ruffini.pdf

of three different episodes that are conceptually very dif-
ferent among each other (see Fig. 1): Episode 1 is non-
relativistic, and Episode 2 is ultra-relativistic with Lorentz
Γ factor ≈200−2000, Episode 3 is mildly relativistic, with
Γ ≈ 2.

2) The description of Episode 1, see Fig. 2, proposes the cru-
cial role of the Bondi-Hoyle hypercritical accretion process
of the SN ejecta onto the NS companion. This requires an
urgent analysis of the neutrino emission pioneered in the
classic papers of Zel’dovich et al. (1972); Chevalier (1993);
Fryer et al. (1996), and (Fryer 2009).

3) The binary nature of the progenitors in the BdHN model
and the presence of the specific scaling power laws in the
luminosity in Episode 3 of GRB 090423, as well as in all
the other sources of the “golden sample” (see Fig. 3; Pisani
et al. 2013), has led us to consider the decay of heavy nuclear
material originating in r-processes (Ruffini et al. 2014a), as
well as type-I and type-II Fermi acceleration mechanism as
possible energy sources of the mildly relativistic Episode 3
(Ruffini et al. 2014b).
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